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Background: Nemtabrutinib is a reversible inhibitor of both wild-type and
acquired resistance-related mutant BTK. Since nemtabrutinib biochemically
inhibits various kinases, new drug response biomarkers, cross-reactivities and
differentiators may be identified.

Methods: Nemtabrutinib was profiled in a large panel of cancer cell line viability
assays. The sensitivity profile of nemtabrutinib was compared with the profiles of
135 kinase inhibitors across the same cell lines. Additionally, cell line sensitivity was
related to gene mutation status, gene and protein expression levels, and gene
dependency scores. Potential targets were explored using biochemical assays.
Results: Sensitivity to nemtabrutinib is on average three times higher in
BRAF-mutant versus wild-type cell lines. Consistently, the sensitivity profile of
nemtabrutinib is similar to that of MEK, ERK and pan-RAF inhibitors. Furthermore,
sensitivity to nemtabrutinib is correlated with high FGFR3 gene expression levels,
high levels of phosphorylated MEK1 and genetic dependency on several mitogen-
activated protein kinases (MAPK). Biochemical profiling confirms that
nemtabrutinib inhibits several growth factor receptor tyrosine kinases and
downregulates MAPK signaling via MEK. Molecular docking studies suggest that
nemtabrutinib preferentially binds in the ATP-binding pocket of MEK1.
Conclusion: Combined cancer cell panel and biochemical profiling reveals
previously underappreciated cross-reactivities of nemtabrutinib indicating a
potential application in MAPK-driven cancers.
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1 Background

Cancer cell panel profiling is the parallel testing of drugs on
large panels of human cancer cell lines in cell viability assays (1).
Predictive biomarkers of drug response can be identified by relating
drug sensitivity to genomic information of the cell lines (2-7). In
addition, comparing the sensitivity profile of different drugs profiled
on the same cell line panel can help in elucidating their biochemical
mechanisms of action (8). For example, the profile of the Bruton’s

® cancer

tyrosine kinase (BTK) inhibitor ibrutinib in the Oncolines
cell line panel shows similarity with that of epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitors (5). This is in
accordance with the biochemical inhibition of EGFR by ibrutinib
(9), which has been related to its major clinical adverse effects
(diarrhea and rash) (10).

BTK plays a key role in oncogenic B-cell signaling and is a
molecular target for the development of therapies against various B-
cell malignancies. Currently, four small-molecule BTK inhibitors
have been approved by the U.S. Food and Drug Administration
(FDA) for treatment of mantle cell lymphoma, chronic lymphocytic
leukemia and small lymphocytic lymphoma. The first three
approved drugs (i.e., ibrutinib, acalabrutinib and zanubrutinib)
are covalent inhibitors that bind irreversibly to a cysteine residue
(C481) in the active site of BTK. In more than 50% of patients
treated with these inhibitors, clinical drug resistance is associated
with amino acid substitutions at position C481 in BTK (11-13).
These substitutions, which mostly involve conversion to serine, but
also to arginine, preclude the binding of covalent inhibitors (11-13).
To overcome this mechanism of acquired resistance, the reversible
inhibitors pirtobrutinib (LOXO-305) (14) and nemtabrutinib (MK-
1026; ARQ 531) (15) targeting both wild-type and C481-mutant
BTK were developed. Pirtobrutinib received market authorization
in 2023, while nemtabrutinib is still under investigation in phase 3
clinical trials for B-cell malignancies (16).

In this study, cell panel profiling experiments and bioinformatic
analyses were performed for nemtabrutinib to identify predictive
drug response biomarkers and differentiators towards approved
BTK inhibitors. Several kinases not previously described to be
involved in the cellular response of nemtabrutinib, including
various mitogen-activated protein kinases (MAPKs), were
identified as potential predictive drug response markers.
Biochemical kinase assays confirmed that some of these kinases
are a direct molecular target of nemtabrutinib.

2 Methods
2.1 BTK inhibitors

Nemtabrutinib and pirtobrutinib were purchased from
ChemScene LLC (Monmouth Junction, NJ, USA). Acalabrutinib,
ibrutinib and zanubrutinib were purchased from MedChemExpress
LLC (Monmouth Junction, NJ, USA), Axon Medchem B.V.
(Groningen, the Netherlands), and Activate Scientific GmbH
(Prien am Chiemsee, Germany), respectively. All inhibitors were
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stored as dry powders at 4 °C and were dissolved in dimethyl
sulfoxide (DMSO) at 10 mmol/L concentration before testing.

