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Cervical and ovarian cancers pose a significant global threat to women's health.
Despite substantial medical advances in recent decades, gynecological
malignancies remain a leading cause of female mortality, constrained by
factors such as multidrug resistance, treatment toxicity, asymptomatic
presentation in early stages, and genetic heterogeneity. Gold nanoparticles
(AuNPs), leveraging their exceptional biocompatibility and multifunctional
capabilities, demonstrate considerable potential across diverse fields including
bioimaging, liquid biopsy, photothermal therapy, and targeted chemotherapy,
thereby advancing precision oncology. Accordingly, this review synthesizes and
analyzes the emerging applications of AuNPs in gynecological tumors over the
past five years. Moving beyond superficial descriptions of functional features
often limited in previous reviews, it places greater emphasis on elucidating the
intrinsic relationships and mechanisms between functions from the perspective
of their physicochemical properties. It further highlights the critical importance
of AuNPs for constructing integrated diagnostic and therapeutic platforms.
Simultaneously, this review provides a balanced examination of the challenges
hindering the clinical translation of AuNPs and offers insights and perspectives on
addressing these issues. It is anticipated that AuNPs may evolve into highly
effective diagnostic and therapeutic strategies in the future.
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GRAPHICAL ABSTRACT

1 Introduction

Cervical and ovarian cancers represent the most lethal
gynecological malignancies, each posing distinct clinical challenges.
HPV infection constitutes the primary etiological factor for most
cervical carcinomas, thus establishing HPV testing as critical for early
screening (1). Organized screening and HPV vaccination provide key
prevention strategies, especially in developing nations (2). The
protracted asymptomatic latency spanning decades from cervical
intraepithelial neoplasia to invasive carcinoma creates significant
fertility preservation challenges for reproductive-aged patients,
given that radical hysterectomy remain primary therapeutic options
(3,4). Ovarian cancer demonstrates the highest aggressiveness among
gynecological malignancies, with its characteristically asymptomatic
early-stage presentation resulting in fewer than 50% of patients
surviving beyond five years post-diagnosis (5, 6). Molecular
heterogeneity, intrinsic chemoresistance, and rapid metastatic
dissemination collectively contribute to its elevated mortality (7).

Conventional strategies lack early precision and fail to prevent
multidrug resistance, necessitating advanced approaches (8, 9).
With advancements in oncology, nanotechnology has emerged as
a promising frontier (10, 11). Therapeutically, multifunctional
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nanoparticle-based drug delivery platforms enable cancer cell-
specific targeting while sparing healthy tissues, thereby reducing
systemic drug exposure, minimizing toxicity, and delaying
resistance emergence (12-14). Diagnostically, nanoparticles
enhance tumor biomarker detection sensitivity, facilitating earlier
clinical intervention (15, 16).

Among diverse nanomaterials, gold nanoparticles (AuNPs) stand
out due to exceptional biocompatibility and their defining optical
property (17). AuNPs are synthesized through established methods
including the Turkevich citrate reduction, biological synthesis using
plant/microbial extracts, and physical approaches like laser ablation,
enabling precise control over size, morphology, and surface
functionalization for biomedical applications (18). Localized Surface
Plasmon Resonance (LSPR) arises from collective electron oscillations,
generating intense, tunable absorption/scattering for colorimetric
sensing and enabling Surface-enhanced Raman scattering (SERS) via
electromagnetic “hot spots” for trace analyte detection (19, 20).
Critically, LSPR drives efficient light-to-energy conversion,
underpinning AuNPs’ efficacy as potent photothermal agents and
photosensitizers in photothermal therapy (PTT) and photodynamic
therapy (PDT) (21). As the morphology progressively evolves, AuNPs’
amplified surface-area-to-volume ratio enhances biomolecular
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interactions, while exceptional electrical conductivity (>10° S/m for 20-
nm particles) facilitates ultrasensitive detection (18, 22, 23). LSPR “hot
spots” also modulate fluorescence and enable fluorescence resonance
energy transfer (FRET) (24).

AuNPs’ surfaces are readily functionalized via covalent
conjugation, biomolecular assembly, or polymeric encapsulation
(e.g., thiol anchoring, amide bonds, click chemistry, electrostatic
adsorption) to confer targeting specificity, colloidal stability, and
multifunctionality (25, 26). This enables active targeting
(antibodies/peptides/aptamers) (27) or passive magnetic guidance
(Fe;0,4 composites) (28), allowing their use as multimodal contrast
agents (MRI/X-ray/OCT) (29). Furthermore, AuNPs exhibit
distinct catalytic activity in redox reactions, enabling applications
in electrochemical biosensors (30). Collectively, these
physicochemical properties underpin AuNPs’ transformative
potential in diagnosing and treating gynecological malignancies.

