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Purpose: Radical cystectomy (RC) is the standard treatment for muscle-invasive
and select high-risk hon—-muscle-invasive bladder cancer. Despite definitive
surgery, recurrence and progression remain major clinical concerns. Adjuvant
chemotherapy and immunotherapy may improve outcomes, but therapeutic
response varies due to tumor heterogeneity. Robust predictive models are
needed to guide individualized treatment strategies.

Methods: This study retrospectively analyzed bladder cancer patients undergoing
RC. Data included tumor morphology (e.g. vascular and perineural invasion),
demographic variables (e.g., age, sex), and molecular markers (e.g., PD-L1, HER2,
GATA3). LASSO regression identified key features, followed by model development
using nine machine learning algorithms, including XGBoost and LightGBM. Model
performance was assessed via area under the ROC curve (AUC), and Shapley
Additive Explanations (SHAP) were used for model interpretability.

Results: The random forest model achieved the highest predictive performance
(AUC = 0.92 in training; 0.74 in testing). SHAP analysis identified vascular invasion,
perineural invasion, and PD-L1/HER2 expression as major contributors. Decision
curve analysis showed favorable net benefit within a moderate-risk threshold.
Conclusions: A machine learning model integrating pathological, demographic,
and molecular features demonstrates promising potential to predict response to
adjuvant therapy post-RC in bladder cancer. Decreased performance in the
external test cohort highlights the need for further validation. Prospective studies
incorporating multi-center and longitudinal data are warranted to enhance
model generalizability and clinical applicability.
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1 Introduction

Bladder cancer ranks among the most common malignancies
globally, with approximately 573,000 new cases and 213,000 deaths
reported each year (1). Radical cystectomy (RC) remains the
standard treatment for muscle-invasive bladder cancer (MIBC)
and high-risk non-muscle-invasive bladder cancer (NMIBC).
However, postoperative recurrence and disease progression
continue to be major clinical challenges. To improve patient
outcomes, adjuvant therapies—including chemotherapy,
immunotherapy, and targeted therapy—have been increasingly
utilized in clinical practice (2). Adjuvant chemotherapy (AC) is
recommended for patients with high-risk MIBC and NMIBC
following RC, but its efficacy is not always predictable, and the
selection of patients for adjuvant therapy remains a clinical
challenge.Neoadjuvant chemotherapy (NAC) is currently
recommended prior to RC in patients with MIBC. Although NAC
offers a 5-10% improvement in overall survival, not all patients
derive benefit. Identifying non-responders is therefore essential to
avoid unnecessary toxicity and delays in definitive surgery (3).

In this study, adjuvant chemotherapy is specifically
recommended for patients with pathological stages of T3 or
higher, positive surgical margins, or evidence of vascular/
perineural invasion. These factors significantly increase the risk of
recurrence and progression, justifying the need for adjuvant therapy
after radical cystectomy (RC). Traditional adjuvant chemotherapy
selection relies on clinical experience and factors like tumor stage
and grade. However, the unpredictable nature of treatment
responses highlights the need to identify patients who will benefit
from adjuvant chemotherapy, while avoiding unnecessary toxicity.
Machine learning techniques, integrating complex, multi-
dimensional data, provide a promising solution to personalize
treatment selection and improve patient outcomes.

In recent years, machine learning (ML) has shown great
potential in predicting the response to neoadjuvant and adjuvant
treatment in bladder cancer by integrating clinical, pathological,
and molecular data. Deep learning models, for instance, have been
used to predict survival outcomes in MIBC patients treated with
NAC, demonstrating superior predictive performance over
traditional statistical models (4). Similarly, ML-based prognostic
models have been applied to assess response to immunotherapy (5).
Tumor mutational burden (TMB)-based classifiers, developed using
support vector machine recursive feature elimination (SVM-RFE)
and LASSO logistic regression, have also been employed to predict
the efficacy of PD-L1 inhibitors in patients with locally advanced or
metastatic urothelial carcinoma (6). Despite these advances, the
substantial heterogeneity of bladder cancer leads to variable
treatment responses, and no robust predictive model currently
exists to evaluate response to adjuvant therapy following RC.
Thus, this study focuses on the development of predictive models
for adjuvant chemotherapy, aiming to address the gap in
personalized treatment strategies for post-surgical bladder
cancer patients.

