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Background: Differentiating between lung adenocarcinoma (LAC) and

tuberculosis granuloma (TBG) of solitary pulmonary solid nodules (SPSNs)

based on CT images alone is a daunting task for clinical diagnosis. Thus, it is

crucial to fully utilize CT imaging data to explore effective noninvasive diagnostic

methods to improve the identification of TBG and LAC.

Purpose: This study aimed to leverage CT imaging datasets from multiple

hospitals for the diagnosis of TBG and LAC in SPSNs. It achieved this by

deploying a meta-learning method within a federated learning framework

while protecting data privacy.

Methods: A total of 1,026 patients, along with their CT images of solitary

pulmonary solid nodules (SPSNs) and corresponding clinical data, were

collected from six medical institutions. Subsequently, the data from these six

institutions were systematically partitioned into five cohorts. Each cohort was

divided into two parts: the training set and the test set. A meta-learning-based

robust federated learning model by training set data was proposed to construct

personalized federated learning signatures (PFLS) without uploading raw data

from each medical institutions. Receiver operating characteristic curve (ROC),

area under curve (AUC), decision curve analysis (DCA), net reclassification

improvement (NRI) and integrated discrimination improvement (IDI) are used

to analyze the performance of the PFLS.

Results: The PFLS trained by the proposed meta-learning-based robust

federated learning framework shows superior performance compared to

alternative methods. The AUC range on the training sets of the five cohorts is

0.866-0.939, AUC range on the testing sets is 0.808-0.927). The significant

difference of AUC between the proposed method and the clinical model was

demonstrated by the NRI and IDI. The decision curves indicated a higher net

benefit of our proposed method.
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Conclusion: The PFLSmitigates overfitting issues arising from limited sample size

in local hospitals. It also alleviates the problem that a single global model is not

applicable to all hospitals due to the heterogeneity of data distribution among

different hospitals.
KEYWORDS
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Introduction

The prevalence of CT has been led to a significant upsurge in

the detection rate of Solitary Pulmonary Solid Nodules (SPSNs) (1).

Clinically, SPSNs can be bifurcated into benign and malignant

categories. Lung Adenocarcinoma (LAC) is the most common

pathological type of malignant SPSNs, while Tuberculosis

Granulomas (TBG) is the common pathological type of benign

SPSNs (2, 3). However, the treatment regimens and clinical

outcomes for lung adenocarcinoma and tuberculous granulomas

are entirely different. Radical surgical resection is the preferred

treatment for the former, while the latter is often managed with

anti-tuberculosis medications (4). Misdiagnosis can lead to

uncontrollable disease progression and a poor prognosis in

patients with lung adenocarcinoma. Conversely, it may also result

in overtreatment for those with tuberculous granulomas (5).

Although CT scans can identify SPSNs, the differentiation

between LAC and TBG based on CT images alone presents a

daunting task for clinical diagnosing. This is primarily because

LAC and TBG both exhibit similar lobulated and spiculated

features, and there is a lack of effective contrast agents to aid in

distinguishing TBG from LAC (6, 7). Most patients with SPSNs

detected by CT undergo biopsy diagnosis to guide the treatment plan.

However, when the lesion is small and difficult to locate, the difficulty

and related risks increase significantly (8, 9). Consequently, it is

crucial to fully utilize CT imaging data to explore new effective non-

invasive diagnostic methods to improve TBG and LAC identification.

Deep learning, as a data-driven technology for model

performance, has shown great potential in image classification.

Previous studies have demonstrated that deep learning models

can extract features from raw medical images at various levels of

abstraction (10, 11). Applying deep learning techniques to

computer-aided diagnostic systems holds promise for improving

the accuracy of TBG and LAC differentiation. However, due to the

need for medical data privacy protection, medical centers are

generally not allowed to share data, which limits the scale of the

data. Unfortunately, robust and accurate deep learning models

require a large amount of data for training; otherwise, overfitting

is prone to occur, leading to a decline in the generalization ability of

deep learning models.
02
Federated learning facilitates multi-clients collaborative

training by aggregating local model parameters of each client into

the shared global model, without sharing data from different clients

(12). This approach fully utilizes information of each hospital

without sharing raw CT image data, thus addressing privacy

concerns and limiting overfitting. The federated averaging

algorithm of most federated learning methods weights the

parameters of each local model according to the sample sizes of

different medical institution (13, 14). However, Additionally, data

heterogeneity caused by differences in data collection across medical

institutions (such as scanning equipment, imaging parameters,

population characteristics, etc.) significantly restricts the

performance of federated learning models in multi-medical

institution medical image analysis (15, 16). Therefore, when there

are differences in the data distributions across multiple centers, it is

challenging for a single global model obtained merely by

aggregating the parameters of each local model to perform

consistently well across all centers (17, 18).

In this paper, a meta-learning-based robust federated learning

approach is proposed to leverage heterogeneous CT imaging

datasets from multiple medical institutions for the diagnosis of

TBG and LAC in SPSNs. The reptile algorithm of meta-learning is

deployed to aggregate gradients of parameters of each local model.

This improves the performance and robustness of the global model

on data from each local medical institution. Finally, each center

fine-tunes the global model based on local data to complete

model personalization.
Materials and methods

Patients

This retrospective study was approved by the Institutional

Review Boards of the participating hospitals, with a waiver of

informed consent. Detailed inclusion and exclusion criteria are

provided in Supplementary S1. Finally, a total of 1,026 samples

from six medical institutions. Since one medical institution has only

17 cases, we merged the data of this medical institution into another

hospital, so there are a total of 5 cohorts. These five cohorts include:
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cohort 1 (2014–2020): 270 patients (training set: 161; test set: 109),

cohort 2 (2013–2016): 87 patients (training set: 51; test set: 36),

cohort 3 (2014–2019): 119 patients (training set: 70; test set: 49),

cohort 4 (2011–2020): 471 patients (training set: 282; test set: 189),

cohort 5 (2018–2020): 79 patients (training set: 46; test set: 33).
CT image acquisition and evaluation

Chest CT images were acquired from six different scanners

(Siemens, Toshiba, GE, Philips) with patients in the supine position,

covering the entire chest from the thoracic inlet to the adrenal glands

during a breath-hold. Scans were performed in spiral mode with a

tube voltage of 120 kVp and automatic mAs adjustment. Images were

reconstructed with standard and high-resolution algorithms at 1.0–3.0

mm slice thickness and 0.8–3.0 mm interslice gap. Two independent

chest radiologists, blinded to clinical information, assessed the images

using lung and mediastinal window settings, evaluating nodule

location, size, margin, lobulation, and spiculation; discrepancies

were resolved by consensus. Detailed information is provided in

Supplementary S2.
Pathological diagnosis

All samples were fixed in formalin and subsequently stained

with hematoxylin and eosin (HE). The experienced pathologists

performed the pathological analysis of the surgical specimens in

accordance with the 2011 International Association for the Study of

Lung Cancer/American Thoracic Society/European Respiratory

Society classification system, and the 2015 World Health

Organization (WHO) classification of lung neoplasms (19, 20).