Collectively, AuNPs represent a pivotal milestone in precision
medicine, offering transformative potential for timely cancer
intervention. The following sections detail the application of
AuNPs, critically evaluating their contributions to diagnosing and
treating gynecological malignancies to establish a reference
framework for clinical practice.

2 AuNPs in cervical cancer
2.1 Diagnosis
2.1.1 Colorimetric detection utilizing AuNPs

Functionalized AuNPs undergo LSPR peak shifts and visible
color changes upon binding target molecules. AuNPs-based

10.3389/fonc.2025.1664340

colorimetric assays thus exploit this phenomenon to assess levels of
cervical cancer biomarkers through readily observable color
transitions (31). microRNA-378 is consistently dysregulated in
cervical cancer. Run and colleagues developed a colorimetric assay
using catalytic hairpin assembly (CHA) and AuNPs for its detection
(31). Target miRNA-378 triggers CHA between two hairpin probes,
generating polymeric products. Multiple polyadenine blocks on these
products adsorb and cross-link AuNPs (~13nm, Citrate-reduced)
under acidic conditions, inducing aggregation. This shifts the LSPR,
causing a visible color change from red to purple (Figure 1) (31). The
assay leverages nucleic acid hybridization specificity, offering
operational simplicity, high sensitivity, and strong specificity, with a
LOD of 20.7 pM (31).

Motivated by the high cost of target-specific AuNP
functionalization, label-free C-ColAur was developed as an
alternative (32). Label-free C-ColAur is a nonspecific detection
method leveraging AuNPs color shifts from LSPR. Target binding
protects AuNPs from salt-induced aggregation, enabling rapid on-
site pathogen screening via visible color changes, particularly in
resource-limited settings (32). Applied to cervicovaginal fluid, it
shows distinct color changes: AuNPs turn blue in healthy samples
but remain unchanged in cancer samples, achieving high diagnostic
accuracy (96% sensitivity, 87% specificity; Figure 2) (33).
Transmission Electron Microscope (TEM) revealed significantly
larger AuNP diameters (250~400nm, Citrate-reduced, Quasi-
Spherical) in patients versus controls (15~30nm, Citrate-reduced,
Quasi-Spherical), with reduced particle numbers and absence of
aggregation in cancer samples (33). Tejaswini et al. proposed that
cancer cell membrane components induce aggregation (34).
Experimental validation confirmed that synthetic lipids, but not
proteins or lipid-protein mixtures, replicated the color or spectral
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Schematic diagram of the detection process of smiRNA378 by colorimetric method based on AuNP design (31).(copyright permission obtained).
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FIGURE 2

Schematic showing the colorimetric detection of cervical cancer using the label-free “C-ColAur” technique (33).

shift when reacted with HAuCl,-3H,O and ascorbic acid, indicating
lipid-specific organization drives the mechanism (34).

HR-HPV is the primary cause of cervical cancer. Conventional
detection (qQPCR, isothermal amplification, dot blot) faces limitations
including contamination risk, incomplete subtyping, and high cost
(35). AuNP-based colorimetric assays (57.7 + 4.2nm, Citrate-reduced,
Quasi-spherical with dendritic protrusions) enable instrument-free,
visual or smartphone-based readout of HPV-16/18, permitting
quantitative results acquisition by untrained personnel without
specialized equipmen (36). Carlos conjugated AuNPs (21.6 + 0.1nm,
Turkevich) with anti-HPV-16/18 L1 antibodies (37). Applied to
173 cervical samples, infection caused a color shift(red to purple)
and LSPR red-shift (523~525 nm to 524~590 nm) (37). The assay
detected HPV-16 L1 (linear range: 0.4~2.0pg/mL, LOD: 0.18ug/mL)
and HPV-18 L1 (0.2~1.2ug/mL), identifying PCR-missed variants
potentially via conserved L1 epitope recognition (37). To expand
coverage, Jixue and team developed a multiplexed closed-tube PCR,
detecting 17 HPV types (LOD: 0.5copies/uL, linear range:
0~1000copies/UL) with 99.05% accuracy (38).

