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lung adenocarcinoma and
tuberculosis granulomas
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Background: Differentiating between lung adenocarcinoma (LAC) and
tuberculosis granuloma (TBG) of solitary pulmonary solid nodules (SPSNs)
based on CT images alone is a daunting task for clinical diagnosis. Thus, it is
crucial to fully utilize CT imaging data to explore effective noninvasive diagnostic
methods to improve the identification of TBG and LAC.

Purpose: This study aimed to leverage CT imaging datasets from multiple
hospitals for the diagnosis of TBG and LAC in SPSNs. It achieved this by
deploying a meta-learning method within a federated learning framework
while protecting data privacy.

Methods: A total of 1,026 patients, along with their CT images of solitary
pulmonary solid nodules (SPSNs) and corresponding clinical data, were
collected from six medical institutions. Subsequently, the data from these six
institutions were systematically partitioned into five cohorts. Each cohort was
divided into two parts: the training set and the test set. A meta-learning-based
robust federated learning model by training set data was proposed to construct
personalized federated learning signatures (PFLS) without uploading raw data
from each medical institutions. Receiver operating characteristic curve (ROC),
area under curve (AUC), decision curve analysis (DCA), net reclassification
improvement (NRI) and integrated discrimination improvement (IDI) are used
to analyze the performance of the PFLS.

Results: The PFLS trained by the proposed meta-learning-based robust
federated learning framework shows superior performance compared to
alternative methods. The AUC range on the training sets of the five cohorts is
0.866-0.939, AUC range on the testing sets is 0.808-0.927). The significant
difference of AUC between the proposed method and the clinical model was
demonstrated by the NRI and IDI. The decision curves indicated a higher net
benefit of our proposed method.
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Conclusion: The PFLS mitigates overfitting issues arising from limited sample size
in local hospitals. It also alleviates the problem that a single global model is not
applicable to all hospitals due to the heterogeneity of data distribution among

different hospitals.

lung adenocarcinoma, tuberculosis granuloma, solitary pulmonary solid nodules,
SPSNs, meta-learning, federated learning, CT images, personalized federated

learning signatures

Introduction

The prevalence of CT has been led to a significant upsurge in
the detection rate of Solitary Pulmonary Solid Nodules (SPSNs) (1).
Clinically, SPSNs can be bifurcated into benign and malignant
categories. Lung Adenocarcinoma (LAC) is the most common
pathological type of malignant SPSNs, while Tuberculosis
Granulomas (TBG) is the common pathological type of benign
SPSNs (2, 3). However, the treatment regimens and clinical
outcomes for lung adenocarcinoma and tuberculous granulomas
are entirely different. Radical surgical resection is the preferred
treatment for the former, while the latter is often managed with
anti-tuberculosis medications (4). Misdiagnosis can lead to
uncontrollable disease progression and a poor prognosis in
patients with lung adenocarcinoma. Conversely, it may also result
in overtreatment for those with tuberculous granulomas (5).

Although CT scans can identify SPSNs, the differentiation
between LAC and TBG based on CT images alone presents a
daunting task for clinical diagnosing. This is primarily because
LAC and TBG both exhibit similar lobulated and spiculated
features, and there is a lack of effective contrast agents to aid in
distinguishing TBG from LAC (6, 7). Most patients with SPSNs
detected by CT undergo biopsy diagnosis to guide the treatment plan.
However, when the lesion is small and difficult to locate, the difficulty
and related risks increase significantly (8, 9). Consequently, it is
crucial to fully utilize CT imaging data to explore new effective non-
invasive diagnostic methods to improve TBG and LAC identification.

Deep learning, as a data-driven technology for model
performance, has shown great potential in image classification.
Previous studies have demonstrated that deep learning models
can extract features from raw medical images at various levels of
abstraction (10, 11). Applying deep learning techniques to
computer-aided diagnostic systems holds promise for improving
the accuracy of TBG and LAC differentiation. However, due to the
need for medical data privacy protection, medical centers are
generally not allowed to share data, which limits the scale of the
data. Unfortunately, robust and accurate deep learning models
require a large amount of data for training; otherwise, overfitting
is prone to occur, leading to a decline in the generalization ability of
deep learning models.
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Federated learning facilitates multi-clients collaborative
training by aggregating local model parameters of each client into
the shared global model, without sharing data from different clients
(12). This approach fully utilizes information of each hospital
without sharing raw CT image data, thus addressing privacy
concerns and limiting overfitting. The federated averaging
algorithm of most federated learning methods weights the
parameters of each local model according to the sample sizes of
different medical institution (13, 14). However, Additionally, data
heterogeneity caused by differences in data collection across medical
institutions (such as scanning equipment, imaging parameters,
population characteristics, etc.) significantly restricts the
performance of federated learning models in multi-medical
institution medical image analysis (15, 16). Therefore, when there
are differences in the data distributions across multiple centers, it is
challenging for a single global model obtained merely by
aggregating the parameters of each local model to perform
consistently well across all centers (17, 18).

In this paper, a meta-learning-based robust federated learning
approach is proposed to leverage heterogeneous CT imaging
datasets from multiple medical institutions for the diagnosis of
TBG and LAC in SPSNs. The reptile algorithm of meta-learning is
deployed to aggregate gradients of parameters of each local model.
This improves the performance and robustness of the global model
on data from each local medical institution. Finally, each center
fine-tunes the global model based on local data to complete
model personalization.

Materials and methods
Patients

This retrospective study was approved by the Institutional
Review Boards of the participating hospitals, with a waiver of
informed consent. Detailed inclusion and exclusion criteria are
provided in Supplementary S1. Finally, a total of 1,026 samples
from six medical institutions. Since one medical institution has only
17 cases, we merged the data of this medical institution into another
hospital, so there are a total of 5 cohorts. These five cohorts include:
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cohort 1 (2014-2020): 270 patients (training set: 161; test set: 109),
cohort 2 (2013-2016): 87 patients (training set: 51; test set: 36),
cohort 3 (2014-2019): 119 patients (training set: 70; test set: 49)
cohort 4 (2011-2020): 471 patients (training set: 282; test set: 189),
cohort 5 (2018-2020): 79 patients (training set: 46; test set: 33).

>

CT image acquisition and evaluation

Chest CT images were acquired from six different scanners
(Siemens, Toshiba, GE, Philips) with patients in the supine position,
covering the entire chest from the thoracic inlet to the adrenal glands
during a breath-hold. Scans were performed in spiral mode with a
tube voltage of 120 kVp and automatic mAs adjustment. Images were
reconstructed with standard and high-resolution algorithms at 1.0-3.0
mm slice thickness and 0.8-3.0 mm interslice gap. Two independent
chest radiologists, blinded to clinical information, assessed the images
using lung and mediastinal window settings, evaluating nodule
location, size, margin, lobulation, and spiculation; discrepancies
were resolved by consensus. Detailed information is provided in
Supplementary S2.

Pathological diagnosis

All samples were fixed in formalin and subsequently stained
with hematoxylin and eosin (HE). The experienced pathologists
performed the pathological analysis of the surgical specimens in
accordance with the 2011 International Association for the Study of
Lung Cancer/American Thoracic Society/European Respiratory
Society classification system, and the 2015 World Health
Organization (WHO) classification of lung neoplasms (19, 20).
These pathologists were blinded to the CT findings.

