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Combined cellular and
biochemical profiling of
Bruton’s tyrosine kinase
inhibitor nemtabrutinib
reveals potential application
in MAPK-driven cancers
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Esmee van den Bossche1, Jacob Ytsma1,
Jeroen A. D. M. de Roos1, Oscar P. J. van Linden2,
Yvonne Grobben1, Jeffrey J. Kooijman1

and Guido J. R. Zaman 1*

1Oncolines B.V., Oss, Netherlands, 2Division of Innovations in Human Health and Life Sciences,
Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam,
Amsterdam, Netherlands
Background: Nemtabrutinib is a reversible inhibitor of both wild-type and

acquired resistance-related mutant BTK. Since nemtabrutinib biochemically

inhibits various kinases, new drug response biomarkers, cross-reactivities and

differentiators may be identified.

Methods: Nemtabrutinib was profiled in a large panel of cancer cell line viability

assays. The sensitivity profile of nemtabrutinib was compared with the profiles of

135 kinase inhibitors across the same cell lines. Additionally, cell line sensitivity was

related to gene mutation status, gene and protein expression levels, and gene

dependency scores. Potential targets were explored using biochemical assays.

Results: Sensitivity to nemtabrutinib is on average three times higher in

BRAF-mutant versus wild-type cell lines. Consistently, the sensitivity profile of

nemtabrutinib is similar to that of MEK, ERK and pan-RAF inhibitors. Furthermore,

sensitivity to nemtabrutinib is correlated with high FGFR3 gene expression levels,

high levels of phosphorylated MEK1 and genetic dependency on several mitogen-

activated protein kinases (MAPK). Biochemical profiling confirms that

nemtabrutinib inhibits several growth factor receptor tyrosine kinases and

downregulates MAPK signaling via MEK. Molecular docking studies suggest that

nemtabrutinib preferentially binds in the ATP-binding pocket of MEK1.

Conclusion: Combined cancer cell panel and biochemical profiling reveals

previously underappreciated cross-reactivities of nemtabrutinib indicating a

potential application in MAPK-driven cancers.
KEYWORDS

cancer cell line proliferation, Bruton’s tyrosine kinase (BTK), bioinformatics, kinase
profiling, MAPK, Biacore, kinase inhibitor
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1 Background

Cancer cell panel profiling is the parallel testing of drugs on

large panels of human cancer cell lines in cell viability assays (1).

Predictive biomarkers of drug response can be identified by relating

drug sensitivity to genomic information of the cell lines (2–7). In

addition, comparing the sensitivity profile of different drugs profiled

on the same cell line panel can help in elucidating their biochemical

mechanisms of action (8). For example, the profile of the Bruton’s

tyrosine kinase (BTK) inhibitor ibrutinib in the Oncolines® cancer

cell line panel shows similarity with that of epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitors (5). This is in

accordance with the biochemical inhibition of EGFR by ibrutinib

(9), which has been related to its major clinical adverse effects

(diarrhea and rash) (10).

BTK plays a key role in oncogenic B-cell signaling and is a

molecular target for the development of therapies against various B-

cell malignancies. Currently, four small-molecule BTK inhibitors

have been approved by the U.S. Food and Drug Administration

(FDA) for treatment of mantle cell lymphoma, chronic lymphocytic

leukemia and small lymphocytic lymphoma. The first three

approved drugs (i.e., ibrutinib, acalabrutinib and zanubrutinib)

are covalent inhibitors that bind irreversibly to a cysteine residue

(C481) in the active site of BTK. In more than 50% of patients

treated with these inhibitors, clinical drug resistance is associated

with amino acid substitutions at position C481 in BTK (11–13).

These substitutions, which mostly involve conversion to serine, but

also to arginine, preclude the binding of covalent inhibitors (11–13).

To overcome this mechanism of acquired resistance, the reversible

inhibitors pirtobrutinib (LOXO-305) (14) and nemtabrutinib (MK-

1026; ARQ 531) (15) targeting both wild-type and C481-mutant

BTK were developed. Pirtobrutinib received market authorization

in 2023, while nemtabrutinib is still under investigation in phase 3

clinical trials for B-cell malignancies (16).

In this study, cell panel profiling experiments and bioinformatic

analyses were performed for nemtabrutinib to identify predictive

drug response biomarkers and differentiators towards approved

BTK inhibitors. Several kinases not previously described to be

involved in the cellular response of nemtabrutinib, including

various mitogen-activated protein kinases (MAPKs), were

identified as potential predictive drug response markers.

Biochemical kinase assays confirmed that some of these kinases

are a direct molecular target of nemtabrutinib.
2 Methods

2.1 BTK inhibitors

Nemtabrutinib and pirtobrutinib were purchased from

ChemScene LLC (Monmouth Junction, NJ, USA). Acalabrutinib,

ibrutinib and zanubrutinib were purchased from MedChemExpress

LLC (Monmouth Junction, NJ, USA), Axon Medchem B.V.