2.1.2 AuNPs-engineered electrochemical
biosensors

Colorimetry lacks micro-scale sensitivity. Electrochemical
biosensors convert biorecognition events to electrical signals (39).
CEA, SCCA, Ki67, p53, and p16™5*" are key cervical cancer
biomarkers (35). Antibody-conjugated AuNPs enable their
multiplexed detection. Electrochemical sensors universally use: 1)
conductive substrates (Pt/Co/MoS,/WS,/rGO) to amplify AuNPs
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signals, and 2) engineered porous architectures (SiO, dendrimers,
multilayered nanoparticles, 3D networks) to enhance target capture
and conductivity (Table 1) (40-42). These AuNPs-centered
platforms show diagnostic promise (40). In a recent study,
Hiranmoy et al. developed an ultrasensitive electrochemical
immunosensor for cervical cancer biomarker p16™~** detection
by modifying a glassy carbon electrode through sequential
deposition of graphene oxide and ~70nm spherical AuNPs (43).
The sensor utilized cysteamine-glutaraldehyde crosslinking to
immobilize p16™*** monoclonal antibodies on the electrode
surface (43). Compared to bare electrodes, Au/rGO-modified
electrodes exhibited significantly enhanced peak currents with
charge transfer resistance (Rct) reduced from 245 Q to 14 Q,
demonstrating AuNPs’ capacity to facilitate electron transfer.
Clinical serum analysis via square wave voltammetry achieved
100% accuracy with a detection limit of 167 fg/mL and linear
range from 500 fg/mL to 100 ng/mL (43). The AuNP-engineered
sensor demonstrated exceptional selectivity, storage stability,
repeatability, reproducibility and regeneration capability.
Similarly, while colorimetry detects cervical exfoliated cells, its
accuracy suffers from subjective visual interpretation of subtle color
shifts. AuNP-integrated (~16nm, Citrate-reduced, Spherical,
chitosan-coated) photoelectric sensors enhance precision by
targeting cancer-specific 02,6-sialic acid overexpression via SNA-
conjugated AuNPs (44). Ricardo and team detected diagnostic
spectral alterations at 1470, 1456, 1434, 1400, and 1350 cm™’ in
cancer-bound complexes using attenuated total reflection fourier-
transform infrared spectroscopy (ATR-FTIR) (44). Notably,
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Ricardo et al. leveraged machine learning (ML), specifically
principal component analysis (PCA), to identify sialic acid-
associated spectral signatures in cervical cancer cell lines.

Reference

Orthogonal principal components maximizing data variance were ) g g 3 )
derived, enabling construction of confidence ellipse models that .
robustly discriminated primary fibroblasts from malignant cells @ - £
(non-overlapping 95% confidence intervals; p<0.001) (44). This g 5‘; 2 é
approach establishes a non-invasive diagnostic paradigm for early - § § ? 3
cervical cancer detection through surface-enhanced infrared g % % E é"
absorption (SEIRA) biomarker profiling. (Figure 3). = = a 3 | R
AuNPs enhance HPV-16 DNA detection by increasing
electrode surface area, accelerating electron transfer, and %
amplifying signals (39, 45). As Table 2 shows, varied electrode i
designs achieve LODs<0.2fM (46-49). Dielectric and %
photoelectrochemical sensors offer enhanced precision, with E .
maintained functionality during long-term cold storage (46, 48). fa) - = 2 §°
Lin and colleagues’ paper-based sensor achieves significant cost 9 & 5 § . e
reduction (<$1.00), miniaturization, and commercial viability (53). )
Utilizing lateral flow principles, HPV-16/18 DNA hybridizes with _g-‘
probes in a rapid-flow zone, forming circular structures that bind © £ £ £
AuNPs (~40nm, Spherical)-polydopamine (PDA). Light irradiation T‘g lé l: l; g
triggers AuNP-mediated photothermal conversion, intensifying £ £ & & E
(@) < < < | 2

thermal response while diminishing photocurrent. Subsequent
fluid migration to a slow-flow zone enables CRISPR-Casl2a-
mediated DNA cleavage and HPV fragment release, reversing
signals (Figure 4) (53). This system detects HPV-16/18 DNA
within 30 minutes with high specificity (LOD: 0.21pM and
42.92pM, respectively) (53). However, Lin’s sensor is susceptible
to temperature, salt concentration, and reaction time variations due
to pre-hybridization nucleic acid cleavage. These factors exacerbate
electrical signal transduction limitations, including single-molecule
counting inability. To overcome this, Jia and team integrated dark-
field microscopy (DFM) imaging, circumventing signal dependency
while employing synergistic sedimentation (SynSed) to minimize
nanoparticle diffusion (~15nm, Citrate-reduced) (54). This

Schematic of label-free sensing with redox reporters
(Cd**/DAP/MB);3SPCE array/GO/2D WS,/PEI-
The Au-rGO material was employed for the first time

dendritic DM-SiO,@AuPt core-shell nanostructures
AuNPs/redox probe

MoS,/AuNPs composite-modified electrode and
Bimetallic PtCo nanoframe-modified electrode and

multilayered nanoneedle structure
ATR-FTIR combined with chemometrics for

biosensor-cell interaction signal enhancement.