2.2 Kinase assays

Nemtabrutinib and the approved BTK inhibitors were profiled on
a panel of 254 wild-type kinases in mobility shift assays (MSA) at Carna
Biosciences, Inc. (Kobe, Japan). Kinase inhibition was measured at a
compound concentration of 1 umol/L and an ATP concentration of
Kiipin (17), which is an ATP concentration within 2-fold of the affinity
of an individual kinase for ATP (Kyga1p). Percentage inhibition values
were mapped to a phylogenetic kinome tree using Coral (http://
phanstiel-lab.med.unc.edu/CORAL/, accessed September 4t 2024)
(18). Half-maximal inhibitory concentration (ICsy) values were
determined using duplicate 10-point dilution series in MSA at
Carna Biosciences, Inc. for 15 kinases, while for MEK1 and
MEK?2, inhibition of enzymatic activity was measured in-house in
enzyme-linked immunosorbent assays (ELISA) (Carna Biosciences,
Inc.,, cat. no. 07-41 and 07-42). Percentage inhibition of MEK1 and
MEK2 at 1 umol/L nemtabrutinib and Kyjpi, ATP concentration
was derived from the dose-response curve as well and mapped to
the phylogenetic kinome tree, as described above. Inhibition of
MLKI and B-RAF at Ky o1p Was determined in a radiometric assay
using 32p_labeled ATP at Eurofins Cerep SA (Celle-Leévescault,
France). Interaction with SIK3 was assessed in a competition
binding assay at Eurofins DiscoverX LLC (San Diego, CA, USA).
The binding of nemtabrutinib to biotinylated, inactive MEKI
(Carna Biosciences, Inc., cat. no. 07-441-10-20N) and activated B-
RAF (Carna Biosciences, Inc., cat. no. 09-422-20N) was measured
by surface plasmon resonance (SPR) using a Biacore 1S+ (Cytiva),
as described previously (9).

2.3 Cell line panel

A panel of 160 cancer cell lines was used in this study.
Supplementary Table S1 provides an overview of the 160 cell lines
used for cell viability assays, the subset of 102 cell lines used for
comparative profiling and the subsets used for different bioinformatic
analyses, which were dependent on the availability of public data. Cell
lines were purchased from the American Type Culture Collection
(ATCC) (Manassas, VA, USA), the German Collection of
Microorganisms and Cell Cultures (DSMZ) (Braunschweig,
Germany), the RIKEN BioResource Research Center (Tsukuba,
Ibaraki, Japan) or the Japanese Collection of Research Bioresources
(JCRB) (Ibaraki City, Osaka, Japan). All cell lines were propagated in
the cell culture media as indicated in Supplementary Table S1. Cell
viability assays were carried out within ten passages of the original
vials. The authenticity of the ATCC and DSMZ cell lines has been
confirmed by short tandem repeat analysis at both institutions. In
addition, the mutation status of several cancer genes has been
confirmed in various cell lines, including RIKEN and JCRB cell
lines, by next-generation sequencing of genomic DNA isolated from
the same cell batches as used for the viability assays (19, 20).
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2.4 Cell viability assays

Intracellular ATP content was used as an indirect readout of cell
number using the ATPlite 1Step bioluminescence assay (Revvity,
Groningen, the Netherlands). Cells were seeded in 384-well plates at
an optimized density to ensure unrestricted growth and maximal signal
at the end of the experiment. After 24 hours of incubation, the starting
cell number was determined by adding ATPlite to each well of a control
plate and recording luminescence on an Envision multimode reader
(Revvity, Waltham, MA, USA) (4). Compounds were diluted in DMSO
in V10-fold steps from 10 mmol/L stocks to obtain 9-point dilution
series. After further 31.6-fold dilution in 20 mmol/L HEPES (pH 7.4),
the dilution series were added in duplicate to the cells in the 384-well
plates to determine the effect of the compounds on cell viability.
Vehicle-treated controls were included to determine maximal cell
proliferation. The final DMSO concentration was 0.4% (v/v) in all
wells. After incubation for an additional 72 hours, the ATP content was
measured in each well using ATPlite. The luminescent signal in
inhibitor-treated wells was normalized to vehicle-treated control
wells to determine the percentage viability at each concentration. Cell
doublings were determined by relating the cell number of vehicle-
treated controls to the starting cell number for each cell line. The
viability assay of a cell line was repeated when the cell doubling
deviated > 2-fold from the historic doubling as determined by
multiple independent experiments. The quality of the complete assay
was determined by a parallel test with doxorubicin on two cell lines.
ICs values were calculated by fitting a four-parameter logistic model to
the percentage viability values using IDBS XLfit5 (IDBS, Guildford,
United Kingdom). All curves were visually inspected and submitted to
an F-test as implemented in IDBS XLfit5. Curves with an F-value above
1.5 were invalidated and ICs, values were maximized at the highest
concentration. The highest initial test concentration in each dose range
was 31.6 umol/L and the lowest was 3.16 nmol/L. When this dose range
was too high in a certain cell line to allow for a reliable determination of
the ICsp, a new dilution series was prepared using a diluted stock
solution and was used to retest the compound on the cell line.