(Groningen, the Netherlands), and Activate Scientific GmbH

(Prien am Chiemsee, Germany), respectively. All inhibitors were
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stored as dry powders at 4 °C and were dissolved in dimethyl

sulfoxide (DMSO) at 10 mmol/L concentration before testing.
2.2 Kinase assays

Nemtabrutinib and the approved BTK inhibitors were profiled on

a panel of 254 wild-type kinases inmobility shift assays (MSA) at Carna

Biosciences, Inc. (Kobe, Japan). Kinase inhibition was measured at a

compound concentration of 1 µmol/L and an ATP concentration of

KM,bin (17), which is an ATP concentration within 2-fold of the affinity

of an individual kinase for ATP (KM,ATP). Percentage inhibition values

were mapped to a phylogenetic kinome tree using Coral (http://

phanstiel-lab.med.unc.edu/CORAL/, accessed September 4th, 2024)

(18). Half-maximal inhibitory concentration (IC50) values were

determined using duplicate 10-point dilution series in MSA at

Carna Biosciences, Inc. for 15 kinases, while for MEK1 and

MEK2, inhibition of enzymatic activity was measured in-house in

enzyme-linked immunosorbent assays (ELISA) (Carna Biosciences,

Inc., cat. no. 07–41 and 07-42). Percentage inhibition of MEK1 and

MEK2 at 1 µmol/L nemtabrutinib and KM,bin ATP concentration

was derived from the dose-response curve as well and mapped to

the phylogenetic kinome tree, as described above. Inhibition of

MLK1 and B-RAF at KM,ATP was determined in a radiometric assay

using 32P-labeled ATP at Eurofins Cerep SA (Celle-Lévescault,

France). Interaction with SIK3 was assessed in a competition

binding assay at Eurofins DiscoverX LLC (San Diego, CA, USA).

The binding of nemtabrutinib to biotinylated, inactive MEK1

(Carna Biosciences, Inc., cat. no. 07-441-10-20N) and activated B-

RAF (Carna Biosciences, Inc., cat. no. 09-422-20N) was measured

by surface plasmon resonance (SPR) using a Biacore 1S+ (Cytiva),

as described previously (9).
2.3 Cell line panel

A panel of 160 cancer cell lines was used in this study.

Supplementary Table S1 provides an overview of the 160 cell lines

used for cell viability assays, the subset of 102 cell lines used for

comparative profiling and the subsets used for different bioinformatic

analyses, which were dependent on the availability of public data. Cell

lines were purchased from the American Type Culture Collection

(ATCC) (Manassas, VA, USA), the German Collection of

Microorganisms and Cell Cultures (DSMZ) (Braunschweig,

Germany), the RIKEN BioResource Research Center (Tsukuba,

Ibaraki, Japan) or the Japanese Collection of Research Bioresources

(JCRB) (Ibaraki City, Osaka, Japan). All cell lines were propagated in

the cell culture media as indicated in Supplementary Table S1. Cell

viability assays were carried out within ten passages of the original

vials. The authenticity of the ATCC and DSMZ cell lines has been

confirmed by short tandem repeat analysis at both institutions. In

addition, the mutation status of several cancer genes has been

confirmed in various cell lines, including RIKEN and JCRB cell

lines, by next-generation sequencing of genomic DNA isolated from

the same cell batches as used for the viability assays (19, 20).
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2.4 Cell viability assays

Intracellular ATP content was used as an indirect readout of cell

number using the ATPlite 1Step bioluminescence assay (Revvity,

Groningen, the Netherlands). Cells were seeded in 384-well plates at

an optimized density to ensure unrestricted growth andmaximal signal

at the end of the experiment. After 24 hours of incubation, the starting

cell number was determined by adding ATPlite to each well of a control

plate and recording luminescence on an Envision multimode reader

(Revvity,Waltham,MA, USA) (4). Compounds were diluted in DMSO

in √10-fold steps from 10 mmol/L stocks to obtain 9-point dilution

series. After further 31.6-fold dilution in 20 mmol/L HEPES (pH 7.4),

the dilution series were added in duplicate to the cells in the 384-well

plates to determine the effect of the compounds on cell viability.

Vehicle-treated controls were included to determine maximal cell

proliferation. The final DMSO concentration was 0.4% (v/v) in all

wells. After incubation for an additional 72 hours, the ATP content was

measured in each well using ATPlite. The luminescent signal in

inhibitor-treated wells was normalized to vehicle-treated control

wells to determine the percentage viability at each concentration. Cell

doublings were determined by relating the cell number of vehicle-

treated controls to the starting cell number for each cell line. The

viability assay of a cell line was repeated when the cell doubling

deviated > 2-fold from the historic doubling as determined by

multiple independent experiments. The quality of the complete assay

was determined by a parallel test with doxorubicin on two cell lines.