These pathologists were blinded to the CT findings.
Image preprocessing

For neural network processing, preprocessing operations are

applied to the CT images. An experienced radiologist utilizes a

rectangular bounding box to crop the region of interest (ROI) from

each CT slice initially. All ROIs are then interpolated and

standardized to 224×224 pixels. Next, the ROIs from three

sequential single-channel CT slices for the same patient are

merged to form a three-channel image with the dimensions

224×224×3. Finally, these three-channel images are used as input

data for the neural network. Detailed information is provided in

Supplementary Figure S1.
Building the meta-learning-based
personalized federated learning signature

In order to adapt to the data situation of each medical

institution, we train a personalized federated learning signature
Frontiers in Oncology 03
for each medical institution. This usually involves three steps:

feature extraction, feature selection, and classifier training.

During the feature extraction process, a federated learning

based on model agnostic meta-learning is used to extract the CT

features of each hospital. The entire training process of federated

learning encompassed three stages.

FedAvg stage: In the initial iteration of the FedAvg stage, both

local and global models start with identical parameters pre-trained

on ImageNet. Each local client trains its model using its own

dataset. After all local clients complete training, they upload their

model gradients to the global server. The global server aggregates

these gradients by weighting them according to each client’s sample

size relative to the total samples across all clients. The global model

is then updated using these weighted gradients and distributed back

to the local clients as the initial parameters for the next iteration.

This process repeats for several iterations, and the final global model

parameters are passed to the Reptile stage.

Reptile stage: Unlike the FedAvg stage, the Reptile stage

employs the Adam optimizer for local model updates. The

aggregation method also differs: instead of sample-size-based

weighting, the global server treats each local client as a distinct

meta-learning task and applies the Reptile algorithm to compute the

combined gradient direction. The global model is then updated with

momentum based on this aggregated gradient. After multiple

iterations, the final global model parameters are delivered to each

local client for the subsequent personalized stage.

Personalized stage: In the Personalize stage, the local clients do

not share any data to the global server, and only fine-tune the local

models with their own data sets based on the stochastic gradient

descent algorithm. And the initial parameters of the local models

are the final parameters of the global model of the Reptile stage.

During the whole training process, the raw data of a local client

or hospital is never shared with the global server and other local

clients, which ensures the security and privacy of the local data. The

global server performs aggregation operations on the parameters of

the local model so that the local clients can share the training

results, effectively avoiding overfitting when the data samples of a

single client are too small. The Reptile stage creates ideal conditions

for rapid fine-tuning of the local model, and the Personalize stage

can effectively solve the problem of data heterogeneity among

different hospitals or centers.

More detailed information regarding the model and training

details can be found in Supplementary S3 and Figure 1. The local

hospitals utilizes the robust personalized local models, trained by

the proposed method, to extract 3904 features from the CT images

at each layer of the ROI. Subsequently, the features from all layers

are fused (refer to Supplementary S4 for detailed information).

The classifier can utilize numerous features obtained from the

above operations to diagnose TBG or LAC. However, most of these

features are not conducive for diagnosing pulmonary nodules and

may introduce noise, negatively affecting diagnostic accuracy.

Therefore, in the process of feature selection and classifier

training, the Mann-Whitney U test is employed to evaluate the

diagnostic significance of features, retaining only those with a p-
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value < 0.05. Finally, a Bayesian extreme learning machine is

employed to building the personalized federated learning

signature (PFLS) using the selected features (21). To validate its

effectiveness, we further performed systematic comparisons with

several widely used classifiers, including logistic regression (LR),

support vector machine (SVM), and random forest (RF). These

models are representative in medical image analysis and AI

classification tasks, covering linear, kernel-based, and ensemble

learning approaches, respectively. All models were trained and

evaluated under identical data splits and preprocessing settings to

ensure fair comparison. The pseudocode of the algorithm is

provided in Supplementary S5.
Personalized federated learning signature
comparison FedAvg model

The FedAvg (22) model is the federated learning model and the

global model trained through the federated averaging algorithm. In

the training iteration of FedAvg, each client accepts the global

model parameters, initiating local training based on this global

model. After training by the local clients on local data, the

parameters of the local models are uploaded, and the parameters

of each local model are averagely weighted by the global server to

achieve collaborative training of the ResNet18 global model. More

model parameter Settings can be found in Supplementary S6.

Subsequently, each local hospital uses the same global model to
Frontiers in Oncology 04
extract 3904 features from the CT images, followed by utilization of

Mann-Whitney U test to select features with significant difference

from the extracted features. Finally, a Bayesian Extreme Learning

Machine is employed for classification.
Personalized federated learning signature
comparison independent local models

Independent local models(ILM) are the ResNet18 and trained

exclusively with local data, with no data interaction occurring

among the local models from other hospitals. The training

process of this model first involves pre-training using ImageNet

data, and then training respective models with each local dataset.

More model parameter Settings can be found in Supplementary S5.

Through the ResNet18 model, 3904 deep learning features are

extracted from the CT image of each case. Features with

significant differences are identified using the Mann-Whitney U

test. Eventually, a Bayesian Extreme Learning Machine is applied to

perform classification using these selected features.
Personalized federated learning signature
comparison building the clinical model

CT image data are collected from a total of five cohorts, with

data from each hospital divided into training and test sets. The
FIGURE 1

The training process of the meta-learning-based robust federated learning model.
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patient distribution and clinical features of the CT images are

outlined in Table 1. Thus, this study selects clinical features

(gender, age, nodule size, shape of lesion margin, lobulated shape,

and spiculated sign to build the clinical model(CM) based on

Bayesian Extreme Learning Machine.
Personalized federated learning signature
comparison merged data centralized
model

To validate the necessity and advantages of the proposed

Personalized Federated Learning Signature (PFLS) framework, we

established a Merged Data Centralized Model (MDCM) as a

comparative benchmark. This model integrates training data from

all participating centers to train a single deep learning model without

any privacy constraints—simulating an ideal scenario where data

sharing faces no regulatory or ethical barriers. After training, the

centralized MDCM was independently evaluated on the local test sets

of each hospital to assess its generalization performance across

heterogeneous data distributions. This approach enables a

quantitative comparison between the centrally trained model and

the personalized federated models, highlighting the impact of data

heterogeneity and demonstrating the effectiveness of federated

learning in maintaining model performance while preserving

data privacy.
Personalized federated learning signature
comparison with personalized federated
model

To further evaluate the effectiveness of the proposed PFLS

framework, we selected several representative personalized federated

learning methods for comparison, including FedProx (23), FedBN

(24), and Moon (25). FedProx introduces a proximal term into the

local objective function to constrain local updates from deviating

excessively from the global model, thereby stabilizing the optimization

process under non-IID data distributions. FedBN retains the Batch

Normalization (BN) parameters locally while aggregating the

remaining parameters globally, which alleviates performance

degradation caused by feature distribution shifts across centers.

Moon incorporates a contrastive learning objective during local

training to encourage consistency between local and global

representations, thus improving robustness in heterogeneous data

scenarios. After federated training, each method employed its

respective personalized model to extract features from the local data.