Over the past decade, several prognostic models for bladder
cancer have been proposed, primarily based on clinicopathological
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features such as tumor stage, histological grade, and lymph node
involvement (7-9). However, these traditional models often rely on
single-dimensional data and linear statistical methods, limiting
their predictive accuracy. Recent advances in artificial intelligence
have enabled the integration of multimodal data—including tumor
morphology, molecular biomarkers, and demographic factors—
resulting in improved predictive performance (10). Among ML
algorithms, extreme gradient boosting (XGBoost), random forest
(RF), and light gradient boosting machine (LightGBM) have shown
strong capabilities in handling high-dimensional data, identifying
complex variable interactions, and enhancing predictive
performance, and have been widely applied across various
cancer types.

The role of molecular biomarkers in predicting adjuvant
treatment response in bladder cancer is gaining increasing
attention. Immune checkpoint molecules such as PD-L1, as well
as oncogenic markers including HER2 and androgen receptor (AR),
have been shown to be of significant prognostic value in predicting
therapeutic responses (11-13). Moreover, components of the tumor
immune microenvironment—such as macrophage infiltration and
immune checkpoint expression—have been implicated in treatment
resistance (14, 15), suggesting that predictive models incorporating
histopathological, molecular, and demographic characteristics may
offer more accurate risk stratification.

This study aims to develop and validate a machine learning-
based predictive model integrating tumor morphological features,
demographic variables, and molecular marker expression to assess
the response of bladder cancer patients to adjuvant therapy
following radical cystectomy. By employing advanced feature
selection techniques and multiple ML algorithms, we seek to
establish an optimized predictive framework to support clinical
decision-making and promote individualized therapeutic
strategies.Furthermore, we focus on improving the accuracy of
adjuvant therapy selection, which has traditionally relied on
clinical experience and single-dimensional factors. Incorporating
machine learning can better address this gap and personalize
treatment choices, minimizing unnecessary toxicity and
improving patient outcomes. In addition, SHapley Additive
exPlanations (SHAP) analysis is applied to improve model
interpretability and to explore the contribution of key features to
treatment outcomes. The results of this study may have significant
clinical implications for optimizing adjuvant therapy in bladder
cancer, improving patient survival, and minimizing treatment-
related toxicity (Figure 1).

2 Materials and methods
2.1 Data collection and processing

We retrospectively collected clinical data from 1,764 bladder
cancer patients who underwent radical cystectomy (RC) between
2014 and 2024 at the First and Second Affiliated Hospitals of
Kunming Medical University. The dataset included demographic
characteristics (age, sex, ethnicity, smoking status, alcohol
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consumption), medical history, tumor morphology, and
pathological features (e.g., Uroplakin-III, PD-L1, HER2,
perineural invasion). In addition to these features, pathological
staging, tumor grade, and surgical margin status were also
integral to the dataset. Patients were categorized based on
pathological stage, specifically focusing on stages T3 and higher,
with particular attention to surgical margin involvement and
evidence of vascular or perineural invasion. These factors are
critical in determining the need for adjuvant chemotherapy
following radical cystectomy, as they significantly affect prognosis
and the risk of recurrence.Inclusion criteria were: age =18 years,
bladder cancer diagnosis confirmed by WHO classification,
availability of complete clinical data, and no prior treatment with
radiotherapy, chemotherapy, or immunotherapy before surgery.
Exclusion criteria were: partial resection, non-urothelial
carcinoma, incomplete data, or prior treatments. This study was
approved by the Ethics Committees of both participating hospitals,
and informed consent was obtained from all patients. To address
missing data, variables with less than 20% missingness were
imputed using the K-Nearest Neighbors (KNN) method, while
those with more than 20% missingness were excluded.

2.2 Statistical analysis and model
development

Categorical variables were compared using Pearson’s chi-square
test. To address class imbalances, an undersampling strategy was
applied. The dataset was split into training and internal validation
cohorts using five-fold cross-validation.For feature selection, we
applied LASSO regression to reduce dimensionality. In particular,
we applied LASSO regression to select key pathological features
such as pathological stage, tumor grade, surgical margin status, and
evidence of vascular/perineural invasion. These features were
identified as significant predictors of adjuvant therapy
response.Nine machine learning algorithms were used to develop
the model: XGBoost, SVM, MLP, KNN, logistic regression, LASSO
regression, decision tree (DT), GBM, and random forest (RF). The
choice of using nine machine learning algorithms instead of a single
one was to increase model robustness and reduce overfitting.
Different algorithms have varying strengths, which allows us to
capture multiple complex patterns and non-linear relationships
within the data. The comparison between these algorithms
ensures that the final model selected has strong generalizability
and is less susceptible to overfitting.By integrating multi-
dimensional data, including clinical, pathological, and molecular
features, machine learning techniques enable personalized
treatment predictions that account for various tumor
characteristics, thereby enhancing the selection process for
adjuvant chemotherapy.Model performance was evaluated using
AUC-ROC, sensitivity, specificity, recall, F1-score, and accuracy.
Clinical applicability was assessed using decision curve analysis
(DCA), calibration plots, and clinical impact curves (CICs).SHAP
analysis was performed to evaluate the contribution of each feature
to the model, with summary and force plots generated for
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interpretability. Statistical analyses were conducted using Python,
with a two-tailed p-value < 0.05 considered statistically significant.