>
o
=)
2
)
“—
o
w
2
<
2
<
2
ag

to detect serum p16™<*,

optimized system achieves a LOD of 10 fM.

Beyond HPV-16 and HPV-18, other high-risk HPV types
(31, 56, 59, 68) also contribute to cervical cancer development
(35). To address this, platforms incorporating MY11 probes targeting
conserved regions of the HPV L1 gene have been integrated with
AuNPs-doped detection systems. AuNPs amplify current-
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Thiolation; Electrostatic
Electrostatic adsorption

adsorption
Thiolation

Thiolation
Thiolation

voltammetric signals generated by minor nucleotide variations
within the L1 conserved regions of HPV-16/31/33/45/58, enabling
the construction of HPV genotyping profiles (51). Conversely, an

alternative strategy anchors multiple recognition probes within a
photoelectrochemical biochip array (PEBA) platform composed of
TiO,@AuNPs composites (52). This highly integrated chip-based
format achieves an exceptionally low LOD of 0.1 copies/uL,

miRNA-21
p16™K* p53; Ki67
02, 6-sialic acid

SCCA
pleiNKaa

demonstrating high concordance with clinical results (52).

2.1.3 SERS detection based on AuNPs

SERS surpasses electrochemical biosensors in AuNPs-based

Particle size = Targe
317.4 + 123nm
132 + 232nm

~16nm
~75nm

serological diagnostics by circumventing electrode constraints. As
Table 3 shows, platforms utilize: 1) sharpened AuNPs geometries to
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TABLE 1 Research on the detection of serum tumor markers.

intensify electromagnetic hotspots, and 2) ordered array chips to
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FIGURE 3

Mean ATR-FTIR spectra (baseline corrected and min/max normalized) of control cells and after interaction between SNA biosensors and (A) SiHa;

(B) Hela; (C) C33A; and (D) primary fibroblasts (44).

enhance spectral reproducibility (55-58). However, significant LOD
variability exists (e.g., 191.73 fM vs. 10 fM for SCCA in serum) (55,
58), likely stemming from AuNPs morphology and Raman reporter
differences (Figure 5).

SERS and Surface Plasmon Resonance Imaging (SPRi) are
increasingly favored for cervical cancer biomarker detection
(Table 3). Yifan and team developed a dual-mode SPRi/SERS
biosensor with a polyA capture probe/target miRNA/AuNPs-
enhanced probe sandwich architecture (60). This platform
concurrently detects miRNA-21/124/143 on a single chip (60).
Target hybridization forms ternary complexes where AuNPs
enhance SPRi via refractive index modulation while generating
SERS hotspots through LSPR (60). Dual-signal redundancy
reduces false positives (serum recovery: 90.0-100.2%) (60). This
high-throughput platform provides dual-verified nucleic acid
detection with clinical utility.

The spatial arrangement of AuNPs in SERS sensors critically
determines analytical outcomes. Xingkang et al. engineered a
nanoscale monolayer film of uniform AuNPs (83 + 6nm) to
generate evenly distributed dense hotspots, overcoming the
random hotspot distribution characteristic of conventional

Frontiers in Oncology

plasmonic colloidal solutions (64). This design prevented
heterogeneous electromagnetic signals arising from nanoparticle
aggregation while enhancing SERS signal reproducibility and
sensitivity (64). Furthermore, integration of CD63 nanoflares with
AuNPs created supplemental hotspots that amplified SERS intensity
by 4.1-fold (64). The resulting platform exhibited linear detection of
cancer exosomes from 1x10° to 2x10° particles/mL with a limit of
detection (LOD) of 4.7x10° particles/mL (64).

Artificial intelligence enables more efficient mining of the
massive data generated by AuNP probes in SERS sensing analysis,
forming the foundation for low-cost nonspecific analysis. Hongmei
and team established that 10 ppm serum prevents AuNPs
encapsulation while enhancing dispersion homogeneity (63).
After screening lasers, they selected 785 nm and 633 nm
excitation (excluding 532 nm due to fluorescence interference),
achieving 0.9609 spectral cosine similarity at 10 ppm (63). Clinical
validation with 36 sera (24 healthy/12 cancer) identified differential
peaks at 1201 cm™ ! and 1312 cm™". PCA achieved complete group
separation, establishing the first standardized SERS reference library
for cervical cancer sera. This methodology provides a robust
foundation for clinical SERS translation (63).

frontiersin.org


https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

AB0j02UQ Ul S1B13UOI4

L0

610°UISIa1UO

TABLE 2 Recent advances in HPV detection biosensors.