Finally, a Bayesian Extreme Learning Machine is employed

for classification.
Ablation experiments on PFLS

To quantitatively verify the effectiveness of the Reptile step (26)

and the personalization step in PFLS, we designed ablation
Frontiers in Oncology 05
experiments. Specifically, we constructed different algorithm

variants by selectively removing these two steps: (1) removing the

Reptile step while retaining the personalization step, where each site

was validated using its own personalized model; (2) removing the

personalization step while retaining the Reptile update, where all

centers were validated using the global model after the Reptile

update. All variants were trained and evaluated under the same

experimental settings. By comparing their performance with the

complete PFLS, we were able to assess the contribution of

each component.
Statistical analysis

The performance evaluation of the models involved calculating

various metrics, including the receiver operating characteristic

curve (ROC), area under the curve (AUC), sensitivity, specificity,

accuracy, positive probability value (PPV), and negative probability

value (NPV). The net reclassification improvement (NRI) and

integrated discrimination improvement (IDI) were used to

measure the degree of improvement of PFLS in overall

discriminative ability compared with FedAvg, ILM, and CM. P-

values less than 0.05 were considered a significant difference.
Results

Clinical factors and subjective CT findings
analysis

The patient distribution and clinical features of the CT images

are outlined in Table 1.The table details various clinical parameters

such as gender, age, lesion size, location, margin, lobulated shape,

and spiculated sign, with a clear distinction between training and

testing sets within each cohort. A notable observation is the

inconsistent distribution of these clinical features across different

cohorts. For instance, the proportion of males and females varies

significantly, with some cohorts having a higher male prevalence

(e.g., Cohort 1 and Cohort 4) while others show a more balanced or

female-dominant distribution (e.g., Cohort 3). Similarly, the

distribution of lesion location, margin, lobulated shape, and

spiculated sign further underscores the heterogeneity among

cohorts. For example, the presence of lobulated and spiculated

lesions varies widely, suggesting differences in disease

characteristics or diagnostic practices across cohorts.
The performance of PFLS identifies LAC
and TBG

As shown in Table 2, all models were trained and validated

using the same feature set to ensure fairness in comparison. The

results revealed that SVM and RF experienced severe overfitting

during training, as indicated by the large performance gap between

the training and test sets. In contrast, logistic regression (LR) did
frontiersin.org
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TABLE 1 The patient distribution and clinical features.

Cohort 1 Cohort 2 Cohort 3

36) Training set (n=70) Testing set (n=49)

P valule
TBG LAC

P valule
TBG LAC

P valule
(n=21) (n=49) (n=15) (n=34)

0.529
14 25

0.227
6 24

0.043
7 24 9 10

0.433
47.9
±15.6

58.7
±9.2

0.001
50.7
±11.5

60.7
±9.7

0.003

0.467 12.1±8.0
14.1
±5.1

0.206 12.3±5.6
15.5
±4.8

0.046

0.932
12 26

0.753
9 25

0.344
9 23 6 9

0.293
11 42

0.003
9 33

0.001
10 7 6 1

0.004
11 8

0.002
8 1

<0.001
10 41 7 33

0.001
18 27

0.014
14 13

<0.001
3 22 1 21
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Clinical information
Training set (n=161) Testing set (n=109) Training set (n=51) Testing set (n=

TBG LAC
P value

TBG LAC
P value

TBG LAC
P valule

TBG LAC

(n=34) (n=127) (n=23) (n=86) (n=14) (n=37) (n=10) (n=26)

Gender

Male 21 57
0.08

12 39
0.56

9 20
0.51

5 16

Female 13 70 11 47 5 17 5 10

Age(mean ± SD, years)

59.2
±13.8

57.8
±10.1

0.533
53.0
±11.5

59.8
±10.9

0.011
53.8
±12.1

59.4±9.3 0.087 61.2±9.2
57.8
±12.2

Lesion size(mm)

14.5±8.0 20.7±9.7 0.001 12.7±7.4 20.3±9.1 <0.001
18.7
±6.00

20.9
±13.3

0.555 20.5±7.9
25.8
±22.1

Location

Upper and middle 17 89
0.028

13 56
0.447

10 27
0.912

6 16

Lower 17 38 10 30 4 10 4 10

Lesion Margin

Irregular 20 117
<0.001

16 71
0.168

12 33
0.731

8 24

Regular 14 10 7 15 2 4 2 2

Lobulated shape

Absence 22 18
<0.001

12 24
0.028

5 4
0.037

3 0

Presence 12 109 11 62 9 33 7 26

Spiculated sign

Absence 28 70
0.004

20 51
0.013

10 13
0.02

9 7

Presence 6 57 3 35 4 24 1 19

Clinical information

Cohort 4 Cohort 5

Training Set (n=282) Testing Set (n=189) Training Set (n=46) Testing Set (n

TBG LAC
p valule

TBG LAC
p valule

TBG LAC
p valule

TBG LAC

(n=96) (n=186) (n=64) (n=125) (n=22) (n=24) (n=16) (n=17)

Gender

Male 61 93 0.03 42 53 0.003 13 11 0.369 10 7
=
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TABLE 1 Continued

Cohort 4 Cohort 5
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3 6 10
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±25.4

0.015
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0.251
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0.049

8 8 3

2
0.021
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<0.001
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4
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Clinical information

Training Set (n=282) Testing Set (n=189) Training S

TBG LAC
p valule

TBG LAC
p valule

TBG L

(n=96) (n=186) (n=64) (n=125) (n=22) (n=

Gender

Female 35 93 22 72 9 1

Age(mean ± SD, years)

51.4
±12.9

60.8±9.8 <0.001
52.3
±11.3

60.5
±10.7

<0.001 53.3±9.2 63.1

Lesion size(mm)

12.3±6.6 17.6±8.2 <0.001 13.1±7.5 17.4±8.5 0.001 10.0±6.4 17.3

Location

Upper and middle 65 125
0.932

44 80
0.515

11 1

Lower 31 61 20 45 11

Lesion Margin

Irregular 53 160
<0.001

35 109
<0.001

14 2

Regular 43 26 29 16 8

Lobulated shape

Absence 60 32
<0.001

37 21
<0.001

11 1

Presence 36 154 27 104 11 1

Spiculated sign

Absence 80 98
<0.001

55 65
<0.001

12 1

Presence 16 88 9 60 10 1
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not show obvious overfitting; however, its classification

performance was still inferior to that of the Bayesian extreme

learning machine (Bayesian ELM). By comparison, Bayesian ELM

not only maintained high training efficiency but also demonstrated

stronger generalization ability on the test set. The performance of

the personalized federated learning signature (PFLS) across the five

cohorts is presented in Figures 2, 3 and Table 3. On the test sets,

PFLS achieved AUCs of 0.846 (95% CI, 0.748–0.944), 0.889 (95%

CI, 0.771–1.000), 0.922 (95% CI, 0.845–0.999), 0.876 (95% CI,

0.825–0.927), and 0.893 (95% CI, 0.770–1.000), with

corresponding accuracies of 0.807, 0.861, 0.878, 0.788, and 0.818.