For a more detailed description of the technical processes and
calculations used, including the LASSO regression for feature
selection, the machine learning algorithms employed, model
performance evaluation metrics, and the SHAP analysis for model
interpretability, please refer to Supplementary Material 1. This
Supplementary Material includes comprehensive explanations of
the methodologies and the Python code used for data
preprocessing, model training, and evaluation.

3 Result

3.1 Identification of prognostic factors and
construction of a predictive nomogram
model for bladder cancer

Univariate analysis of the enrolled clinical features revealed
significant differences in multiple clinical and molecular parameters
between responders (label = 1) and non-responders (label = 0) to
postoperative adjuvant therapy. Molecular markers such as Uroplakin
I (p < 0.001), GATA3 (p < 0.001), CK20 (p = 0.010), and CK7 (p <
0.001) were significantly overexpressed in the responder group. In
addition, immune and oncogenic markers including P63, P53, AR, and
PD-L1 were also markedly upregulated among responders (all p <
0.01), suggesting their potential involvement in modulating treatment
response. Several pathological features, including perineural invasion,
vascular invasion, M stage, and surgical margin status, were more
frequently observed in responders (all p < 0.01). Furthermore,
squamous and sarcomatoid differentiation, tumor grade, and
histological subtypes were significantly enriched in the responder
cohort (all p < 0.001), indicating that tumors with more aggressive
or immunogenic characteristics may be more sensitive to adjuvant
therapy.Notably, HER2 overexpression (score 2 or 3) was more
prevalent in responders than in non-responders (25% vs. 12%, p <
0.001), highlighting its potential role as a predictive biomarker for
treatment response. Similarly, advanced nodal stage (N stage > 1) was
more common in responders (38% vs. 12%, p < 0.001), suggesting that
patients with more advanced disease may derive greater benefit from
adjuvant interventions. Tumor grade was also significantly higher
among responders, with 96% classified as grade 1 or 2 (p < 0.001),
further supporting the notion that high-grade tumors may be more
responsive to therapy (Table 1).

Subsequently, we performed Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis on the clinical
variables of patients who underwent radical cystectomy, enabling
the systematic identification of key predictors associated with
treatment response. This approach effectively reduced model
complexity and minimized potential overfitting (Figures 2A, B).
Based on the selected variables, we developed a predictive
nomogram incorporating demographic features, tumor
morphology, and molecular biomarkers to generate individualized
predictions of treatment response (Figure 2C). The selected
predictors included clinical and demographic variables such as
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TABLE 1 Baseline clinical, pathological, and molecular characteristics TABLE 1 Continued
between responders and non-responders to postoperative adjuvant
therapy in bladder.

0

o 1 2
Characteristic N=611' N =421t p-value

Characteristic o 1 1 1 p-value® : ;
N = 611 N = 421 Duration of Smoking 0.3

Gender 0.6 0 324 (53%) 202 (48%)

1 523 (86%) 356 (85%) 1 78 (13%) 53 (13%)