Image preprocessing

For neural network processing, preprocessing operations are
applied to the CT images. An experienced radiologist utilizes a
rectangular bounding box to crop the region of interest (ROI) from
each CT slice initially. All ROIs are then interpolated and
standardized to 224x224 pixels. Next, the ROIs from three
sequential single-channel CT slices for the same patient are
merged to form a three-channel image with the dimensions
224x224x3. Finally, these three-channel images are used as input
data for the neural network. Detailed information is provided in
Supplementary Figure S1.

Building the meta-learning-based
personalized federated learning signature

In order to adapt to the data situation of each medical
institution, we train a personalized federated learning signature
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for each medical institution. This usually involves three steps:
feature extraction, feature selection, and classifier training.

During the feature extraction process, a federated learning
based on model agnostic meta-learning is used to extract the CT
features of each hospital. The entire training process of federated
learning encompassed three stages.

FedAvg stage: In the initial iteration of the FedAvg stage, both
local and global models start with identical parameters pre-trained
on ImageNet. Each local client trains its model using its own
dataset. After all local clients complete training, they upload their
model gradients to the global server. The global server aggregates
these gradients by weighting them according to each client’s sample
size relative to the total samples across all clients. The global model
is then updated using these weighted gradients and distributed back
to the local clients as the initial parameters for the next iteration.
This process repeats for several iterations, and the final global model
parameters are passed to the Reptile stage.

Reptile stage: Unlike the FedAvg stage, the Reptile stage
employs the Adam optimizer for local model updates. The
aggregation method also differs: instead of sample-size-based
weighting, the global server treats each local client as a distinct
meta-learning task and applies the Reptile algorithm to compute the
combined gradient direction. The global model is then updated with
momentum based on this aggregated gradient. After multiple
iterations, the final global model parameters are delivered to each
local client for the subsequent personalized stage.

Personalized stage: In the Personalize stage, the local clients do
not share any data to the global server, and only fine-tune the local
models with their own data sets based on the stochastic gradient
descent algorithm. And the initial parameters of the local models
are the final parameters of the global model of the Reptile stage.

During the whole training process, the raw data of a local client
or hospital is never shared with the global server and other local
clients, which ensures the security and privacy of the local data. The
global server performs aggregation operations on the parameters of
the local model so that the local clients can share the training
results, effectively avoiding overfitting when the data samples of a
single client are too small. The Reptile stage creates ideal conditions
for rapid fine-tuning of the local model, and the Personalize stage
can effectively solve the problem of data heterogeneity among
different hospitals or centers.

More detailed information regarding the model and training
details can be found in Supplementary S3 and Figure 1. The local
hospitals utilizes the robust personalized local models, trained by
the proposed method, to extract 3904 features from the CT images
at each layer of the ROL Subsequently, the features from all layers
are fused (refer to Supplementary S4 for detailed information).

The classifier can utilize numerous features obtained from the
above operations to diagnose TBG or LAC. However, most of these
features are not conducive for diagnosing pulmonary nodules and
may introduce noise, negatively affecting diagnostic accuracy.
Therefore, in the process of feature selection and classifier
training, the Mann-Whitney U test is employed to evaluate the
diagnostic significance of features, retaining only those with a p-
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FIGURE 1

The training process of the meta-learning-based robust federated learning model.

value < 0.05. Finally, a Bayesian extreme learning machine is
employed to building the personalized federated learning
signature (PFLS) using the selected features (21). To validate its
effectiveness, we further performed systematic comparisons with
several widely used classifiers, including logistic regression (LR),
support vector machine (SVM), and random forest (RF). These
models are representative in medical image analysis and Al
classification tasks, covering linear, kernel-based, and ensemble
learning approaches, respectively. All models were trained and
evaluated under identical data splits and preprocessing settings to
ensure fair comparison. The pseudocode of the algorithm is
provided in Supplementary S5.

Personalized federated learning signature
comparison FedAvg model

The FedAvg (22) model is the federated learning model and the
global model trained through the federated averaging algorithm. In
the training iteration of FedAvg, each client accepts the global
model parameters, initiating local training based on this global
model. After training by the local clients on local data, the
parameters of the local models are uploaded, and the parameters
of each local model are averagely weighted by the global server to
achieve collaborative training of the ResNet18 global model. More
model parameter Settings can be found in Supplementary Se.
Subsequently, each local hospital uses the same global model to
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extract 3904 features from the CT images, followed by utilization of
Mann-Whitney U test to select features with significant difference
from the extracted features. Finally, a Bayesian Extreme Learning
Machine is employed for classification.

Personalized federated learning signature
comparison independent local models

Independent local models(ILM) are the ResNet18 and trained
exclusively with local data, with no data interaction occurring
among the local models from other hospitals. The training
process of this model first involves pre-training using ImageNet
data, and then training respective models with each local dataset.
More model parameter Settings can be found in Supplementary S5.
Through the ResNetl8 model, 3904 deep learning features are
extracted from the CT image of each case. Features with
significant differences are identified using the Mann-Whitney U
test. Eventually, a Bayesian Extreme Learning Machine is applied to
perform classification using these selected features.

Personalized federated learning signature
comparison building the clinical model

CT image data are collected from a total of five cohorts, with
data from each hospital divided into training and test sets. The
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patient distribution and clinical features of the CT images are
outlined in Table 1. Thus, this study selects clinical features
(gender, age, nodule size, shape of lesion margin, lobulated shape,
and spiculated sign to build the clinical model(CM) based on
Bayesian Extreme Learning Machine.

Personalized federated learning signature
comparison merged data centralized
model

To validate the necessity and advantages of the proposed
Personalized Federated Learning Signature (PFLS) framework, we
established a Merged Data Centralized Model (MDCM) as a
comparative benchmark. This model integrates training data from
all participating centers to train a single deep learning model without
any privacy constraints—simulating an ideal scenario where data
sharing faces no regulatory or ethical barriers. After training, the
centralized MDCM was independently evaluated on the local test sets
of each hospital to assess its generalization performance across
heterogeneous data distributions. This approach enables a
quantitative comparison between the centrally trained model and
the personalized federated models, highlighting the impact of data
heterogeneity and demonstrating the effectiveness of federated
learning in maintaining model performance while preserving
data privacy.

Personalized federated learning signature
comparison with personalized federated
model

To further evaluate the effectiveness of the proposed PFLS
framework, we selected several representative personalized federated
learning methods for comparison, including FedProx (23), FedBN
(24), and Moon (25). FedProx introduces a proximal term into the
local objective function to constrain local updates from deviating
excessively from the global model, thereby stabilizing the optimization
process under non-IID data distributions. FedBN retains the Batch
Normalization (BN) parameters locally while aggregating the
remaining parameters globally, which alleviates performance
degradation caused by feature distribution shifts across centers.
Moon incorporates a contrastive learning objective during local
training to encourage consistency between local and global
representations, thus improving robustness in heterogeneous data
scenarios. After federated training, each method employed its
respective personalized model to extract features from the local data.
Finally, a Bayesian Extreme Learning Machine is employed
for classification.