These results indicate that PFLS consistently demonstrated

excellent predictive performance across different cohorts,

effectively distinguishing lung adenocarcinoma from tuberculosis

granulomas. Furthermore, decision curve analysis (Figure 4)

showed that PFLS provided a higher net benefit than other

models in cohorts 2, 3, and 5. Supplementary Table S1 in the

supplementary materials for model details.
Comparison of the PFLS with the FedAvg
model

As shown in Table 3, the AUC of the FedAvg model on the test

sets from the five cohorts are 0.740 (95% CI, 0.637-0.843), 0.823

(95% CI, 0.672-0.974), 0.839 (95% CI, 0.724-0.955), 0.737 (95% CI,

0.664-0.810), and 0.728 (95% CI, 0.537-0.919). The FedAvg model

achieved accuracy of 0.560, 0.694, 0.837, 0.698, and 0.667 on the test

sets of each cohort. Compared with FedAvg, the AUC of PFLS at

each cohort increased by 6.6%-16.5%, and the accuracy rate

increased by 4.1%-25.1%. Supplementary Table S2 and

Supplementary Table S3 respectively present the results of NRI

and IDI. The results of NRI and IDI show that the performance of

PFLS on each central test set is improved compared with the

FedAvg model. The range values of NRI at each cohort were

0.287 to 1.263. The range values of IDI at each cohort were 0.016

to 0.069. Supplementary Table S4 in the supplementary materials

for FedAvg model details.
Comparison of the PFLS with ILM

The AUC of ILM on the test sets from each cohort are 0.773

(95% CI, 0.672-0.873), 0.808 (95% CI, 0.640-0.975), 0.857 (95% CI,

0.745-0.969), 0.778 (95% CI, 0.707-0.848), and 0.824 (95% CI,

0.676-0.972). The ILM achieved accuracy of 0.716, 0.833, 0.735,

0.698, and 0.636 on the test sets of each cohort. Compared to ILM,

the PFLS achieved an AUC improvement of 6.5%- 9.4% across the

cohorts, and the PFLS showed an improvement of 2.8%-19.1% in

the prediction accuracy for LAC and TBG at each cohort. More

details are provided in Table 3 and Figure 2, 3. As shown in

Supplementary Table S2 and Supplementary Table S3, the

performance of PFLS on each central test set is improved

compared with the ILM. The range values of NRI at each cohort

were 0.324 to 969. The range values of IDI at each cohort were 0.022
Frontiers in Oncology 08
to 0.061. Supplementary Table S5 in the supplementary materials

for ILM details.
Comparison of the PFLS with the CM

As shown in Table 3, the AUC of the CMmodel on the test sets

from the five cohorts are 0.692(95% CI, 0.569-0.815), 0.719(95% CI,

0.523-0.915), 0.759(95% CI, 0.618-0.900), 0.679(95% CI, 0.587-

0.770), and 0.665(95% CI, 0.471-0.860). In comparison, the

experimental results indicate that the PFLS outperforms the CM

in all metrics. As shown in Supplementary Table S2, Supplementary

Table S3, in the test sets, PFLS exhibits higher NRI and IDI indices

with significant p-values (p < 0.05) compared to CM across cohorts,

indicating its superiority.
Comparison of the PFLS with MDCM

As shown in Table 3, the AUC of the MDCM on the test sets

from the five cohorts are 0.752, 0.842, 0.825, 0.746, and 0.820. The

experimental results indicate that the MDCM exhibits relatively

poor consistency in performance across different centers. This

performance variability may be attributed to the inherent

heterogeneity in the data from various centers. When training on

merged data, such heterogeneity can lead to suboptimal model

generalization, as the model may be biased toward certain center-

specific characteristics rather than capturing universally

representative features. Consequently, the model’s ability to

perform consistently well across diverse and unseen datasets

is compromised.
Comparison of the PFLS with personalized
federated model

As shown in Table 4, the three personalized federated models,

FedProx, FedBN, and Moon, achieved AUC values ranging from

0.746 to 0.834 and accuracies between 0.619 and 0.749 across the

five cohorts. However, all three methods exhibited unstable

performance when confronted with heterogeneous multi-center

data. In contrast, our proposed PFLS consistently outperformed

them, with AUC improvements of approximately 4%-15% and

accuracy gains of 6%-22% across different cohorts. The

performance of PFLS and other personalized federated learning

algorithms on the training and test sets across the five cohorts is

shown in Supplementary Figure S2, Supplementary Figure S3.

Additionally, the Decision Curve Analysis are shown in

Supplementary Figure S4.
Ablation experiments

As shown in Table 5, we present the AUC values on the training

and test sets for different ablation variants. When the Reptile step was
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TABLE 2 Performance of logistic regression, SVM, random forest and ELM.

Cohort 1
Training set 1 Testing set 1

SVM RF LR ELM SVM RF LR ELM

AUC
(95%CI)

0.923
(0.867-0.980)

0.952
(0.920-0.984)

0.822
(0.741-0.903)

0.895
(0.833-0.956)

0.812
(0.700-0.923)

0.852
(0.756-0.949)

0.777
(0.662-0.893)

0.846
(0.748-0.944)

Sensitivity
0.819
(104/127)

0.882
(112/127)

0.724
(92/127)

0.906
(115/127)

0.694
(59/85)

0.800
(68/85)

0.682
(58/85)

0.826
(71/85)

Specificity
0.941
(32/34)

0.941
(32/34)

0.765
(26/34)

0.765
(26/34)

0.792
(19/24)

0.708
(17/24)

0.750
(18/24)

0.739
(17/24)

Accuracy
0.845
(136/161)

0.894
(144/161)

0.733
(118/161)

0.876
(141/161)

0.716
(78/109)

0.780
(85/109)

0.697
(76/109)

0.807
(88/109)

PPV
0.981
(104/106)

0.982
(112/114)

0.920
(92/100)

0.935
(115/123)

0.922
(59/64)

0.907
(68/75)

0.906
(58/64)

0.922
(71/77)

NPV
0.582
(32/55)

0.681
(32/47)

0.426
(26/61)

0.684
(26/38)

0.422
(19/45)

0.500
(17/34)

0.400
(18/45)

0.531
(17/32)

Cohort 2
Training set 2 Testing set 2

SVM RF LR ELM SVM RF LR ELM

AUC
(95%CI)

0.842
(0.702-0.981)

0.892
(0.803-0.981)

0.838
(0.729-0.947)

0.925
(0.853-0.997)

0.746
(0.570-0.922)

0.900
(0.796-1.000)

0.831
(0.689-0.973)

0.889
(0.771-1.000)

Sensitivity
0.757
(28/37)

0.757
(28/37)

0.676
(25/37)

0.892
(33/37)

0.808
(21/26)

0.923
(24/26)

0.808
(21/26)

0.923
(24/26)

Specificity
0.929
(13/14)

1.000
(14/14)

0.929
(13/14)

0.786
(11/14)

0.400
(4/10)

0.600
(6/10)

0.600
(6/10)

0.700
(7/10)

Accuracy
0.804
(41/51)

0.824
(42/51)

0.745
(38/51)

0.863
(44/51)

0.694
(25/36)

0.833
(30/36)

0.750
(27/36)

0.861
(31/36)

PPV
0.966
(28/29)

1.000
(28/28)

0.962
(25/26)

0.917
(33/36)

0.778
(21/27)

0.857
(24/28)

0.840
(21/25)

0.889
(24/27)

NPV
0.591
(13/22)

0.609
(14/23)

0.520
(13/25)

0.733
(11/15)

0.444
(4/9)

0.750
(6/8)

0.545
(6/11)

0.778
(7/9)

Cohort 3
Training set 3 Testing set 3

SVM RF LR ELM SVM RF LR ELM

AUC
(95%CI)

0.964
(0.924-1.000)

0.984
(0.948-1.000)

0.832
(0.707-0.957)

0.939
(0.884-0.994)

0.888
(0.784-0.992)

0.953
(0.897-1.000)

0.790
(0.620-0.960)

0.922
(0.845-0.999)

Sensitivity
0.939
(46/49)

0.959
(47/49)

0.857
(42/49)

0.918
(45/49)

0.794
(27/34)

0.971
(33/34)