2.5 Datasets

Multiple datasets were used for the bioinformatic analyses. The
gene mutation, fusion and amplification status of the cell lines were
retrieved from the COSMIC Cell Lines Project available at the
COSMIC database (https://cancer.sanger.ac.uk) (21), the DepMap
database (release 24Q2) (7) and literature. Mutations were filtered
for oncogenic relevance with the Cancer Hotspots database (https://
www.cancerhotspots.org/#/home) (22) and the OncoKB database
(https://www.oncokb.org/) (23, 24), as described previously (6).
Gene mutation data are available for 156 of the 160 profiled cell
lines (Supplementary Table S1).

The in-house Oncolines® kinase inhibitor dataset contains the
ICs profiles of 135 kinase inhibitors that have been profiled on a
subset of 66 or 102 of the 160 cancer cell lines. The kinase inhibitor
set includes approved drugs, clinical and pre-clinical inhibitors, and
tool compounds (Supplementary Table S2).
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Gene and protein expression data of cell lines as well as gene
dependency scores were retrieved from the DepMap database (7).
Basal mRNA gene expression levels (release 23Q4) were used and
are available for 145 of the 160 profiled cell lines (Supplementary
Table S1). Protein expression levels, as determined by Reverse Phase
Protein Array (release 22Q2), were used and are available for 128 of
the 160 cancer cell lines (Supplementary Table S1).

Gene dependency scores from a large individual CRISPR
knock-out screen and large RNA interference (RNAi) knock-
down screens (release 23Q4 and Demeter Data v6, respectively)
were used (25-29). In these screens, the effect of single-gene knock-
out or knock-down on cell viability has been determined. The more
negative a dependency score, the more dependent a cell line is on a
specific gene. The CRISPR dataset includes data for 120 of the 160
profiled cell lines, while the RNAi dataset covers data for 107 of the
160 cell lines (Supplementary Table S1).

2.6 Bioinformatics

For all bioinformatic analyses of cell viability assay data,
10logIC50 values (in nmol/L) were used as a measure for cell line
sensitivity. All calculations were performed in R (version 4.3.1) (30).

For the gene mutation analysis, profiled cell lines were classified
as having an alteration in a gene if the gene was mutated, fused,
amplified (oncogenes) or deleted (tumor suppressor genes).
Otherwise, cell lines were classified as ‘wild-type’. The analysis
focused on a subset including known oncogenic kinase genes (31) of
which only 23 genes that were altered in three or more cell lines
were included to allow for proper statistics. A type II analysis of
variance (ANOVA) was performed to identify significant
associations between cell line sensitivity to nemtabrutinib and
kinase gene alterations. Significance after multiple testing
correction was determined with the Benjamini-Hochberg
procedure (i.e., false discovery rate < 20%).

The ICsq profile of nemtabrutinib was compared to the ICs,
profiles of the kinase inhibitors in the Oncolines® kinase inhibitor
dataset by calculating the Pearson correlation between compounds
or by hierarchical clustering. The network tree of inhibitors and
Pearson correlations was generated using the Fruchterman-
Reingold algorithm, as implemented in the R package igraph (32).
Hierarchical clustering of cell panel viability data from the kinase
inhibitors was performed with the Ward method, using 1 - Pearson
correlation (r) as clustering distance, as described previously (8).

The ICs, values of nemtabrutinib were correlated to basal gene
expression levels of 371 genes and protein expression levels of 55
genes that have been experimentally determined to be involved in
cancer (33) using Pearson correlations. Additionally, Pearson
correlations were determined between the ICs, values of
nemtabrutinib and CRISPR or RNAi dependency scores of 465
and 204 kinase genes, respectively (34). Significance of all
correlations was determined by calculating p-values, which were
subjected to the Benjamini-Hochberg procedure to correct for
multiple testing. Correlations with a false discovery rate of < 20%
were considered significant.
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2.7 Computational modeling

Docking of nemtabrutinib in the ATP- and allosteric binding
pocket of MEK1 was performed with the structure of MEK1 with
the ATP-competitive MEK1 inhibitor DS03090629 (PDB ID:7XLP
(35)) and the structure of MEK1 with adenosine 5’-(B,y-methylene)
triphosphate (AMP-PCP) and allosteric MEK1 inhibitor
cobimetinib (PDB ID: 4AN2 (36)), respectively. Prior to docking,
the structures were processed in MOE v2024.06, hydrogen atoms
were added, partial charges were calculated using the Amberl0:
EHT forcefield and energy minimization was performed. The ATP-
and allosteric binding pockets were selected as amino acids within
4.5 A distance of DS03090629 and cobimetinib, respectively.
DS03090629, cobimetinib and co-factors not involved in ligand
binding were removed from the structures. Docking in the allosteric
binding pocket was done in the presence of AMP-PCP
and magnesium.