Ablation experiments on PFLS

To quantitatively verify the effectiveness of the Reptile step (26)
and the personalization step in PFLS, we designed ablation
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experiments. Specifically, we constructed different algorithm
variants by selectively removing these two steps: (1) removing the
Reptile step while retaining the personalization step, where each site
was validated using its own personalized model; (2) removing the
personalization step while retaining the Reptile update, where all
centers were validated using the global model after the Reptile
update. All variants were trained and evaluated under the same
experimental settings. By comparing their performance with the
complete PFLS, we were able to assess the contribution of
each component.

Statistical analysis

The performance evaluation of the models involved calculating
various metrics, including the receiver operating characteristic
curve (ROC), area under the curve (AUC), sensitivity, specificity,
accuracy, positive probability value (PPV), and negative probability
value (NPV). The net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) were used to
measure the degree of improvement of PFLS in overall
discriminative ability compared with FedAvg, ILM, and CM. P-
values less than 0.05 were considered a significant difference.

Results

Clinical factors and subjective CT findings
analysis

The patient distribution and clinical features of the CT images
are outlined in Table 1.The table details various clinical parameters
such as gender, age, lesion size, location, margin, lobulated shape,
and spiculated sign, with a clear distinction between training and
testing sets within each cohort. A notable observation is the
inconsistent distribution of these clinical features across different
cohorts. For instance, the proportion of males and females varies
significantly, with some cohorts having a higher male prevalence
(e.g., Cohort 1 and Cohort 4) while others show a more balanced or
female-dominant distribution (e.g., Cohort 3). Similarly, the
distribution of lesion location, margin, lobulated shape, and
spiculated sign further underscores the heterogeneity among
cohorts. For example, the presence of lobulated and spiculated
lesions varies widely, suggesting differences in disease
characteristics or diagnostic practices across cohorts.

The performance of PFLS identifies LAC
and TBG

As shown in Table 2, all models were trained and validated
using the same feature set to ensure fairness in comparison. The
results revealed that SVM and RF experienced severe overfitting
during training, as indicated by the large performance gap between
the training and test sets. In contrast, logistic regression (LR) did
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TABLE 1 The patient distribution and clinical features.

Training set (n=16:

Clinical information

Testing set (n=109)

Training set (n=51)

Cohort 2

Testing set (n=36)

Cohort 3

Training set (n=70)

Testing set (n=49)

TBG LAC TBG LAC TBG LAC TBG LAC TBG LAC TBG LAC
P valule P valule P valule P valule
(n=34) (n=127) (n=23) (n=86) (n=14) (n=10) (n=21) (n=49) (n=15) (n=34)
Gender
Male 21 57 12 39 9 20 5 16 14 25 6 24
0.08 0.56 0.51 0.529 0.227 0.043
Female 13 70 11 47 5 17 5 10 7 24 9 10
Age(mean + SD, years)
59.2 57.8 0533 53.0 59.8 0011 53.8 504493 0.087 61.2492 57.8 0433 479 58.7 0.001 50.7 60.7 0.003
+13.8 +10.1 : *11.5 +10.9 : +12.1 e : o +12.2 : +15.6 +9.2 : +11.5 +9.7 :
Lesion size(mm)
18.7 209 25.8 14.1 15.5
14.5+8.0 20.7£9.7 0.001 12.7+7.4 20.349.1 <0.001 0.555 20.5£7.9 0.467 12.1+8.0 0.206 12.3+£5.6 0.046
+6.00 +13.3 +22.1 +5.1 +4.8
Location
Upper and middle 17 89 13 56 10 27 6 16 12 26 9 25
0.028 0.447 0.912 0.932 0.753 0.344
Lower 17 38 10 30 4 10 4 10 9 23 6 9
Lesion Margin
Irregular 20 117 16 71 12 33 8 24 11 42 9 33
<0.001 0.168 0.731 0.293 0.003 0.001
Regular 14 10 7 15 2 4 2 2 10 7 6 1
Lobulated shape
Absence 22 18 12 24 5 4 3 0 11 8 8 1
<0.001 0.028 0.037 0.004 0.002 <0.001
Presence 12 109 11 62 9 33 7 26 10 41 7 33
Spiculated sign
Absence 28 70 20 51 10 13 9 7 18 27 14 13
0.004 0.013 0.02 0.001 0.014 <0.001
Presence 6 57 3 35 4 24 1 19 3 22 1 21

Training Set (n=282)

Clinical information
TBG LAC

(n=96) (n=186)
Gender

Male 61 93

Cohort 4

TBG

p valule

(n=64)

LAC

(n=125)

Testing Set (n=189)

p valule

0.003

Training Set (n=46)

TBG

(n=22)

‘ 13 ‘ 11 ‘ 0.369 ‘ 10 ‘ 7 ‘ 0.221 ‘

LAC

(n=24)

Cohort 5

p valule

Testing Set (n=33)

TBG

(n=16)

LAC

(n=17)

p valule

(Continued)
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TABLE 1 Continued

Cohort 4 Cohort 5
Training Set (n=282) Testing Set (n=189) Training Set (n=46) Testing Set (
Clinical information
TBG LAC LAC TBG LAC TBG LAC
p valule p valule p valule p valule
(n=96) (n=186) 125) (n=16) (n=17)
Gender
Female 35 93 ‘ 22 72 9 13 ‘ 6 ‘ 10 ‘
Age(mean + SD, years)
51.4 52.3 60.5 47.3
+12.9 60.8+9.8 <0.001 +113 +107 <0.001 53.3%£9.2 63.1+8.6 0.001 +119 59.8+9.9 0.002
Lesion size(mm)
25.1
12.3+6.6 17.6+8.2 <0.001 13.1+7.5 17.4+8.5 0.001 10.0+6.4 17.349.8 0.005 8.6+3.8 4254 0.015
Location
Upper and middle 65 125 44 80 11 16 8 14
0.932 0.515 0.251 0.049
Lower 31 61 20 45 11 8 8 3
Lesion Margin
Irregular 53 160 35 109 14 22 6 17
<0.001 <0.001 0.021 <0.001
Regular 43 26 29 16 8 2 10 0
Lobulated shape
Absence 60 32 37 21 11 12 12 5
<0.001 <0.001 1 0.009
Presence 36 154 27 104 11 12 4 12
Spiculated sign
Absence 80 98 55 65 12 14 13 11
<0.001 <0.001 0.796 0.286
Presence 16 88 9 60 10 10 3 6

1839 Uy

£$£69991'G202'°U04/68¢¢ 0T


https://doi.org/10.3389/fonc.2025.1666937
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Chen et al.

not show obvious overfitting; however, its classification
performance was still inferior to that of the Bayesian extreme
learning machine (Bayesian ELM). By comparison, Bayesian ELM
not only maintained high training efficiency but also demonstrated
stronger generalization ability on the test set. The performance of
the personalized federated learning signature (PFLS) across the five
cohorts is presented in Figures 2, 3 and Table 3. On the test sets,
PFLS achieved AUCs of 0.846 (95% CI, 0.748-0.944), 0.889 (95%
CI, 0.771-1.000), 0.922 (95% CI, 0.845-0.999), 0.876 (95% ClI,
0.825-0.927), and 0.893 (95% CI, 0.770-1.000), with
corresponding accuracies of 0.807, 0.861, 0.878, 0.788, and 0.818.
These results indicate that PFLS consistently demonstrated
excellent predictive performance across different cohorts,
effectively distinguishing lung adenocarcinoma from tuberculosis
granulomas. Furthermore, decision curve analysis (Figure 4)
showed that PFLS provided a higher net benefit than other
models in cohorts 2, 3, and 5. Supplementary Table SI in the
supplementary materials for model details.