Surface
Particle size functionalization Highlights of Study Clinical sample Linear range = Reference
of AuNPs

1 - HPV 16 DNA - Exhibits strong anti-interference capability in human serum Artificial serum 0.5475 tM 100fM~1000nM (50)

2 - HPV-18 DNA Thiolation rGO-MWCNT-AuNPs nanocomposite-functionalized SPCEs Cervical smear 0.05fM 0.01fM~0.01nM (47)
APTES- ifi E; CP-AuNPs i ili ia phosphate-

3 16 + Inm HPV-16 DNA Thiolation TES-modified GCE; CP-AuNPs immobilized via phosphate Artificial serum 0.17310M 100fM~10uM (46)
amine electrostatic adsorption

HPV-16 E6/E7 Thiolation; Covalent LAMP-amplified mRNA; Streptavidin modification; ssDNA- .
4 18.9 + 1.5nm X ) i i K Cervical smear(20) 0.08ftM 100nM~100uM (48)
mRNA bonding AuNPs targeting; SA-HRP signal amplification
5 - HPV L1 Electrostatic adsorption PANI electrode with AuNPs deposition; MY11 degenerate probe | Cervical smear 0.113nM 1~100 pg/uL (51)
Positive cervical
6 ~5nm HPVs - Screen-printed photoelectrode array modified with TiO,@AuNPs | smear(20); negative 0.1copies/uL 0.6~600copies/uL. | (52)
cervical smear(20)
iO,-micro-IDE ; APTES-AuNPs deh ion-

7 9+ 1.5nm HPV-18 DNA Covalent bonding SiO,-micro-IDE substrate; S-AuNPs dehydration Cervical smear(20) 0.529aM 1aM~100fM (49)

condensation modification
-ZnIn,S,-S heterojunction interface; Paper-fil

8 ~40nm HPV-16/18 DNA Electrostatic adsorption CuCOZSj, n ‘nzS4 $ heterojunction interface; Paper-film Serum 0.21pM; 42.92pM - (53)
composite chip
Using SynSed technol Iternati thod f ticl

9 ~150m HPV-16 - Sing Synsed techinology as an atternative method for particie Artificial serum 100M 0pM~500pM (54)
transfer in DFM imaging
This is the fi -colori i AuNPs f

10 ~50nm HPV-16 Covalent bonding 1 l? the first dual-colorimetric strétegy based on AuNPs for Cervical smear 1.9nM 0.45~6.72nM (45)
detecting double-stranded HPV-16 viral genome.

e 1o Bueyz

0¥£%991°5202'2U04/682¢°0T


https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

Initial

Temperature
Photocurrent

L

lgctarget Time

Fast channel

Photocurrent

Temperature

), 2

N e S

lgctarget Time

Slow channel

Temperature
Photocurrent

| 1]

lgctarget Time

HPV-16

HPV-18

CRISPR-Casl2a

activated cleavage activity

FIGURE 4

» .
hairpin DNA ) arm DNA (

10.3389/fonc.2025.1664340

& o< e/ N
2
\, P
! ))7@ oo
——y HT®

CRISPR-Casl2a

(T
Cas12a (}) crRNA

@ annular DNA-HPV-18 @ Au-PDA-labeled DNA

Detection steps and interactive signal change process in the (A) initial state, (B) the DNA conformational change state, and (C) CRISPR-Cas12a
activation state. (D) Schematic diagram of the proposed lateral flow biosensor. (E) Signal amplification process of the CRISPR-Cas12a-driven dual-
readout lateral flow biosensor. (F) Feasibility analysis for the self-assembly process of the annular DNA and trans-cleavage instinct of CRISPR-Casl12a

(53). (copyright permission obtained).