Docking was performed using the Amberl0:EHT forcefield
with Triangle Matcher placement and Induced Fit receptor
refinement. Redocking of DS03090629 and cobimetinib in their
respective protein structures validated the docking procedure
(RMSDs: 0.61 and 0.92; docking scores: -12.2 and -10.1). Docking
scores for nemtabrutinib in the ATP-binding pocket ranged from
-10.9 to -10.5. For docking of nemtabrutinib in the allosteric
binding pocket, 100 docking poses were generated of which the
25 highest-scoring poses after refinement (-9.8 to -8.9) were

10.3389/fonc.2025.1667291

reported. Docking poses were visually inspected and analyzed for
ligand-protein interactions using interaction fingerprints (IFPs).

3 Results
3.1 Kinome profiling

Nemtabrutinib inhibited the tyrosine kinase activity of wild-
type BTK in biochemical assays with an ICsg of 1.4 nmol/L, which is
in range with the inhibition of BTK by the approved BTK inhibitors
(Figure 1a). The acquired resistance-related C481S-mutant BTK is
inhibited by nemtabrutinib with a similar ICs, (1.6 nmol/L,
Table 1). As previously noted (15), nemtabrutinib shows cross-
reactivity with many other kinases in biochemical assays, including
other TEC family, SRC family and growth factor receptor tyrosine
kinases (RTKs) (Figure 1b, Table 1). When profiled on a panel of
254 wild-type kinases at a single concentration of 1 umol/L,
nemtabrutinib inhibited the activity of 63 kinases by more than
75% and 45 kinases by more than 90% (Figure 1b, Supplementary
Table S3). This is a considerably higher number of cross-reactivities
than found for the approved BTK inhibitors on the same kinase
panel (Figure 1c, Supplementary Table S3). For example, the other
reversible BTK inhibitor pirtobrutinib inhibited only five kinases by
more than 75% (i.e., Aurora B, BRK, CSK, EGFR and TEC)
(Supplementary Table S3). These results indicate that

a b
Inhibitor ICs0, 87« (NMoOI/L)
acalabrutinib 33
ibrutinib 0.29
zanubrutinib 0.86
nemtabrutinib 14
pirtobrutinib 23
Cc

Inhibition

0%

40% o5

60% &

S0 oo
80% A

*N

100%

== zanubrutinib

== ibrutinib

== acalabrutinib

= nemtabrutinib == pirtobrutinib

FIGURE 1

(]
° TRE-R
VES 4 5
N BN G
e e
c ELK. FGR & L4 TKL
FRK
TXK-‘ iR ’
Ccsk. BRK
Q STE
® c
o
o
MEK1
CcMGC iy
(]
CK1
@
AGC
% inhibition [
®>90%
®>75% &< 90%
>50% & < 75%
<50% o CAMK

Biochemical kinase profiling. (a) Biochemical ICsq values of nemtabrutinib and four approved BTK inhibitors on BTK. (b) Phylogenetic tree of human
protein kinases highlighting 256 wild-type kinases that were examined for inhibition by nemtabrutinib in profiling experiments. Enzyme assays were
performed at Ky pin ATP and 1 pmol/L nemtabrutinib. (c) Radar chart of the percentage inhibition of 254 wild-type kinases in the presence of 1 ymol/
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TABLE 1 1Cs50 of nemtabrutinib in kinase enzyme activity assays
performed at Ky pin ATP or 1 mmol/L ATP.

Kinase ICs50 in Nmol/L
Protein Km,pin ATP 1 mmol/L ATP
BRAF B-RAF 73.0! 335
BRAF [V600E]  B-RAF [V600E] 220
BTK BTK 1.42
BTK [C481S] BTK [C481S] 1.60
FGFRI FGFR1 134
FGFR2 FGFR2 34.0
FGFR3 FGFR3 70.1
FGFR4 FGFR4 1,400
MAP2K1 MEK1 8.46 456
MAP2K2 MEK2 9.50 494
MAP3K9 MLK1' 4,870
MAPK3 ERK1 543
MAPK]I ERK2 505
PDGFRA PDGFRa. 124
SIK3 SIK3 > 10,000 9,320
TEC TEC 0.750
YES YES 0.591

! Assays performed at Eurofins. All other assays were performed at Carna biosciences, Inc. or

in-house.

2Assay was a ligand competition assay instead of an enzyme activity assay.

FIGURE 2
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nemtabrutinib has a broader selectivity in biochemical assays
compared to pirtobrutinib and the approved irreversible
BTK inhibitors.

