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Cervical and ovarian cancers pose a significant global threat to women’s health.

Despite substantial medical advances in recent decades, gynecological

malignancies remain a leading cause of female mortality, constrained by

factors such as multidrug resistance, treatment toxicity, asymptomatic

presentation in early stages, and genetic heterogeneity. Gold nanoparticles

(AuNPs), leveraging their exceptional biocompatibility and multifunctional

capabilities, demonstrate considerable potential across diverse fields including

bioimaging, liquid biopsy, photothermal therapy, and targeted chemotherapy,

thereby advancing precision oncology. Accordingly, this review synthesizes and

analyzes the emerging applications of AuNPs in gynecological tumors over the

past five years. Moving beyond superficial descriptions of functional features

often limited in previous reviews, it places greater emphasis on elucidating the

intrinsic relationships and mechanisms between functions from the perspective

of their physicochemical properties. It further highlights the critical importance

of AuNPs for constructing integrated diagnostic and therapeutic platforms.

Simultaneously, this review provides a balanced examination of the challenges

hindering the clinical translation of AuNPs and offers insights and perspectives on

addressing these issues. It is anticipated that AuNPs may evolve into highly

effective diagnostic and therapeutic strategies in the future.
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GRAPHICAL ABSTRACT
1 Introduction

Cervical and ovarian cancers represent the most lethal

gynecological malignancies, each posing distinct clinical challenges.

HPV infection constitutes the primary etiological factor for most

cervical carcinomas, thus establishing HPV testing as critical for early

screening (1). Organized screening and HPV vaccination provide key

prevention strategies, especially in developing nations (2). The

protracted asymptomatic latency spanning decades from cervical

intraepithelial neoplasia to invasive carcinoma creates significant

fertility preservation challenges for reproductive-aged patients,

given that radical hysterectomy remain primary therapeutic options

(3, 4). Ovarian cancer demonstrates the highest aggressiveness among

gynecological malignancies, with its characteristically asymptomatic

early-stage presentation resulting in fewer than 50% of patients

surviving beyond five years post-diagnosis (5, 6). Molecular

heterogeneity, intrinsic chemoresistance, and rapid metastatic

dissemination collectively contribute to its elevated mortality (7).

Conventional strategies lack early precision and fail to prevent

multidrug resistance, necessitating advanced approaches (8, 9).

With advancements in oncology, nanotechnology has emerged as

a promising frontier (10, 11). Therapeutically, multifunctional
Frontiers in Oncology 02
nanoparticle-based drug delivery platforms enable cancer cell-

specific targeting while sparing healthy tissues, thereby reducing

systemic drug exposure, minimizing toxicity, and delaying

resistance emergence (12–14). Diagnostically, nanoparticles

enhance tumor biomarker detection sensitivity, facilitating earlier

clinical intervention (15, 16).

Among diverse nanomaterials, gold nanoparticles (AuNPs) stand

out due to exceptional biocompatibility and their defining optical

property (17). AuNPs are synthesized through established methods

including the Turkevich citrate reduction, biological synthesis using

plant/microbial extracts, and physical approaches like laser ablation,

enabling precise control over size, morphology, and surface

functionalization for biomedical applications (18). Localized Surface

Plasmon Resonance (LSPR) arises from collective electron oscillations,

generating intense, tunable absorption/scattering for colorimetric

sensing and enabling Surface-enhanced Raman scattering (SERS) via

electromagnetic “hot spots” for trace analyte detection (19, 20).

Critically, LSPR drives efficient light-to-energy conversion,

underpinning AuNPs’ efficacy as potent photothermal agents and

photosensitizers in photothermal therapy (PTT) and photodynamic

therapy (PDT) (21). As the morphology progressively evolves, AuNPs’

amplified surface-area-to-volume ratio enhances biomolecular
frontiersin.org
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interactions, while exceptional electrical conductivity (>105 S/m for 20-

nm particles) facilitates ultrasensitive detection (18, 22, 23). LSPR “hot

spots” also modulate fluorescence and enable fluorescence resonance

energy transfer (FRET) (24).

AuNPs’ surfaces are readily functionalized via covalent

conjugation, biomolecular assembly, or polymeric encapsulation

(e.g., thiol anchoring, amide bonds, click chemistry, electrostatic

adsorption) to confer targeting specificity, colloidal stability, and

multifunctionality (25, 26). This enables active targeting

(antibodies/peptides/aptamers) (27) or passive magnetic guidance

(Fe3O4 composites) (28), allowing their use as multimodal contrast

agents (MRI/X-ray/OCT) (29). Furthermore, AuNPs exhibit

distinct catalytic activity in redox reactions, enabling applications

in electrochemical biosensors (30). Collectively, these

physicochemical properties underpin AuNPs’ transformative

potential in diagnosing and treating gynecological malignancies.

Collectively, AuNPs represent a pivotal milestone in precision

medicine, offering transformative potential for timely cancer

intervention. The following sections detail the application of

AuNPs, critically evaluating their contributions to diagnosing and

treating gynecological malignancies to establish a reference

framework for clinical practice.
2 AuNPs in cervical cancer

2.1 Diagnosis

2.1.1 Colorimetric detection utilizing AuNPs
Functionalized AuNPs undergo LSPR peak shifts and visible

color changes upon binding target molecules. AuNPs-based
Frontiers in Oncology 03
colorimetric assays thus exploit this phenomenon to assess levels of

cervical cancer biomarkers through readily observable color

transitions (31). microRNA-378 is consistently dysregulated in

cervical cancer. Run and colleagues developed a colorimetric assay

using catalytic hairpin assembly (CHA) and AuNPs for its detection

(31). Target miRNA-378 triggers CHA between two hairpin probes,

generating polymeric products. Multiple polyadenine blocks on these

products adsorb and cross-link AuNPs (~13nm, Citrate-reduced)

under acidic conditions, inducing aggregation. This shifts the LSPR,

causing a visible color change from red to purple (Figure 1) (31). The

assay leverages nucleic acid hybridization specificity, offering

operational simplicity, high sensitivity, and strong specificity, with a

LOD of 20.7 pM (31).

Motivated by the high cost of target-specific AuNP

functionalization, label-free C-ColAur was developed as an

alternative (32). Label-free C-ColAur is a nonspecific detection

method leveraging AuNPs color shifts from LSPR. Target binding

protects AuNPs from salt-induced aggregation, enabling rapid on-

site pathogen screening via visible color changes, particularly in

resource-limited settings (32). Applied to cervicovaginal fluid, it

shows distinct color changes: AuNPs turn blue in healthy samples

but remain unchanged in cancer samples, achieving high diagnostic

accuracy (96% sensitivity, 87% specificity; Figure 2) (33).

Transmission Electron Microscope (TEM) revealed significantly

larger AuNP diameters (250~400nm, Citrate-reduced, Quasi-

Spherical) in patients versus controls (15~30nm, Citrate-reduced,

Quasi-Spherical), with reduced particle numbers and absence of

aggregation in cancer samples (33). Tejaswini et al. proposed that

cancer cell membrane components induce aggregation (34).

Experimental validation confirmed that synthetic lipids, but not

proteins or lipid-protein mixtures, replicated the color or spectral
FIGURE 1

Schematic diagram of the detection process of smiRNA378 by colorimetric method based on AuNP design (31).(copyright permission obtained).
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shift when reacted with HAuCl4·3H2O and ascorbic acid, indicating

lipid-specific organization drives the mechanism (34).