0.824
(28/34)

0.882
(30/34)

Specificity
0.952
(20/21)

1.000
(21/21)

0.762
(16/21)

0.857
(18/21)

0.800
(12/15)

0.733
(11/15)

0.800
(12/15)

0.867
(13/15)

Accuracy
0.943
(66/70)

0.971
(68/70)

0.829
(58/70)

0.900
(63/70)

0.796
(39/49)

0.898
(44/49)

0.816
(40/49)

0.878
(43/49)

PPV
0.979
(46/47)

1.000
(47/47)

0.894
(42/47)

0.938
(45/48)

0.900
(27/30)

0.892
(33/37)

0.903
(28/31)

0.938
(30/32)

NPV
0.870
(20/23)

0.913
(21/23)

0.696
(16/23)

0.818
(18/22)

0.632
(12/19)

0.917
(11/12)

0.667
(12/18)

0.765
(13/17)

Cohort 4
Training set 4 Testing set 4

SVM RF LR ELM SVM RF LR ELM

AUC
(95%CI)

0.931
(0.903-0.960)

0.972
(0.956-0.987)

0.837
(0.786-0.888)

0.886
(0.845-0.926)

0.869
(0.814-0.923)

0.875
(0.819-0.931)

0.834
(0.769-0.9000)

0.876
(0.825-0.927)

(Continued)
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removed, the performance across centers showed little variation but

remained at a relatively low level, indicating that the absence of meta-

update limited the global model’s ability to provide a good

initialization. When the personalization step was removed, some

centers achieved relatively good results, while others showed

significantly lower AUC values, leading to large performance

discrepancies across sites. This suggests that without personalization,

relying solely on the global model cannot effectively adapt to

heterogeneous data distributions. In contrast, the complete PFLS

achieved both the best overall performance and balanced results

across centers, further demonstrating the complementary roles of

the Reptile step and the personalization step in enhancing model

generalization and adaptability.
Discussion

The analysis of lung CT images to accurately differentiate

between patients with TBG and LAC in a non-invasive manner

holds considerable clinical value. In this study, a PFLS is used to

collaboratively use CT image data of TBG and LAC from five

cohorts while maintaining patient privacy, enabling the training of

robust models for each medical institution. The proposed method

shows superior predictive performance than the compared methods
Frontiers in Oncology 10
on the data from each medical institution for distinguishing

between TBG and LAC.

Research shows that gender, age, morphology, and spiculation

are significantly different between patients with TBG and LAC (27).

As malignant tumors predominantly grow in lung parenchyma,

nodules of LAC patients are more likely to exhibit irregular

margins, lobulation, and spiculation (28). Although lobulation is a

distinct feature of malignant lung nodules, several studies have

shown that 25% of benign nodules also exhibit lobulation.

Spiculation presents a more significant correlation with LAC (29).

Pathologically, spiculation is attributed to fibrous tissue

proliferation induced by interstitial thickening and peripheral

vascular occlusion. However, identification based on morphologic

features of nodules is highly subjective, and the criteria for

determination vary among radiologists, limiting the utility of

shape features in distinguishing between benign and malignant

nodules (30). Therefore, the performance of the CM we constructed

based on the above features was not satisfactory.

The convolutional neural networks (CNNs) are capable of

automatically extracting features from images and generating

features at various levels of abstraction. Among CNNs, Low-level

layers produce details like edges, textures, and corners, while high-

level layers produce globally abstracted features. Deep CNNs are

extensively applied in medical imaging and achieving commendable
TABLE 2 Continued

Cohort 4
Training set 4 Testing set 4

SVM RF LR ELM SVM RF LR ELM

Sensitivity
0.812
(151/186)

0.930
(173/186)

0.726
(135/186)

0.807
(150/186)

0.736
(92/125)

0.824
(103/125)

0.736
(92/125)

0.768
(96/125)

Specificity
0.906
(87/96)

0.896
(86/96)

0.833
(80/96)

0.833
(80/96)

0.828
(53/64)

0.766
(49/64)

0.797
(51/64)

0.828
(53/64)

Accuracy
0.844
(238/282)

0.918
(259/282)

0.762
(215/282)

0.816
(230/282)

0.767
(145/189)

0.804
(152/189)

0.757
(143/189)

0.788
(149/189)

PPV
0.944
(151/160)

0.945
(173/183)

0.894
(135/151)

0.904
(150/166)

0.893
(92/103)

0.873
(103/118)

0.876
(92/105)

0.897
(96/107)

NPV
0.713
(87/122)

0.869
(86/99)

0.611
(80/131)

0.690
(80/116)

0.616
(53/86)

0.690
(49/71)

0.607
(51/84)

0.646
(53/82)

Cohort 5
Training set 5 Testing set 5

SVM RF LR ELM SVM RF LR ELM

AUC
(95%CI)

0.886
(0.793-0.980)

0.949
(0.894-1.000)

0.837
(0.724-0.951)

0.924
(0.850-0.998)

0.893
(0.780-1.000)

0.805
(0.656-0.955)

0.831
(0.679-0.983)

0.893
(0.770-1.000)

Sensitivity
0.833
(20/24)

0.875
(21/24)

0.708
(17/24)

0.958
(23/24)

0.882
(15/17)

0.941
(16/17)

0.882
(15/17)

0.824
(14/17)

Specificity
0.864
(19/22)

0.909
(20/22)

0.864
(19/22)

0.727
(16/22)

0.750
(12/16)

0.500
(8/16)

0.750
(12/16)

0.813
(13/16)

Accuracy
0.848
(39/46)

0.891
(41/46)

0.783
(36/46)

0.848
(39/46)

0.818
(27/33)

0.727
(24/33)

0.818
(27/33)

0.818
(27/33)

PPV
0.870
(20/23)

0.913
(21/23)

0.850
(17/20)

0.793
(23/29)

0.789
(15/19)

0.667
(16/24)

0.789
(15/19)

0.824
(14/17)

NPV
0.826
(19/23)

0.870
(20/23)

0.731
(19/26)

0.941
(16/17)

0.857
(12/14)

0.889
(8/9)

0.857
(12/14)

0.813
(13/16)
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results (31–33). Nevertheless, deep CNNs are susceptible to

overfitting, particularly when training with a limited number of

samples. Therefore, when training the ILM, we used the transfer

learning strategy to pre-train the model with Imagnet data, and then

fine-tune the model with the CT data of this study to alleviate the

problem of overfitting. However, perhaps due to the smaller

number of training samples, the performance of ILM on the test

sets of various medical institutions is generally worse than that

of PFLS.

Federated learning is a distributed machine learning approach

that enables collaborative training of machine learning models

using data from multiple hospitals, while eliminating data

leakage. It efficiently addresses the data island issue and mitigates

model overfitting due to insufficient training samples from a single

medical institution. However, due to differences of CT equipment

between hospitals, imaging results from different hospitals are

heterogeneous, meaning that using the same machine learning

model to infer CT images from different hospitals does not

ensure satisfactory performance for all hospitals. Except for the

slightly better performance of fedag on the test set of institution 2

compared to ILM, the performance of other institutions was worse

than that of ILM. This is primarily due to the apparent

heterogeneity of the data across hospitals, resulting in apparent
Frontiers in Oncology 11
discrepancies between the global model and the actual optimal

model of a local hospital, and then leading to poorer predictive

performance of the global model in certain hospitals. In addition,

we also compared our framework with a centralized model

(MDCM) trained by directly merging data from all centers.

