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Purpose: Radical cystectomy (RC) is the standard treatment for muscle-invasive

and select high-risk non–muscle-invasive bladder cancer. Despite definitive

surgery, recurrence and progression remain major clinical concerns. Adjuvant

chemotherapy and immunotherapy may improve outcomes, but therapeutic

response varies due to tumor heterogeneity. Robust predictive models are

needed to guide individualized treatment strategies.

Methods: This study retrospectively analyzed bladder cancer patients undergoing

RC. Data included tumor morphology (e.g., vascular and perineural invasion),

demographic variables (e.g., age, sex), and molecular markers (e.g., PD-L1, HER2,

GATA3). LASSO regression identified key features, followed by model development

using nine machine learning algorithms, including XGBoost and LightGBM. Model

performance was assessed via area under the ROC curve (AUC), and Shapley

Additive Explanations (SHAP) were used for model interpretability.

Results: The random forest model achieved the highest predictive performance

(AUC = 0.92 in training; 0.74 in testing). SHAP analysis identified vascular invasion,

perineural invasion, and PD-L1/HER2 expression as major contributors. Decision

curve analysis showed favorable net benefit within a moderate-risk threshold.

Conclusions: A machine learning model integrating pathological, demographic,

and molecular features demonstrates promising potential to predict response to

adjuvant therapy post-RC in bladder cancer. Decreased performance in the

external test cohort highlights the need for further validation. Prospective studies

incorporating multi-center and longitudinal data are warranted to enhance

model generalizability and clinical applicability.
KEYWORDS

bladder cancer, adjuvant therapy, machine learning, shap, predictive model, radical
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1 Introduction

Bladder cancer ranks among the most common malignancies

globally, with approximately 573,000 new cases and 213,000 deaths

reported each year (1). Radical cystectomy (RC) remains the

standard treatment for muscle-invasive bladder cancer (MIBC)

and high-risk non-muscle-invasive bladder cancer (NMIBC).

However, postoperative recurrence and disease progression

continue to be major clinical challenges. To improve patient

outcomes, adjuvant therapies—including chemotherapy,

immunotherapy, and targeted therapy—have been increasingly

utilized in clinical practice (2). Adjuvant chemotherapy (AC) is

recommended for patients with high-risk MIBC and NMIBC

following RC, but its efficacy is not always predictable, and the

selection of patients for adjuvant therapy remains a clinical

challenge.Neoadjuvant chemotherapy (NAC) is currently

recommended prior to RC in patients with MIBC. Although NAC

offers a 5–10% improvement in overall survival, not all patients

derive benefit. Identifying non-responders is therefore essential to

avoid unnecessary toxicity and delays in definitive surgery (3).

In this study, adjuvant chemotherapy is specifically

recommended for patients with pathological stages of T3 or

higher, positive surgical margins, or evidence of vascular/

perineural invasion. These factors significantly increase the risk of

recurrence and progression, justifying the need for adjuvant therapy

after radical cystectomy (RC). Traditional adjuvant chemotherapy

selection relies on clinical experience and factors like tumor stage

and grade. However, the unpredictable nature of treatment

responses highlights the need to identify patients who will benefit

from adjuvant chemotherapy, while avoiding unnecessary toxicity.

Machine learning techniques, integrating complex, multi-

dimensional data, provide a promising solution to personalize

treatment selection and improve patient outcomes.

In recent years, machine learning (ML) has shown great

potential in predicting the response to neoadjuvant and adjuvant

treatment in bladder cancer by integrating clinical, pathological,

and molecular data. Deep learning models, for instance, have been

used to predict survival outcomes in MIBC patients treated with

NAC, demonstrating superior predictive performance over

traditional statistical models (4). Similarly, ML-based prognostic

models have been applied to assess response to immunotherapy (5).

Tumor mutational burden (TMB)-based classifiers, developed using

support vector machine recursive feature elimination (SVM-RFE)

and LASSO logistic regression, have also been employed to predict

the efficacy of PD-L1 inhibitors in patients with locally advanced or

metastatic urothelial carcinoma (6). Despite these advances, the

substantial heterogeneity of bladder cancer leads to variable

treatment responses, and no robust predictive model currently

exists to evaluate response to adjuvant therapy following RC.

Thus, this study focuses on the development of predictive models

for adjuvant chemotherapy, aiming to address the gap in

personalized treatment strategies for post-surgical bladder

cancer patients.

Over the past decade, several prognostic models for bladder

cancer have been proposed, primarily based on clinicopathological
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features such as tumor stage, histological grade, and lymph node

involvement (7–9). However, these traditional models often rely on

single-dimensional data and linear statistical methods, limiting

their predictive accuracy. Recent advances in artificial intelligence

have enabled the integration of multimodal data—including tumor

morphology, molecular biomarkers, and demographic factors—

resulting in improved predictive performance (10). Among ML

algorithms, extreme gradient boosting (XGBoost), random forest

(RF), and light gradient boosting machine (LightGBM) have shown

strong capabilities in handling high-dimensional data, identifying

complex variable interactions, and enhancing predictive

performance, and have been widely applied across various

cancer types.

The role of molecular biomarkers in predicting adjuvant

treatment response in bladder cancer is gaining increasing

attention. Immune checkpoint molecules such as PD-L1, as well

as oncogenic markers including HER2 and androgen receptor (AR),

have been shown to be of significant prognostic value in predicting

therapeutic responses (11–13). Moreover, components of the tumor

immune microenvironment—such as macrophage infiltration and

immune checkpoint expression—have been implicated in treatment

resistance (14, 15), suggesting that predictive models incorporating

histopathological, molecular, and demographic characteristics may

offer more accurate risk stratification.