Comparison of the PFLS with the FedAvg
model

As shown in Table 3, the AUC of the FedAvg model on the test
sets from the five cohorts are 0.740 (95% CI, 0.637-0.843), 0.823
(95% CI, 0.672-0.974), 0.839 (95% CI, 0.724-0.955), 0.737 (95% CI,
0.664-0.810), and 0.728 (95% CI, 0.537-0.919). The FedAvg model
achieved accuracy of 0.560, 0.694, 0.837, 0.698, and 0.667 on the test
sets of each cohort. Compared with FedAvg, the AUC of PFLS at
each cohort increased by 6.6%-16.5%, and the accuracy rate
increased by 4.1%-25.1%. Supplementary Table S2 and
Supplementary Table S3 respectively present the results of NRI
and IDI. The results of NRI and IDI show that the performance of
PFLS on each central test set is improved compared with the
FedAvg model. The range values of NRI at each cohort were
0.287 to 1.263. The range values of IDI at each cohort were 0.016
to 0.069. Supplementary Table S4 in the supplementary materials
for FedAvg model details.

Comparison of the PFLS with ILM

The AUC of ILM on the test sets from each cohort are 0.773
(95% CI, 0.672-0.873), 0.808 (95% CI, 0.640-0.975), 0.857 (95% ClI,
0.745-0.969), 0.778 (95% CI, 0.707-0.848), and 0.824 (95% ClI,
0.676-0.972). The ILM achieved accuracy of 0.716, 0.833, 0.735,
0.698, and 0.636 on the test sets of each cohort. Compared to ILM,
the PFLS achieved an AUC improvement of 6.5%- 9.4% across the
cohorts, and the PFLS showed an improvement of 2.8%-19.1% in
the prediction accuracy for LAC and TBG at each cohort. More
details are provided in Table 3 and Figure 2, 3. As shown in
Supplementary Table S2 and Supplementary Table S3, the
performance of PFLS on each central test set is improved
compared with the ILM. The range values of NRI at each cohort
were 0.324 to 969. The range values of IDI at each cohort were 0.022
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to 0.061. Supplementary Table S5 in the supplementary materials
for ILM details.

Comparison of the PFLS with the CM

As shown in Table 3, the AUC of the CMmodel on the test sets
from the five cohorts are 0.692(95% CI, 0.569-0.815), 0.719(95% CI,
0.523-0.915), 0.759(95% CI, 0.618-0.900), 0.679(95% CI, 0.587-
0.770), and 0.665(95% CI, 0.471-0.860). In comparison, the
experimental results indicate that the PFLS outperforms the CM
in all metrics. As shown in Supplementary Table S2, Supplementary
Table S3, in the test sets, PFLS exhibits higher NRI and IDI indices
with significant p-values (p < 0.05) compared to CM across cohorts,
indicating its superiority.

Comparison of the PFLS with MDCM

As shown in Table 3, the AUC of the MDCM on the test sets
from the five cohorts are 0.752, 0.842, 0.825, 0.746, and 0.820. The
experimental results indicate that the MDCM exhibits relatively
poor consistency in performance across different centers. This
performance variability may be attributed to the inherent
heterogeneity in the data from various centers. When training on
merged data, such heterogeneity can lead to suboptimal model
generalization, as the model may be biased toward certain center-
specific characteristics rather than capturing universally
representative features. Consequently, the model’s ability to
perform consistently well across diverse and unseen datasets
is compromised.

Comparison of the PFLS with personalized
federated model

As shown in Table 4, the three personalized federated models,
FedProx, FedBN, and Moon, achieved AUC values ranging from
0.746 to 0.834 and accuracies between 0.619 and 0.749 across the
five cohorts. However, all three methods exhibited unstable
performance when confronted with heterogeneous multi-center
data. In contrast, our proposed PFLS consistently outperformed
them, with AUC improvements of approximately 4%-15% and
accuracy gains of 6%-22% across different cohorts. The
performance of PFLS and other personalized federated learning
algorithms on the training and test sets across the five cohorts is
shown in Supplementary Figure S2, Supplementary Figure S3.
Additionally, the Decision Curve Analysis are shown in
Supplementary Figure S4.

Ablation experiments

As shown in Table 5, we present the AUC values on the training
and test sets for different ablation variants. When the Reptile step was
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TABLE 2 Performance of logistic regression, SVM, random forest and ELM.

Training set 1

10.3389/fonc.2025.1666937

Testing set 1

Cohort 1
RF LR RF LR
AUC 0.923 0.952 0.822 0.895 0.812 0.852 0.777 0.846
(95%CI) (0.867-0.980) | (0.920-0.984) | (0.741-0903)  (0.833-0.956)  (0.700-0.923)  (0.756-0.949) | (0.662-0.893)  (0.748-0.944)
sensitivit 0.819 0.882 0.724 0.906 0.694 0.800 0.682 0.826
ks (104/127) (112/127) (92/127) (115/127) (59/85) (68/85) (58/85) (71/85)
Soecificit 0.941 0.941 0.765 0.765 0.792 0.708 0.750 0.739
pectiiclty (32/34) (32/34) (26/34) (26/34) (19/24) (17/24) (18/24) (17/24)
e 0.845 0.894 0.733 0.876 0.716 0.780 0.697 0.807
ceracy (136/161) (144/161) (118/161) (141/161) (78/109) (85/109) (76/109) (88/109)
ooy 0.981 0.982 0.920 0.935 0.922 0.907 0.906 0922
(104/106) (112/114) (92/100) (115/123) (59/64) (68/75) (58/64) 71/77)
NPy 0.582 0.681 0.426 0.684 0.422 0.500 0.400 0.531
(32/55) (32/47) (26/61) (26/38) (19/45) (17/34) (18/45) (17/32)