3.2 Cancer cell line profiling

To study the activity and selectivity of nemtabrutinib in cancer
cells, nemtabrutinib was profiled on a panel of 160 human cancer
cell lines in cell viability assays. The cell panel represents a wide
range of solid tumors and hematological malignancies
(Supplementary Table SI). Nemtabrutinib demonstrated potent
inhibitory activity across cell lines from all tissues and disease
types. The most sensitive cell line was the chronic eosinophilic
leukemia cell line EoL-1 (ICso = 59 nmol/L), expressing a fusion
gene of Factor Interacting with PAPOLA and CPSF1 (FIP1L1) and
platelet-derived growth factor receptor oo (PDGFRa) (Figure 2a,
Supplementary Table S4) (37). Other cell lines among the most
sensitive responders were two T-cell acute lymphoblastic leukemia
(T-ALL) cell lines (Jurkat E6.1 and CCRF-HSB-2) and several cell
lines derived from solid tumors, including endometrial (HEC-251
and HEC-1-B) and colon cancers (HT-29). The germinal center B-
cell like diffuse large B-cell lymphoma (DLBCL) cell line HT and the
prostate carcinoma cell line LNCaP clone FGC were among the least
sensitive cell lines in the viability assays (ICsq > 31.6 pmol/L)
(Supplementary Table S4).

The profiled cancer cell line panel contains two cell lines derived
from BTK-dependent cancers, i.e., the DLBCL cell line SU-DHL-6
and the mantle cell lymphoma cell line REC-1. The SU-DHL-6 cell
line harbors a mutation in MYD88 resulting in the activation of BTK

N
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Cancer cell panel profiling of nemtabrutinib. (a) Waterfall plot of ICsq values of nemtabrutinib in cell viability assays with 160 cancer cell lines.
(b) Dose-response curves of nemtabrutinib and the four approved BTK inhibitors in viability assays with SU-DHL-6 and REC-1 cells.
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(38), while the REC-1 cell line has constitutively active B-cell receptor
signaling (39). Nemtabrutinib inhibited the viability of these cell lines
with an ICsy of 0.6 pmol/L and 2.0 pumol/L, respectively. This
contrasts the potent ICs, values of the irreversible BTK inhibitors
ibrutinib, acalabrutinib and zanubrutinib on these cell lines
(Figure 2b, Supplementary Table S5). However, the approved BTK
inhibitors showed only partial effects, while nemtabrutinib reached
almost complete inhibition of viability (Figure 2b).

3.3 Bioinformatic analysis of cell panel
profiling data

To investigate which kinases could be responsible for the broad
cellular activity of nemtabrutinib, a number of bioinformatic
analyses were performed on the cell panel profiling data. Both
genomic alterations and aberrant expression of genes or proteins
can induce tumor cell proliferation (31, 33). Therefore, we
correlated the ICsy profile of nemtabrutinib with the mutation
status of oncogenic kinases, the gene dependency scores of
human kinase genes and with the gene or protein expression
levels of known cancer genes in the cell lines.

Associations between cell line sensitivity and gene mutations
were determined by ANOVA. Of the 23 kinase genes analyzed, only
the mutation status of BRAF was found to be significantly associated
with nemtabrutinib sensitivity (Figure 3a). Cancer cell lines
harboring mutations in BRAF were on average three times more
sensitive than cell lines expressing wild-type BRAF. Mutant BRAF is
also a predictive biomarker of drug response for B-RAF and MEK1
inhibitors profiled in our cancer cell line panel (4, 6).

To further investigate the mechanism underlying the
association of cell line sensitivity to nemtabrutinib with BRAF
mutation status, we compared the ICs, profile of nemtabrutinib
with the profiles of the 135 kinase inhibitors in the Oncolines®
kinase inhibitor dataset in a one-to-one comparison analysis.
Inhibitors are considered to have a similar inhibitory profile if the
Pearson correlation is 0.5 or higher. If inhibitors show a similar

10.3389/fonc.2025.1667291

profile, they are connected to each other in a network tree for
visualization (Figure 3b). The analysis revealed that nemtabrutinib
is not connected with the approved BTK inhibitors, but shows
connections with MEK, ERK and pan-RAF inhibitors (Figure 3b). A
comparative analysis based on an unsupervised hierarchical
clustering showed similar results (Supplementary Figure S1). The
approved BTK inhibitors cluster at distant locations in the
hierarchical clustering tree. For instance, and as noted before (8),
ibrutinib clusters with EGFR inhibitors (Supplementary Figure S1).

Basal gene expression levels of 371 cancer genes were correlated
to the cancer cell line sensitivity of nemtabrutinib. This correlation
analysis revealed increased expression of fibroblast growth factor
receptor 3 (FGFR3) as a significant marker of drug response
(Figure 4a). Cancer cell line sensitivity was also correlated to the
protein expression levels of 55 cancer genes. This showed that high
levels of phosphorylated MEK1 are significantly correlated with
sensitivity to nemtabrutinib (Figure 4b).