This study aims to develop and validate a machine learning-

based predictive model integrating tumor morphological features,

demographic variables, and molecular marker expression to assess

the response of bladder cancer patients to adjuvant therapy

following radical cystectomy. By employing advanced feature

selection techniques and multiple ML algorithms, we seek to

establish an optimized predictive framework to support clinical

decision-making and promote individualized therapeutic

strategies.Furthermore, we focus on improving the accuracy of

adjuvant therapy selection, which has traditionally relied on

clinical experience and single-dimensional factors. Incorporating

machine learning can better address this gap and personalize

treatment choices, minimizing unnecessary toxicity and

improving patient outcomes. In addition, SHapley Additive

exPlanations (SHAP) analysis is applied to improve model

interpretability and to explore the contribution of key features to

treatment outcomes. The results of this study may have significant

clinical implications for optimizing adjuvant therapy in bladder

cancer, improving patient survival, and minimizing treatment-

related toxicity (Figure 1).
2 Materials and methods

2.1 Data collection and processing

We retrospectively collected clinical data from 1,764 bladder

cancer patients who underwent radical cystectomy (RC) between

2014 and 2024 at the First and Second Affiliated Hospitals of

Kunming Medical University. The dataset included demographic

characteristics (age, sex, ethnicity, smoking status, alcohol
frontiersin.org
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consumption), medical history, tumor morphology, and

pathological features (e.g., Uroplakin-III, PD-L1, HER2,

perineural invasion). In addition to these features, pathological

staging, tumor grade, and surgical margin status were also

integral to the dataset. Patients were categorized based on

pathological stage, specifically focusing on stages T3 and higher,

with particular attention to surgical margin involvement and

evidence of vascular or perineural invasion. These factors are

critical in determining the need for adjuvant chemotherapy

following radical cystectomy, as they significantly affect prognosis

and the risk of recurrence.Inclusion criteria were: age ≥18 years,

bladder cancer diagnosis confirmed by WHO classification,

availability of complete clinical data, and no prior treatment with

radiotherapy, chemotherapy, or immunotherapy before surgery.

Exclusion criteria were: partial resection, non-urothelial

carcinoma, incomplete data, or prior treatments. This study was

approved by the Ethics Committees of both participating hospitals,

and informed consent was obtained from all patients. To address

missing data, variables with less than 20% missingness were

imputed using the K-Nearest Neighbors (KNN) method, while

those with more than 20% missingness were excluded.
2.2 Statistical analysis and model
development

Categorical variables were compared using Pearson’s chi-square

test. To address class imbalances, an undersampling strategy was

applied. The dataset was split into training and internal validation

cohorts using five-fold cross-validation.For feature selection, we

applied LASSO regression to reduce dimensionality. In particular,

we applied LASSO regression to select key pathological features

such as pathological stage, tumor grade, surgical margin status, and

evidence of vascular/perineural invasion. These features were

identified as significant predictors of adjuvant therapy

response.Nine machine learning algorithms were used to develop

the model: XGBoost, SVM, MLP, KNN, logistic regression, LASSO

regression, decision tree (DT), GBM, and random forest (RF). The

choice of using nine machine learning algorithms instead of a single

one was to increase model robustness and reduce overfitting.

Different algorithms have varying strengths, which allows us to

capture multiple complex patterns and non-linear relationships

within the data. The comparison between these algorithms

ensures that the final model selected has strong generalizability

and is less susceptible to overfitting.By integrating multi-

dimensional data, including clinical, pathological, and molecular

features, machine learning techniques enable personalized

treatment predictions that account for various tumor

characteristics, thereby enhancing the selection process for

adjuvant chemotherapy.Model performance was evaluated using

AUC-ROC, sensitivity, specificity, recall, F1-score, and accuracy.

Clinical applicability was assessed using decision curve analysis

(DCA), calibration plots, and clinical impact curves (CICs).SHAP

analysis was performed to evaluate the contribution of each feature

to the model, with summary and force plots generated for
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interpretability. Statistical analyses were conducted using Python,

with a two-tailed p-value < 0.05 considered statistically significant.

For a more detailed description of the technical processes and

calculations used, including the LASSO regression for feature

selection, the machine learning algorithms employed, model

performance evaluation metrics, and the SHAP analysis for model

interpretability, please refer to Supplementary Material 1. This

Supplementary Material includes comprehensive explanations of

the methodologies and the Python code used for data

preprocessing, model training, and evaluation.
3 Result

3.1 Identification of prognostic factors and
construction of a predictive nomogram
model for bladder cancer

Univariate analysis of the enrolled clinical features revealed

significant differences in multiple clinical and molecular parameters

between responders (label = 1) and non-responders (label = 0) to

postoperative adjuvant therapy. Molecular markers such as Uroplakin

III (p < 0.001), GATA3 (p < 0.001), CK20 (p = 0.010), and CK7 (p <

0.001) were significantly overexpressed in the responder group. In

addition, immune and oncogenic markers including P63, P53, AR, and

PD-L1 were also markedly upregulated among responders (all p <

0.01), suggesting their potential involvement in modulating treatment

response. Several pathological features, including perineural invasion,

vascular invasion, M stage, and surgical margin status, were more

frequently observed in responders (all p < 0.01). Furthermore,

squamous and sarcomatoid differentiation, tumor grade, and

histological subtypes were significantly enriched in the responder

cohort (all p < 0.001), indicating that tumors with more aggressive

or immunogenic characteristics may be more sensitive to adjuvant

therapy.Notably, HER2 overexpression (score 2 or 3) was more

prevalent in responders than in non-responders (25% vs. 12%, p <

0.001), highlighting its potential role as a predictive biomarker for

treatment response. Similarly, advanced nodal stage (N stage ≥ 1) was

more common in responders (38% vs. 12%, p < 0.001), suggesting that

patients with more advanced disease may derive greater benefit from

adjuvant interventions. Tumor grade was also significantly higher

among responders, with 96% classified as grade 1 or 2 (p < 0.001),

further supporting the notion that high-grade tumors may be more

responsive to therapy (Table 1).

Subsequently, we performed Least Absolute Shrinkage and

Selection Operator (LASSO) regression analysis on the clinical

variables of patients who underwent radical cystectomy, enabling

the systematic identification of key predictors associated with

treatment response. This approach effectively reduced model

complexity and minimized potential overfitting (Figures 2A, B).