Training set 2

Testing set 2

Cohort 2
RF LR RF LR
AUC 0.842 0.892 0.838 0.925 0.746 0.900 0.831 0.889
(95%CI) (0.702-0.981) (0.803-0.981) (0.729-0.947) (0.853-0.997) (0.570-0.922) (0.796-1.000) (0.689-0.973) (0.771-1.000)
. 0.757 0.757 0.676 0.892 0.808 0.923 0.808 0.923
Sensitivity
(28/37) (28/37) (25/37) (33/37) (21/26) (24/26) (21/26) (24/26)
. 0.929 1.000 0.929 0.786 0.400 0.600 0.600 0.700
Specificity
(13/14) (14/14) (13/14) (11/14) (4/10) (6/10) (6/10) (7/10)
Accurac 0.804 0.824 0.745 0.863 0.694 0.833 0.750 0.861
¥ (41/51) (42/51) (38/51) (44/51) (25/36) (30/36) (27/36) (31/36)
— 0.966 1.000 0.962 0917 0.778 0.857 0.840 0.889
(28/29) (28/28) (25/26) (33/36) (21/27) (24/28) (21/25) (24/27)
NPV 0.591 0.609 0.520 0.733 0.444 0.750 0.545 0.778
(13/22) (14/23) (13/25) (11/15) (4/9) (6/8) (6/11) (719)
Training set 3 Testing set 3
Cohort 3
RF LR RF LR
AUC 0.964 0.984 0.832 0.939 0.888 0.953 0.790 0.922
(95%CI) (0.924-1.000) (0.948-1.000) (0.707-0.957) (0.884-0.994) (0.784-0.992) (0.897-1.000) (0.620-0.960) (0.845-0.999)
o 0.939 0.959 0.857 0.918 0.794 0.971 0.824 0.882
Sensitivity
(46/49) (47/49) (42/49) (45/49) (27/34) (33/34) (28/34) (30/34)
o 0.952 1.000 0.762 0.857 0.800 0.733 0.800 0.867
Specificity
(20/21) (21/21) (16/21) (18/21) (12/15) (11/15) (12/15) (13/15)
Accurac 0.943 0.971 0.829 0.900 0.796 0.898 0.816 0.878
Hracy (66/70) (68/70) (58/70) (63/70) (39/49) (44/49) (40/49) (43/49)
_— 0.979 1.000 0.894 0.938 0.900 0.892 0.903 0.938
(46/47) (47/47) (42/47) (45/48) (27/30) (33/37) (28/31) (30/32)
NPV 0.870 0913 0.696 0.818 0.632 0.917 0.667 0.765
(20/23) (21/23) (16/23) (18/22) (12/19) (11/12) (12/18) (13/17)

Cohort 4

AUC
(95%CI)

0.931
(0.903-0.960)

Training set 4

RF

0.972
(0.956-0.987)

LR

0.837
(0.786-0.888)

0.886
(0.845-0.926)

0.869
(0.814-0.923)

Testing set 4

RF

0.875
(0.819-0.931)

LR

0.834
(0.769-0.9000)

0.876
(0.825-0.927)
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TABLE 2 Continued

Training set 4

10.3389/fonc.2025.1666937

Testing set 4

Cohort 4
RF LR RF LR
Sensitivit 0.812 0.930 0.726 0.807 0.736 0.824 0.736 0.768
¥ (151/186) (173/186) (135/186) (150/186) (92/125) (103/125) (92/125) (96/125)
Soedifict 0.906 0.896 0.833 0.833 0.828 0.766 0.797 0.828
P ¥ (87/96) (86/96) (80/96) (80/96) (53/64) (49/64) (51/64) (53/64)
N 0.844 0918 0.762 0.816 0.767 0.804 0.757 0.788
cenracy (238/282) (259/282) (215/282) (230/282) (145/189) (152/189) (143/189) (149/189)
Py 0.944 0.945 0.894 0.904 0.893 0.873 0.876 0.897
(151/160) (173/183) (135/151) (150/166) (92/103) (103/118) (92/105) (96/107)
. 0713 0.869 0611 0.690 0.616 0.690 0.607 0.646
(87/122) (86/99) (80/131) (80/116) (53/86) (49/71) (51/84) (53/82)
Training set 5 Testing set 5
Cohort 5
RF LR RF LR
AUC 0.886 0.949 0.837 0924 0.893 0.805 0.831 0.893
(95%CI) (0.793-0.980) (0.894-1.000) (0.724-0.951) (0.850-0.998) (0.780-1.000) (0.656-0.955) (0.679-0.983) (0.770-1.000)
. 0.833 0.875 0.708 0.958 0.882 0.941 0.882 0.824
Sensitivity
(20/24) (21/24) (17/24) (23/24) (15/17) (16/17) (15/17) (14/17)
. 0.864 0.909 0.864 0.727 0.750 0.500 0.750 0.813
Specificity
(19/22) (20/22) (19/22) (16/22) (12/16) (8/16) (12/16) (13/16)
Aecurac 0.848 0.891 0.783 0.848 0.818 0.727 0.818 0.818
Hracy (39/46) (41/46) (36/46) (39/46) (27/33) (24/33) (27/33) (27/33)
by 0.870 0913 0.850 0.793 0.789 0.667 0.789 0.824
(20/23) (21/23) (17/20) (23/29) (15/19) (16/24) (15/19) (14/17)
v 0.826 0.870 0.731 0.941 0.857 0.889 0.857 0.813
(19/23) (20/23) (19/26) (16/17) (12/14) (8/9) (12/14) (13/16)

removed, the performance across centers showed little variation but
remained at a relatively low level, indicating that the absence of meta-
update limited the global model’s ability to provide a good
initialization. When the personalization step was removed, some
centers achieved relatively good results, while others showed
significantly lower AUC values, leading to large performance
discrepancies across sites. This suggests that without personalization,
relying solely on the global model cannot effectively adapt to
heterogeneous data distributions. In contrast, the complete PFLS
achieved both the best overall performance and balanced results
across centers, further demonstrating the complementary roles of
the Reptile step and the personalization step in enhancing model
generalization and adaptability.

Discussion

The analysis of lung CT images to accurately differentiate
between patients with TBG and LAC in a non-invasive manner
holds considerable clinical value. In this study, a PFLS is used to
collaboratively use CT image data of TBG and LAC from five
cohorts while maintaining patient privacy, enabling the training of
robust models for each medical institution. The proposed method
shows superior predictive performance than the compared methods

Frontiers in Oncology 10

on the data from each medical institution for distinguishing
between TBG and LAC.

Research shows that gender, age, morphology, and spiculation
are significantly different between patients with TBG and LAC (27).
As malignant tumors predominantly grow in lung parenchyma,
nodules of LAC patients are more likely to exhibit irregular
margins, lobulation, and spiculation (28). Although lobulation is a
distinct feature of malignant lung nodules, several studies have
shown that 25% of benign nodules also exhibit lobulation.
Spiculation presents a more significant correlation with LAC (29).
Pathologically, spiculation is attributed to fibrous tissue
proliferation induced by interstitial thickening and peripheral
vascular occlusion. However, identification based on morphologic
features of nodules is highly subjective, and the criteria for
determination vary among radiologists, limiting the utility of
shape features in distinguishing between benign and malignant
nodules (30). Therefore, the performance of the CM we constructed
based on the above features was not satisfactory.

The convolutional neural networks (CNNs) are capable of
automatically extracting features from images and generating
features at various levels of abstraction. Among CNNs, Low-level
layers produce details like edges, textures, and corners, while high-
level layers produce globally abstracted features. Deep CNNs are
extensively applied in medical imaging and achieving commendable
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FIGURE 2

ROC of training set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3,

(D) Cohort 4, (E) Cohort 5.

results (31-33). Nevertheless, deep CNNs are susceptible to
overfitting, particularly when training with a limited number of
samples. Therefore, when training the ILM, we used the transfer
learning strategy to pre-train the model with Imagnet data, and then
fine-tune the model with the CT data of this study to alleviate the
problem of overfitting. However, perhaps due to the smaller
number of training samples, the performance of ILM on the test
sets of various medical institutions is generally worse than that
of PFLS.