Finally, we compared the drug sensitivity profile of
nemtabrutinib with the genetic dependency scores of kinase genes
available from large-scale CRISPR (465 genes) and RNAIi screens
(204 genes). Significant positive correlations were found between
the ICsy profile of nemtabrutinib and the CRISPR knock-out
dependency scores of two genes: BRAF and SIK3 (Figure 4c).
Knock-down of BRAF by RNAi was also significantly correlated
with response to nemtabrutinib. Additionally, response to
nemtabrutinib exhibits a strong positive correlation with knock-
down dependency scores of MAP2KI, MAP3K9, and MAPKI
(Figure 4c), encoding the MAPK pathway components MEKI,
MLK1 and ERK2. The correlation analysis was repeated with the
dataset minus the 16 BRAF-mutant cell lines to determine whether
the preferential targeting of BRAF-mutant cell lines by
nemtabrutinib may have strongly influenced the results. The
significant positive correlations with SIK3 and MAP3K9 in the
CRISPR and RNAi screen dataset, respectively, were maintained in
this analysis (Figure 4d), indicating that the dependency of cell lines
on these kinases can predict nemtabrutinib response independent
of BRAF mutation status.
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FIGURE 3

Cancer gene mutation analysis and comparative profiling. (a) Volcano plot showing the correlation of nemtabrutinib response in cell viability assays
with the mutation status of 23 oncogenic kinases in the cell lines. Each circle represents a kinase gene that is mutated in at least three cell lines.

(b) Network tree connecting inhibitors with a similar profile. In case the Pearson correlation coefficient of the ICsq fingerprint of two compounds is
0.5 or higher, a connection is drawn in the network. The length of the line has no meaning. Nemtabrutinib and the BTK inhibitors are colored in red.
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Bioinformatic correlation analyses of cancer cell line sensitivity to nemtabrutinib. (a) Volcano plot of Pearson correlation coefficients of ICsq values in
cell viability assays and basal expression levels of 371 cancer genes. (b) Volcano plot of Pearson correlation coefficients of ICsq values in cell viability
assays and expression levels of 55 cancer proteins. (c) Volcano plot of Pearson correlation coefficients of response profiles and gene dependency
scores from gene knock-out (CRISPR) or knock-down (RNAI) screens. (d) Results from same analysis as in panel ¢, after exclusion of the 16 BRAF-

mutant cell lines.

3.4 Kinase biochemical inhibition

To determine whether the kinases identified in the
bioinformatic analyses of the cell panel profiling study were
genuine biochemical targets of nemtabrutinib, kinase enzyme
activity assays were performed. The ICs, values of nemtabrutinib
in biochemical assays with these kinases are given in Table 1.
Table 1 summarizes a subset of kinases that were included in the
panel of 254 wild-type kinases for the single concentration profiling
(Supplementary Table S3), such as FGFR1-4, as well as kinases that
were not included in this panel (MEKI, MLK1, ERK2, B-RAF
and SIK3).

The most sensitive cell line EoL-1 has a constitutively active
PDGFRa due to a FIP1L1-PDGFRa fusion (37). In a biochemical
assay, PDGFRo was inhibited with an ICs, of 12.4 nmol/L. As
mentioned before, the gene expression analysis revealed a
correlation between high expression of FGFR3 and cell line
sensitivity to nemtabrutinib (Figure 4a). Biochemically,
nemtabrutinib inhibits FGFR3 with an ICsy of 70.1 nmol/L and
FGFR2 is even more potently inhibited with an ICs, of 34.0 nmol/L.
For FGFRI, moderately potent inhibition was found (ICsy = 134
nmol/L), while FGFR4 was not potently inhibited (IC5, = 1.40
pumol/L). The cell lines AN3-CA and KATO III have an FGFR2
mutation or amplification, respectively (6). These cell lines were
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inhibited by nemtabrutinib with a potency within the range of
inhibition of the BTK-driven cell lines (ICso = 1.1 pmol/L)
(Supplementary Table S4). The FGFRI fusion-positive cell line
KG-1 and FGFR3 fusion-positive cell line RT-4 (6) are also
inhibited within that range, however with a slightly lower potency
(ICsp = 1.4 and 1.7 umol/L, respectively). No binding to SIK3 by
nemtabrutinib was found (Table 1). These results suggest that
platelet-derived and fibroblast growth factor receptors are
potential drug response biomarkers for nemtabrutinib.

The sensitivity of BRAF-mutant cell lines to nemtabrutinib
indicates activity of nemtabrutinib on the MAPK pathway.
Nemtabrutinib inhibited MEK1 and MEK2 with ICs, values of
8.5 and 9.5 nmol/L, respectively (Table 1). The compound also
showed inhibitory activity in the B-RAF assay with an ICs, of 73
nmol/L. It should be noted that the B-RAF kinase assay is a cascade
assay, in which activity is indirectly measured via MEK1 and ERK2.
Nemtabrutinib did not inhibit MLK1, ERK1 or ERK2 (Table 1).