Although this setting represents an ideal scenario without privacy

constraints, the MDCM exhibited unstable performance and large

variations across sites. This inconsistency can be attributed to the

substantial heterogeneity in imaging protocols, scanner vendors,

and patient populations among different hospitals. When data are

simply pooled, the model may become biased toward dominant

site-specific features, thereby limiting its generalizability. In

contrast, PFLS achieved more stable and consistent performance

across centers, further underscoring the necessity of federated and

personalized federated strategies for real-world multi-

center applications.

The proposed PFLS employs the Reptile algorithm by treating the

local models of federated learning as the different task of meta learning

to collaboratively train the global model, and then fine-tunes global

models for personalizing local model of each medical institution. The

meta-learning-based federated learning frameworks of the proposed

method effectively alleviates overfitting. And the robust personalized

local models, which are fine-tuned global models by local hospitals,
FIGURE 2

ROC of training set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3, (D) Cohort 4, (E) Cohort 5.
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enhance the generalization ability of the local models while effectively

mitigating the performance decrease caused by data heterogeneity

among different hospitals. In terms of classification performance, the

proposed method shows remarkable advantages on all datasets, except
Frontiers in Oncology 12
for slightly lower AUC values compare to ILM, FedAvg, and CM. NRI

and IDI show that, except for medical institutions 2 and 5 with

relatively less test data, the PFLS performance of other institutions has

significantly improved compared with ILM, FedAvg, and CM.
FIGURE 3

ROC of test set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3, (D) Cohort 4, (E) Cohort 5.
TABLE 3 Performance of the of models on the each cohort.

Cohort 1
Training set 1 Testing set 1

CM ILM MDCM Fedavg PFLS CM ILM MDCM Fedavg PFLS

AUC
(95%CI)

0.712
(0.601-
0.824)

0.759
(0.669-
0.849)

0.784
(0.702-
0.866)

0.782
(0.698-
0.866)

0.895
(0.833-
0.956)

0.692
(0.569-
0.815)

0.773
(0.672-
0.873)

0.752
(0.630-
0.857)

0.740
(0.637-
0.843)

0.846
(0.748-
0.944)

Sensitivity
0.898
(114/127)

0.669
(85/127)

0.677
(86/127)

0.622
(79/127)

0.906
(115/127)

0.744
(64/86)

0.709
(61/86)

0.588
(50/86)

0.477
(41/86)

0.826
(71/86)

Specificity
0.588
(20/34)

0.794
(27/34)

0.794
(27/34)

0.882
(30/34)

0.765
(26/34)

0.391
(9/23)

0.739
(17/23)

0.750
(18/23)

0.870
(20/23)

0.739
(17/23)

Accuracy
0.832
(134/161)

0.696
(112/161)

0.702
(113/161)

0.677
(109/161)

0.876
(141/161)

0.670
(73/109)

0.716
(78/109)

0.624
(68/109)

0.560
(61/109)

0.807
(88/109)

PPV
0.891
(114/128)

0.924
(85/92)

0.925
(86/93)

0.952
(79/83)

0.935
(115/123)

0.821
(64/78)

0.910
(61/67)

0.893
(50/56)

0.932
(41/44)

0.922
(71/77)

NPV
0.606
(20/33)

0.391
(27/69)

0.397
(27/68)

0.385
(30/78)

0.684
(26/38)

0.290
(9/31)

0.405
(17/42)

0.340
(18/53)

0.308
(20/65)

0.531
(17/32)
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TABLE 3 Continued

Cohort 2
Training set 2 Testing set 2

CM ILM MDCM FedAvg PFLS CM ILM MDCM FedAvg PFLS

AUC
(95%CI)

0.749
(0.594-
0.905)

0.828
(0.715-
0.941)

0.855
(0.742-
0.968)

0.869
(0.767-
0.971)

0.925
(0.853-
0.997)

0.719
(0.523-
0.915)

0.808
(0.640-
0.975)

0.842
(0.698-
0.987)

0.823
(0.672-
0.974)

0.889
(0.771-
1.000)

Sensitivity
0.595
(22/37)

0.703
(26/37)

0.838
(31/37)

0.676
(25/37)

0.892
(33/37)

0.654
(17/26)

0.808
(21/26)

0.885
(23/26)

0.615
(16/26)

0.923
(24/26)

Specificity
0.857
(12/14)

0.857
(12/14)

0.786
(11/14)

0.857
(12/14)

0.786
(11/14)

0.700
(7/10)

0.900
(9/10)

0.600
(6/10)

0.900
(9/10)

0.700
(7/10)

Accuracy
0.667
(34/51)

0.745
(38/51)

0.824
(42/51)

0.726
(37/51)

0.863
(44/51)

0.667
(24/36)

0.833
(30/36)

0.806
(29/36)

0.694
(25/36)

0.861
(31/36)

PPV
0.917
(22/24)

0.929
(26/28)

0.912
(31/34)

0.926
(25/27)

0.917
(33/36)

0.850
(17/20)

0.955
(21/22)

0.852
(23/27)

0.941
(16/17)

0.889
(24/27)

NPV
0.444
(12/27)

0.522
(12/23)

0.647
(11/17)

0.500
(12/24)

0.733
(11/15)

0.438
(7/16)

0.643
(9/14)

0.667
(6/9)

0.474
(9/19)

0.778
(7/9)

Cohort 3
Training set 3 Testing set 3

CM ILM MDCM FedAvg PFLS CM ILM MDCM FedAvg PFLS

AUC
(95%CI)

0.794
(0.680-
0.908)

0.903
(0.829-
0.977)

0.847
(0.752-
0.943)

0.880
(0.786-
0.973)

0.939
(0.884-
0.994)

0.759
(0.618-
0.900)

0.857
(0.745-
0.969)

0.825
(0.701-
0.950)

0.839
(0.724-
0.955)

0.922
(0.845-
0.999)

Sensitivity
0.816
(40/49)

0.735
(36/49)

0.898
(44/49)

0.918
(45/49)

0.918
(45/49)

0.882
(30/34)

0.735
(25/34)

0.824
(28/34)

0.971
(33/34)

0.882
(30/34)

Specificity
0.667
(14/21)

0.905
(19/21)

0.714
(15/21)

0.714
(15/21)

0.857
(18/21)

0.333
(5/15)

0.733
(11/15)

0.600
(9/15)

0.533
(8/15)

0.867
(13/15)

Accuracy
0.771
(54/70)

0.786
(55/70)

0.843
(59/70)

0.857
(60/70)

0.900
(63/70)

0.714
(35/49)

0.735
(36/49)

0.755
(37/49)

0.837
(41/49)

0.878
(43/49)

PPV
0.851
(40/47)

0.947
(36/38)

0.880
(44/50)

0.882
(45/51)

0.938
(45/48)

0.750
(30/40)

0.862
(25/29)

0.824
(28/34)

0.825
(33/40)

0.938
(30/32)

NPV
0.609
(14/23)

0.594
(19/32)

0.750
(15/20)

0.790
(15/19)

0.818
(18/22)

0.556
(5/9)

0.550
(11/20)

0.600
(9/15)

0.889
(8/9)

0.765
(13/17)

Cohort 4
Training set 4 Testing set 4

CM ILM MDCM FedAvg PFLS CM ILM MDCM FedAvg PFLS

AUC
(95%CI)