IC50 values were calculated by fitting a four-parameter logistic model to

the percentage viability values using IDBS XLfit5 (IDBS, Guildford,

United Kingdom). All curves were visually inspected and submitted to

an F-test as implemented in IDBS XLfit5. Curves with an F-value above

1.5 were invalidated and IC50 values were maximized at the highest

concentration. The highest initial test concentration in each dose range

was 31.6 µmol/L and the lowest was 3.16 nmol/L.When this dose range

was too high in a certain cell line to allow for a reliable determination of

the IC50, a new dilution series was prepared using a diluted stock

solution and was used to retest the compound on the cell line.
2.5 Datasets

Multiple datasets were used for the bioinformatic analyses. The

gene mutation, fusion and amplification status of the cell lines were

retrieved from the COSMIC Cell Lines Project available at the

COSMIC database (https://cancer.sanger.ac.uk) (21), the DepMap

database (release 24Q2) (7) and literature. Mutations were filtered

for oncogenic relevance with the Cancer Hotspots database (https://

www.cancerhotspots.org/#/home) (22) and the OncoKB database

(https://www.oncokb.org/) (23, 24), as described previously (6).

Gene mutation data are available for 156 of the 160 profiled cell

lines (Supplementary Table S1).

The in-house Oncolines® kinase inhibitor dataset contains the

IC50 profiles of 135 kinase inhibitors that have been profiled on a

subset of 66 or 102 of the 160 cancer cell lines. The kinase inhibitor

set includes approved drugs, clinical and pre-clinical inhibitors, and

tool compounds (Supplementary Table S2).
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Gene and protein expression data of cell lines as well as gene

dependency scores were retrieved from the DepMap database (7).

Basal mRNA gene expression levels (release 23Q4) were used and

are available for 145 of the 160 profiled cell lines (Supplementary

Table S1). Protein expression levels, as determined by Reverse Phase

Protein Array (release 22Q2), were used and are available for 128 of

the 160 cancer cell lines (Supplementary Table S1).

Gene dependency scores from a large individual CRISPR

knock-out screen and large RNA interference (RNAi) knock-

down screens (release 23Q4 and Demeter Data v6, respectively)

were used (25–29). In these screens, the effect of single-gene knock-

out or knock-down on cell viability has been determined. The more

negative a dependency score, the more dependent a cell line is on a

specific gene. The CRISPR dataset includes data for 120 of the 160

profiled cell lines, while the RNAi dataset covers data for 107 of the

160 cell lines (Supplementary Table S1).
2.6 Bioinformatics

For all bioinformatic analyses of cell viability assay data,
10logIC50 values (in nmol/L) were used as a measure for cell line

sensitivity. All calculations were performed in R (version 4.3.1) (30).

For the gene mutation analysis, profiled cell lines were classified

as having an alteration in a gene if the gene was mutated, fused,

amplified (oncogenes) or deleted (tumor suppressor genes).

Otherwise, cell lines were classified as ‘wild-type’. The analysis

focused on a subset including known oncogenic kinase genes (31) of

which only 23 genes that were altered in three or more cell lines

were included to allow for proper statistics. A type II analysis of

variance (ANOVA) was performed to identify significant

associations between cell line sensitivity to nemtabrutinib and

kinase gene alterations. Significance after multiple testing

correction was determined with the Benjamini-Hochberg

procedure (i.e., false discovery rate < 20%).

The IC50 profile of nemtabrutinib was compared to the IC50

profiles of the kinase inhibitors in the Oncolines® kinase inhibitor

dataset by calculating the Pearson correlation between compounds

or by hierarchical clustering. The network tree of inhibitors and

Pearson correlations was generated using the Fruchterman–

Reingold algorithm, as implemented in the R package igraph (32).

Hierarchical clustering of cell panel viability data from the kinase

inhibitors was performed with the Ward method, using 1 – Pearson

correlation (r) as clustering distance, as described previously (8).

The IC50 values of nemtabrutinib were correlated to basal gene

expression levels of 371 genes and protein expression levels of 55

genes that have been experimentally determined to be involved in

cancer (33) using Pearson correlations. Additionally, Pearson

correlations were determined between the IC50 values of

nemtabrutinib and CRISPR or RNAi dependency scores of 465

and 204 kinase genes, respectively (34). Significance of all

correlations was determined by calculating p-values, which were

subjected to the Benjamini-Hochberg procedure to correct for

multiple testing. Correlations with a false discovery rate of < 20%

were considered significant.
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2.7 Computational modeling

Docking of nemtabrutinib in the ATP- and allosteric binding

pocket of MEK1 was performed with the structure of MEK1 with

the ATP-competitive MEK1 inhibitor DS03090629 (PDB ID:7XLP

(35)) and the structure of MEK1 with adenosine 5’-(b,g-methylene)

triphosphate (AMP-PCP) and allosteric MEK1 inhibitor

cobimetinib (PDB ID: 4AN2 (36)), respectively. Prior to docking,

the structures were processed in MOE v2024.06, hydrogen atoms

were added, partial charges were calculated using the Amber10:

EHT forcefield and energy minimization was performed. The ATP-

and allosteric binding pockets were selected as amino acids within

4.5 Å distance of DS03090629 and cobimetinib, respectively.