Federated learning is a distributed machine learning approach
that enables collaborative training of machine learning models
using data from multiple hospitals, while eliminating data
leakage. It efficiently addresses the data island issue and mitigates
model overfitting due to insufficient training samples from a single
medical institution. However, due to differences of CT equipment
between hospitals, imaging results from different hospitals are
heterogeneous, meaning that using the same machine learning
model to infer CT images from different hospitals does not
ensure satisfactory performance for all hospitals. Except for the
slightly better performance of fedag on the test set of institution 2
compared to ILM, the performance of other institutions was worse
than that of ILM. This is primarily due to the apparent
heterogeneity of the data across hospitals, resulting in apparent
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discrepancies between the global model and the actual optimal
model of a local hospital, and then leading to poorer predictive
performance of the global model in certain hospitals. In addition,
we also compared our framework with a centralized model
(MDCM) trained by directly merging data from all centers.
Although this setting represents an ideal scenario without privacy
constraints, the MDCM exhibited unstable performance and large
variations across sites. This inconsistency can be attributed to the
substantial heterogeneity in imaging protocols, scanner vendors,
and patient populations among different hospitals. When data are
simply pooled, the model may become biased toward dominant
site-specific features, thereby limiting its generalizability. In
contrast, PFLS achieved more stable and consistent performance
across centers, further underscoring the necessity of federated and
personalized federated strategies for real-world multi-
center applications.

The proposed PFLS employs the Reptile algorithm by treating the
local models of federated learning as the different task of meta learning
to collaboratively train the global model, and then fine-tunes global
models for personalizing local model of each medical institution. The
meta-learning-based federated learning frameworks of the proposed
method effectively alleviates overfitting. And the robust personalized
local models, which are fine-tuned global models by local hospitals,
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FIGURE 3
ROC of test set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3, (D) Cohort 4, (E) Cohort 5.

enhance the generalization ability of the local models while effectively
mitigating the performance decrease caused by data heterogeneity
among different hospitals. In terms of classification performance, the
proposed method shows remarkable advantages on all datasets, except

TABLE 3 Performance of the of models on the each cohort.

Training set 1

for slightly lower AUC values compare to ILM, FedAvg, and CM. NRI
and IDI show that, except for medical institutions 2 and 5 with
relatively less test data, the PFLS performance of other institutions has
significantly improved compared with ILM, FedAvg, and CM.

Testing set 1

Cohort 1
MDCM Fedavg PFLS MDCM Fedavg PFLS
e 0.712 0.759 0.784 0.782 0.895 0.692 0.773 0.752 0.740 0.846
935D (0.601- (0.669- (0.702- (0.698- (0.833- (0.569- (0.672- (0.630- (0.637- (0.748-
° 0.824) 0.849) 0.866) 0.866) 0.956) 0.815) 0.873) 0.857) 0.843) 0.944)
sensitivit 0.898 0.669 0.677 0.622 0.906 0.744 0.709 0.588 0477 0.826
¥ (114/127) | (85/127) (86/127) (79/127) (115/127)  (64/86) (61/86) (50/36) (41/86) (71/86)
Soecificit 0.588 0.794 0.794 0.882 0.765 0.391 0.739 0.750 0.870 0.739
pectaty (20/34) (27/34) (27/34) (30/34) (26/34) (9/23) (17/23) (18/23) (20/23) (17/23)
Aecurac 0.832 0.696 0.702 0.677 0.876 0.670 0.716 0.624 0.560 0.807
¥ (134/161)  (112/161)  (113/161)  (109/161)  (141/161)  (73/109) (78/109) (68/109) (61/109) (88/109)
Py 0.891 0.924 0925 0.952 0.935 0.821 0.910 0.893 0.932 0.922
(114/128)  (85/92) (86/93) (79/83) (115/123)  (64/78) (61/67) (50/56) (41/44) @177)
NPV 0.606 0391 0397 0.385 0.684 0290 0.405 0.340 0.308 0.531
(20/33) (27/69) (27/68) (30/78) (26/38) (9131) (17/42) (18/53) (20/65) (17/32)
(Continued)
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TABLE 3 Continued

Training set 2 Testing set 2
Cohort 2
MDCM FedAvg CM MDCM FedAvg
AUC 0.749 0.828 0.855 0.869 0.925 0.719 0.808 0.842 0.823 0.889
os5C) (0.594- (0.715- (0.742- (0.767- (0.853- (0.523- (0.640- (0.698- (0.672- (0.771-
° 0.905) 0.941) 0.968) 0.971) 0.997) 0.915) 0.975) 0.987) 0.974) 1.000)
sensitivi 0.595 0.703 0.838 0.676 0.892 0.654 0.808 0.885 0.615 0923
ty (22/37) (26/37) (31/37) (25/37) (33/37) (17/26) (21/26) (23/26) (16/26) (24/26)
Soecifici 0.857 0.857 0.786 0.857 0.786 0.700 0.900 0.600 0.900 0.700
pecihicity (12/14) (12/14) (11/14) (12/14) (11/14) (7/10) (9/10) (6/10) (9/10) (7110)
Aecurac 0.667 0.745 0.824 0.726 0.863 0.667 0.833 0.806 0.694 0.861
Hracy (34/51) (38/51) (42/51) (37/51) (44/51) (24/36) (30/36) (29/36) (25/36) (31/36)
Py 0917 0.929 0912 0.926 0917 0.850 0.955 0.852 0.941 0.889
(22/24) (26/28) (31/34) (25/27) (33/36) (17/20) (21/22) (23/27) (16/17) (24/27)
. 0.444 0522 0.647 0.500 0.733 0438 0.643 0.667 0474 0.778
(12/27) (12/23) (11117 (12/24) (11/15) (7/16) (9/14) (6/9) (9/19) 19
Training set 3 Testing set 3
Cohort 3
MDCM  FedAvg MDCM  FedAvg
AUC 0.794 0.903 0.847 0.880 0.939 0.759 0.857 0.825 0.839 0922
(0.680- (0.829- (0.752- (0.786- (0.884- (0.618- (0.745- (0.701- (0.724- (0.845-
(95%CI)
0.908) 0.977) 0.943) 0.973) 0.994) 0.900) 0.969) 0.950) 0.955) 0.999)
Sensitivit 0816 0.735 0.898 0918 0.918 0.882 0.735 0.824 0971 0.882
iy (40/49) (36/49) (44/49) (45/49) (45/49) (30/34) (25/34) (28/34) (33/34) (30/34)
Soecifict 0.667 0.905 0.714 0.714 0.857 0333 0.733 0.600 0.533 0.867
pecticlty (14/21) (19/21) (15/21) (15/21) (18/21) (5/15) (11/15) (9/15) (8/15) (13/15)
Aecurac 0.771 0.786 0.843 0.857 0.900 0.714 0.735 0.755 0.837 0.878
¥ (54/70) (55/70) (59/70) (60/70) (63/70) (35/49) (36/49) (37/49) (41/49) (43/49)
by 0.851 0.947 0.880 0.882 0.938 0.750 0.862 0.824 0.825 0938
(40/47) (36/38) (44/50) (45/51) (45/48) (30/40) (25/29) (28/34) (33/40) (30/32)
. 0.609 0.594 0.750 0.790 0.818 0.556 0.550 0.600 0.889 0.765
(14/23) (19/32) (15/20) (15/19) (18/22) (5/9) (11/20) (9/15) (8/9) 13/17)
Training set 4 Testing set 4
Cohort 4
MDCM  FedAvg MDCM  FedAvg
AUC 0.706 0.805 0.785 0.748 0.886 0.679 0.778 0.746 0.737 0.876
os5C1) (0.639- (0.751- (0.727- (0.685- (0.845- (0.587- (0.707- (0.673- (0.664- (0.825-
° 0.772) 0.858) 0.844) 0.812) 0.926) 0.770) 0.848) 0.818) 0.810) 0.927)
sensitivi 0672 0.710 0.833 0.801 0.807 0.664 0.720 0.768 0.752 0.768
ensitivity (125/186) | (132/186)  (155/186)  (149/186)  (150/186)  (83/125) (90/125) (96/125) (94/125) (96/125)
Soecificit 0.688 0771 0.635 0.615 0.833 0.641 0.656 0.594 0.594 0.828
P ¥ (66/96) (74/96) (61/96) (59/96) (80/96) (41/64) (42/64) (38/64) (38/64) (53/64)
Acurac 0677 0731 0.766 0.738 0.816 0.656 0.698 0.709 0.698 0.788
Y (191/282) | (206/282)  (216/282)  (208/282)  (230/282)  (124/189)  (132/189)  (134/189)  (132/189)  (149/189)
— 0.806 0.857 0.816 0.801 0.904 0.783 0.804 0.787 0.783 0.897
(125/155) | (132/154)  (155/190)  (149/186)  (150/166)  (83/106) (90/112) (96/122) (94/120) (96/107)
.- 0.520 0578 0.663 0.615 0.690 0.494 0.546 0.567 0.551 0.646
(66/127) (74/128) (61/92) (59/96) (80/116) (41/83) (42/77) (38/67) (38/69) (53/82)
(Continued)
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TABLE 3 Continued