HR-HPV is the primary cause of cervical cancer. Conventional

detection (qPCR, isothermal amplification, dot blot) faces limitations

including contamination risk, incomplete subtyping, and high cost

(35). AuNP-based colorimetric assays (57.7 ± 4.2nm, Citrate-reduced,

Quasi-spherical with dendritic protrusions) enable instrument-free,

visual or smartphone-based readout of HPV-16/18, permitting

quantitative results acquisition by untrained personnel without

specialized equipmen (36). Carlos conjugated AuNPs (21.6 ± 0.1nm,

Turkevich) with anti-HPV-16/18 L1 antibodies (37). Applied to

173 cervical samples, infection caused a color shift(red to purple)

and LSPR red-shift (523~525 nm to 524~590 nm) (37). The assay

detected HPV-16 L1 (linear range: 0.4~2.0mg/mL, LOD: 0.18mg/mL)

and HPV-18 L1 (0.2~1.2mg/mL), identifying PCR-missed variants

potentially via conserved L1 epitope recognition (37). To expand

coverage, Jixue and team developed a multiplexed closed-tube PCR,

detecting 17 HPV types (LOD: 0.5copies/mL, linear range:

0~1000copies/mL) with 99.05% accuracy (38).

2.1.2 AuNPs-engineered electrochemical
biosensors

Colorimetry lacks micro-scale sensitivity. Electrochemical

biosensors convert biorecognition events to electrical signals (39).

CEA, SCCA, Ki67, p53, and p16INK4a are key cervical cancer

biomarkers (35). Antibody-conjugated AuNPs enable their

multiplexed detection. Electrochemical sensors universally use: 1)

conductive substrates (Pt/Co/MoS2/WS2/rGO) to amplify AuNPs
Frontiers in Oncology 04
signals, and 2) engineered porous architectures (SiO2 dendrimers,

multilayered nanoparticles, 3D networks) to enhance target capture

and conductivity (Table 1) (40–42). These AuNPs-centered

platforms show diagnostic promise (40). In a recent study,

Hiranmoy et al. developed an ultrasensitive electrochemical

immunosensor for cervical cancer biomarker p16INK4a detection

by modifying a glassy carbon electrode through sequential

deposition of graphene oxide and ~70nm spherical AuNPs (43).

The sensor utilized cysteamine-glutaraldehyde crosslinking to

immobilize p16INK4a monoclonal antibodies on the electrode

surface (43). Compared to bare electrodes, Au/rGO-modified

electrodes exhibited significantly enhanced peak currents with

charge transfer resistance (Rct) reduced from 245 W to 14 W,

demonstrating AuNPs’ capacity to facilitate electron transfer.

Clinical serum analysis via square wave voltammetry achieved

100% accuracy with a detection limit of 167 fg/mL and linear

range from 500 fg/mL to 100 ng/mL (43). The AuNP-engineered

sensor demonstrated exceptional selectivity, storage stability,

repeatability, reproducibility and regeneration capability.

Similarly, while colorimetry detects cervical exfoliated cells, its

accuracy suffers from subjective visual interpretation of subtle color

shifts. AuNP-integrated (~16nm, Citrate-reduced, Spherical,

chitosan-coated) photoelectric sensors enhance precision by

targeting cancer-specific a2,6-sialic acid overexpression via SNA-

conjugated AuNPs (44). Ricardo and team detected diagnostic

spectral alterations at 1470, 1456, 1434, 1400, and 1350 cm−¹ in

cancer-bound complexes using attenuated total reflection fourier-

transform infrared spectroscopy (ATR-FTIR) (44). Notably,
FIGURE 2

Schematic showing the colorimetric detection of cervical cancer using the label-free “C-ColAur” technique (33).
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Ricardo et al. leveraged machine learning (ML), specifically

principal component analysis (PCA), to identify sialic acid-

associated spectral signatures in cervical cancer cell lines.

Orthogonal principal components maximizing data variance were

derived, enabling construction of confidence ellipse models that

robustly discriminated primary fibroblasts from malignant cells

(non-overlapping 95% confidence intervals; p<0.001) (44). This

approach establishes a non-invasive diagnostic paradigm for early

cervical cancer detection through surface-enhanced infrared

absorption (SEIRA) biomarker profiling. (Figure 3).

AuNPs enhance HPV-16 DNA detection by increasing

electrode surface area, accelerating electron transfer, and

amplifying signals (39, 45). As Table 2 shows, varied electrode

designs achieve LODs<0.2fM (46–49). Dielectr ic and

photoelectrochemical sensors offer enhanced precision, with

maintained functionality during long-term cold storage (46, 48).

Lin and colleagues’ paper-based sensor achieves significant cost

reduction (<$1.00), miniaturization, and commercial viability (53).

Utilizing lateral flow principles, HPV-16/18 DNA hybridizes with

probes in a rapid-flow zone, forming circular structures that bind

AuNPs (~40nm, Spherical)-polydopamine (PDA). Light irradiation

triggers AuNP-mediated photothermal conversion, intensifying

thermal response while diminishing photocurrent. Subsequent

fluid migration to a slow-flow zone enables CRISPR-Cas12a-

mediated DNA cleavage and HPV fragment release, reversing

signals (Figure 4) (53). This system detects HPV-16/18 DNA

within 30 minutes with high specificity (LOD: 0.21pM and

42.92pM, respectively) (53). However, Lin’s sensor is susceptible

to temperature, salt concentration, and reaction time variations due

to pre-hybridization nucleic acid cleavage. These factors exacerbate

electrical signal transduction limitations, including single-molecule

counting inability. To overcome this, Jia and team integrated dark-

field microscopy (DFM) imaging, circumventing signal dependency

while employing synergistic sedimentation (SynSed) to minimize

nanoparticle diffusion (~15nm, Citrate-reduced) (54). This

optimized system achieves a LOD of 10 fM.

Beyond HPV-16 and HPV-18, other high-risk HPV types

(31, 56, 59, 68) also contribute to cervical cancer development

(35). To address this, platforms incorporating MY11 probes targeting

conserved regions of the HPV L1 gene have been integrated with

AuNPs-doped detection systems. AuNPs amplify current-

voltammetric signals generated by minor nucleotide variations

within the L1 conserved regions of HPV-16/31/33/45/58, enabling

the construction of HPV genotyping profiles (51). Conversely, an

alternative strategy anchors multiple recognition probes within a

photoelectrochemical biochip array (PEBA) platform composed of

TiO2@AuNPs composites (52). This highly integrated chip-based

format achieves an exceptionally low LOD of 0.1 copies/mL,
demonstrating high concordance with clinical results (52).
2.1.3 SERS detection based on AuNPs
SERS surpasses electrochemical biosensors in AuNPs-based

serological diagnostics by circumventing electrode constraints. As

Table 3 shows, platforms utilize: 1) sharpened AuNPs geometries to

intensify electromagnetic hotspots, and 2) ordered array chips to
Frontiers in Oncology 05
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enhance spectral reproducibility (55–58). However, significant LOD

variability exists (e.g., 191.73 fM vs. 10 fM for SCCA in serum) (55,

58), likely stemming from AuNPs morphology and Raman reporter

differences (Figure 5).

SERS and Surface Plasmon Resonance Imaging (SPRi) are

increasingly favored for cervical cancer biomarker detection

(Table 3). Yifan and team developed a dual-mode SPRi/SERS

biosensor with a polyA capture probe/target miRNA/AuNPs-

enhanced probe sandwich architecture (60). This platform

concurrently detects miRNA-21/124/143 on a single chip (60).

Target hybridization forms ternary complexes where AuNPs

enhance SPRi via refractive index modulation while generating

SERS hotspots through LSPR (60). Dual-signal redundancy

reduces false positives (serum recovery: 90.0–100.2%) (60). This

high-throughput platform provides dual-verified nucleic acid

detection with clinical utility.

The spatial arrangement of AuNPs in SERS sensors critically

determines analytical outcomes. Xingkang et al. engineered a

nanoscale monolayer film of uniform AuNPs (83 ± 6nm) to

generate evenly distributed dense hotspots, overcoming the

random hotspot distribution characteristic of conventional
Frontiers in Oncology 06
plasmonic colloidal solutions (64). This design prevented

heterogeneous electromagnetic signals arising from nanoparticle

aggregation while enhancing SERS signal reproducibility and

sensitivity (64). Furthermore, integration of CD63 nanoflares with

AuNPs created supplemental hotspots that amplified SERS intensity

by 4.1-fold (64). The resulting platform exhibited linear detection of

cancer exosomes from 1×106 to 2×108 particles/mL with a limit of

detection (LOD) of 4.7×105 particles/mL (64).