DS03090629, cobimetinib and co-factors not involved in ligand

binding were removed from the structures. Docking in the allosteric

binding pocket was done in the presence of AMP-PCP

and magnesium.

Docking was performed using the Amber10:EHT forcefield

with Triangle Matcher placement and Induced Fit receptor

refinement. Redocking of DS03090629 and cobimetinib in their

respective protein structures validated the docking procedure

(RMSDs: 0.61 and 0.92; docking scores: -12.2 and -10.1). Docking

scores for nemtabrutinib in the ATP-binding pocket ranged from

-10.9 to -10.5. For docking of nemtabrutinib in the allosteric

binding pocket, 100 docking poses were generated of which the

25 highest-scoring poses after refinement (-9.8 to -8.9) were
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reported. Docking poses were visually inspected and analyzed for

ligand-protein interactions using interaction fingerprints (IFPs).
3 Results

3.1 Kinome profiling

Nemtabrutinib inhibited the tyrosine kinase activity of wild-

type BTK in biochemical assays with an IC50 of 1.4 nmol/L, which is

in range with the inhibition of BTK by the approved BTK inhibitors

(Figure 1a). The acquired resistance-related C481S-mutant BTK is

inhibited by nemtabrutinib with a similar IC50 (1.6 nmol/L,

Table 1). As previously noted (15), nemtabrutinib shows cross-

reactivity with many other kinases in biochemical assays, including

other TEC family, SRC family and growth factor receptor tyrosine

kinases (RTKs) (Figure 1b, Table 1). When profiled on a panel of

254 wild-type kinases at a single concentration of 1 µmol/L,

nemtabrutinib inhibited the activity of 63 kinases by more than

75% and 45 kinases by more than 90% (Figure 1b, Supplementary

Table S3). This is a considerably higher number of cross-reactivities

than found for the approved BTK inhibitors on the same kinase

panel (Figure 1c, Supplementary Table S3). For example, the other

reversible BTK inhibitor pirtobrutinib inhibited only five kinases by

more than 75% (i.e., Aurora B, BRK, CSK, EGFR and TEC)

(Supplementary Table S3). These results indicate that
FIGURE 1

Biochemical kinase profiling. (a) Biochemical IC50 values of nemtabrutinib and four approved BTK inhibitors on BTK. (b) Phylogenetic tree of human
protein kinases highlighting 256 wild-type kinases that were examined for inhibition by nemtabrutinib in profiling experiments. Enzyme assays were
performed at KM,bin ATP and 1 µmol/L nemtabrutinib. (c) Radar chart of the percentage inhibition of 254 wild-type kinases in the presence of 1 µmol/
L nemtabrutinib or one of the four approved BTK inhibitors. Each dot represents a kinase and the kinases are ordered based on percentage inhibition
per inhibitor.
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nemtabrutinib has a broader selectivity in biochemical assays

compared to pirtobrutinib and the approved irreversible

BTK inhibitors.
3.2 Cancer cell line profiling

To study the activity and selectivity of nemtabrutinib in cancer

cells, nemtabrutinib was profiled on a panel of 160 human cancer

cell lines in cell viability assays. The cell panel represents a wide

range of solid tumors and hematological malignancies

(Supplementary Table S1). Nemtabrutinib demonstrated potent

inhibitory activity across cell lines from all tissues and disease

types. The most sensitive cell line was the chronic eosinophilic

leukemia cell line EoL-1 (IC50 = 59 nmol/L), expressing a fusion

gene of Factor Interacting with PAPOLA and CPSF1 (FIP1L1) and

platelet-derived growth factor receptor a (PDGFRa) (Figure 2a,

Supplementary Table S4) (37). Other cell lines among the most

sensitive responders were two T-cell acute lymphoblastic leukemia

(T-ALL) cell lines (Jurkat E6.1 and CCRF-HSB-2) and several cell

lines derived from solid tumors, including endometrial (HEC-251

and HEC-1-B) and colon cancers (HT-29). The germinal center B-

cell like diffuse large B-cell lymphoma (DLBCL) cell line HT and the

prostate carcinoma cell line LNCaP clone FGC were among the least

sensitive cell lines in the viability assays (IC50 > 31.6 µmol/L)

(Supplementary Table S4).