Training set 5

10.3389/fonc.2025.1666937

Testing set 5

Cohort 5
CM ILM MDCM FedAvg PFLS CM MDCM FedAvg PFLS
AuC 0.714 0.835 0.854 0.769 0.924 0.665 0.824 0.820 0.728 0.893
(0.555- (0.720- (0.744- (0.623- (0.850- (0.471- (0.676- (0.661- (0.537- (0.770-
(95%CI)
0.873) 0.951) 0.964) 0.915) 0.998) 0.860) 0.972) 0.979) 0.919) 1.000)
Sensitivi 0.708 0.750 0.792 0.792 0.958 0.647 0.882 0412 0.647 0.824
Y (17/24) (18/24) (19/24) (19/24) (23/24) 1117) (15/17) on7) a1/17) (14/17)
Soecificit 0.773 0.727 0.773 0.773 0.727 0.625 0.375 0.875 0.688 0.813
pectaty (17/22) (16/22) (17/22) (17/22) (16/22) (10/16) (6/16) (14/16) (11/16) (13/16)
Aecurac 0.739 0.739 0.783 0.783 0.848 0.636 0.636 0.636 0.667 0.818
¥ (34/46) (34/46) (36/46) (36/46) (39/46) (21/33) (21/33) (21/33) (22/33) (27/33)
ooy 0.773 0.750 0.792 0.792 0.793 0.647 0.600 0.778 0.688 0.824
(17/22) (18/24) (19/24) (19/24) (23/29) (11/17) (15/25) 719) (11/16) (14/17)
Py 0.708 0.727 0.773 0.773 0.941 0.625 0.750 0.583 0.647 0.813
(17/24) (16/22) 17/22) (17/22) (16/17) (10/16) (6/8) (14/24) (11/17) (13/16)

Compared with traditional machine learning models, Bayesian
ELM has significant advantages in alleviating overfitting and
balancing model complexity with generalization ability, thereby
providing more robust and clinically valuable predictive
performance. From a theoretical perspective, extreme learning
machine (ELM) randomly generates hidden layer weights and
analytically solves the output weights, avoiding the complex

gradient-based iterative process in traditional neural networks,
which grants it faster training speed and stronger representation
capacity. Building on this, the introduction of the Bayesian
framework not only enables probabilistic modeling of model
parameters and provides uncertainty estimation but also
effectively suppresses overfitting through prior and posterior
constraints. This combination allows Bayesian ELM to maintain
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FIGURE 4
Decision curve analysis of test set of five cohorts. (A) Cohort 1, (B) Cohort 2, (C) Cohort 3, (D) Cohort 4, (E) Cohort 5.
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TABLE 4 Performance comparison of models trained under different FL algorithms.

Training set 1

10.3389/fonc.2025.1666937

Testing set 1

Cohort 1
Fedprox FedBN Moon Fedprox FedBN Moon
AUC 0.790 0.770 0.761 0.895 0.764 0.741 0.752 0.846
(95%CI) (0.716-0.863) (0.677-0.863) (0.671-0.851) (0.833-0.956) (0.646-0.883) (0.628-0.853) (0.639-0.865) (0.748-0.944)
" 0.567 0.835 0.512 0.906 0.512 0.651 0.523 0.826
Sensitivity
(72/127) (106/127) (65/127) (115/127) (44/86) (56/86) (45/86) (71/86)
. 0.912 0.618 0.912 0.765 0.870 0.739 0.783 0.739
Specificity
(31/34) (21/34) (31/34) (26/34) (20/23) (17/23) (18/23) (17/23)
Accur 0.640 0.789 0.596 0.876 0.587 0.670 0.578 0.807
ceuracy (103/161) (127/161) (96/161) (141/161) (64/109) (73/109) (63/109) (88/109)
- 0.960 0.891 0.956 0.935 0.936 0.903 0.900 0.922
(72175) (106/119) (65/68) (115/123) (44/47) (56/62) (45/50) (71/77)
NPV 0.360 0.500 0.333 0.684 0.323 0.362 0.305 0.531
(31/86) (21/42) (31/93) (26/38) (20/62) (17/47) (18/59) (17/32)
Training set 2 Testing set 2
Cohort 2
FedProx FedBN Moon FedProx FedBN Moon
AUC 0.844 0.849 0.842 0.925 0.800 0.808 0.813 0.889
(95%CI) (0.729-0.959) (0.735-0.965) (0.717-0.970) (0.853-0.997) (0.610-0.990) (0.620-0.991) (0.648-0.967) (0.771-1.000)
" 0.784 0.757 0.946 0.892 0.654 0.962 0.885 0.923
Sensitivity
(29/37) (28/37) (35/37) (33/37) (17/26) (25/26) (23/26) (24/26)
. 0.857 0.857 0.643 0.786 0.800 0.500 0.600 0.700
Specificity
(12/14) (12/14) (9/14) (11/14) (8/10) (5/10) (6/10) (7/10)
Accurac 0.804 0.784 0.863 0.863 0.694 0.833 0.806 0.861
¥ (41/51) (40/51) (44/51) (44/51) (25/36) (30/36) (29/36) (31/36)
— 0.935 0.933 0.875 0.917 0.895 0.833 0.852 0.889
(29/31) (28/30) (35/40) (33/36) (17/19) (25/30) (23/27) (24/27)
NPV 0.600 0.571 0.818 0.733 0.471 0.833 0.667 0.778
(12/20) (12/21) (9/11) (11/15) (8/17) (5/6) (6/9) (719)
Training set 3 Testing set 3
Cohort 3
FedProx FedBN Moon FedProx FedBN Moon
AUC 0.875 0.847 0.869 0.939 0.831 0.812 0.829 0.922
(95%CI) (0.772-0.977) (0.753-0.945) (0.758-0.980) (0.884-0.994) (0.701-0.961) (0.664-0.960) (0.665-0.994) (0.845-0.999)
" 0.776 0.796 0.776 0.918 0.824 0.853 0.794 0.882
Sensitivity
(38/49) (39/49) (38/49) (45/49) (28/34) (29/34) (27/34) (30/34)
. 0.905 0.857 0.905 0.857 0.733 0.667 0.800 0.867
Specificity
(19/21) (18/21) (19/21) (18/21) (11/15) (10/15) (12/15) (13/15)
Accurac 0.814 0.814 0.814 0.900 0.796 0.796 0.796 0.878
uracy (57/70) (57/70) (57/70) (63/70) (39/49) (39/49) (39/49) (43/49)
— 0.950 0.929 0.950 0.938 0.875 0.853 0.900 0.938
(38/40) (39/42) (38/40) (45/48) (28/32) (29/34) (27/30) (30/32)
NPV 0.633 0.643 0.633 0.818 0.647 0.667 0.632 0.765
(19/30) (18/28) (19/30) (18/22) (11/17) (10/15) (12/19) (13/17)
Training set 4 Testing set 4
Cohort 4
FedProx FedBN Moon FedProx FedBN Moon
AUC 0.779 0.754 0.802 0.886 0.748 0.730 0.755 0.876
(95%CI) (0.723-0.834) (0.696-0.813) (0.746-0.857) (0.845-0.926) (0.674-0.822) (0.651-0.809) (0.683-0.827) (0.825-0.927)
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TABLE 4 Continued