Meanwhile, this simultaneously enables unsupervised recognition
of cervical cell pathology through AI analysis of non-functionalized
gold nanoparticles (nfGNPs). Karunakaran et al. implemented
support vector machine (SVM) algorithms to achieve high-
precision classification of NRML/HSIL/CSCC specimens (94% =+
0.73% accuracy for single-cell analysis), markedly improving post-
PCA specificity with ROC-validated diagnostic progression (AUC
>0.98) for cervical lesion stratification (61). In contrast, Diao et al.
adopted a PCA-LDA fusion strategy (62). Following Savitzky-Golay
filtering with airPLS background correction and min-max
normalization, PCA reduced spectral dimensions to 46 principal
components retaining 95% of the variance (62). LDA then
compressed these into two discriminative factors. This hierarchical
approach resolved non-overlapping 95% confidence ellipses observed
under singular methods and attained 91.1% accuracy in
differentiating exosomes across H8, HeLa, and MCF-7 cell lines
(62). The model demonstrated robust diagnostic efficacy, with
AUGCs ranging from 0.93 to 0.99, and maintained 93.3% overall
accuracy in clinical validation (62). It perfectly classified breast and
cervical cancer serum exosomes while correctly identifying 80% of
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healthy samples. This established a non-invasive framework for
SERS-driven early cancer detection (62).

2.1.4 AuNPs-enabled innovative imaging
strategies

Imaging is vital for non-invasive cervical cancer diagnosis.
Tumor-targeting ligand-functionalized AuNPs (e.g., folic acid,
oligotyrosine/RGD/NLS peptides) serve as effective contrast
agents (65). The tumor microenvironment further enhances
AuNPs (50.3 + 1.1nm, Citrate-reduced, spherical) accumulation,
where acidic pH triggers hydrolysis of citraconic anhydride linkages
in AuNPs-doxorubicin (DOX) complexes (66).

Radioiodinated AuNPs serve as contrast agents for clinical
imaging (MRI/US/CT/PET) (29). Min and colleagues engineered
pH-responsive theranostic AuNPs (50.3 + 1.1nm, Microwave-
assisted synthesis, spherical) with PEGylated surfaces and citraconic
anhydride-linked DOX (66). At pH 5.5, linker hydrolysis triggers
DOX release and electrostatic aggregation (35-nm UV-Vis redshift;
TEM-confirmed), amplifying imaging signals (66). Radioiodination
achieved 35.4% labeling efficiency, with PET showing 1.37%ID/g
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TABLE 3 Research on the detection of cervical cancer (SERS).

surface Clinical
\[¢} Particle size = Targe functionalization Highlights of Study Linear range Reference
sample
of AuNPs

Ag-AuNFs bimetalli ites with -

1 ~600nm SCCA; OPN - gaufis bimetatic nanocomposites with arrow Serum(150) 191.730M; 132.976M 10 pg/mL~9 ug/mL | (55)
headed tip nanostructures

) —45nm B7-H6 Covalent bonding Zwitterion-modified stealth sensor with pH-stable spiky Positi-ve serum(9); L0fM 10fM~10nM 6)
AuNPs negative serum(1)
Site-selective assembly of AuNP arrays on monolayer

3 ~20nm CpG methyltransferase | - SiO, arrays yielding Au@SiO, array substrates;RCA Serum(150) 0.251mU/mL 0.005~50U/mL (57)
signal amplification strategy
Cubic Ag-Au bimetallic nanoparticles integrated on
Au@SiO, array substrates;Pump-free flow via capillary Positive serum(60);

4 ~20: A; CEA - 10fM; 2fM 1 L~1 L 58

nm SCCA; € pump/hydrophilic-treated channels;Multichannel negative serum(30) pg/mL~1pig/m (58)

parallel auto-detection

5 70~80nm p16:Ki-67 Covalent bonding AuNS@Ag nanoﬂ(.m-rers enable 20-min slide detection, Cervical smear - - (59)
bypassing ICC staining.

6 ~20nm miRNA21/124/143 - SPRi: AuNP-helper probes enhance chip signals; SERS: 16M; 0.8 £M; 1.2 fM 10 fM~100pM (60)
Triplex Raman reporters hybridize with target miRNAs.
SERS on single cells/spheroids/DNA + chemometrics

7 40~45nm - - (PCA/LDA/SVM) for cervical cancer detection; Cervical smear - - (61)
validated by cytology/HPV PCR/UFLC metabolomics.
“Hotspot”-rich 3D plasmonic AuNP-nanomembranes: Positive serum(12);

8 ~80nm - - LLISA-assembled monolayers triple-stacked on ITO; . ’ - - (62)

L i negative serum(5)

optimized with AL

5 250m A reliable detection protocol was established to obtain Positive serum(12); ©3)
highly stable and reproducible serum SERS spectra negative serum(24)
Detection of cancerous exosomes using plasmonic Positive serum(11); 1 % 1052 x 10°

10 83 + 6nm sEV - AuNPs nanosheets as SERS substrates combined with . ’ 4.7 x 10° particles/mL. . (64)

negative serum(8) particles/mL

CD63 nanoflares
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200 nm

B

(A) High magnification SEM image of Cube-AuNPs (58); (B) High magnification SEM image of AuNF (55). (copyright permission obtained).