Artificial intelligence enables more efficient mining of the

massive data generated by AuNP probes in SERS sensing analysis,

forming the foundation for low-cost nonspecific analysis. Hongmei

and team established that 10 ppm serum prevents AuNPs

encapsulation while enhancing dispersion homogeneity (63).

After screening lasers, they selected 785 nm and 633 nm

excitation (excluding 532 nm due to fluorescence interference),

achieving 0.9609 spectral cosine similarity at 10 ppm (63). Clinical

validation with 36 sera (24 healthy/12 cancer) identified differential

peaks at 1201 cm−¹ and 1312 cm−¹. PCA achieved complete group

separation, establishing the first standardized SERS reference library

for cervical cancer sera. This methodology provides a robust

foundation for clinical SERS translation (63).
FIGURE 3

Mean ATR-FTIR spectra (baseline corrected and min/max normalized) of control cells and after interaction between SNA biosensors and (A) SiHa;
(B) HeLa; (C) C33A; and (D) primary fibroblasts (44).
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Meanwhile, this simultaneously enables unsupervised recognition

of cervical cell pathology through AI analysis of non-functionalized

gold nanoparticles (nfGNPs). Karunakaran et al. implemented

support vector machine (SVM) algorithms to achieve high-

precision classification of NRML/HSIL/CSCC specimens (94% ±

0.73% accuracy for single-cell analysis), markedly improving post-

PCA specificity with ROC-validated diagnostic progression (AUC

>0.98) for cervical lesion stratification (61). In contrast, Diao et al.

adopted a PCA-LDA fusion strategy (62). Following Savitzky-Golay

filtering with airPLS background correction and min-max

normalization, PCA reduced spectral dimensions to 46 principal

components retaining 95% of the variance (62). LDA then

compressed these into two discriminative factors. This hierarchical

approach resolved non-overlapping 95% confidence ellipses observed

under singular methods and attained 91.1% accuracy in

differentiating exosomes across H8, HeLa, and MCF-7 cell lines

(62). The model demonstrated robust diagnostic efficacy, with

AUCs ranging from 0.93 to 0.99, and maintained 93.3% overall

accuracy in clinical validation (62). It perfectly classified breast and

cervical cancer serum exosomes while correctly identifying 80% of
Frontiers in Oncology 08
healthy samples. This established a non-invasive framework for

SERS-driven early cancer detection (62).

2.1.4 AuNPs-enabled innovative imaging
strategies

Imaging is vital for non-invasive cervical cancer diagnosis.

Tumor-targeting ligand-functionalized AuNPs (e.g., folic acid,

oligotyrosine/RGD/NLS peptides) serve as effective contrast

agents (65). The tumor microenvironment further enhances

AuNPs (50.3 ± 1.1nm, Citrate-reduced, spherical) accumulation,

where acidic pH triggers hydrolysis of citraconic anhydride linkages

in AuNPs-doxorubicin (DOX) complexes (66).

Radioiodinated AuNPs serve as contrast agents for clinical

imaging (MRI/US/CT/PET) (29). Min and colleagues engineered

pH-responsive theranostic AuNPs (50.3 ± 1.1nm, Microwave-

assisted synthesis, spherical) with PEGylated surfaces and citraconic

anhydride-linked DOX (66). At pH 5.5, linker hydrolysis triggers

DOX release and electrostatic aggregation (35-nm UV-Vis redshift;

TEM-confirmed), amplifying imaging signals (66). Radioiodination

achieved 35.4% labeling efficiency, with PET showing 1.37%ID/g
FIGURE 4

Detection steps and interactive signal change process in the (A) initial state, (B) the DNA conformational change state, and (C) CRISPR-Cas12a
activation state. (D) Schematic diagram of the proposed lateral flow biosensor. (E) Signal amplification process of the CRISPR-Cas12a-driven dual-
readout lateral flow biosensor. (F) Feasibility analysis for the self-assembly process of the annular DNA and trans-cleavage instinct of CRISPR-Cas12a
(53). (copyright permission obtained).
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TABLE 3 Research on the detection of cervical cancer (SERS).

Surface
Clinical
sample

LOD Linear range Reference
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ys on monolayer
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negative serum(30)
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in slide detection,
Cervical smear – – (59)
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C metabolomics.
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No Particle size Targe functionalization
of AuNPs

Highlights of Study

1 ~600nm SCCA; OPN –
Ag-AuNFs bimetallic nanocomposite
headed tip nanostructures

2 ~45nm B7-H6 Covalent bonding
Zwitterion-modified stealth sensor w
AuNPs

3 ~20nm CpG methyltransferase –

Site-selective assembly of AuNP arra
SiO2 arrays yielding Au@SiO2 array
signal amplification strategy

4 ~20nm SCCA; CEA –

Cubic Ag-Au bimetallic nanoparticle
Au@SiO2 array substrates;Pump-free
pump/hydrophilic-treated channels;M
parallel auto-detection

5 70~80nm p16;Ki-67 Covalent bonding
AuNS@Ag nanoflowers enable 20-m
bypassing ICC staining.

6 ~20nm miRNA21/124/143 –
SPRi: AuNP-helper probes enhance
Triplex Raman reporters hybridize w

7 40~45nm – –

SERS on single cells/spheroids/DNA
(PCA/LDA/SVM) for cervical cancer
validated by cytology/HPV PCR/UFL

8 ~80nm – –

“Hotspot”-rich 3D plasmonic AuNP
LLISA-assembled monolayers triple-
optimized with AI.

9 ~25nm – –
A reliable detection protocol was est
highly stable and reproducible serum

10 83 ± 6nm sEV –

Detection of cancerous exosomes usi
AuNPs nanosheets as SERS substrate
CD63 nanoflares
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tumor uptake at 2h and >38% cancer cell binding (66). Photoacoustic

imaging (PAI) generates biological images by detecting photon

emissions from contrast agents. AuNPs exhibit exceptional PAI

properties due to high photothermal conversion efficiency (66).

The Au-UCNP-PEG2k nanocomposite serves as both

photodynamic therapy agent and multimodal imaging platform

(~5nm, Hydrothermal method, spherical) (67). In vivo studies

show superior PAI performance under near-infrared region (NIR)

irradiation compared to bare AuNPs, functioning as a trimodal

contrast agent for comprehensive tumor diagnostics (Figure 6) (67).

AuNPs enhance lesion identification in laboratory imaging (68).

Under DFM, FA-targeted AuNPs@Ag@AgI nanostructures

internalized by HeLa cells enable precise spatial localization via

amplified light scattering (68). Simultaneously, AuNPs’ plasmonic

properties mediate surface energy transfer to fluorescent donors

(e.g., TAP, PHEN), inducing controlled fluorescence quenching

within cells, supporting development of real-time imaging agents (68).
2.2 Treatment

2 .2.1. AuNPs-based drug delivery systems
AuNPs enable targeted cancer cell eradication via drug and ligand

conjugation. Therapeutic payloads encompass Methotrexate (MTX)

(69), DOX (66), Paclitaxel (PTX) (70), and luteolin (71). Common

cervical cancer targeting ligands comprise Folic Acid (FA),

Hyaluronic Acid (HA), and AS1411 aptamer (Table 4). Emerging

agents show complementary potential (72). The investigational

compound IQ activates TLR7/8-mediated immune responses and

NF-kB-dependent apoptosis. When complexed with nucleolin-

targeting AS1411 aptamer on AuNPs (IQ-AS1411-AuNPs), MTT

assays demonstrated significantly reduced HeLa cell viability (72).