2 88 (14%) 65 (15%) 2 76 (12%) 65 (15%)
Age 305 (50%) 234 (56%) 0.073 3 133 (22%) 101 (24%)
Ethnicity 75 (12%) 65 (15%) 0.14 Duration of dringking >0.9
Smoking 287 (47%) 219 (52%) 0.11 0 429 (70%) 289 (69%)
Alcohol Consumption 182 (30%) 132 (31%) 0.6 1 53 (8.7%) 36 (8.6%)
Diabetes 68 (11%) 44 (10%) 0.7 2 35 (5.7%) 25 (5.9%)
Frequent Urination 191 (31%) 150 (36%) 0.14 3 94 (15%) 71 (17%)
Urinary Urgency 167 (27%) 119 (28%) 0.7 Blood Pressure 0.7
Dysuria 81 (13%) 80 (19%) 0.012 0 465 (76%) 318 (76%)
Pain 107 (18%) 93 (22%) 0.067 1 114 (19%) 85 (20%)
Urinary Hesitancy 81 (13%) 67 (16%) 0.2 2 19 (3.1%) 13 (3.1%)
Urinary Cytology 48 (7.9%) 47 (11%) 0.071 3 13 (2.1%) 5 (1.2%)
History of Prior Surgery 102 (17%) 91 (22%) 0.046 Hematuria 0.063
UropOIIL 495 (81%) 278 (66%) <0.001 0 89 (15%) 77 (18%)
GATA3 560 (92%) 347 (82%) <0.001 1 32 (5.2%) 12 (2.9%)
CK20 370 (61%) 221 (52%) 0.010 2 490 (80%) 332 (79%)
CK7 569 (93%) 363 (86%) <0.001 PDIL1 <0.001
CK5/6 389 (64%) 233 (55%) 0.007 0 252 (41%) 227 (54%)
P63 522 (85%) 318 (76%) <0.001 1 286 (47%) 156 (37%)
P53 359 (59%) 279 (66%) 0.015 2 73 (12%) 38 (9.0%)
AR 454 (74%) 278 (66%) 0.004 HER-2 <0.001
Perineural Invasion 104 (17%) 188 (45%) <0.001 0 288 (47%) 278 (66%)
Vascular Invasion 155 (25%) 257 (61%) <0.001 1 85 (14%) 39 (9.3%)
M stage 11 (1.8%) 63 (15%) <0.001 2 132 (22%) 42 (10.0%)
CIS 45 (7.4%) 45 (11%) 0.063 3 106 (17%) 62 (15%)
Surgical Margins 42 (6.9%) 52 (12%) 0.003 N <0.001
Squamous Differentiation 81 (13%) 102 (24%) <0.001 0 535 (88%) 263 (62%)
Glandular Differentiation 19 (3.1%) 23 (5.5%) 0.060 1 49 (8.0%) 75 (18%)
Neuroendocrine Differentiation 3 (0.5%) 7 (1.7%) 0.10 2 17 (2.8%) 46 (11%)
Sarcomatoid Differentiation 2 (0.3%) 8 (1.9%) 0.019 3 10 (1.6%) 37 (8.8%)
Histological Type <0.001 Grade <0.001

0 590 (97%) 378 (90%) 0 147 (24%) 17 (4.0%)

1 10 (1.6%) 18 (4.3%) 1 444 (73%) 358 (85%)

2 11 (1.8%) 25 (5.9%) 2 20 (3.3%) 46 (11%)

(Continued)
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Patients undergoing multi-center radical bladder cancer
surgery in China from 2014 to 2024 (N=1764)

10.3389/fonc.2025.1664965
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Clinical features

Exclude:

1. Only partial resection of bladder
tumor was performed

2. Postoperative pathology
confirmed non-urothelial carcinoma

S

0oooo

oo0oo
m

Number of Affiliated
Chambers (N=620)

Number of affiliated
chambers (N=412)

[ Randomly assigned according to 4:6 ]

Training queue

v

Validation queue

XGBoos
SVM
MLP
KNN
Logistic
LASSO
DT
GBM Machine learning
RF

FIGURE 1
Workflow of model development and validation

alcohol consumption, urine cytology, history of prior surgery,
duration of smoking and drinking, and blood pressure, as well as
histopathological features (e.g., vascular and perineural invasion,
tumor stage and grade) and molecular markers (e.g., Uroplakin III,
GATA3, CK20, AR, PD-L1, and HER2 expression). Each variable
was weighted according to its contribution to the model, allowing
for intuitive quantification of individual risk scores.The constructed
nomogram exhibited excellent predictive performance, effectively
integrating tumor morphology, patient demographics, and
molecular biomarker expression. Collectively, these findings
underscore the potential of our integrated predictive model in
accurately assessing postoperative adjuvant therapy response in
bladder cancer, providing a valuable tool for personalized clinical
decision-making (Figure 2).