The profiled cancer cell line panel contains two cell lines derived

from BTK-dependent cancers, i.e., the DLBCL cell line SU-DHL-6

and the mantle cell lymphoma cell line REC-1. The SU-DHL-6 cell

line harbors a mutation inMYD88 resulting in the activation of BTK
TABLE 1 IC50 of nemtabrutinib in kinase enzyme activity assays
performed at KM,bin ATP or 1 mmol/L ATP.

Kinase IC50 in nmol/L

Gene Protein KM,bin ATP 1 mmol/L ATP

BRAF B-RAF 73.01 335

BRAF [V600E] B-RAF [V600E] 220

BTK BTK 1.42

BTK [C481S] BTK [C481S] 1.60

FGFR1 FGFR1 134

FGFR2 FGFR2 34.0

FGFR3 FGFR3 70.1

FGFR4 FGFR4 1,400

MAP2K1 MEK1 8.46 456

MAP2K2 MEK2 9.50 494

MAP3K9 MLK11 4,870

MAPK3 ERK1 543

MAPK1 ERK2 505

PDGFRA PDGFRa 12.4

SIK3 SIK3 > 10,0001,2 9,320

TEC TEC 0.750

YES YES 0.591
1Assays performed at Eurofins. All other assays were performed at Carna biosciences, Inc. or
in-house.
2Assay was a ligand competition assay instead of an enzyme activity assay.
FIGURE 2

Cancer cell panel profiling of nemtabrutinib. (a) Waterfall plot of IC50 values of nemtabrutinib in cell viability assays with 160 cancer cell lines.
(b) Dose-response curves of nemtabrutinib and the four approved BTK inhibitors in viability assays with SU-DHL-6 and REC-1 cells.
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(38), while the REC-1 cell line has constitutively active B-cell receptor

signaling (39). Nemtabrutinib inhibited the viability of these cell lines

with an IC50 of 0.6 µmol/L and 2.0 µmol/L, respectively. This

contrasts the potent IC50 values of the irreversible BTK inhibitors

ibrutinib, acalabrutinib and zanubrutinib on these cell lines

(Figure 2b, Supplementary Table S5). However, the approved BTK

inhibitors showed only partial effects, while nemtabrutinib reached

almost complete inhibition of viability (Figure 2b).
3.3 Bioinformatic analysis of cell panel
profiling data

To investigate which kinases could be responsible for the broad

cellular activity of nemtabrutinib, a number of bioinformatic

analyses were performed on the cell panel profiling data. Both

genomic alterations and aberrant expression of genes or proteins

can induce tumor cell proliferation (31, 33). Therefore, we

correlated the IC50 profile of nemtabrutinib with the mutation

status of oncogenic kinases, the gene dependency scores of

human kinase genes and with the gene or protein expression

levels of known cancer genes in the cell lines.

Associations between cell line sensitivity and gene mutations

were determined by ANOVA. Of the 23 kinase genes analyzed, only

the mutation status of BRAF was found to be significantly associated

with nemtabrutinib sensitivity (Figure 3a). Cancer cell lines

harboring mutations in BRAF were on average three times more

sensitive than cell lines expressing wild-type BRAF.Mutant BRAF is

also a predictive biomarker of drug response for B-RAF and MEK1

inhibitors profiled in our cancer cell line panel (4, 6).

To further investigate the mechanism underlying the

association of cell line sensitivity to nemtabrutinib with BRAF

mutation status, we compared the IC50 profile of nemtabrutinib

with the profiles of the 135 kinase inhibitors in the Oncolines®

kinase inhibitor dataset in a one-to-one comparison analysis.

Inhibitors are considered to have a similar inhibitory profile if the

Pearson correlation is 0.5 or higher. If inhibitors show a similar
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profile, they are connected to each other in a network tree for

visualization (Figure 3b). The analysis revealed that nemtabrutinib

is not connected with the approved BTK inhibitors, but shows

connections with MEK, ERK and pan-RAF inhibitors (Figure 3b). A

comparative analysis based on an unsupervised hierarchical

clustering showed similar results (Supplementary Figure S1). The

approved BTK inhibitors cluster at distant locations in the

hierarchical clustering tree. For instance, and as noted before (8),

ibrutinib clusters with EGFR inhibitors (Supplementary Figure S1).

Basal gene expression levels of 371 cancer genes were correlated

to the cancer cell line sensitivity of nemtabrutinib. This correlation

analysis revealed increased expression of fibroblast growth factor

receptor 3 (FGFR3) as a significant marker of drug response

(Figure 4a). Cancer cell line sensitivity was also correlated to the

protein expression levels of 55 cancer genes. This showed that high

levels of phosphorylated MEK1 are significantly correlated with

sensitivity to nemtabrutinib (Figure 4b).

Finally, we compared the drug sensitivity profile of

nemtabrutinib with the genetic dependency scores of kinase genes

available from large-scale CRISPR (465 genes) and RNAi screens

(204 genes). Significant positive correlations were found between

the IC50 profile of nemtabrutinib and the CRISPR knock-out

dependency scores of two genes: BRAF and SIK3 (Figure 4c).