Beyond ligand-mediated targeting, tumor microenvironment

(TME) characterized by hypoxia, low pH, elevated GSH, and ROS,
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directs AuNPs accumulation. A TME-responsive platform bypasses

ligand functionalization, exemplified by GSH-cleavable disulfide-

linked AuNPs (~11nm, Brust-Schiffrin, spherical) achieving 98.7%

MTX encapsulation for cervical cancer (69). Similarly, DOX-

conjugated AuNPs utilize pH-labile hydrazone bonds that

hydrolyze selectively in acidic TME conditions, enabling clinically

translatable targeted therapy (66, 73).

Toxicity and complexity concerns around chemical stabilizers

(e.g., 3MPA/3MPS/PVP) drove Kamini et al. to develop a novel

PTX delivery platform (70). Their method synthesizes PTX-AuNPs

in one step by adding silver ions to PTX/gold ion suspensions under

sunlight (Figure 7), where PTX acts as both therapeutic payload and

reducing/stabilizing agent (70). This eliminates pre-synthesized

AuNPs and exogenous stabilizers, reducing costs while bypassing

conventional drug-loading, though the photochemical mechanism

requires further study (70).

2.2.2 Intrinsic antitumor effects of AuNPs
AuNPs exert intrinsic cytotoxicity against cervical cancer cells via

apoptosis modulation (72, 74). Concentration-dependent upregulation

of pro-apoptotic markers (BAX, p53) and downregulation of anti-

apoptotic factors (Bid, BCL-2) occur with concomitant caspase

activation (75). This cascade initiates from AuNPs-induced

intracellular ROS elevation, confirmed by flow cytometry showing

increased cytoplasmic ROS and mitochondrial superoxide production

(76). AuNPs generate ROS partly through intrinsic catalytic activity,

converting H2O2 into H2O and O2 while enhancing catalase activity to

modify the tumor microenvironment via hypoxia alleviation and

immune potentiation (77). Additionally, AuNPs elevate superoxide

dismutase (SOD) activity, causing H2O2 accumulation that activates

caspase-dependent signaling pathways to induce cancer cell apoptosis

(77). AuNPs’ cytotoxicity against cervical cancer cells depends critically

on nanoparticle diameter and subcellular localization (78). Dae et al.

found extracellular monodisperse AuNPs prolong HeLa cell mitosis
FIGURE 5

(A) High magnification SEM image of Cube-AuNPs (58); (B) High magnification SEM image of AuNF (55). (copyright permission obtained).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1664340
without inducing apoptosis by forming division-disrupting nano-

barriers. By contrast, 111nm extracellular AuNPs trigger ROS-

mediated cell death with cytokinesis arrest, while 83nm particles

cause transient M-phase delay followed by normal cytokinesis and

G1-phase entry (78).

2.2.3 High-efficiency photothermal tumor
ablation utilizing AuNPs

AuNPs act as efficient photothermal transducers, enabling

precise tumor ablation under targeted guidance (21). Recent

refinements include S-nitrosothiol-modified AuNPs releasing

nitric oxide during PTT to simultaneously soften tumor

extracellular matrix and generate mitochondrial reactive nitrogen

species for enhanced cytotoxicity (79). Multibranched gold

nanocrystals further outperform spherical or rod-shaped

counterparts in photothermal conversion efficiency, confirming

morphology as critical design parameter (21). PDT employs

photosensitizers to generate cytotoxic ROS but faces limitations

including toxicity and poor cellular uptake. Armin and team further

demonstrated that AuNPs functionalized with protoporphyrin IX

and FA via mercaptohexanol linkers enhance both cancer selectivity

and cytotoxic efficiency (80).

2.2.4 Radiosensitization effects of AuNPs in
radiotherapy

AuNPs enhance cervical cancer radiotherapy efficacy through

their high atomic number (Z = 79), which dramatically exceeds

biological elements. This promotes X-ray/g-ray absorption,

generating amplified secondary electron fluxes that directly damage
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tumor DNA (81). Radiation-activated gold nanorods (AuNPs, 54.6 ±

7.11nm, spherical) further catalyze water decomposition, producing

cytotoxic ROS (82). Functionalized variants concentrate radiation

energy within lesions. Radiosensitization varies significantly with

geometry: AuNRs surpass spheres (83). Nanocubes deposit 18.5%

(18 MV) to 23.1% (6 MV) higher electron doses than nanospheres

within 1.1 μm radii, achieving maximum dose enhancement at 6

MV (84).
3 AuNPs in ovarian cancer

3.1 Diagnosis

3.1.1 Colorimetric detection utilizing AuNPs
Colorimetry enables rapid ovarian cancer biomarker screening

but suffers from limited resolution. Eda et al. circumvented this via

smartphone-integrated analysis leveraging mobile imaging hardware

advances (~40nm) (85). Alternatively, Hao et al. engineered Mg/Fe-

layered double hydroxide nanoflowers as high-density AuNPs

(~10nm, Rapid injection synthesis) carriers for lateral flow

immunoassay (LFIA) (86). These porous templates achieve

ultrahigh AuNPs loading, lowering HE4 detection to 50 pM (86).
3.1.2 AuNPs-engineered electrochemical
biosensors

CA125 is the clinical gold standard for ovarian cancer serology.

Current AuNP-based detection platforms vary primarily in electrode

composition and surface modification strategies(Table 5), integrating
FIGURE 6

PAI of before (a) and after (b) injection 200 µg/mL of Au-UCNPs-DSPE-PEG2K in Balb/c mice (67).
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AuNPs with carbon nanomaterials (graphene, CNTs), polymers

(chitosan, polydopamine, PAMAM), or novel frameworks

(MXenes, MOFs) to enhance nanoparticle density, antigen capture

efficiency, and electron transfer kinetics. The integration of MOFs

with AuNPs achieves reproducible CA12-specific recognition,

demonstrating a RSD of 2.98% in repeatability experiments (87).

Zahra’s MXene/GQD/AuNPs composite achieves a record LOD of

0.075nU/mL (88). DLS sensors offer the broadest linear range (5fg/

mL~50ng/mL) for high-dynamic CA125 quantification (89), while

AuNP-DNA fluorescence quenching enables continuous biomarker

monitoring. Near-field communication (NFC) integration further

streamlines data acquisition, enhancing clinical utility (90).

Beyond CA125, AuNP-based sensors target biomarkers including

p53, HE4, exosomes, and DNAmethylation (91, 103–106). Following

Weiwei et al.’ s MOF-AuNPs for CA125 (95), Xu and team developed

a sandwich electrochemical immunosensor using synergistic signal

amplification between Prussian blue (PB) and thiolated ionic MOF

composites (TIMO+F-KB@AuNPs) for HE4 quantification (107).

The platform employs TIMO+F-KB@AuNPs as conductive sensing

substrates for capture antibody (Ab1) immobilization, while PB

nanoparticles carry detection antibodies (Ab2). HE4 binding forms

an Ab1-HE4-Ab2-PB complex, generating electrochemical signals

proportional to concentration (linear range: 0.1~80ng/mL, LOD:

0.02ng/mL) (107). Demonstrating high selectivity, reproducibility,

and stability with 97.10~114.07% serum recovery, it enables early

ovarian cancer diagnosis (Figure 8). Separately, superparamagnetic

CoFeB enhances AuNPs-based p53 detection (LOD: 0.006 U/mL)

(104). Furthermore, exosomes predict ovarian cancer chemotherapy

response. Meshach and team developed a cysteine-functionalized

AuNP (Au-cys) biosensor using SERS to simultaneously capture

cisplatin and small extracellular vesicles from biological samples,

enabling concurrent early detection and treatment efficacy

assessment (102).

AuNPs facilitate ovarian cancer diagnosis via urine, exhaled gas,

and cyst fluid analysis (108, 109). Thomas and team pioneered

nanopore sensing where AuNPs capture 13 cysteine-containing

urinary peptides within a-hemolysin nanopores, generating

distinct current signatures: stepwise reductions for small peptides

versus polymorphic fluctuations for larger ones, enabling prolonged

single-molecule characterization (108). AuNPs-based platforms

also detect microbiome-derived Volatile organic compounds

(VOCs) in exhaled breath with 82% screening accuracy (110).
3.1.3 AuNPs-enabled innovative imaging
strategies

AuNPs drive transformative ovarian cancer imaging advances (19).