tumor uptake at 2h and >38% cancer cell binding (66). Photoacoustic
imaging (PAI) generates biological images by detecting photon
emissions from contrast agents. AuNPs exhibit exceptional PAI
properties due to high photothermal conversion efficiency (66).
The Au-UCNP-PEG,, nanocomposite serves as both
photodynamic therapy agent and multimodal imaging platform
(~5nm, Hydrothermal method, spherical) (67). In vivo studies
show superior PAI performance under near-infrared region (NIR)
irradiation compared to bare AuNPs, functioning as a trimodal
contrast agent for comprehensive tumor diagnostics (Figure 6) (67).

AuNPs enhance lesion identification in laboratory imaging (68).
Under DFM, FA-targeted AuNPs@Ag@Agl nanostructures
internalized by HeLa cells enable precise spatial localization via
amplified light scattering (68). Simultaneously, AuNPs’ plasmonic
properties mediate surface energy transfer to fluorescent donors
(e.g, TAP, PHEN), inducing controlled fluorescence quenching
within cells, supporting development of real-time imaging agents (68).

2.2 Treatment

2 .2.1. AuNPs-based drug delivery systems

AuNPs enable targeted cancer cell eradication via drug and ligand
conjugation. Therapeutic payloads encompass Methotrexate (MTX)
(69), DOX (66), Paclitaxel (PTX) (70), and luteolin (71). Common
cervical cancer targeting ligands comprise Folic Acid (FA),
Hyaluronic Acid (HA), and AS1411 aptamer (Table 4). Emerging
agents show complementary potential (72). The investigational
compound IQ activates TLR7/8-mediated immune responses and
NF-xB-dependent apoptosis. When complexed with nucleolin-
targeting AS1411 aptamer on AuNPs (IQ-AS1411-AuNPs), MTT
assays demonstrated significantly reduced HeLa cell viability (72).

Beyond ligand-mediated targeting, tumor microenvironment
(TME) characterized by hypoxia, low pH, elevated GSH, and ROS,
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directs AuNPs accumulation. A TME-responsive platform bypasses
ligand functionalization, exemplified by GSH-cleavable disulfide-
linked AuNPs (~11nm, Brust-Schiffrin, spherical) achieving 98.7%
MTX encapsulation for cervical cancer (69). Similarly, DOX-
conjugated AuNPs utilize pH-labile hydrazone bonds that
hydrolyze selectively in acidic TME conditions, enabling clinically
translatable targeted therapy (66, 73).

Toxicity and complexity concerns around chemical stabilizers
(e.g., 3BMPA/3MPS/PVP) drove Kamini et al. to develop a novel
PTX delivery platform (70). Their method synthesizes PTX-AuNPs
in one step by adding silver ions to PTX/gold ion suspensions under
sunlight (Figure 7), where PTX acts as both therapeutic payload and
reducing/stabilizing agent (70). This eliminates pre-synthesized
AuNPs and exogenous stabilizers, reducing costs while bypassing
conventional drug-loading, though the photochemical mechanism
requires further study (70).

2.2.2 Intrinsic antitumor effects of AUNPs

AuNPs exert intrinsic cytotoxicity against cervical cancer cells via
apoptosis modulation (72, 74). Concentration-dependent upregulation
of pro-apoptotic markers (BAX, p53) and downregulation of anti-
apoptotic factors (Bid, BCL-2) occur with concomitant caspase
activation (75). This cascade initiates from AuNPs-induced
intracellular ROS elevation, confirmed by flow cytometry showing
increased cytoplasmic ROS and mitochondrial superoxide production
(76). AuNPs generate ROS partly through intrinsic catalytic activity,
converting H,O, into H,O and O, while enhancing catalase activity to
modify the tumor microenvironment via hypoxia alleviation and
immune potentiation (77). Additionally, AuNPs elevate superoxide
dismutase (SOD) activity, causing H,O, accumulation that activates
caspase-dependent signaling pathways to induce cancer cell apoptosis
(77). AuNPs’ cytotoxicity against cervical cancer cells depends critically
on nanoparticle diameter and subcellular localization (78). Dae et al.
found extracellular monodisperse AuNPs prolong HeLa cell mitosis
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PAI of before (a) and after (b) injection 200 pg/mL of Au-UCNPs-DSPE-PEG2K in Balb/c mice (67)

without inducing apoptosis by forming division-disrupting nano-
barriers. By contrast, 111nm extracellular AuNPs trigger ROS-
mediated cell death with cytokinesis arrest, while 83nm particles
cause transient M-phase delay followed by normal cytokinesis and
G;-phase entry (78).