0.706
(0.639-
0.772)

0.805
(0.751-
0.858)

0.785
(0.727-
0.844)

0.748
(0.685-
0.812)

0.886
(0.845-
0.926)

0.679
(0.587-
0.770)

0.778
(0.707-
0.848)

0.746
(0.673-
0.818)

0.737
(0.664-
0.810)

0.876
(0.825-
0.927)

Sensitivity
0.672
(125/186)

0.710
(132/186)

0.833
(155/186)

0.801
(149/186)

0.807
(150/186)

0.664
(83/125)

0.720
(90/125)

0.768
(96/125)

0.752
(94/125)

0.768
(96/125)

Specificity
0.688
(66/96)

0.771
(74/96)

0.635
(61/96)

0.615
(59/96)

0.833
(80/96)

0.641
(41/64)

0.656
(42/64)

0.594
(38/64)

0.594
(38/64)

0.828
(53/64)

Accuracy
0.677
(191/282)

0.731
(206/282)

0.766
(216/282)

0.738
(208/282)

0.816
(230/282)

0.656
(124/189)

0.698
(132/189)

0.709
(134/189)

0.698
(132/189)

0.788
(149/189)

PPV
0.806
(125/155)

0.857
(132/154)

0.816
(155/190)

0.801
(149/186)

0.904
(150/166)

0.783
(83/106)

0.804
(90/112)

0.787
(96/122)

0.783
(94/120)

0.897
(96/107)

NPV
0.520
(66/127)

0.578
(74/128)

0.663
(61/92)

0.615
(59/96)

0.690
(80/116)

0.494
(41/83)

0.546
(42/77)

0.567
(38/67)

0.551
(38/69)

0.646
(53/82)
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Compared with traditional machine learning models, Bayesian

ELM has significant advantages in alleviating overfitting and

balancing model complexity with generalization ability, thereby

providing more robust and clinically valuable predictive

performance. From a theoretical perspective, extreme learning

machine (ELM) randomly generates hidden layer weights and

analytically solves the output weights, avoiding the complex
Frontiers in Oncology 14
gradient-based iterative process in traditional neural networks,

which grants it faster training speed and stronger representation

capacity. Building on this, the introduction of the Bayesian

framework not only enables probabilistic modeling of model

parameters and provides uncertainty estimation but also

effectively suppresses overfitting through prior and posterior

constraints. This combination allows Bayesian ELM to maintain
TABLE 3 Continued

Cohort 5
Training set 5 Testing set 5

CM ILM MDCM FedAvg PFLS CM ILM MDCM FedAvg PFLS

AUC
(95%CI)

0.714
(0.555-
0.873)

0.835
(0.720-
0.951)

0.854
(0.744-
0.964)

0.769
(0.623-
0.915)

0.924
(0.850-
0.998)

0.665
(0.471-
0.860)

0.824
(0.676-
0.972)

0.820
(0.661-
0.979)

0.728
(0.537-
0.919)

0.893
(0.770-
1.000)

Sensitivity
0.708
(17/24)

0.750
(18/24)

0.792
(19/24)

0.792
(19/24)

0.958
(23/24)

0.647
(11/17)

0.882
(15/17)

0.412
(7/17)

0.647
(11/17)

0.824
(14/17)

Specificity
0.773
(17/22)

0.727
(16/22)

0.773
(17/22)

0.773
(17/22)

0.727
(16/22)

0.625
(10/16)

0.375
(6/16)

0.875
(14/16)

0.688
(11/16)

0.813
(13/16)

Accuracy
0.739
(34/46)

0.739
(34/46)

0.783
(36/46)

0.783
(36/46)

0.848
(39/46)

0.636
(21/33)

0.636
(21/33)

0.636
(21/33)

0.667
(22/33)

0.818
(27/33)

PPV
0.773
(17/22)

0.750
(18/24)

0.792
(19/24)

0.792
(19/24)

0.793
(23/29)

0.647
(11/17)

0.600
(15/25)

0.778
(7/9)

0.688
(11/16)

0.824
(14/17)

NPV
0.708
(17/24)

0.727
(16/22)

0.773
(17/22)

0.773
(17/22)

0.941
(16/17)

0.625
(10/16)

0.750
(6/8)

0.583
(14/24)

0.647
(11/17)

0.813
(13/16)
fr
FIGURE 4

Decision curve analysis of test set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3, (D) Cohort 4, (E) Cohort 5.
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TABLE 4 Performance comparison of models trained under different FL algorithms.

Cohort 1
Training set 1 Testing set 1

Fedprox FedBN Moon PFLS Fedprox FedBN Moon PFLS

AUC
(95%CI)

0.790
(0.716-0.863)

0.770
(0.677-0.863)

0.761
(0.671-0.851)

0.895
(0.833-0.956)

0.764
(0.646-0.883)

0.741
(0.628-0.853)

0.752
(0.639-0.865)

0.846
(0.748-0.944)

Sensitivity
0.567
(72/127)

0.835
(106/127)

0.512
(65/127)

0.906
(115/127)

0.512
(44/86)

0.651
(56/86)

0.523
(45/86)

0.826
(71/86)

Specificity
0.912
(31/34)

0.618
(21/34)

0.912
(31/34)

0.765
(26/34)

0.870
(20/23)

0.739
(17/23)

0.783
(18/23)

0.739
(17/23)

Accuracy
0.640
(103/161)

0.789
(127/161)

0.596
(96/161)

0.876
(141/161)

0.587
(64/109)

0.670
(73/109)

0.578
(63/109)

0.807
(88/109)

PPV
0.960
(72/75)

0.891
(106/119)

0.956
(65/68)

0.935
(115/123)

0.936
(44/47)

0.903
(56/62)

0.900
(45/50)

0.922
(71/77)

NPV
0.360
(31/86)

0.500
(21/42)

0.333
(31/93)

0.684
(26/38)

0.323
(20/62)

0.362
(17/47)

0.305
(18/59)

0.531
(17/32)

Cohort 2
Training set 2 Testing set 2

FedProx FedBN Moon PFLS FedProx FedBN Moon PFLS

AUC
(95%CI)

0.844
(0.729-0.959)

0.849
(0.735-0.965)

0.842
(0.717-0.970)

0.925
(0.853-0.997)

0.800
(0.610-0.990)

0.808
(0.620-0.991)

0.813
(0.648-0.967)

0.889
(0.771-1.000)

Sensitivity
0.784
(29/37)

0.757
(28/37)

0.946
(35/37)

0.892
(33/37)

0.654
(17/26)

0.962
(25/26)

0.885
(23/26)

0.923
(24/26)

Specificity
0.857
(12/14)

0.857
(12/14)

0.643
(9/14)

0.786
(11/14)

0.800
(8/10)

0.500
(5/10)

0.600
(6/10)

0.700
(7/10)

Accuracy
0.804
(41/51)

0.784
(40/51)

0.863
(44/51)

0.863
(44/51)

0.694
(25/36)

0.833
(30/36)

0.806
(29/36)

0.861
(31/36)

PPV
0.935
(29/31)

0.933
(28/30)

0.875
(35/40)

0.917
(33/36)

0.895
(17/19)

0.833
(25/30)

0.852
(23/27)

0.889
(24/27)

NPV
0.600
(12/20)

0.571
(12/21)

0.818
(9/11)

0.733
(11/15)