Dheeraj and team engineered FA-targeted, hydrazinonicotinamide-

chelated AuNPs enabling efficient 99mTc radiolabeling for tumor-

specific single-photon emission computed tomography (SPECT)

contrast (111). Further functionalization yielded GO/SPIO/AuNP

composite sheets integrating PTT, radiotherapy, and MRI within a

unified theranostic platform (112).

MARS spectral photon-counting CT (SPCCT), though primarily

preclinical, enables material-specific imaging via energy-dependent X-

ray attenuation. Dhiraj et al. functionalized AuNPs with LHRH via
T
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PEG tethers for ovarian cancer targeting (113). Intraperitoneal

administration in murine models achieved selective accumulation in

peritoneal tumors (0.46~2.12ng/mg, ICP-MS). While current SPCCT

sensitivity limited absolute quantification, it mapped gold distribution

patterns (113). Increased LHRH density (3000~15000molecules/

particle) enhanced targeting while maintaining >60% metabolic

activity at therapeutic concentrations (12~30mg/mL), establishing a

novel theranostic strategy (113).

Functionalized AuNPs support ovarian cancer-specific

detection via fluorescence lifetime imaging (114), dark-field (115),

and confocal Raman microscopy (116). SERS imaging further

enables chemoresistance prediction and survival outcome

assessment (117).
3.2 Treatment

3.2 .1. AuNPs-based drug delivery systems
AuNPs enable targeted ovarian cancer drug delivery, enhancing

dispersion or internalization of agents like linalool, cetuximab,

paclitaxel, let-7a miRNA, and nidocarcinoma-derived factor(Table 6).

DOX-AuNPs show superior tumor growth inhibition versus free

doxorubicin while overcoming payload leakage limitations (118).

Engineered for MICU1-targeting siRNA delivery, they achieve >85%

silencing efficiency via lysosome evasion, addressing key shortcomings

of conventional carriers (119).

Antibody or peptide-conjugated AuNPs enable precise ovarian

cancer targeting (128). Edison and team engineered FSH33-AuNPs
Frontiers in Oncology 13
covalently conjugated to tumor-suppressive miR-145 (122). This

system protects miR-145 from degradation, mediates selective

cancer cell internalization, and inhibits proliferation, migration,

anchorage-independent growth, and VEGF secretion. AuNPs

enable co-delivery of multiple therapeutic agents, as demonstrated

by Tommaso et al. who engineered miR-200c and trastuzumab (TZ)-

loaded nanoparticles that dual-target critical pathways driving

SKOV3 cell survival and proliferation in vitro, overcoming TZ

resistance while potentially improving therapeutic outcomes for

HER2-positive ovarian cancer (126). Beyond antibody/peptide

targeting, TME and hyperthermia trigger drug release from

AuNPs,123. Reza et al. engineered antibody-conjugated magneto-

gold composites (TXT@Fe3O4/PVA/Au-SORT) for ovarian cancer

(28). Photothermal AuNPs heating dissociates the PVA matrix,

achieving precise TXT release (94.4 ± 4.1% over 180 min in TME).

Ca(OH)2 pretreatment combined with TXT therapy enhanced

intratumoral accumulation, inhibited migration, and induced DNA

damage, achieving 78.3% tumor suppression with reduced systemic

toxicity (Figure 9).

Notably, AuNPs morphology critically influences therapeutic

outcomes: anisotropic AuNPs@CSA-131 exhibit enhanced

cytotoxicity against ovarian carcinoma versus spherical counterparts

(124). Furthermore, AuNPs modulate drug presentation in vivo,

facilitating theaflavin oxidation to cytotoxic quinone derivatives

(125). Regarding therapeutic side effects, The triple-modality

approach (ultrasound/AuNCs/cisplatin) overcomes cisplatin

resistance in resistant ovarian cancer models, suggesting reduced

chemotherapy side effects with translational potential (129).
FIGURE 7

One pot synthesis of paclitaxel functionalized gold nanoparticles and their anticancer studies (70). (Copyright permission obtained).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 5 Sensor design scheme for detecting CA125 based on AuNPs.

Surface
D Linear range Reference

pg/mL;1.58 pg/mL 0.005~500 ng/mL (91)

U/mL 0.0005~75 U/mL (92)
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5 U/mL;7.5 pg/mL 0.01~2.0 U/mL;0.01~0.9 ng/mL (94)

fg/mL 5 fg/mL~50 ng/mL (89)

U/mL 0.5~50.0 U/mL (90)

6 pg/mL 0.01 pg/mL~10 ng/mL (95)

U/mL 10~800 U/mL (96)

5 nU/mL 0.1 mU/mL~1 U/mL (88)

9 pg/mL; 0.058 pg/mL 1~100 pg/mL (97)

pg/mL 5~100 pg/mL (98)

5nU/mL 10~70nU/mL (87)
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AuNPs

Highlights of Study Clinical sample LO

1 – – Cu single-atom/AuNPs modified electrode Artificial serum 0.37

2 ~14nm Thiolation; Covalent bonding
PAMAM/AuNPs and 3D rGO-MWCNTs modified
electrode;Succinic anhydride-modified chitosan

Artificial serum 6 m

3 ~15nm Thiolation
In-situ grown AuNPs/GaN Schottky junction via H2O2

etching;AuNPs size-controlled Fermi level/charge transfer
efficiency

Serum(4) 0.3

4 ~13nm –
Target-aptamer binding modulated AuNPs aggregation for
fluorescence on/off;

Serum(4) 0.01

5 ~13nm Thiolation Dual-signal detection: DLS particle size and fluorescence; Serum(2) 1.1

6 – Thiolation; Covalent bonding
Microporous carbon modified SPCE;Smartphone-based
NFC signal acquisition;

Serum(6) 0.4

7 ~4.5nm –
TDN-enhanced TMSD with AuNPs/Ru/ZIF-MOF signal
probes;

Serum(4) 0.00

8 122 ± 11nm Thiolation
AuNPs modified FTO electrode;Oligonucleotide
recognition elements (antibody-free);

Serum(3) 2.6

9 – – MXene-GQD/AuNPs modified electrode Artificial serum 0.07

10 – Thiolation; Covalent bonding AuNPs/RGO/PTH-modified DSPCE electrode Artificial serum 0.06

11 ~70nm – AuNPs and DES-synthesized PTB co-modified SPCE Artificial serum 1.20

12 – –
Electrodes modified with MOF@AuNPs-based
nanocomposites

Serum 7.18

13 – Thiolation; Electrostatic adsorption

Two biocompatible 2D COFs (EP-TD-COF and
AuNPs@COFBTT-DGMH) effectively preserved antibody
activity and provided a favorable microenvironment,
synergistically enhancing the stability and sensitivity of the
immunosensor

Artificial serum 0.08

14 ~54.61nm –
The hybrid nanostructure of a-MnO2 nanorods and
AuNPs enhanced conductivity and sensitivity

Serum 9.82

15 – – CuCo-ONSs@AuNPs nanocomposite-modified electrode Serum(6) 39n
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A biosensor capable of simultaneously interacting with
sEV and CDDP was developed, enabling the simultaneous
quantification of sEV and CDDP using SERS, thereby
overcoming the heterogeneity and protein interference
issues in SERS analysis of sEV
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negative serum(20)

–
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3.2.2 Intrinsic antitumor effects of AuNPs
AuNPs inhibit ovarian carcinoma invasiveness by targeting key

oncogenic pathways: impeding MAPK signaling, suppressing

EMT-associated proteins, and disrupting the IGFBP2/mTOR/

PTEN autoregulatory axis, downregulating IGFBP2, suppressing

PI3K/AKT/mTOR activation, and reactivating PTEN (130, 131).