Knock-down of BRAF by RNAi was also significantly correlated

with response to nemtabrutinib. Additionally, response to

nemtabrutinib exhibits a strong positive correlation with knock-

down dependency scores of MAP2K1, MAP3K9, and MAPK1

(Figure 4c), encoding the MAPK pathway components MEK1,

MLK1 and ERK2. The correlation analysis was repeated with the

dataset minus the 16 BRAF-mutant cell lines to determine whether

the preferential targeting of BRAF-mutant cell lines by

nemtabrutinib may have strongly influenced the results. The

significant positive correlations with SIK3 and MAP3K9 in the

CRISPR and RNAi screen dataset, respectively, were maintained in

this analysis (Figure 4d), indicating that the dependency of cell lines

on these kinases can predict nemtabrutinib response independent

of BRAF mutation status.
FIGURE 3

Cancer gene mutation analysis and comparative profiling. (a) Volcano plot showing the correlation of nemtabrutinib response in cell viability assays
with the mutation status of 23 oncogenic kinases in the cell lines. Each circle represents a kinase gene that is mutated in at least three cell lines.
(b) Network tree connecting inhibitors with a similar profile. In case the Pearson correlation coefficient of the IC50 fingerprint of two compounds is
0.5 or higher, a connection is drawn in the network. The length of the line has no meaning. Nemtabrutinib and the BTK inhibitors are colored in red.
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3.4 Kinase biochemical inhibition

To determine whether the kinases identified in the

bioinformatic analyses of the cell panel profiling study were

genuine biochemical targets of nemtabrutinib, kinase enzyme

activity assays were performed. The IC50 values of nemtabrutinib

in biochemical assays with these kinases are given in Table 1.

Table 1 summarizes a subset of kinases that were included in the

panel of 254 wild-type kinases for the single concentration profiling

(Supplementary Table S3), such as FGFR1-4, as well as kinases that

were not included in this panel (MEK1, MLK1, ERK2, B-RAF

and SIK3).

The most sensitive cell line EoL-1 has a constitutively active

PDGFRa due to a FIP1L1-PDGFRa fusion (37). In a biochemical

assay, PDGFRa was inhibited with an IC50 of 12.4 nmol/L. As

mentioned before, the gene expression analysis revealed a

correlation between high expression of FGFR3 and cell line

sensitivity to nemtabrutinib (Figure 4a). Biochemically,

nemtabrutinib inhibits FGFR3 with an IC50 of 70.1 nmol/L and

FGFR2 is even more potently inhibited with an IC50 of 34.0 nmol/L.

For FGFR1, moderately potent inhibition was found (IC50 = 134

nmol/L), while FGFR4 was not potently inhibited (IC50 = 1.40

µmol/L). The cell lines AN3-CA and KATO III have an FGFR2

mutation or amplification, respectively (6). These cell lines were
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inhibited by nemtabrutinib with a potency within the range of

inhibition of the BTK-driven cell lines (IC50 = 1.1 µmol/L)

(Supplementary Table S4). The FGFR1 fusion-positive cell line

KG-1 and FGFR3 fusion-positive cell line RT-4 (6) are also

inhibited within that range, however with a slightly lower potency

(IC50 = 1.4 and 1.7 µmol/L, respectively). No binding to SIK3 by

nemtabrutinib was found (Table 1). These results suggest that

platelet-derived and fibroblast growth factor receptors are

potential drug response biomarkers for nemtabrutinib.

The sensitivity of BRAF-mutant cell lines to nemtabrutinib

indicates activity of nemtabrutinib on the MAPK pathway.

Nemtabrutinib inhibited MEK1 and MEK2 with IC50 values of

8.5 and 9.5 nmol/L, respectively (Table 1). The compound also

showed inhibitory activity in the B-RAF assay with an IC50 of 73

nmol/L. It should be noted that the B-RAF kinase assay is a cascade

assay, in which activity is indirectly measured via MEK1 and ERK2.

Nemtabrutinib did not inhibit MLK1, ERK1 or ERK2 (Table 1).
3.5 Kinase binding and computational
modeling

To investigate the specific target of nemtabrutinib in the MAPK

pathway, surface plasmon resonance binding experiments were
FIGURE 4

Bioinformatic correlation analyses of cancer cell line sensitivity to nemtabrutinib. (a) Volcano plot of Pearson correlation coefficients of IC50 values in
cell viability assays and basal expression levels of 371 cancer genes. (b) Volcano plot of Pearson correlation coefficients of IC50 values in cell viability
assays and expression levels of 55 cancer proteins. (c) Volcano plot of Pearson correlation coefficients of response profiles and gene dependency
scores from gene knock-out (CRISPR) or knock-down (RNAi) screens. (d) Results from same analysis as in panel c, after exclusion of the 16 BRAF-
mutant cell lines.
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performed on B-RAF and MEK1. Nemtabrutinib bound inactive

MEK1 with an affinity (KD) of 10 nmol/L (Figure 5a), whereas it

bound activated B-RAF with a KD of 1.2 µmol/L (Figure 5b),

corresponding to a 120-fold difference in affinity (Supplementary

Table S6). This indicates that the inhibitory effect on MAPK

signaling is most likely due to inhibition of MEK1 rather than

B-RAF.