Based on the selected variables, we developed a predictive

nomogram incorporating demographic features, tumor

morphology, and molecular biomarkers to generate individualized

predictions of treatment response (Figure 2C). The selected

predictors included clinical and demographic variables such as
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TABLE 1 Baseline clinical, pathological, and molecular characteristics
between responders and non-responders to postoperative adjuvant
therapy in bladder.

Characteristic
0

N = 6111
1

N = 4211
p-value2

Gender 0.6

1 523 (86%) 356 (85%)

2 88 (14%) 65 (15%)

Age 305 (50%) 234 (56%) 0.073

Ethnicity 75 (12%) 65 (15%) 0.14

Smoking 287 (47%) 219 (52%) 0.11

Alcohol Consumption 182 (30%) 132 (31%) 0.6

Diabetes 68 (11%) 44 (10%) 0.7

Frequent Urination 191 (31%) 150 (36%) 0.14

Urinary Urgency 167 (27%) 119 (28%) 0.7

Dysuria 81 (13%) 80 (19%) 0.012

Pain 107 (18%) 93 (22%) 0.067

Urinary Hesitancy 81 (13%) 67 (16%) 0.2

Urinary Cytology 48 (7.9%) 47 (11%) 0.071

History of Prior Surgery 102 (17%) 91 (22%) 0.046

Urop0III 495 (81%) 278 (66%) <0.001

GATA3 560 (92%) 347 (82%) <0.001

CK20 370 (61%) 221 (52%) 0.010

CK7 569 (93%) 363 (86%) <0.001

CK5/6 389 (64%) 233 (55%) 0.007

P63 522 (85%) 318 (76%) <0.001

P53 359 (59%) 279 (66%) 0.015

AR 454 (74%) 278 (66%) 0.004

Perineural Invasion 104 (17%) 188 (45%) <0.001

Vascular Invasion 155 (25%) 257 (61%) <0.001

M stage 11 (1.8%) 63 (15%) <0.001

CIS 45 (7.4%) 45 (11%) 0.063

Surgical Margins 42 (6.9%) 52 (12%) 0.003

Squamous Differentiation 81 (13%) 102 (24%) <0.001

Glandular Differentiation 19 (3.1%) 23 (5.5%) 0.060

Neuroendocrine Differentiation 3 (0.5%) 7 (1.7%) 0.10

Sarcomatoid Differentiation 2 (0.3%) 8 (1.9%) 0.019

Histological Type <0.001

0 590 (97%) 378 (90%)

1 10 (1.6%) 18 (4.3%)

2 11 (1.8%) 25 (5.9%)

(Continued)
F
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TABLE 1 Continued

Characteristic
0

N = 6111
1

N = 4211
p-value2

Duration of Smoking 0.3

0 324 (53%) 202 (48%)

1 78 (13%) 53 (13%)

2 76 (12%) 65 (15%)

3 133 (22%) 101 (24%)

Duration of dringking >0.9

0 429 (70%) 289 (69%)

1 53 (8.7%) 36 (8.6%)

2 35 (5.7%) 25 (5.9%)

3 94 (15%) 71 (17%)

Blood Pressure 0.7

0 465 (76%) 318 (76%)

1 114 (19%) 85 (20%)

2 19 (3.1%) 13 (3.1%)

3 13 (2.1%) 5 (1.2%)

Hematuria 0.063

0 89 (15%) 77 (18%)

1 32 (5.2%) 12 (2.9%)

2 490 (80%) 332 (79%)

PD1L1 <0.001

0 252 (41%) 227 (54%)

1 286 (47%) 156 (37%)

2 73 (12%) 38 (9.0%)

HER-2 <0.001

0 288 (47%) 278 (66%)

1 85 (14%) 39 (9.3%)

2 132 (22%) 42 (10.0%)

3 106 (17%) 62 (15%)

N <0.001

0 535 (88%) 263 (62%)

1 49 (8.0%) 75 (18%)

2 17 (2.8%) 46 (11%)

3 10 (1.6%) 37 (8.8%)

Grade <0.001

0 147 (24%) 17 (4.0%)

1 444 (73%) 358 (85%)

2 20 (3.3%) 46 (11%)
fr
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alcohol consumption, urine cytology, history of prior surgery,

duration of smoking and drinking, and blood pressure, as well as

histopathological features (e.g., vascular and perineural invasion,

tumor stage and grade) and molecular markers (e.g., Uroplakin III,

GATA3, CK20, AR, PD-L1, and HER2 expression). Each variable

was weighted according to its contribution to the model, allowing

for intuitive quantification of individual risk scores.The constructed

nomogram exhibited excellent predictive performance, effectively

integrating tumor morphology, patient demographics, and

molecular biomarker expression. Collectively, these findings

underscore the potential of our integrated predictive model in

accurately assessing postoperative adjuvant therapy response in

bladder cancer, providing a valuable tool for personalized clinical

decision-making (Figure 2).
3.2 Model construction and validation for
predicting adjuvant therapy response in
bladder cancer patients

In this study, eight machine learning algorithms were

employed to evaluate the predictive performance of postoperative

adjuvant therapy response in bladder cancer patients. The models

included K-nearest neighbors (KNN), random forest (RF), extreme

gradient boosting (XGBoost), support vector machine (SVM),
Frontiers in Oncology 05
logistic regression, multilayer perceptron (MLP), Light Gradient

Boosting Machine (LightGBM), LASSO regression, and decision

tree (DT), with assessments conducted on both training and testing

cohorts (Figure 3). In the training set, the RF model demonstrated

the highest overall performance, with an area under the curve

(AUC) of 0.921, accuracy of 0.846, and F1-score of 0.847,

indicating excellent discriminatory power and a balanced trade-

off between precision and recall. Both LightGBM and XGBoost also

achieved favorable results, with AUC values of 0.880 and 0.870,

respectively. The KNN model yielded the highest specificity

(0.953), while RF achieved the highest negative predictive value

(NPV = 0.875) and Youden index (0.706), suggesting an optimal

balance between sensitivity and specificity. The RF model also

showed the highest Kappa coefficient (0.685), underscoring its

stability and agreement with actual outcomes (Figure 3A,

Tables 2, 3).