Training set 4

10.3389/fonc.2025.1666937

Testing set 4

Cohort 4
FedProx FedBN Moon FedProx FedBN Moon
Sensitivit 0.672 0.672 0.688 0.807 0.760 0.680 0.648 0.768
¥ (125/186) (125/186) (128/186) (150/186) (95/125) (85/125) (81/125) (96/125)
o 0.792 0.729 0.813 0.833 0.641 0.672 0.734 0.828
Specificity
(76/96) (70/96) (78/96) (80/96) (41/64) (43/64) (47/64) (53/64)
Accurac 0.713 0.691 0.730 0.816 0.720 0.677 0.677 0.788
¥ (201/282) (195/282) (206/282) (230/282) (136/189) (128/189) (128/189) (149/189)
PV 0.862 0.828 0.877 0.904 0.805 0.802 0.827 0.897
(125/145) (125/151) (128/146) (150/166) (95/118) (85/106) (81/98) (96/107)
NPV 0.555 0.534 0.574 0.690 0.577 0.518 0.516 0.646
(76/137) (70/131) (78/136) (80/116) (41/71) (43/83) (47/91) (53/82)

Training set 5

Testing set 5

Cohort 5
FedProx FedBN Moon FedProx FedBN Moon
AUC 0.845 0.758 0.820 0.924 0.798 0.746 0.809 0.893
(95%CI) (0.731-0.958) (0.614-0.901) (0.698-0.941) (0.850-0.998) (0.644-0.951) (0.571-0.921) (0.652-0.962) (0.770-1.000)
" 0.667 0.667 0.583 0.958 0.471 0.588 0.412 0.824
Sensitivity
(16/24) (16/24) (14/24) (23/24) (8/17) (10/17) (7117) (14/17)
. 0.909 0.818 0.955 0.727 0.875 0.688 0.875 0.813
Specificity
(20/22) (18/22) (21/22) (16/22) (14/16) (11/16) (14/16) (13/16)
Accurac 0.783 0.739 0.761 0.848 0.667 0.636 0.636 0.818
uracy (36/46) (34/46) (35/46) (39/46) (22/33) (21/33) (21/33) (27/33)
— 0.889 0.800 0.933 0.793 0.800 0.667 0.778 0.824
(16/18) (16/20) (14/15) (23/29) (8/10) (10/15) (719) (14/17)
NPV 0.714 0.692 0.677 0.941 0.609 0.611 0.583 0.813
(20/28) (18/26) (21/31) (16/17) (14/23) (11/18) (14/24) (13/16)

efficient training while better balancing model complexity and
generalization, thereby demonstrating stronger robustness and
stability when applied to heterogeneous multi-center medical data.

Despite the promising results, our study has some limitations.
First, the implementation of strict inclusion and exclusion criteria
for samples could introduce bias in sample selection, potentially
affecting model training. Second, the study includes only TBG, a

TABLE 5 AUC results of ablation experiments.

specific type of benign nodule, and misses other benign nodules
such as inflammatory pseudotumors, hamartomas, and fibromas.
Third, the aggregation of local models in the Reptile stages dose not
account for differences in data distribution across hospitals,
potentially leading to suboptimal global models in the Reptile
stage and affecting the performance of the robust local models
trained in the next stage.

AUC (95%Cl)

Fedavg Reptile Personalization Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5
stage stage stage . . . . .

Train Test Train Test @ Train Test Train Test Train Test
set set set set set set set set set set

0.781 0.753 0.851 0.812 0.828 0.812 0.811 0.768 0.845 0.816
v v (0.698- | (0.650- | (0.743-  (0.671- | (0.718-  (0.691- | (0.756- | (0.696-  (0.735-  (0.653-
0.865) 0.857) 0.960) 0.953) 0.938) 0.933) 0.867) 0.842) 0.955) 0.980)

0.770 0.740 0.826 0.804 0.832 0.808 0.738 0.698 0.782 0.735
v v (0.685- | (0.641- | (0.693-  (0.620- | (0.717-  (0.657- | (0.677- | (0.622-  (0.647-  (0.562-
0.856) 0.839) 0.960) 0.988) 0.947) 0.959) 0.800) 0.775) 0.918) 0.909)

0.895 0.846 0.925 0.889 0.939 0.922 0.886 0.876 0.924 0.893
v v v (0.833- | (0.748- | (0.853-  (0.771-  (0.884-  (0.845- | (0.845- | (0.825- | (0.850-  (0.770-
0.956) 0.944) 0.997) 1.000) 0.994) 0.999) 0.926) 0.927) 0.998) 1.000)
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Conclusion

The PFLS proposed in this study facilitates collaborative
training across multiple hospitals while maintaining the data
privacy of each hospital. It effectively mitigates the model
overfitting caused by insufficient samples from a single hospital.
Moreover, the personalizing process of local model address the
heterogeneity of data across hospitals, which cannot be adequately
performed by a single global model. The resulting robust local
models show excellent discrimination between LAC and TBG,
providing invaluable assistance to clinicians in improving
diagnostic accuracy.
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