X-ray crystallographic studies on nemtabrutinib-bound BTK

indicate that nemtabrutinib is an ATP-competitive BTK inhibitor

(Figure 5c, Supplementary Table S7) (15). To investigate the

binding mode of nemtabrutinib in MEK1, molecular docking in

both the ATP- and allosteric binding pocket of MEK1 was

performed. Docking of nemtabrutinib in the ATP-binding pocket

of MEK1 resulted in multiple docking poses, which were described

by interaction fingerprints (IFPs). These in silico predicted IFPs

were compared to the IFP derived from the X-ray crystallographic

analysis of the nemtabrutinib-BTK complex (15). Interestingly, the

highest-scoring docking pose of nemtabrutinib in MEK1 has a very

similar IFP as the IFP found in the crystal structure of

nemtabrutinib-bound BTK (Figures 5c, d, Supplementary Table

S7). This includes two hydrogen bond interactions between the

pyrrolo-pyrimidine ring of nemtabrutinib and two hinge region

residues in the ATP-binding pocket of BTK (Met477 and Glu475)

and MEK1 (Met146 and Glu144). Additionally, the hydroxymethyl-

oxane moiety and the carbonyl oxygen atom of nemtabrutinib

forms a (water-mediated) hydrogen bond interaction with the
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residues Cys481 and Lys430 (BTK) or Ser150 and Lys97

(MEK1), respectively.

In contrast, docking of nemtabrutinib in the allosteric pocket of

MEK1 indicates that nemtabrutinib exhibits extensive sampling of

the allosteric pocket, suggesting a lack of strong and highly

complementary interactions. Oppositely, the crystal structure of

cobimetinib in the allosteric pocket of MEK1 showed multiple polar

contacts, such as hydrogen bond interactions with Lys97, Asp190 and

Met143 as well as halogen bond interactions with Val127 and Ser212

(Supplementary Figure S2A). Indeed, the IFP analysis shows that

nemtabrutinib is unable to form the contacts observed with

cobimetinib (Supplementary Figure S2B, C). Altogether, the

molecular docking experiments suggest that nemtabrutinib

preferentially binds to the ATP-binding pocket and does not

exhibit strong binding to the allosteric pocket.
4 Discussion

Both mutations in kinase genes and their increased expression

can cause aberrant tumor growth. To identify the kinases

responsible for the anti-proliferative activity of nemtabrutinib in

cell lines, we determined associations between cancer cell line

sensitivity and gene mutation status. Additionally, we compared

the IC50 profile of nemtabrutinib with the profiles of other kinase

inhibitors profiled on the same panel. Furthermore, we evaluated
FIGURE 5

Kinase binding experiments and molecular docking of nemtabrutinib. Sensorgrams of nemtabrutinib and reference inhibitor binding in surface
plasmon resonance experiments with MEK1 (a) or B-RAF (b). The red and grey lines represent the experimental results and the black lines represent
the fits obtained using a 1:1 binding model. (c) Binding mode of nemtabrutinib in the ATP-binding pocket of BTK (PDB ID: 6E4F). (d) Highest-scoring
docking pose of nemtabrutinib in the ATP-binding pocket of MEK1 (PDB ID: 7XLP).
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the correlation of the IC50 values with gene expression levels,

protein expression levels and CRISPR or RNAi gene dependency

scores. The inhibitory activity of nemtabrutinib on the identified

candidate kinase targets was investigated in biochemical assays and

binding to selected targets was evaluated with surface plasmon

resonance and molecular docking studies.

In our study, nemtabrutinib showed moderate cellular activity

on the BTK-dependent SU-DHL-6 and REC-1 cell lines.

Nemtabrutinib was approximately 40- to 200-fold (SU-DHL-6) or

50- to 4000-fold (REC-1) less potent in cell viability assays with

these cell lines than approved BTK inhibitors (Supplementary Table

S5). It should be noted that BTK inhibitors exert their therapeutic

activity by promoting egress of malignant B-cells from lymph nodes

(40, 41). Inhibition of tumor cell proliferation is not thought to

significantly contribute to their clinical efficacy. Cell viability assays

are thus, at best, only a surrogate readout for the activity of BTK

inhibitors in B-cell cancers. However, viability assays can be used to

identify other therapeutic indications in solid tumors.