However, model performance declined in the testing set,

indicating reduced generalizability and a potential risk of

overfitting (Figures 3C, D). RF retained the best AUC (0.741),

followed closely by LightGBM (0.743) and XGBoost (0.737).

Accuracy in the testing cohort ranged from 0.645 (DT) to 0.706

(RF), with moderate F1-scores across all models, further suggesting

some degree of overfitting (Figure 3B, Tables 2, 3). Notably,

specificity remained high in logistic regression and KNN (≥0.89),

despite the overall performance decline.
FIGURE 1

Workflow of model development and validation.
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Decision curve analysis (DCA) revealed that XGBoost and

LightGBM models provided substantial net clinical benefit across

a wide range of threshold probabilities in the training set. In the

testing set, most models still demonstrated moderate clinical utility

at low to intermediate risk thresholds, though the net benefit was

diminished (Figures 3E, F). Taken together, these results suggest

that the developed machine learning models—particularly the RF

model—hold considerable potential for predicting responses to

adjuvant therapy in bladder cancer. Nonetheless, further external

validation is necessary to enhance model robustness and ensure its

reliability in real-world clinical settings.
3.3 Clinical applicability of machine
learning models evaluated by clinical
impact curves

Clinical impact curve (CIC) analysis was performed to evaluate

the clinical applicability of eight machine learning models—K-

nearest neighbors (KNN), random forest (RF), extreme gradient

boosting (XGBoost), support vector machine (SVM), logistic

regression, multilayer perceptron (MLP), LightGBM, LASSO

regression, and decision tree (DT)—in both the training and

testing cohorts (Figure 4). The CICs demonstrated considerable

variability in the ability of these models to accurately identify high-

risk patients across different risk thresholds. Notably, the RF,
Frontiers in Oncology 06
XGBoost, and LightGBM models exhibited superior and more

stable predictive performance, more accurately reflecting the

number of true positive cases and effectively distinguishing

between high- and low-risk patient groups. These findings

highlight the promising clinical utility of RF, XGBoost, and

LightGBM in predicting responses to postoperative adjuvant

therapy in bladder cancer patients. In future clinical applications,

these robust models should be prioritized, and careful selection of

the optimal risk threshold will be essential to achieving maximum

clinical benefit (Figure 4).
3.4 Feature importance interpretation
using SHAP analysis

To interpret the relative contributions of each predictive feature

within our machine learning model, we conducted Shapley Additive

Explanations (SHAP) analysis (Figure 5). The SHAP swarm plot

clearly illustrates how individual clinical, demographic, and

molecular variables influenced model predictions. Vascular

invasion, tumor grade, perineural invasion, and lymph node

involvement (N stage) were among the most influential clinical

and pathological predictors, positively associated with higher risk

predictions. Additionally, molecular markers including HER-2, PD-

L1, CK20, GATA3, and P63 showed significant impacts, with

elevated expressions correlating strongly with adverse outcomes.
FIGURE 2

Identification of predictive features using LASSO regression and construction of the nomogram model. (A) LASSO coefficient profiles: Displays how
the coefficients of 28 features shrink with increasing penalty, identifying key predictors associated with treatment response. (B) Cross-validation plot:
The optimal lambda (l = 0.007) was selected using 10-fold cross-validation to minimize binomial deviance. (C) Nomogram model: A predictive
nomogram was developed based on selected clinical, pathological, and molecular features to estimate individual response probabilities.
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TABLE 2 Comparison of predictive performance across nine machine learning models in the training and testing sets for bladder cancer adjuvant
therapy response.

Comparison of results across models

KNN RF XGB SVM LR MLP Lightgbm Lasso DT

Accuracy 0.737 0.846 0.794 0.751 0.735 0.758 0.802 0.759 0.766

PPV 0.771 0.847 0.793 0.749 0.751 0.758 0.801 0.757 0.764

Recall 0.737 0.846 0.794 0.751 0.735 0.758 0.802 0.759 0.766

F1_score 0.713 0.847 0.791 0.747 0.719 0.752 0.8 0.757 0.763

AUC 0.829 0.921 0.87 0.829 0.82 0.829 0.88 0.835 0.845

Specificity 0.953 0.86 0.872 0.841 0.917 0.863 0.867 0.827 0.841

NPV 0.703 0.875 0.795 0.759 0.713 0.757 0.808 0.776 0.777

Youden Index 0.689 0.706 0.666 0.592 0.653 0.62 0.669 0.586 0.607

Kappa 0.416 0.685 0.567 0.475 0.422 0.486 0.586 0.497 0.51

Accuracy 0.648 0.706 0.69 0.681 0.674 0.69 0.694 0.674 0.645

PPV 0.645 0.706 0.683 0.673 0.672 0.683 0.688 0.666 0.641

Recall 0.648 0.706 0.69 0.681 0.674 0.69 0.694 0.674 0.645

F1_score 0.596 0.706 0.683 0.672 0.642 0.679 0.689 0.666 0.643

AUC 0.72 0.741 0.737 0.724 0.721 0.738 0.743 0.737 0.705

Specificity 0.915 0.762 0.81 0.804 0.894 0.831 0.788 0.794 0.73

NPV 0.65 0.758 0.718 0.71 0.676 0.71 0.73 0.708 0.701

Youden Index 0.564 0.468 0.5 0.485 0.568 0.521 0.482 0.468 0.375

Kappa 0.166 0.382 0.325 0.303 0.247 0.317 0.341 0.291 0.245
F
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FIGURE 3

(A, B) ROC curves: RF, LightGBM, and XGBoost models achieved superior AUCs, indicating excellent classification performance. (C, D) Calibration
curves: Good agreement was observed in the training set, while the test set showed greater variability. (E, F) Decision curve analysis: RF and
LightGBM consistently provided the highest net benefit across decision thresholds.
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Demographic and behavioral features, such as alcohol

consumption, smoking duration, and blood pressure, also

contributed meaningfully to the prediction outcomes, highlighting

the multifactorial nature of bladder cancer prognosis. Collectively,

SHAP analysis provided comprehensive insights into how

individual clinical, pathological, and molecular features influenced

model predictions, thus enhancing model interpretability and

clinical transparency (Figure 5). These findings support the

clinical relevance of the selected variables and emphasize their

utility for personalized prognosis and therapeutic decision-

making in bladder cancer.
4 Discussion

In recent years, artificial intelligence (AI) has attracted

increasing attention in the field of personalized medicine for

bladder cancer, particularly in predicting responses to

postoperative adjuvant therapy. Compared with traditional

statistical methods, machine learning (ML) techniques have

demonstrated greater potential in handling complex, high-

dimensional data, enabling more precise analysis for

individualized treatment planning (16). Advances in AI have

facilitated its application in bladder cancer diagnosis, staging, and

therapeutic response prediction, thus supporting clinical

decision-making.