3.2 Model construction and validation for
predicting adjuvant therapy response in
bladder cancer patients

In this study, eight machine learning algorithms were
employed to evaluate the predictive performance of postoperative
adjuvant therapy response in bladder cancer patients. The models
included K-nearest neighbors (KNN), random forest (RF), extreme
gradient boosting (XGBoost), support vector machine (SVM),
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3. The prognosis of patients cannot
be evaluated with incomplete
clinical data or post-operative
follow-up

4. Preoperative radiotherapy,
chemotherapy and immunotherapy
5. Metastases of other malignancies
to the bladder

6. Patients younger than 18 years
of age

7. Patients with survival time less
than 1 month

8. Clinical information is incomplete
or missing

Statistics
P value <0.05

Clinical features

Optimum model

logistic regression, multilayer perceptron (MLP), Light Gradient
Boosting Machine (LightGBM), LASSO regression, and decision
tree (DT), with assessments conducted on both training and testing
cohorts (Figure 3). In the training set, the RF model demonstrated
the highest overall performance, with an area under the curve
(AUC) of 0.921, accuracy of 0.846, and Fl-score of 0.847,
indicating excellent discriminatory power and a balanced trade-
off between precision and recall. Both LightGBM and XGBoost also
achieved favorable results, with AUC values of 0.880 and 0.870,
respectively. The KNN model yielded the highest specificity
(0.953), while RF achieved the highest negative predictive value
(NPV = 0.875) and Youden index (0.706), suggesting an optimal
balance between sensitivity and specificity. The RF model also
showed the highest Kappa coefficient (0.685), underscoring its
stability and agreement with actual outcomes (Figure 3A,
Tables 2, 3).

However, model performance declined in the testing set,
indicating reduced generalizability and a potential risk of
overfitting (Figures 3C, D). RF retained the best AUC (0.741),
followed closely by LightGBM (0.743) and XGBoost (0.737).
Accuracy in the testing cohort ranged from 0.645 (DT) to 0.706
(RF), with moderate F1-scores across all models, further suggesting
some degree of overfitting (Figure 3B, Tables 2, 3). Notably,
specificity remained high in logistic regression and KNN (=0.89),
despite the overall performance decline.
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FIGURE 2

Identification of predictive features using LASSO regression and construction of the nomogram model. (A) LASSO coefficient profiles: Displays how
the coefficients of 28 features shrink with increasing penalty, identifying key predictors associated with treatment response. (B) Cross-validation plot:
The optimal lambda (A = 0.007) was selected using 10-fold cross-validation to minimize binomial deviance. (C) Nomogram model: A predictive
nomogram was developed based on selected clinical, pathological, and molecular features to estimate individual response probabilities.

Decision curve analysis (DCA) revealed that XGBoost and
LightGBM models provided substantial net clinical benefit across
a wide range of threshold probabilities in the training set. In the
testing set, most models still demonstrated moderate clinical utility
at low to intermediate risk thresholds, though the net benefit was
diminished (Figures 3E, F). Taken together, these results suggest
that the developed machine learning models—particularly the RF
model—hold considerable potential for predicting responses to
adjuvant therapy in bladder cancer. Nonetheless, further external
validation is necessary to enhance model robustness and ensure its
reliability in real-world clinical settings.

3.3 Clinical applicability of machine
learning models evaluated by clinical
impact curves

Clinical impact curve (CIC) analysis was performed to evaluate
the clinical applicability of eight machine learning models—K-
nearest neighbors (KNN), random forest (RF), extreme gradient
boosting (XGBoost), support vector machine (SVM), logistic
regression, multilayer perceptron (MLP), LightGBM, LASSO
regression, and decision tree (DT)—in both the training and
testing cohorts (Figure 4). The CICs demonstrated considerable
variability in the ability of these models to accurately identify high-
risk patients across different risk thresholds. Notably, the RF,
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XGBoost, and LightGBM models exhibited superior and more
stable predictive performance, more accurately reflecting the
number of true positive cases and effectively distinguishing
between high- and low-risk patient groups. These findings
highlight the promising clinical utility of RF, XGBoost, and
LightGBM in predicting responses to postoperative adjuvant
therapy in bladder cancer patients. In future clinical applications,
these robust models should be prioritized, and careful selection of
the optimal risk threshold will be essential to achieving maximum
clinical benefit (Figure 4).

3.4 Feature importance interpretation
using SHAP analysis

To interpret the relative contributions of each predictive feature
within our machine learning model, we conducted Shapley Additive
Explanations (SHAP) analysis (Figure 5). The SHAP swarm plot
clearly illustrates how individual clinical, demographic, and
molecular variables influenced model predictions. Vascular
invasion, tumor grade, perineural invasion, and lymph node
involvement (N stage) were among the most influential clinical
and pathological predictors, positively associated with higher risk
predictions. Additionally, molecular markers including HER-2, PD-
L1, CK20, GATA3, and P63 showed significant impacts, with
elevated expressions correlating strongly with adverse outcomes.
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FIGURE 3

(A, B) ROC curves: RF, LightGBM, and XGBoost models achieved superior AUCs, indicating excellent classification performance. (C, D) Calibration
curves: Good agreement was observed in the training set, while the test set showed greater variability. (E, F) Decision curve analysis: RF and
LightGBM consistently provided the highest net benefit across decision thresholds.