3.5 Kinase binding and computational
modeling

To investigate the specific target of nemtabrutinib in the MAPK
pathway, surface plasmon resonance binding experiments were
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performed on B-RAF and MEKI. Nemtabrutinib bound inactive
MEK]1 with an affinity (Kp) of 10 nmol/L (Figure 5a), whereas it
bound activated B-RAF with a Kp of 1.2 pmol/L (Figure 5b),
corresponding to a 120-fold difference in affinity (Supplementary
Table S6). This indicates that the inhibitory effect on MAPK
signaling is most likely due to inhibition of MEKI rather than
B-RAF.

X-ray crystallographic studies on nemtabrutinib-bound BTK
indicate that nemtabrutinib is an ATP-competitive BTK inhibitor
(Figure 5c¢, Supplementary Table S7) (15). To investigate the
binding mode of nemtabrutinib in MEKI, molecular docking in
both the ATP- and allosteric binding pocket of MEK1 was
performed. Docking of nemtabrutinib in the ATP-binding pocket
of MEKI1 resulted in multiple docking poses, which were described
by interaction fingerprints (IFPs). These in silico predicted IFPs
were compared to the IFP derived from the X-ray crystallographic
analysis of the nemtabrutinib-BTK complex (15). Interestingly, the
highest-scoring docking pose of nemtabrutinib in MEK1 has a very
similar IFP as the IFP found in the crystal structure of
nemtabrutinib-bound BTK (Figures 5¢, d, Supplementary Table
S7). This includes two hydrogen bond interactions between the
pyrrolo-pyrimidine ring of nemtabrutinib and two hinge region
residues in the ATP-binding pocket of BTK (Met*”” and Glu*"®)
and MEK1 (Met'*® and Glu'**). Additionally, the hydroxymethyl-
oxane moiety and the carbonyl oxygen atom of nemtabrutinib
forms a (water-mediated) hydrogen bond interaction with the
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residues Cys*®*' and Lys**° (BTK) or Ser'® and Lys®’
(MEKT1), respectively.

In contrast, docking of nemtabrutinib in the allosteric pocket of
MEKI indicates that nemtabrutinib exhibits extensive sampling of
the allosteric pocket, suggesting a lack of strong and highly
complementary interactions. Oppositely, the crystal structure of
cobimetinib in the allosteric pocket of MEK1 showed multiple polar
contacts, such as hydrogen bond interactions with Lys”’, Asp'®® and
Met"* as well as halogen bond interactions with Val'*’” and Ser*'?
(Supplementary Figure S2A). Indeed, the IFP analysis shows that
nemtabrutinib is unable to form the contacts observed with
cobimetinib (Supplementary Figure S2B, C). Altogether, the
molecular docking experiments suggest that nemtabrutinib
preferentially binds to the ATP-binding pocket and does not
exhibit strong binding to the allosteric pocket.

4 Discussion

Both mutations in kinase genes and their increased expression
can cause aberrant tumor growth. To identify the kinases
responsible for the anti-proliferative activity of nemtabrutinib in
cell lines, we determined associations between cancer cell line
sensitivity and gene mutation status. Additionally, we compared
the ICs, profile of nemtabrutinib with the profiles of other kinase
inhibitors profiled on the same panel. Furthermore, we evaluated

B-RAF
12
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Kinase binding experiments and molecular docking of nemtabrutinib. Sensorgrams of nemtabrutinib and reference inhibitor binding in surface
plasmon resonance experiments with MEK1 (a) or B-RAF (b). The red and grey lines represent the experimental results and the black lines represent
the fits obtained using a 1:1 binding model. (c) Binding mode of nemtabrutinib in the ATP-binding pocket of BTK (PDB ID: 6E4F). (d) Highest-scoring
docking pose of nemtabrutinib in the ATP-binding pocket of MEK1 (PDB ID: 7XLP).
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the correlation of the ICs, values with gene expression levels,
protein expression levels and CRISPR or RNAi gene dependency
scores. The inhibitory activity of nemtabrutinib on the identified
candidate kinase targets was investigated in biochemical assays and
binding to selected targets was evaluated with surface plasmon
resonance and molecular docking studies.

In our study, nemtabrutinib showed moderate cellular activity
on the BTK-dependent SU-DHL-6 and REC-1 cell lines.
Nemtabrutinib was approximately 40- to 200-fold (SU-DHL-6) or
50- to 4000-fold (REC-1) less potent in cell viability assays with
these cell lines than approved BTK inhibitors (Supplementary Table
S5). It should be noted that BTK inhibitors exert their therapeutic
activity by promoting egress of malignant B-cells from lymph nodes
(40, 41). Inhibition of tumor cell proliferation is not thought to
significantly contribute to their clinical efficacy. Cell viability assays
are thus, at best, only a surrogate readout for the activity of BTK
inhibitors in B-cell cancers. However, viability assays can be used to
identify other therapeutic indications in solid tumors.