Beyond therapeutic prediction, AI has also been applied to

detect genetic alterations such as FGFR3 mutations directly from

histopathological images. AI systems have shown promising results

in identifying FGFR3 mutation status from routine histological

slides, offering a valuable pre-screening tool for subsequent

molecular testing (17). Unlike traditional models such as Cox

regression and Kaplan-Meier survival analysis—which rely on

univariate or linear relationships—ML algorithms such as

XGBoost and LightGBM are better suited to capturing non-linear
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interactions among high-dimensional variables, thereby improving

predictive performance (18–20).

In this study, we integrated tumor morphological features,

patient demographics, and molecular marker expression to

construct a comprehensive predictive model for postoperative

adjuvant therapy response in bladder cancer. Using LASSO

regression, clinically meaningful variables were systematically

selected to reduce model complexity and minimize the risk of

overfitting. These features included tumor aggressiveness markers

(e.g., vascular and perineural invasion, histological subtype, tumor

grade), molecular biomarkers (e.g., HER2, PD-L1, CK20, GATA3,

Uroplakin III), and behavioral factors (e.g., smoking and alcohol

consumption). The incorporation of these multidimensional

variables enhanced the model’s ability to more accurately and

comprehensively predict treatment responses, aligning with the

needs of real-world clinical settings.

During model development and validation, we systematically

compared nine common ML algorithms, including XGBoost,

LightGBM, SVM, and logistic regression. ML methods have

increasingly demonstrated value in clinical prediction tasks across

various diseases. For example, SVM and boosting algorithms have

shown excellent performance in cardiovascular disease prediction

(21), while ensemble models such as RF and XGBoost achieved

AUCs of 0.96 and 0.97, respectively, in pneumonia diagnosis (22).

RF also outperformed other algorithms in predicting postoperative

delirium (AUC = 0.994) (23), and in breast cancer survival

prediction, where a tuned RF (TRF) model reached 96% accuracy

and sensitivity (24). In bladder cancer, deep learning has been used

to recalibrate the CUETO and EORTC tools for recurrence and

progression risk, demonstrating better performance than

conventional methods (25). Recent studies have further

investigated the role of machine learning in bladder cancer

patient stratification, highlighting the potential of ML algorithms

to enhance the accuracy and precision of patient risk assessments

(26). These findings are consistent with our results and reinforce the
TABLE 3 Comparison of confusion matrix outputs for nine machine learning models in the training and testing sets.

Comparison of confusion matrix results across models

Train Test

TN FP FN TP TN FP FN TP

KNN 402 20 170 130 KNN 173 16 93 28

RF 363 59 52 248 RF 144 45 46 75

XGB 368 54 95 205 XGB 153 36 60 61

SVM 355 67 113 187 SVM 152 37 62 59

LR 387 35 156 144 LR 169 20 81 40

MLP 364 58 117 183 MLP 157 32 64 57

LightGBM 366 56 87 213 LightGBM 149 40 55 66

Lasso 349 73 101 199 Lasso 150 39 62 59

DT 355 67 102 198 DT 138 51 59 62
frontiersin.org

https://doi.org/10.3389/fonc.2025.1664965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hou et al. 10.3389/fonc.2025.1664965
clinical applicability of ML models in the personalized treatment of

bladder cancer.

Encouragingly, in our study, the random forest (RF) model

achieved the highest predictive performance in the training cohort

(AUC = 0.921) and maintained good generalizability in the external

validation cohort (AUC = 0.741). Although LightGBM and

XGBoost also performed well during training, their performance

declined in external validation, suggesting potential susceptibility to

data heterogeneity. RF’s robustness in medical prediction tasks has

been consistently demonstrated across studies due to its ability to

combine multiple decision trees and capture complex non-linear

interactions. Decision curve analysis (DCA) further confirmed the

strong clinical net benefit of XGBoost and LightGBM across a wide

range of threshold probabilities, supporting their practical utility in

clinical settings.

In this study, several important predictors were identified using

SHAP analysis, but the clinical biological rationale behind these

features has not been fully explained. PD-L1 high expression plays a

crucial role in tumor immune evasion by binding to the PD-1
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receptor on T cells, allowing the tumor to escape immune

surveillance. High PD-L1 expression has also been associated with

better responses to immune checkpoint inhibitors like

Pembrolizumab and Atezolizumab. Thus, PD-L1 expression

directly impacts the prediction of postoperative adjuvant therapy

efficacy. HER2 overexpression promotes tumor cell proliferation

and survival by activating key signaling pathways such as PI3K/Akt

and MAPK, making it a critical factor for bladder cancer

aggressiveness and prognosis. In our study, HER2 overexpression

was identified as an important predictor of poor prognosis.

Vascular invasion and perineural invasion are pathological

features that suggest tumor aggression. Vascular invasion,

indicating the potential for distant metastasis, and perineural

invasion, associated with worsened prognosis and pain, are

crucial in predicting treatment responses and patient outcomes.

To better integrate our model into real-world clinical

workflows, we recommend embedding it into Clinical Decision

Support Systems (CDSS) through Electronic Medical Records

(EMR) for real-time risk assessment and personalized treatment
FIGURE 4

Clinical impact curve analysis showed that random forest, RF, LightGBM, and XGBoost models consistently identified high-risk patients with better
accuracy and clinical utility across both training and testing cohorts.
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recommendations. This integration would assist clinicians in

quickly evaluating postoperative adjuvant therapy responses in

bladder cancer patients, while optimizing treatment plans and

resource allocation. Future studies should focus on multi-center

validation, long-term follow-up, and regular model updates to

ensure its sustained accuracy and clinical applicability.