Current understanding posits that AuNPs disrupt multicellular

TME communication (cancer cells, cancer-associated fibroblasts,

endothelial cells), downregulating pro-tumorigenic cytokines and

growth factors (132, 133). Specifically, they reduce CC-secreted

fibroblast-activating proteins (TGF-b1, PDGF, uPA, TSP1) and

inhibit tumor angiogenesis by blocking VEGF-VEGFR2 signalling

(133, 134). This positions AuNPs as key tools for elucidating and

disrupting pro-tumorigenic crosstalk. AuNPs synchronize

disulfidptosis and ferroptosis in ovarian cancer by modulating the

SLC7A11/GSH/GPX4 axis (135). The composite system exploits

AuNPs’ glucose oxidase-like activity and Ap-mediated GLUT1

downregulation to induce metabolic crisis (135). Glucose

deprivation limits NADPH replenishment, disrupting cystine/

cysteine conversion and resolving the disulfidptosis-ferroptosis

execution paradox. Concurrently, iron-based components deliver

Fe²+ while AuNPs-catalyzed glucose oxidation self-supplies H2O2,

amplifying Fenton reactions and ferroptotic death (135).

Beyond influencing signalling pathways, AuNPs enhance nuclear

rigidity via perinuclear laminA/C overexpression, impeding cancer cell

migration (136). Concurrently, they induce ROS-mediated apoptosis/

autophagy, trapping cells in G0/G1 phase (137). Anisotropic AuNPs

exert enhanced anti-migratory effects versus spherical counterparts

(138). Analogous to cervical cancer applications, morphological

engineering of AuNPs enhances their cytotoxic efficacy against

ovarian cancer cells. Irfan et al. attribute this phenomenon to

elongated-branched antibody-functionalized AuNPs effectively

evading serum protein corona entrapment, thereby facilitating

optimal aptamer binding to HER2 receptors on cancer cell surfaces

(139). This mechanism induces significant cytotoxicity in HER2-

overexpressing SKOV3 cells through targeted apoptosis initiation.
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3.2.3 High-efficiency photothermal tumor
ablation utilizing AuNPs

AuNPs enable synergistic chemo-photothermal therapy for

ovarian cancer (127, 140). Yiting et al. engineered a genetically

fused HSA nanocarrier (RHMH18@AuD) self-assembling via

histidine hydrophobicity to encapsulate DTX while forming

ultrasmall AuNPs through biomimetic mineralization (141). This

80-nm platform prevents HSA denaturation and reduces inorganic

nanoparticle toxicity. MMP-2 cleavage at tumors releases RGD-

HSA@Au (mediating photothermia) and His@DTX micelles, with

acidic TME-triggered DTX release. The system demonstrated

targeted cellular uptake, significant tumor suppression, and 100%

survival at 70 days versus complete mortality in monotherapy

groups by day 62, establishing a high-efficacy, low-toxicity

therapeutic strategy.

Diverse AuNPs composites serve as photothermal agents for

ovarian cancer PTT. rGO-AuNPs-PEG exhibits strong SERS signals,

NIR-II PA signals, and high photothermal efficiency in tumours under

1061 nm laser irradiation (142). Similarly, silica nanocapsules

containing aggregated AuNPs yolk-shell structures (aAuYS)

demonstrate enhanced photothermal effects with 808 nm laser

exposure (143). Curcumin-incorporated gold nanoshells (Cur-

AuNShs) show efficient photothermal conversion with potential for

selective cancer targeting and treatment. Additionally, AuNPs

morphology influences PTT efficiency (144). For instance, dumbbell-

shaped Au-Fe3O4 elevate thermal conversion efficacy (145).

To overcome resolution limitations in image-guided PTT,

Annan et al. developed ultra-small GnRHR-targeted AuNDs (Au-

GRHa, 3.2nm) (146). Prepared via electrochemical displacement

and ligand conjugation, these nanoconstructs enable dual-modal

fluorescence/CT imaging with superior CT contrast (attenuation

coefficient: 5.153cm²/g) and renal clearance. GnRHa targeting

boosted SKOV3 cellular uptake by 76% versus non-targeted

counterparts. Under 808 nm irradiation, localized temperatures

reached 50 °C within 5 min, inducing apoptosis via membrane

disruption and protein denaturation. In vivo peak tumor
FIGURE 8

Shows the principle of the prepared electrochemical biosensor for fast detection of HE4 (107). (Copyright permission obtained).
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accumulation occurred at 2 h, with subsequent PTT significantly

suppressing tumor growth without hemolysis or toxicity,

establishing a precise image-guided therapeutic platform.

PDT and PTT act synergistically against ovarian cancer. A

multifunctional nanomicrogel (Au@MSN–Ter/THPP@CM@

GelMA/CAT) demonstrates concurrent photodynamic efficacy

(650nm) and photothermal ablation (980nm) (147).

3.2.4 Radiosensitization effects of AuNPs in
radiotherapy

AuNPs exhibit radiosensitizing effects, exemplified by

thioglucose-bound nanoparticles (Glu-GNPs) enhancing ovarian

cancer radiotherapy (148). The GO-SPIO-Au nanoflower platform

integrates graphene oxide (NIR-PTT), AuNPs (radiosensitization),

and superparamagnetic iron oxide (MRI) for image-guided therapy

(112). In murine models, combined PTT/RT yielded 1.85× and

1.44× higher efficacy than PTT or RT alone, respectively. Kinga

et al. developed a novel cancer therapy combining antibody-drug

conjugates (ADCs) with b-emitting ¹98AuNPs conjugated to

trastuzumab emtansine (T-DM1), demonstrating specific HER2

affinity and synergistic efficacy against HER2-overexpressing

cancers at low T-DM1 doses (0.015~0.124mg/mL) with 10–20
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MBq/mL radiation (149). Continuous 7-day treatment (20 MBq/

mL+0.031mg/mL T-DM1) disrupted 3D tumor spheroids,

suggesting potential for HER2-positive breast/ovarian cancer

treatment despite preferential suitability of inorganic

nanoradiopharmaceuticals for localized delivery (Figure 10) (149).
4 Integrated diagnostic and
therapeutic platform

AuNPs serve as pivotal components in multimodal theranostic

platforms owing to their distinctive physicochemical properties,

enabling visualized precision therapy of pathological lesions.

Diversified therapeutic strategies demonstrate that targeted

accumulation of AuNPs at disease sites generates synergistic

effects, with imaging guidance being critical for maximizing

diagnostic-therapeutic efficacy. Current research has developed

functionalized AuNPs-based visualization approaches for

gynecological malignancies. Zhang’s team overcame single-

modality imaging limitations by establishing a PAI/CT/MRI

multimodal system centered on functionalized AuNPs, effectively

addressing the low X-ray attenuation coefficient inherent to
FIGURE 9

Confocal images of the subjected TXT@Fe3O4/PVA/Au nano-therapeutic to the stained cells. Green: HTB76 cancerous, and blue: NIH 3T3 fibroblast
cells (106 DFU), in the presence of the individual TXT, TXT@Fe3O4/PVA/Au (Cargo), and TXT@Fe3O4/PVA/Au-SORT particles (Cargo-SORT) particles.
Cell staining was performed using crystal violet, and incubation was carried out at 37 °C with 95% humidity for 2 hours. Pretreatment was done with
Ca(OH)2@Fe3O4/PVA/Au-SORT particles in the same dosage with the TXT-containing therapeutic (10mg/mL) (28).
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inorganic materials (67). At 200 μg/mL, Au-UCNPs-DSPE-PEG

precisely delineated cervical cancer location, dimensions and

morphological characteristics in murine models, while their

photothermal conversion capability simultaneously enabled

photoacoustic imaging-guided combination photothermal and

photodynamic therapy (67). Beyond physical modalities, AuNPs

function as chemotherapeutic carriers. Taheri et al. employed CT to

monitor TXT@AuNPs distribution for efficacy assessment, yet

single-modality CT proved inadequate for tracking drug release

kinetics (28). Wang’s team addressed this through multimodal

imaging (PAI/FL/CT) for real-time surveillance of drug-loaded

AuNPs. Paclitaxel release induced fluorescence signal fluctuations

due to AuNP surface restructuring while accelerating nanoparticle

metabolic clearance, consequently reducing photoacoustic intensity

in lesions (123). For quantitative release monitoring, Yim’s team

innovatively leveraged AuNPs’ low X-ray attenuation property (66).