TABLE 2 Comparison of predictive performance across nine machine learning models in the training and testing sets for bladder cancer adjuvant
therapy response.

Comparison of results across models

RF XGB SVM LR MLP Lightgbm
Accuracy 0.737 0.846 0.794 0.751 0.735 0.758 0.802 0.759 0.766
PPV 0.771 0.847 0.793 0.749 0.751 0.758 0.801 0.757 0.764
Recall 0.737 0.846 0.794 0.751 0.735 0.758 0.802 0.759 0.766
F1_score 0.713 0.847 0.791 0.747 0.719 0.752 0.8 0.757 0.763
AUC 0.829 0.921 0.87 0.829 0.82 0.829 0.88 0.835 0.845
Specificity 0.953 0.86 0.872 0.841 0.917 0.863 0.867 0.827 0.841
NPV 0.703 0.875 0.795 0.759 0.713 0.757 0.808 0.776 0.777
Youden Index 0.689 0.706 0.666 0.592 0.653 0.62 0.669 0.586 0.607
Kappa 0.416 0.685 0.567 0.475 0.422 0.486 0.586 0.497 0.51
Accuracy 0.648 0.706 0.69 0.681 0.674 0.69 0.694 0.674 0.645
PPV 0.645 0.706 0.683 0.673 0.672 0.683 0.688 0.666 0.641
Recall 0.648 0.706 0.69 0.681 0.674 0.69 0.694 0.674 0.645
F1_score 0.596 0.706 0.683 0.672 0.642 0.679 0.689 0.666 0.643
AUC 0.72 0.741 0.737 0.724 0.721 0.738 0.743 0.737 0.705
Specificity 0.915 0.762 0.81 0.804 0.894 0.831 0.788 0.794 0.73
NPV 0.65 0.758 0.718 0.71 0.676 0.71 0.73 0.708 0.701
Youden Index 0.564 0.468 0.5 0.485 0.568 0.521 0.482 0.468 0.375
Kappa 0.166 0.382 0.325 0.303 0.247 0.317 0.341 0.291 0.245
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TABLE 3 Comparison of confusion matrix outputs for nine machine learning models in the training and testing sets.

Comparison of confusion matrix results across models

Train Test
FP FP

KNN 402 20 170 130 KNN 173 16 93 28
RF 363 59 52 248 RF 144 45 46 75
XGB 368 54 95 205 XGB 153 36 60 61
SVM 355 67 113 187 SVM 152 37 62 59
LR 387 35 156 144 LR 169 20 81 40
MLP 364 58 117 183 MLP 157 32 64 57
LightGBM 366 56 87 213 LightGBM 149 40 55 66
Lasso 349 73 101 199 Lasso 150 39 62 59
DT 355 67 102 198 DT 138 51 59 62

Demographic and behavioral features, such as alcohol
consumption, smoking duration, and blood pressure, also
contributed meaningfully to the prediction outcomes, highlighting
the multifactorial nature of bladder cancer prognosis. Collectively,
SHAP analysis provided comprehensive insights into how
individual clinical, pathological, and molecular features influenced
model predictions, thus enhancing model interpretability and
clinical transparency (Figure 5). These findings support the
clinical relevance of the selected variables and emphasize their
utility for personalized prognosis and therapeutic decision-
making in bladder cancer.

4 Discussion

In recent years, artificial intelligence (AI) has attracted
increasing attention in the field of personalized medicine for
bladder cancer, particularly in predicting responses to
postoperative adjuvant therapy. Compared with traditional
statistical methods, machine learning (ML) techniques have
demonstrated greater potential in handling complex, high-
dimensional data, enabling more precise analysis for
individualized treatment planning (16). Advances in AI have
facilitated its application in bladder cancer diagnosis, staging, and
therapeutic response prediction, thus supporting clinical
decision-making.