0.471
(8/17)

0.833
(5/6)

0.667
(6/9)

0.778
(7/9)

Cohort 3
Training set 3 Testing set 3

FedProx FedBN Moon PFLS FedProx FedBN Moon PFLS

AUC
(95%CI)

0.875
(0.772-0.977)

0.847
(0.753-0.945)

0.869
(0.758-0.980)

0.939
(0.884-0.994)

0.831
(0.701-0.961)

0.812
(0.664-0.960)

0.829
(0.665-0.994)

0.922
(0.845-0.999)

Sensitivity
0.776
(38/49)

0.796
(39/49)

0.776
(38/49)

0.918
(45/49)

0.824
(28/34)

0.853
(29/34)

0.794
(27/34)

0.882
(30/34)

Specificity
0.905
(19/21)

0.857
(18/21)

0.905
(19/21)

0.857
(18/21)

0.733
(11/15)

0.667
(10/15)

0.800
(12/15)

0.867
(13/15)

Accuracy
0.814
(57/70)

0.814
(57/70)

0.814
(57/70)

0.900
(63/70)

0.796
(39/49)

0.796
(39/49)

0.796
(39/49)

0.878
(43/49)

PPV
0.950
(38/40)

0.929
(39/42)

0.950
(38/40)

0.938
(45/48)

0.875
(28/32)

0.853
(29/34)

0.900
(27/30)

0.938
(30/32)

NPV
0.633
(19/30)

0.643
(18/28)

0.633
(19/30)

0.818
(18/22)

0.647
(11/17)

0.667
(10/15)

0.632
(12/19)

0.765
(13/17)

Cohort 4
Training set 4 Testing set 4

FedProx FedBN Moon PFLS FedProx FedBN Moon PFLS

AUC
(95%CI)

0.779
(0.723-0.834)

0.754
(0.696-0.813)

0.802
(0.746-0.857)

0.886
(0.845-0.926)

0.748
(0.674-0.822)

0.730
(0.651-0.809)

0.755
(0.683-0.827)

0.876
(0.825-0.927)

(Continued)
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efficient training while better balancing model complexity and

generalization, thereby demonstrating stronger robustness and

stability when applied to heterogeneous multi-center medical data.

Despite the promising results, our study has some limitations.

First, the implementation of strict inclusion and exclusion criteria

for samples could introduce bias in sample selection, potentially

affecting model training. Second, the study includes only TBG, a
Frontiers in Oncology 16
specific type of benign nodule, and misses other benign nodules

such as inflammatory pseudotumors, hamartomas, and fibromas.

Third, the aggregation of local models in the Reptile stages dose not

account for differences in data distribution across hospitals,

potentially leading to suboptimal global models in the Reptile

stage and affecting the performance of the robust local models

trained in the next stage.
TABLE 4 Continued

Cohort 4
Training set 4 Testing set 4

FedProx FedBN Moon PFLS FedProx FedBN Moon PFLS

Sensitivity
0.672
(125/186)

0.672
(125/186)

0.688
(128/186)

0.807
(150/186)

0.760
(95/125)

0.680
(85/125)

0.648
(81/125)

0.768
(96/125)

Specificity
0.792
(76/96)

0.729
(70/96)

0.813
(78/96)

0.833
(80/96)

0.641
(41/64)

0.672
(43/64)

0.734
(47/64)

0.828
(53/64)

Accuracy
0.713
(201/282)

0.691
(195/282)

0.730
(206/282)

0.816
(230/282)

0.720
(136/189)

0.677
(128/189)

0.677
(128/189)

0.788
(149/189)

PPV
0.862
(125/145)

0.828
(125/151)

0.877
(128/146)

0.904
(150/166)

0.805
(95/118)

0.802
(85/106)

0.827
(81/98)

0.897
(96/107)

NPV
0.555
(76/137)

0.534
(70/131)

0.574
(78/136)

0.690
(80/116)

0.577
(41/71)

0.518
(43/83)

0.516
(47/91)

0.646
(53/82)

Cohort 5
Training set 5 Testing set 5

FedProx FedBN Moon PFLS FedProx FedBN Moon PFLS

AUC
(95%CI)

0.845
(0.731-0.958)

0.758
(0.614-0.901)

0.820
(0.698-0.941)

0.924
(0.850-0.998)

0.798
(0.644-0.951)

0.746
(0.571-0.921)

0.809
(0.652-0.962)

0.893
(0.770-1.000)

Sensitivity
0.667
(16/24)

0.667
(16/24)

0.583
(14/24)

0.958
(23/24)

0.471
(8/17)

0.588
(10/17)

0.412
(7/17)

0.824
(14/17)

Specificity
0.909
(20/22)

0.818
(18/22)

0.955
(21/22)

0.727
(16/22)

0.875
(14/16)

0.688
(11/16)

0.875
(14/16)

0.813
(13/16)

Accuracy
0.783
(36/46)

0.739
(34/46)

0.761
(35/46)

0.848
(39/46)

0.667
(22/33)

0.636
(21/33)

0.636
(21/33)

0.818
(27/33)

PPV
0.889
(16/18)

0.800
(16/20)

0.933
(14/15)

0.793
(23/29)

0.800
(8/10)

0.667
(10/15)

0.778
(7/9)

0.824
(14/17)

NPV
0.714
(20/28)

0.692
(18/26)

0.677
(21/31)

0.941
(16/17)

0.609
(14/23)

0.611
(11/18)

0.583
(14/24)

0.813
(13/16)
TABLE 5 AUC results of ablation experiments.

Fedavg
stage

Reptile
stage

Personalization
stage

AUC (95%CI)

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5

Train
set

Test
set

Train
set

Test
set

Train
set

Test
set

Train
set

Test
set

Train
set

Test
set

✓ ✓
0.781
(0.698-
0.865)

0.753
(0.650-
0.857)

0.851
(0.743-
0.960)

0.812
(0.671-
0.953)

0.828
(0.718-
0.938)

0.812
(0.691-
0.933)

0.811
(0.756-
0.867)

0.768
(0.696-
0.842)

0.845
(0.735-
0.955)

0.816
(0.653-
0.980)

✓ ✓
0.770
(0.685-
0.856)

0.740
(0.641-
0.839)

0.826
(0.693-
0.960)

0.804
(0.620-
0.988)

0.832
(0.717-
0.947)

0.808
(0.657-
0.959)

0.738
(0.677-
0.800)

0.698
(0.622-
0.775)

0.782
(0.647-
0.918)

0.735
(0.562-
0.909)

✓ ✓ ✓
0.895
(0.833-
0.956)

0.846
(0.748-
0.944)

0.925
(0.853-
0.997)

0.889
(0.771-
1.000)

0.939
(0.884-
0.994)

0.922
(0.845-
0.999)

0.886
(0.845-
0.926)

0.876
(0.825-
0.927)

0.924
(0.850-
0.998)

0.893
(0.770-
1.000)
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Conclusion

The PFLS proposed in this study facilitates collaborative

training across multiple hospitals while maintaining the data

privacy of each hospital. It effectively mitigates the model

overfitting caused by insufficient samples from a single hospital.

Moreover, the personalizing process of local model address the

heterogeneity of data across hospitals, which cannot be adequately

performed by a single global model. The resulting robust local

models show excellent discrimination between LAC and TBG,

providing invaluable assistance to clinicians in improving

diagnostic accuracy.
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