Electrostatic adsorption-triggered aggregation of radioiodinated

AuNPs, occurring through opposite surface charges after DOX

release, significantly enhanced lesion signals on PET-CT imaging

(66). These aggregates maintained prolonged high-signal states due

to extended half-life, enabling sustained dynamic observation.
5 Challenges and limitations

Despite being a promising nanomaterial, AuNPs must

overcome several significant barriers prior to broad clinical

adoption for diagnosing and treating gynecological malignancies.

The safety profile of AuNPs represents a modifiable property,

critically dependent on factors such as particle size, synthesis

method, exposure route, dosage duration, and the specific

biological milieu (150, 151). In numerous studies cited above,

AuNPs are often assumed to be chemically inert and stable

materials, particularly when PEG-modified, exhibiting negligible

toxicity at certain doses. Merely 28 investigations to date have

employed MTT assays and related techniques to evaluate the

cytotoxicity of novel functionalized AuNPs toward normal cells

or animal models. In the clinical context of managing gynecological

malignancies, chemotherapy is typically a protracted process (152).

Repeated administration of functionalized AuNPs during such

long-term treatment carries a significant risk of inducing

antibodies against the nanoparticle surface characteristics. This

immunogenic response could potentially compromise the

targeting efficacy of AuNPs and disrupt normal immune function.

Furthermore, diverse AuNPs synthesis and functionalization

strategies can leave toxic chemical residues on the particle

surfaces. These modifications also alter the chemical properties

and size of the AuNPs, potentially hindering renal clearance and

leading to progressive bioaccumulation. Additionally, compared to

free drugs, administering chemotherapeutic nanoparticles during

ovulation increases ovarian toxicity and reduces fertility (153).

Therefore, the menstrual cycle warrants consideration in the

design and implementation of AuNPs therapies for female
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patients. These concerns underscore the necessity for further

comprehensive evaluation of AuNPs systemic safety in humans

and detailed investigation into nanoparticle pharmacokinetics to

fully assess their absorption, distribution, metabolism, and

excretion processes.

Addressing AuNP safety challenges requires systematic

pharmacokinetic studies (absorption, distribution, metabolism,

excretion) in animal models to define critical thresholds for

nanoparticle-induced irreversible organ damage, enabling

establishment of dimensionally-, morphologically-, and synthesis-

method-dependent safety dosage windows across varied

administration regimens. Green synthesis strategies utilizing novel

catalysts demonstrate promising toxicological safety profiles, potentially

representing key advancement pathways (75, 76). Multifunctional

AuNPs may shorten chemotherapy cycles while combined PTT and

PDT therapies could circumvent antibody responses from chronic

treatment (127, 141). Nevertheless, large-scale animal validation

remains indispensable; current maximum reported cohort sizes of 28

subjects prove insufficient, particularly given physiological disparities

between rodent and human systems, necessitating expansion to rabbit

and non-human primate models. These imperatives collectively

emphasize comprehensive assessment of systemic AuNP safety in

humans and rigorous pharmacokinetic investigation.

The diagnostic and therapeutic efficacy of AuNPs requires

further validation. The majority of studies demonstrating

potential benefits are confined to cell lines or small animal

models, overlooking the substantial complexity of human

physiology. In cervical cancer diagnostics, merely 15 of 34 peer-

reviewed investigations disclosed clinical sample accuracy (n=9) or

spiked serum analyte recovery (n=6), with two HPV detection

reports achieving >95% accuracy in cohorts exceeding 100

specimens. Regarding therapeutic applications, only 2 of 15

cervical cancer publications documented AuNP efficacy in murine

models. Similarly, among 28 ovarian cancer diagnostic analyses, 18

provided clinical validation data (n=4) or serum recovery metrics

(n=14), though clinical specimens numbered ≤10 per analysis.

Whereas 21 of 28 therapeutic investigations asserted significant

antitumor outcomes, merely 9 confirmed efficacy in animal models

with quantification parameters undisclosed. Humans are

continuously exposed throughout life to diverse natural and

anthropogenic nanoparticles. Such environmental nanoparticle

contamination constitutes a significant exogenous interference

factor, potentially impeding the function of administered AuNPs.

For instance, titanium or iron oxide nanoparticles can inhibit

cancer cell uptake of AuNPs (154). Beyond these exogenous

factors, endogenous human variables also critically influence

AuNPs performance. Evidence indicates that elevated cholesterol

levels and specific lipid ratios disrupt the delivery capacity of DOX-

AuNPs systems (155). Even in Phase III clinical trials, AuNPs-based

drug delivery systems demonstrated suboptimal recognition

efficiency for ovarian cancer, with the majority of intratumoral

nanoparticles becoming either trapped within the extracellular

matrix or sequestered by perivascular tumor-associated
frontiersin.org

https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1664340
macrophages (156). Compounding these issues, many studies

report human validation based on single-digit sample cohorts,

lacking comparison with healthy individuals or non-gynecological

cancer patients, and frequently omit detailed accuracy data

(Supplementary Material 1).

Subsequent investigations must validate AuNPs’ true

diagnostic-therapeutic efficacy through large-scale animal models

and clinical trials, with priority assessment of their resistance to

complex biological interferences including protein corona

formation and lipid adsorption. Although functionalized AuNPs

demonstrate anti-interference capabilities in select studies, the

disparity between simulated laboratory conditions and

physiological environments necessitates rigorous in vivo

verification. Novel non-spherical geometries such as high-aspect-

ratio nanostars effectively circumvent protein corona shielding

while enhancing tumor targeting precision (139). Notably,

nanoparticles within the 10~20 nm size range exhibit optimal

performance, yet synthesis-dependent variations in AuNP

dimensions/morphologies demand standardized evaluation

frameworks to enable cross-study comparability and collaborative

advancement. Furthermore, addressing prevalent data limitations

stemming from insufficient clinical samples requires establishing

multicenter validation frameworks. AuNPs’ therapeutic potential

should transcend conventional drug delivery roles toward

multimodal theranostic platforms, exemplified by triple-modality

regimens integrating PTT, controlled chemotherapeutic release,

and radiosensitization, with concurrent treatment monitoring via

PAI and PET-CT. While four diagnostic investigations have

incorporated machine learning for enhanced SERS-based high-
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throughput chip detection, deep learning applications in medical

image interpretation remain unexplored. Integrating big data

analytics with mobile health technologies could establish

intelligent diagnostic networks to reduce misinterpretation risks.

Finally, the cost implications of AuNPs systems demand serious

consideration. In resource-limited developing nations, economic

constraints remain pivotal in restricting large-scale disease

screening initiatives. Most current studies fail to address the cost

structure of AuNPs-based diagnostic platforms, with only a handful

reporting screening expenses or reusability metrics (157). A

predominant focus on novel materials and intricate architectures,

particularly acute within the domain of AuNPs-designed

electrochemical sensors, often overshadows the underlying

premise of screening: low cost and high accessibility.

Furthermore, AuNPs synthesis methodologies themselves

represent significant cost determinants, compounded by concerns

regarding environmental impact and suboptimal production

efficiency (151). These factors establish cost as a paramount

consideration for the clinical translation of AuNPs technologies.