Out of the 160 profiled cell lines, nemtabrutinib most potently
inhibited the viability of a chronic eosinophilic leukemia cell line
(EoL-1), which expresses a chimeric kinase of FIP1L1 and PDGFRo
(37) and is, according to the DepMap database (7), strongly
dependent on SIK3. While the cellular IC5, profile of
nemtabrutinib correlates with CRISPR dependency of SIK3,
nemtabrutinib does not bind SIK3 in a biochemical kinase assay.
Most likely, the correlation between SIK3 knock-down dependency
and the cell panel profiling results is dominated by the potent
inhibitory activity on the EoL-1 cell line (Supplementary Figure
S3A). In contrast, high FGFR3 gene expression correlated with
sensitivity to nemtabrutinib across the whole cell line panel
(Supplementary Figure S3B). Cross-reactivity of nemtabrutinib
with other growth factor RTKs has been described previously, i.e.,
with neurotrophic tyrosine receptor kinases (NTRK) (42) and fms-
related tyrosine kinase 3 (FLT3) (43). Elgamal et al. explored
inhibition of FLT3 by nemtabrutinib as a potential treatment
option of acute myeloid leukemia (AML) in preclinical models.

In the first article describing nemtabrutinib, therein referred to
as ARQ 531, Reiff et al. reported a number of cross-reactivities with
other protein kinases besides BTK. Profiling was performed at an
ATP concentration of 1 mmol/L ATP, thus mimicking intracellular
ATP levels (44). An ICsy of 599 nmol/L was determined in an
enzyme assay for MEK1. We used the same protein and assay
readout (both from Carna) but performed the assay at Ky pin, i.€., an
ATP concentration close to Ky atp, which for MEK1 and MEK2
corresponded to 10 pumol/L ATP. Although the cellular ATP
concentration is generally between 1-5 mmol/L, using the Ky atp
in biochemical assays allows the ICs, value to become a direct
measure of the binding affinity between the investigated compound
and the kinase (45). We determined an ICs, of approximately 9
nmol/L for MEK1 and MEK?2, which is six times higher than its ICs,
in the enzyme assay on BTK (Table 1). Reiff et al. reported that
nemtabrutinib inhibited MEK1 with a 1200 times higher ICs, than
BTK. The cross-reactivity of nemtabrutinib with MEK1 and MEK2
corresponds with the preferential targeting of BRAF-mutant cell
lines. Of note, we independently confirmed the higher ICs, on
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MEKI in the biochemical enzyme assay at 1 mmol/L ATP (i.e., 456
nmol/L; Table 1).

As mentioned before, X-ray crystallographic studies of
nemtabrutinib with BTK indicate that nemtabrutinib is an ATP-
competitive (Type I) inhibitor (15). Our docking studies indicate that
it binds in a similar way to MEKI1. In contrast, currently approved
MEK inhibitors, such as trametinib and cobimetinib, target MEK
through an allosteric pocket adjacent to the ATP-binding pocket
(Type III inhibitors) (46). Allosteric MEK1 inhibitors are used in
combination with B-RAF inhibitors for treating BRAF V600-mutant
cancers or as monotherapies for neurofibromatosis type I (47).
However, resistance to allosteric MEK inhibitors is frequently
observed and can arise through multiple mechanisms. First,
mutations in MEK1 or MEK2 can confer cross-resistance to
multiple inhibitors within this class. Notably, many of these
resistance mutations remain susceptible to ATP-competitive, Type
I MEK inhibitors (48, 49). Second, allosteric MEK inhibitors exhibit
reduced binding affinity for phosphorylated MEK, which can be
caused by overexpression of BRAF (35, 50). In contrast, ATP-
competitive inhibitors retain their affinity against phosphorylated
MEK, underscoring another advantage of this binding mode (35).

In addition to the ATP-competitive binding mode of
nemtabrutinib, its multi-kinase inhibition profile may provide
therapeutic benefits beyond those of selective MEK inhibitors.
Reactivation of the MAPK pathway, commonly driven by
diminished ERK-mediated negative feedback on RTKs or acquired
RTK overexpression, is a prevalent resistance mechanism (51, 52). Our
findings indicate that nemtabrutinib not only targets MEK but also
inhibits multiple RTKs. This dual mechanism of action can potentially
delay MAPK pathway reactivation and extend the duration of response
compared to more selective allosteric or ATP-competitive
MEK inhibitors.

Taken together, our results show that nemtabrutinib downregulates
MAPK signaling by inhibiting MEK1 and that it is also an inhibitor of
several growth factor RTKs, including FGFR2, FGFR3 and PDGFRo.
The ATP-competitive binding mode of nemtabrutinib in MEK and its
dual mechanism of action are promising features that warrant further
investigation in MAPK-driven cancers. Our data illustrate the power of
combining cell panel profiling, bioinformatics and kinase biochemical
profiling for the identification of differentiators and new potential
therapeutic applications of kinase inhibitors.
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