Beyond therapeutic prediction, AI has also been applied to
detect genetic alterations such as FGFR3 mutations directly from
histopathological images. Al systems have shown promising results
in identifying FGFR3 mutation status from routine histological
slides, offering a valuable pre-screening tool for subsequent
molecular testing (17). Unlike traditional models such as Cox
regression and Kaplan-Meier survival analysis—which rely on
univariate or linear relationships—ML algorithms such as
XGBoost and LightGBM are better suited to capturing non-linear
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interactions among high-dimensional variables, thereby improving
predictive performance (18-20).

In this study, we integrated tumor morphological features,
patient demographics, and molecular marker expression to
construct a comprehensive predictive model for postoperative
adjuvant therapy response in bladder cancer. Using LASSO
regression, clinically meaningful variables were systematically
selected to reduce model complexity and minimize the risk of
overfitting. These features included tumor aggressiveness markers
(e.g., vascular and perineural invasion, histological subtype, tumor
grade), molecular biomarkers (e.g., HER2, PD-L1, CK20, GATA3,
Uroplakin IIT), and behavioral factors (e.g., smoking and alcohol
consumption). The incorporation of these multidimensional
variables enhanced the model’s ability to more accurately and
comprehensively predict treatment responses, aligning with the
needs of real-world clinical settings.

During model development and validation, we systematically
compared nine common ML algorithms, including XGBoost,
LightGBM, SVM, and logistic regression. ML methods have
increasingly demonstrated value in clinical prediction tasks across
various diseases. For example, SVM and boosting algorithms have
shown excellent performance in cardiovascular disease prediction
(21), while ensemble models such as RF and XGBoost achieved
AUCGs of 0.96 and 0.97, respectively, in pneumonia diagnosis (22).
RF also outperformed other algorithms in predicting postoperative
delirium (AUC = 0.994) (23), and in breast cancer survival
prediction, where a tuned RF (TRF) model reached 96% accuracy
and sensitivity (24). In bladder cancer, deep learning has been used
to recalibrate the CUETO and EORTC tools for recurrence and
progression risk, demonstrating better performance than
conventional methods (25). Recent studies have further
investigated the role of machine learning in bladder cancer
patient stratification, highlighting the potential of ML algorithms
to enhance the accuracy and precision of patient risk assessments
(26). These findings are consistent with our results and reinforce the
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FIGURE 4

Clinical impact curve analysis showed that random forest, RF, LightGBM, and XGBoost models consistently identified high-risk patients with better

accuracy and clinical utility across both training and testing cohorts.

clinical applicability of ML models in the personalized treatment of
bladder cancer.

Encouragingly, in our study, the random forest (RF) model
achieved the highest predictive performance in the training cohort
(AUC = 0.921) and maintained good generalizability in the external
validation cohort (AUC = 0.741). Although LightGBM and
XGBoost also performed well during training, their performance
declined in external validation, suggesting potential susceptibility to
data heterogeneity. RF’s robustness in medical prediction tasks has
been consistently demonstrated across studies due to its ability to
combine multiple decision trees and capture complex non-linear
interactions. Decision curve analysis (DCA) further confirmed the
strong clinical net benefit of XGBoost and LightGBM across a wide
range of threshold probabilities, supporting their practical utility in
clinical settings.

In this study, several important predictors were identified using
SHAP analysis, but the clinical biological rationale behind these
features has not been fully explained. PD-L1 high expression plays a
crucial role in tumor immune evasion by binding to the PD-1
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receptor on T cells, allowing the tumor to escape immune
surveillance. High PD-L1 expression has also been associated with
better responses to immune checkpoint inhibitors like
Pembrolizumab and Atezolizumab. Thus, PD-L1 expression
directly impacts the prediction of postoperative adjuvant therapy
efficacy. HER2 overexpression promotes tumor cell proliferation
and survival by activating key signaling pathways such as PI3K/Akt
and MAPK, making it a critical factor for bladder cancer
aggressiveness and prognosis. In our study, HER2 overexpression
was identified as an important predictor of poor prognosis.
Vascular invasion and perineural invasion are pathological
features that suggest tumor aggression. Vascular invasion,
indicating the potential for distant metastasis, and perineural
invasion, associated with worsened prognosis and pain, are
crucial in predicting treatment responses and patient outcomes.
To better integrate our model into real-world clinical
workflows, we recommend embedding it into Clinical Decision
Support Systems (CDSS) through Electronic Medical Records
(EMR) for real-time risk assessment and personalized treatment
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SHAP summary plot illustrating the contribution of each feature to model output: Vascular invasion, tumor grade, perineural invasion, and nodal stage
were the most influential predictors of treatment response, with higher feature values (in red) generally associated with increased predicted risk.

recommendations. This integration would assist clinicians in
quickly evaluating postoperative adjuvant therapy responses in
bladder cancer patients, while optimizing treatment plans and
resource allocation. Future studies should focus on multi-center
validation, long-term follow-up, and regular model updates to
ensure its sustained accuracy and clinical applicability.