To improve the generalizability of our model and address the

reduced performance in the external validation cohort, several

factors should be considered in future work. Data heterogeneity

between the external cohort and training set may affect predictive

accuracy. Differences in sample size and feature distribution could

also lead to less robust predictions. Overfitting, a common issue

with models performing well in training but poorly in new data,

may have contributed to these discrepancies. Future studies should

incorporate multi-center validation, longitudinal data, and model

regularization techniques (e.g., Elastic Net) to enhance robustness,

reduce overfitting, and improve generalizability. These steps will

optimize the model’s clinical applicability.
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To further interpret model behavior, SHAP (SHapley Additive

exPlanations) analysis was employed to visualize the contribution of

each feature to model predictions. Tumor features such as grade

and vascular invasion were identified as core predictors of poor

prognosis, and high expression of HER2 and PD-L1 was strongly

associated with adverse outcomes. SHAP also provided

individualized explanations for prediction results, enhancing

model transparency and clinical trust. The clinical significance of

HER2 and PD-L1 is increasingly recognized in postoperative,

chemotherapy, and immunotherapy contexts. PD-L1, in

particular, is a widely studied predictive biomarker for immune

checkpoint inhibitors (ICIs) across cancers, including bladder

cancer, where its high expression is associated with advanced

pathological stage and better response to therapies like

pembrolizumab and atezolizumab (27, 28). Nevertheless, its

predictive value remains controversial, as some patients with low

PD-L1 expression still benefit from ICIs, while not all high

expressers respond (29). HER2, though less explored in bladder
FIGURE 5

SHAP summary plot illustrating the contribution of each feature to model output: Vascular invasion, tumor grade, perineural invasion, and nodal stage
were the most influential predictors of treatment response, with higher feature values (in red) generally associated with increased predicted risk.
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cancer than in breast cancer, represents another promising

therapeutic target. Incorporating HER2 and PD-L1 into

prognostic models may enhance treatment stratification and

aligns with the paradigm of precision oncology (30).

Our study also considered lifestyle factors such as smoking and

drinking history, which have been associated with patient prognosis

and are consistent with prior studies on the interaction between

tumor biology and environmental/genetic factors (31, 32). Clinical

impact curves (CICs) provided additional validation, showing that

RF, XGBoost, and LightGBMmodels could more accurately identify

high-risk individuals for actual adverse events and support effective

threshold selection in clinical decision-making. In contrast, models

such as DT and LASSO underperformed, indicating limited

adaptability in diverse clinical scenarios.

From a clinical application perspective, our findings can

support personalized treatment strategies. For high-risk patients

identified by the model, clinicians could consider more aggressive

adjuvant regimens (e.g. , combined chemotherapy and

immunotherapy), whereas low-risk patients may benefit from de-

escalated treatment, thus reducing unnecessary toxicity. DCA

results showed that XGBoost and LightGBM models offer higher

net benefit at low to moderate risk thresholds, suggesting their

utility in early clinical decision-making. In the future, these models

could be incorporated into a clinical decision support system

(CDSS) embedded within electronic medical records (EMR) to

enable automated, real-time risk assessment and streamline

clinical workflows.

In conclusion, the integrated predictive model developed in this

study effectively enhances the accuracy and clinical applicability of

predicting postoperative adjuvant therapy response in bladder

cancer by combining clinicopathological and molecular biomarker

information. Although the model exhibited slightly reduced

performance in external validation, indicating the need for

improved generalizability, it holds promising translational value.

Future studies should involve larger, multi-center datasets for

external validation and aim to optimize model robustness,

ultimately contributing to more precise and personalized

treatment strategies for bladder cancer patients.
5 Conclusion

In this study, we successfully developed a machine learning

model that integrates tumor morphological features, demographic

variables, and molecular marker expression to predict the response

of bladder cancer patients to postoperative adjuvant therapy. The

model demonstrated excellent performance in the training cohort;

however, a decline in performance was observed in the testing

cohort, indicating that further validation is needed to improve its

generalizability. SHAP analysis identified key predictive features,

including vascular invasion, perineural invasion, and the expression

of HER2 and PD-L1. Decision curve analysis (DCA) revealed a

favorable clinical net benefit within the moderate risk threshold

range. Future research should focus on external validation using

multi-center datasets and explore the development of dynamic
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prediction models based on longitudinal data to enhance

robustness and clinical utility.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by The First Affliated

Hospital of Kunming Medical University granted ethical approval to

conduct research in its facilities ((2021) Lun Shen LNo. 33), The Second

Affliated Hospital of Kunming Medical University granted ethical

approval to conduct research in its facilities (Shen-PJ-Ke-2024-199).

The studies were conducted in accordance with the local legislation and

institutional requirements. The human samples used in this study were

acquired from primarily isolated as part of your previous study for

which ethical approval was obtained. Written informed consent for

participation was not required from the participants or the participants’

legal guardians/next of kin in accordance with the national legislation

and institutional requirements.
Author contributions

JH: Conceptualization, Formal Analysis, Methodology,

Software, Validation, Visualization, Writing – review & editing.

YD: Data curation, Investigation, Methodology, Writing – original

draft, Writing – review & editing. RF: Conceptualization, Formal

Analysis, Methodology, Writing – review & editing, Validation.

YW: Formal Analysis, Methodology, Software, Writing – original

draft, Writing – review & editing, Visualization. YT: Data curation,

Writing – review & editing, Visualization. JL: Data curation,

Writing – review & editing. JQ: Data curation, Writing – review

& editing. PL: Data curation, Writing – review & editing. PG:

Conceptualization, Data curation, Formal Analysis, Funding

acquisition, Methodology, Project administration, Supervision,

Writing – review & editing. XL: Conceptualization, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This manuscript was

supported by the National Natural Science Foundation of China

(82273373). Yunnan Provincial Basic Research Program and

Kunming.Yunnan Provincial Basic Research Program and

Kunming Medical University Joint Special Project (Grant No.