Out of the 160 profiled cell lines, nemtabrutinib most potently

inhibited the viability of a chronic eosinophilic leukemia cell line

(EoL-1), which expresses a chimeric kinase of FIP1L1 and PDGFRa
(37) and is, according to the DepMap database (7), strongly

dependent on SIK3 . While the cellular IC50 profile of

nemtabrutinib correlates with CRISPR dependency of SIK3,

nemtabrutinib does not bind SIK3 in a biochemical kinase assay.

Most likely, the correlation between SIK3 knock-down dependency

and the cell panel profiling results is dominated by the potent

inhibitory activity on the EoL-1 cell line (Supplementary Figure

S3A). In contrast, high FGFR3 gene expression correlated with

sensitivity to nemtabrutinib across the whole cell line panel

(Supplementary Figure S3B). Cross-reactivity of nemtabrutinib

with other growth factor RTKs has been described previously, i.e.,

with neurotrophic tyrosine receptor kinases (NTRK) (42) and fms-

related tyrosine kinase 3 (FLT3) (43). Elgamal et al. explored

inhibition of FLT3 by nemtabrutinib as a potential treatment

option of acute myeloid leukemia (AML) in preclinical models.

In the first article describing nemtabrutinib, therein referred to

as ARQ 531, Reiff et al. reported a number of cross-reactivities with

other protein kinases besides BTK. Profiling was performed at an

ATP concentration of 1 mmol/L ATP, thus mimicking intracellular

ATP levels (44). An IC50 of 599 nmol/L was determined in an

enzyme assay for MEK1. We used the same protein and assay

readout (both from Carna) but performed the assay at KM,bin, i.e., an

ATP concentration close to KM,ATP, which for MEK1 and MEK2

corresponded to 10 µmol/L ATP. Although the cellular ATP

concentration is generally between 1–5 mmol/L, using the KM,ATP

in biochemical assays allows the IC50 value to become a direct

measure of the binding affinity between the investigated compound

and the kinase (45). We determined an IC50 of approximately 9

nmol/L for MEK1 andMEK2, which is six times higher than its IC50

in the enzyme assay on BTK (Table 1). Reiff et al. reported that

nemtabrutinib inhibited MEK1 with a 1200 times higher IC50 than

BTK. The cross-reactivity of nemtabrutinib with MEK1 and MEK2

corresponds with the preferential targeting of BRAF-mutant cell

lines. Of note, we independently confirmed the higher IC50 on
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MEK1 in the biochemical enzyme assay at 1 mmol/L ATP (i.e., 456

nmol/L; Table 1).

As mentioned before, X-ray crystallographic studies of

nemtabrutinib with BTK indicate that nemtabrutinib is an ATP-

competitive (Type I) inhibitor (15). Our docking studies indicate that

it binds in a similar way to MEK1. In contrast, currently approved

MEK inhibitors, such as trametinib and cobimetinib, target MEK

through an allosteric pocket adjacent to the ATP-binding pocket

(Type III inhibitors) (46). Allosteric MEK1 inhibitors are used in

combination with B-RAF inhibitors for treating BRAF V600-mutant

cancers or as monotherapies for neurofibromatosis type I (47).

However, resistance to allosteric MEK inhibitors is frequently

observed and can arise through multiple mechanisms. First,

mutations in MEK1 or MEK2 can confer cross-resistance to

multiple inhibitors within this class. Notably, many of these

resistance mutations remain susceptible to ATP-competitive, Type

I MEK inhibitors (48, 49). Second, allosteric MEK inhibitors exhibit

reduced binding affinity for phosphorylated MEK, which can be

caused by overexpression of BRAF (35, 50). In contrast, ATP-

competitive inhibitors retain their affinity against phosphorylated

MEK, underscoring another advantage of this binding mode (35).

In addition to the ATP-competitive binding mode of

nemtabrutinib, its multi-kinase inhibition profile may provide

therapeutic benefits beyond those of selective MEK inhibitors.

Reactivation of the MAPK pathway, commonly driven by

diminished ERK-mediated negative feedback on RTKs or acquired

RTK overexpression, is a prevalent resistance mechanism (51, 52). Our

findings indicate that nemtabrutinib not only targets MEK but also

inhibits multiple RTKs. This dual mechanism of action can potentially

delay MAPK pathway reactivation and extend the duration of response

compared to more selective allosteric or ATP-competitive

MEK inhibitors.

Taken together, our results show that nemtabrutinib downregulates

MAPK signaling by inhibiting MEK1 and that it is also an inhibitor of

several growth factor RTKs, including FGFR2, FGFR3 and PDGFRa.
The ATP-competitive binding mode of nemtabrutinib in MEK and its

dual mechanism of action are promising features that warrant further

investigation in MAPK-driven cancers. Our data illustrate the power of

combining cell panel profiling, bioinformatics and kinase biochemical

profiling for the identification of differentiators and new potential

therapeutic applications of kinase inhibitors.
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