The convergence of artificial intelligence and low-cost

smartphones offers a significant pathway to reduce expenditures

associated with AuNP-based diagnostic systems, effectively

lowering human resource requirements, time costs, and sample

transport losses. Implementing a three-tier diagnostic network

comprising colorimetric detection units, subject mobile client

devices, and hospital data centres substantially enhances

population screening efficiency. A core advantage of this system

lies in the capacity for AI algorithms to perform localized

processing directly on smartphones, enabling preliminary
FIGURE 10

Microscopic images of the measured control and compound-treated SKOV-3 spheroids (149).
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screening and interpretation of test results; only data indicating

anomalies require transmission to the hospital data centre for

verification, thereby markedly alleviating the healthcare burden in

resource-limited settings. This tiered network fundamentally

transforms the traditional hierarchical “hospital-centric–

healthcare worker–subject” information delivery model. By

empowering subjects with autonomous testing capabilities, it

shifts the paradigm from passive information reception to

proactive health management, significantly improving participant

engagement and adherence. From a technological development

perspective, research efforts should recalibrate their focus

regarding AuNPs: prioritizing material design optimization that

establishes an optimal cost-accuracy balance over the pursuit of

increasingly complex material combinations; directing energy

towards developing scalable, low-power manufacturing processes;

and advancing clinical integration through modular designs that

reduce the overall system cost.

Notably, clinical trials of AuNPs in gynaecological malignancies

remain limited. However, recent human studies across non-

gynaecological cancers, spanning breast cancer, colorectal

carcinoma and cutaneous disorders, demonstrate expanding

clinical evaluation (158–162). These advances confirm that

current implementation challenges are addressable and reveal
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diagnostic and therapeutic benefits warranting further translation

in gynaecological oncology. Collectively, AuNPs systems exhibit

significant potential for enhancing diagnostic accuracy, improving

patient quality of life, and optimizing clinical prognoses. Looking

forward, their unique physicochemical properties position AuNPs

as transformative agents in next-generation gynecologic oncology,

enabling minimally invasive theranostics, real-time disease

monitoring, and personalized treatment regimens. Continued

advancements in nanomaterial engineering, refined targeting

methodologies, comprehensive safety evaluations, and integration

of AI further solidify AuNPs platforms to assume an increasingly

critical and expansive role in future integrated theranostic

frameworks (Figure 11).
6 Conclusion

Clinical management of gynecological malignancies faces

significant challenges, including difficulties in early detection, high

therapeutic resistance, substantial risks of residual disease post-

surgery, and considerable toxicity from conventional radiotherapy

and chemotherapy. These critical limitations demand innovative

technological solutions for precision diagnostics and therapeutics.
FIGURE 11

Current diagnostic and therapeutic approaches utilizing AuNPs in cervical and ovarian cancers, and associated challenges and future prospects.
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Recent advances in nanotechnology provide transformative

momentum for gynecologic oncology, with AuNPs offering

particularly promising strategies due to their tunable dimensions,

morphological versatility, customizable surface functionalization,

and unique optical properties. AuNPs serve as highly sensitive

contrast agents that enhance detection rates for early-stage lesions

and micrometastases. Functionalization with antibodies, peptides,

or aptamers enables precise targeting of therapeutic payloads to

disease sites and facilitates ultrasensitive detection of trace

biomarkers in liquid biopsies. Furthermore, their exceptional

photothermal conversion efficiency and photochemical

capabilities permit concurrent targeted chemotherapy with

spatially precise photothermal and photodynamic therapy at

tumor sites. This integrated theranostic approach positions

AuNPs-based systems to drive a paradigm shift from isolated

interventions toward closed-loop precision management in

gynecologic oncology. Nevertheless, further validation remains

imperative to address clinical translation barriers and long-term

safety profiles.
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Glossary

FDA US Food and Drug Administration
Frontiers in Oncology
PEG Polyethylene glycol
OCT Optical coherence tomography
VIA Visual inspection with acetic acid
LOD Limit of detection
LFA Lateral flow assay
PDA Polydopamine
PEBA Photoelectrochemical biochip array
MLNPs Multilayered nanoparticles
WS2 Tungsten disulfide
MoS2 Molybdenum disulfide
ND Neutral density filter
4-MBA 4-Mercaptobenzoic acid
DTNB 5,5′-Dithiobis-(2-nitrobenzoic acid)
4,4′-DP 4,4′-Dipyridyl
RGD Arginylglycylaspartic acid peptide
NLS Nuclear localization signal
TAP Tris(2-aminophenol)
PHEN 1,10-Phenanthroline
3-MPA 3-Mercaptopropionic acid
TLR7/8 Toll-like receptors 7/8
MPA 3-Mercaptopropionic acid
MPS 3-Mercaptopropyltrimethoxysilane
PVP Polyvinylpyrrolidone
ECM Extracellular matrix
RNS Reactive nitrogen species
MB Methylene blue
Pp-IX Protoporphyrin IX
AuNRs Gold nanorods
DEF Dose enhancement factor
FFPE Formalin-fixed paraffin-embedded
AGR2 Anterior gradient 2
Mg/Fe LDH Mg/Fe-layered double hydroxide
PAMAM Polyamidoamine
MXene Transition metal carbide/nitride
MOF Metal-organic framework
GQD Graphene quantum dot
DLS Dynamic light scattering
TIMO+F-KB@AuNPs Thiolated Ionic Metal-Organic Framework-KB@AuNPs
PB Prussian blue
CoFeB Cobalt iron boride
CDDP Cisplatin
sEV Small extracellular vesicles
VOCs Volatile organic compounds
HYNIC Hydrazinonicotinamide
26
GO/SPIO/AuNP Graphene oxide/ superparamagnet i c i ron oxide/

gold nanoparticle
ICP-MS Inductively coupled plasma mass spectrometry
FLIM Fluorescence lifetime imaging microscopy
SCRM Scanning confocal Raman microscopy
FSH33 Follicle-stimulating hormone peptide fragment
VEGF Vascular endothelial growth factor
PVA Poly
AuNCs Gold nanoclusters
PDGF Platelet-Derived Growth Factor
uPA Urokinase-Type Plasminogen Activator
TSP1 Thrombospondin-1
Fe-Ap Iron-Apigenin
AuNSs Gold nanostructures
HSA Human Serum Albumin
MMP-2 Matrix Metalloproteinase-2
rGO Reduced Graphene Oxide
aAuYS Aggregated Gold Yolk-Shell
Cur-AuNShs Curcumin-Incorporated Gold Nanoshells
GnRHR Gonadotropin-releasing Hormone Receptor
AuNDs Gold nanodots
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
NHS N-Hydroxysuccinimide
Au@MSN Gold-coated Mesoporous Silica Nanoparticles
Ter Terthiophene
THPP Tetrakis(4-hydroxyphenyl)porphyrin
GelMA Gelatin Methacryloyl
sNPS Single-Nanoparticle Sensing System
MutS DNA Mismatch Repair Protein
EpCAM Epithelial cell adhesion molecule
COF Covalent Organic Framework
Apt Aptamer
LDI-MS Laser Desorption/Ionization Mass Spectrometry
EMS Endometriosis
EphB4 Ephrin type-B receptor 4
IDEs Interdigitated electrodes
CDI 1,1′-Carbonyldiimidazole
MWCNT Multi-walled carbon nanotubes
APTES 3-Aminopropyl)triethoxysilane
SA-HRP Streptavidin-Horseradish Peroxidase
GCE Glassy carbon electrode
ZnO NRs Zinc Oxide Nanorods
ERGO Electrochemically Reduced Graphene Oxide
SPCE Screen-Printed Carbon Electrode
FTO Fluorine-Doped Tin Oxide
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TDN Tetrahedral DNA Nanostructure
Frontiers in Oncology
TMSD Toehold-Mediated Strand Displacement
ZIF Zeolitic Imidazolate Framework
PTH/PTB Polythiophene
27
DSPCE Double-Screen Printed Carbon Electrode
DES Deep Eutectic Solvent
CuCo-ONSs Copper-Cobalt Oxide Nanosheets
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