202401AY070001-080); Kunming Medical University 2025

Graduate Education Innovation Fund Project (Grant

No. 2025B029).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1664965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hou et al. 10.3389/fonc.2025.1664965
Acknowledgments

We gratefully acknowledge the First and Second Affiliated

Hospitals of Kunming Medical University, which provided valuable

data and resources for this research. This work was supported by the

National Natural Science Foundation of China (82273373).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial
Frontiers in Oncology 12
intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1664965/

full#supplementary-material
References
1. Wilczak M, Surman M, Przybyło M. Altered glycosylation in progression and
management of bladder cancer. Molecules (Basel Switzerland). (2023) 28:34–6.
doi: 10.3390/molecules28083436

2. Packiam VT, Tsivian M, Boorjian SA. The evolving role of lymphadenectomy for
bladder cancer: why, when, and how. Trans andrology Urol. (2020) 9:3082–93.
doi: 10.21037/tau.2019.06.01

3. Motterle G, Andrews JR, Morlacco A, Karnes RJ. Predicting response to
neoadjuvant chemotherapy in bladder cancer. Eur Urol Focus. (2020) 6:642–9.
doi: 10.1016/j.euf.2019.10.016

4. Gensheimer MF, Aggarwal S, Benson KRK, Carter JN, Henry AS, Wood DJ, et al.
Automated model versus treating physician for predicting survival time of patients with
metastatic cancer. J Am Med Inf Assoc. (2021) 28:1108–16. doi: 10.1093/jamia/ocaa290

5. Zhang J, Huang Y, Tan X, Wang Z, Cheng R, Zhang S, et al. Integrated analysis of
multiple transcriptomic approaches and machine learning integration algorithms reveals
high endothelial venules as a prognostic immune-related biomarker in bladder cancer. Int
Immunopharmacol. (2024) 136:112184. doi: 10.1016/j.intimp.2024.112184

6. Wang Y, Chen L, Ju L, Xiao Y, Wang X. Tumor mutational burden related classifier
is predictive of response to PD-L1 blockade in locally advanced and metastatic urothelial
carcinoma. Int Immunopharmacol. (2020) 87:106818. doi: 10.1016/j.intimp.2020.106818

7. Ouyang Q, Chen Q, Zhang L, Lin Q, Yan J, Sun H, et al. Construction of a risk
prediction model for axillary lymph node metastasis in breast cancer based on gray-
scale ultrasound and clinical pathological features. Front Oncol. (2024) 14:1415584.
doi: 10.3389/fonc.2024.1415584

8. Wang W, Wang K, Qiu J, Li W, Wang X, Zhang Y, et al. MRI-based radiomics
analysis of bladder cancer: prediction of pathological grade and histological variant.
Clin Radiol. (2023) 78:e889–97. doi: 10.1016/j.crad.2023.07.020

9. Schuettfort VM, D’Andrea D, Quhal F, Mostafaei H, Laukhtina E, Mori K, et al. A
panel of systemic inflammatory response biomarkers for outcome prediction in
patients treated with radical cystectomy for urothelial carcinoma. Bju Int. (2022)
129:182–93. doi: 10.1111/bju.15379

10. Awuah WA, Ben-Jaafar A, Roy S, Nkrumah-Boateng PA, Tan JK, Abdul-
Rahman T, et al. Predicting survival in Malignant glioma using artificial intelligence.
Eur J Med Res. (2025) 30:61. doi: 10.1186/s40001-025-02339-3

11. Li JR, Wang SS, Lu K, Chen CS, Cheng CL, Hung SC, et al. First-line
chemotherapy response is associated with clinical outcome during immune
checkpoint inhibitor treatment in advanced urothelial carcinoma: A real world
retrospective study. Anticancer Res. (2023) 43:1331–9. doi: 10.21873/anticanres.16281

12. Wu J, Zhang F, Zheng X, Chen D, Li Z, Bi Q, et al. Identification of bladder
cancer subtypes and predictive signature for prognosis, immune features, and
immunotherapy based on immune checkpoint genes. Sci Rep. (2024) 14:14431.
doi: 10.1038/s41598-024-65198-8
13. Alkassis M, Kourie HR, Sarkis J, Nemr E. Predictive biomarkers in bladder
cancer. Biomarkers Med. (2021) 154:241–6. doi: 10.2217/bmm-2020-0575

14. Zhou J, An W, Guan L, Shi J, Qin Q, Zhong S, et al. The clinical significance of T
cell infiltration and immune checkpoint expression in central nervous system germ cell
tumors. Front Immunol. (2025) 16:1536722. doi: 10.3389/fimmu.2025.1536722

15. Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor
immune evasion. J Cancer Res Clin Oncol. (2024) 150:238. doi: 10.1007/s00432-024-
05777-4

16. Ge L, Chen Y, Yan C, Zhao P, Zhang P, A R, et al. Study progress of radiomics
with machine learning for precision medicine in bladder cancer management. Front
Oncol. (2019) 9:1296. doi: 10.3389/fonc.2019.01296

17. Loeffler CML, Ortiz Bruechle N, Jung M, Seillier L, Rose M, Laleh NG, et al.
Artificial intelligence-based detection of FGFR3 mutational status directly from routine
histology in bladder cancer: A possible preselection for molecular testing? Eur Urol
Focus. (2022) 8:472–9. doi: 10.1016/j.euf.2021.04.007

18. Yuan KC, Tsai LW, Lee KH, Cheng YW, Hsu SC, Lo YS, et al. The development
an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.
Int J Med Inf. (2020) 141:104176. doi: 10.1016/j.ijmedinf.2020.104176

19. Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume
responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care.
(2019) 23:112. doi: 10.1186/s13054-019-2411-z

20. Sun B, Lei M, Wang L, Wang X, Li X, Mao Z, et al. Prediction of sepsis among
patients with major trauma using artificial intelligence: a multicenter validated cohort
study. Int J Surg. (2025) 111:467–80. doi: 10.1097/JS9.0000000000001866

21. Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al.
Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. (2020)
10:16057. doi: 10.1038/s41598-020-72685-1

22. Effah CY, Miao R, Drokow EK, Agboyibor C, Qiao R, Wu Y, et al. Machine
learning-assisted prediction of pneumonia based on non-invasive measures. Front
Public Health. (2022) 10:938801. doi: 10.3389/fpubh.2022.938801

23. Wang Y, Lei L, Ji M, Tong J, Zhou CM, Yang JJ. Predicting postoperative
delirium after microvascular decompression surgery with machine learning. J Clin
Anesth. (2020) 66:109896. doi: 10.1016/j.jclinane.2020.109896

24. Montazeri M, Montazeri M, Montazeri M, Beigzadeh A. Machine learning
models in breast cancer survival prediction. Technol Health Care. (2016) 24:31–42.
doi: 10.3233/THC-151071

25. Jobczyk M, Stawiski K, Kaszkowiak M, Rajwa P, Różański W, Soria F, et al. Deep
learning-based recalibration of the CUETO and EORTC prediction tools for recurrence
and progression of non-muscle-invasive bladder cancer. Eur Urol Oncol. (2022) 5:109–
12. doi: 10.1016/j.euo.2021.05.006
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1664965/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1664965/full#supplementary-material
https://doi.org/10.3390/molecules28083436
https://doi.org/10.21037/tau.2019.06.01
https://doi.org/10.1016/j.euf.2019.10.016
https://doi.org/10.1093/jamia/ocaa290
https://doi.org/10.1016/j.intimp.2024.112184
https://doi.org/10.1016/j.intimp.2020.106818
https://doi.org/10.3389/fonc.2024.1415584
https://doi.org/10.1016/j.crad.2023.07.020
https://doi.org/10.1111/bju.15379
https://doi.org/10.1186/s40001-025-02339-3
https://doi.org/10.21873/anticanres.16281
https://doi.org/10.1038/s41598-024-65198-8
https://doi.org/10.2217/bmm-2020-0575
https://doi.org/10.3389/fimmu.2025.1536722
https://doi.org/10.1007/s00432-024-05777-4
https://doi.org/10.1007/s00432-024-05777-4
https://doi.org/10.3389/fonc.2019.01296
https://doi.org/10.1016/j.euf.2021.04.007
https://doi.org/10.1016/j.ijmedinf.2020.104176
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.1097/JS9.0000000000001866
https://doi.org/10.1038/s41598-020-72685-1
https://doi.org/10.3389/fpubh.2022.938801
https://doi.org/10.1016/j.jclinane.2020.109896
https://doi.org/10.3233/THC-151071
https://doi.org/10.1016/j.euo.2021.05.006
https://doi.org/10.3389/fonc.2025.1664965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hou et al. 10.3389/fonc.2025.1664965
26. He Y, Wei H, Liao S, Ruiming O, Yuqiang X, Yongchun Z, et al. Integrated
machine learning algorithms for stratification of patients with bladder cancerr. Curr
Bioinf. (2024) 19:963–76. doi: 10.2174/0115748936288453240124082031

27. de Jong FC, Rutten VC, Zuiverloon TCM, Theodorescu D. Improving anti-PD-1/
PD-L1 therapy for localized bladder cancer. Int J Mol Sci. (2021) 22. doi: 10.3390/
ijms22062800

28. Germanà E, Pepe L, Pizzimenti C, Ballato M, Pierconti F, Tuccari G, et al.
Programmed cell death ligand 1 (PD-L1) immunohistochemical expression in
advanced urothelial bladder carcinoma: an updated review with clinical and
pathological implications. Int J Mol Sci. (2024) 25:6750. doi: 10.3390/ijms25126750

29. Rui X, Gu TT, Pan HF, Zhang HZ. Evaluation of PD-L1 biomarker for immune
checkpoint inhibitor (PD-1/PD-L1 inhibitors) treatments for urothelial carcinoma
Frontiers in Oncology 13
patients: A meta-analysis. Int Immunopharmacol. (2019) 67:378–85. doi: 10.1016/
j.intimp.2018.12.018

30. Song D, Powles T, Shi L, Zhang L, Ingersoll MA, Lu YJ, et al. Bladder cancer, a
unique model to understand cancer immunity and develop immunotherapy
approaches. J Pathol. (2019) 249:151–65. doi: 10.1002/path.5306

31. Xiong J, Yang L, Deng YQ, Yan SY, Gu JM, Li BH, et al. The causal association
between smoking, alcohol consumption and risk of bladder cancer: A univariable and
multivariable Mendelian randomization study. Int J Cancer. (2022) 151:2136–43.
doi: 10.1002/ijc.34228

32. Shih WL, Chang HC, Liaw YF, Lin SM, Lee SD, Chen PJ, et al. Influences of
tobacco and alcohol use on hepatocellular carcinoma survival. Int J Cancer. (2012)
131:2612–21. doi: 10.1002/ijc.27508
frontiersin.org

https://doi.org/10.2174/0115748936288453240124082031
https://doi.org/10.3390/ijms22062800
https://doi.org/10.3390/ijms22062800
https://doi.org/10.3390/ijms25126750
https://doi.org/10.1016/j.intimp.2018.12.018
https://doi.org/10.1016/j.intimp.2018.12.018
https://doi.org/10.1002/path.5306
https://doi.org/10.1002/ijc.34228
https://doi.org/10.1002/ijc.27508
https://doi.org/10.3389/fonc.2025.1664965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Explainable machine learning model predicts response to adjuvant therapy after radical cystectomy in bladder cancer
	1 Introduction
	2 Materials and methods
	2.1 Data collection and processing
	2.2 Statistical analysis and model development

	3 Result
	3.1 Identification of prognostic factors and construction of a predictive nomogram model for bladder cancer
	3.2 Model construction and validation for predicting adjuvant therapy response in bladder cancer patients
	3.3 Clinical applicability of machine learning models evaluated by clinical impact curves
	3.4 Feature importance interpretation using SHAP analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