To improve the generalizability of our model and address the
reduced performance in the external validation cohort, several
factors should be considered in future work. Data heterogeneity
between the external cohort and training set may affect predictive
accuracy. Differences in sample size and feature distribution could
also lead to less robust predictions. Overfitting, a common issue
with models performing well in training but poorly in new data,
may have contributed to these discrepancies. Future studies should
incorporate multi-center validation, longitudinal data, and model
regularization techniques (e.g., Elastic Net) to enhance robustness,
reduce overfitting, and improve generalizability. These steps will
optimize the model’s clinical applicability.
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To further interpret model behavior, SHAP (SHapley Additive
exPlanations) analysis was employed to visualize the contribution of
each feature to model predictions. Tumor features such as grade
and vascular invasion were identified as core predictors of poor
prognosis, and high expression of HER2 and PD-L1 was strongly
associated with adverse outcomes. SHAP also provided
individualized explanations for prediction results, enhancing
model transparency and clinical trust. The clinical significance of
HER2 and PD-L1 is increasingly recognized in postoperative,
chemotherapy, and immunotherapy contexts. PD-L1, in
particular, is a widely studied predictive biomarker for immune
checkpoint inhibitors (ICIs) across cancers, including bladder
cancer, where its high expression is associated with advanced
pathological stage and better response to therapies like
pembrolizumab and atezolizumab (27, 28). Nevertheless, its
predictive value remains controversial, as some patients with low
PD-L1 expression still benefit from ICIs, while not all high
expressers respond (29). HER2, though less explored in bladder
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cancer than in breast cancer, represents another promising
therapeutic target. Incorporating HER2 and PD-L1 into
prognostic models may enhance treatment stratification and
aligns with the paradigm of precision oncology (30).

Our study also considered lifestyle factors such as smoking and
drinking history, which have been associated with patient prognosis
and are consistent with prior studies on the interaction between
tumor biology and environmental/genetic factors (31, 32). Clinical
impact curves (CICs) provided additional validation, showing that
RF, XGBoost, and LightGBM models could more accurately identify
high-risk individuals for actual adverse events and support effective
threshold selection in clinical decision-making. In contrast, models
such as DT and LASSO underperformed, indicating limited
adaptability in diverse clinical scenarios.

From a clinical application perspective, our findings can
support personalized treatment strategies. For high-risk patients
identified by the model, clinicians could consider more aggressive
adjuvant regimens (e.g., combined chemotherapy and
immunotherapy), whereas low-risk patients may benefit from de-
escalated treatment, thus reducing unnecessary toxicity. DCA
results showed that XGBoost and LightGBM models offer higher
net benefit at low to moderate risk thresholds, suggesting their
utility in early clinical decision-making. In the future, these models
could be incorporated into a clinical decision support system
(CDSS) embedded within electronic medical records (EMR) to
enable automated, real-time risk assessment and streamline
clinical workflows.

In conclusion, the integrated predictive model developed in this
study effectively enhances the accuracy and clinical applicability of
predicting postoperative adjuvant therapy response in bladder
cancer by combining clinicopathological and molecular biomarker
information. Although the model exhibited slightly reduced
performance in external validation, indicating the need for
improved generalizability, it holds promising translational value.
Future studies should involve larger, multi-center datasets for
external validation and aim to optimize model robustness,
ultimately contributing to more precise and personalized
treatment strategies for bladder cancer patients.

5 Conclusion

In this study, we successfully developed a machine learning
model that integrates tumor morphological features, demographic
variables, and molecular marker expression to predict the response
of bladder cancer patients to postoperative adjuvant therapy. The
model demonstrated excellent performance in the training cohort;
however, a decline in performance was observed in the testing
cohort, indicating that further validation is needed to improve its
generalizability. SHAP analysis identified key predictive features,
including vascular invasion, perineural invasion, and the expression
of HER2 and PD-L1. Decision curve analysis (DCA) revealed a
favorable clinical net benefit within the moderate risk threshold
range. Future research should focus on external validation using
multi-center datasets and explore the development of dynamic
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prediction models based on longitudinal data to enhance
robustness and clinical utility.
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