2.2.3 High-efficiency photothermal tumor
ablation utilizing AuNPs

AuNPs act as efficient photothermal transducers, enabling
precise tumor ablation under targeted guidance (21). Recent
refinements include S-nitrosothiol-modified AuNPs releasing
nitric oxide during PTT to simultaneously soften tumor
extracellular matrix and generate mitochondrial reactive nitrogen
species for enhanced cytotoxicity (79). Multibranched gold
nanocrystals further outperform spherical or rod-shaped
counterparts in photothermal conversion efficiency, confirming
morphology as critical design parameter (21). PDT employs
photosensitizers to generate cytotoxic ROS but faces limitations
including toxicity and poor cellular uptake. Armin and team further
demonstrated that AuNPs functionalized with protoporphyrin IX
and FA via mercaptohexanol linkers enhance both cancer selectivity
and cytotoxic efficiency (80).

2.2.4 Radiosensitization effects of AuNPs in
radiotherapy

AuNPs enhance cervical cancer radiotherapy efficacy through
their high atomic number (Z = 79), which dramatically exceeds
biological elements. This promotes X-ray/y-ray absorption,
generating amplified secondary electron fluxes that directly damage
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tumor DNA (81). Radiation-activated gold nanorods (AuNPs, 54.6 +
7.11nm, spherical) further catalyze water decomposition, producing
cytotoxic ROS (82). Functionalized variants concentrate radiation
energy within lesions. Radiosensitization varies significantly with
geometry: AuNRs surpass spheres (83). Nanocubes deposit 18.5%
(18 MV) to 23.1% (6 MV) higher electron doses than nanospheres
within 1.1 pm radii, achieving maximum dose enhancement at 6
MV (84).

3 AuNPs in ovarian cancer
3.1 Diagnosis

3.1.1 Colorimetric detection utilizing AuNPs
Colorimetry enables rapid ovarian cancer biomarker screening
but suffers from limited resolution. Eda et al. circumvented this via
smartphone-integrated analysis leveraging mobile imaging hardware
advances (~40nm) (85). Alternatively, Hao et al. engineered Mg/Fe-
layered double hydroxide nanoflowers as high-density AuNPs
(~10nm, Rapid injection synthesis) carriers for lateral flow
immunoassay (LFIA) (86). These porous templates achieve
ultrahigh AuNPs loading, lowering HE4 detection to 50 pM (86).

3.1.2 AuNPs-engineered electrochemical
biosensors

CA125 is the clinical gold standard for ovarian cancer serology.
Current AuNP-based detection platforms vary primarily in electrode
composition and surface modification strategies(Table 5), integrating
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was observed.
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Hela cells; Synergistic therapeutic platform for ovarian cancer

Frontiers in Oncology

»
=
2
g
L
=
- o
8 g E
g g g
ol g =
> s £ 3
5 ) g =
5 ) g =
= = g 3
n 2 3 =
- 2 g =
© s 5 :
2 g g g
= T 2 2
2 T = s
= & o
< <] 9 5
= (o)} 2 S 5
— m - =
s I m [ =
=
o
el
o o
2 £
2 g = = E <
o
5 = & 5] s Z 5]
Q () = a A = a
©
(8]
©
g s g g
H o 5 3
g = 5 5
o = S =
- © @ )
& = g E
= Q Q
E o o o
= T T
o 9O wn 5 5 g 5 5
ot T ke k! g 3 E
g T8 < | : | £ = @ 2
= S5 3 = = = = =
5 = < = B B = =
k)
< P ,
N g
2 n & g s
. [} = = =
o —_— - — N
c O = ':‘ 2 Q +
o < E - £ = n
3 ™ —~ S S B <
a o ? o} 1 — Q
<
w
= o
< Z — ~ - <« "
'—

12

10.3389/fonc.2025.1664340

AuNPs with carbon nanomaterials (graphene, CNTs), polymers
(chitosan, polydopamine, PAMAM), or novel frameworks
(MXenes, MOFs) to enhance nanoparticle density, antigen capture
efficiency, and electron transfer kinetics. The integration of MOFs
with AuNPs achieves reproducible CA12-specific recognition,
demonstrating a RSD of 2.98% in repeatability experiments (87).
Zahra’s MXene/GQD/AuNPs composite achieves a record LOD of
0.075nU/mL (88). DLS sensors offer the broadest linear range (5fg/
mL~50ng/mL) for high-dynamic CA125 quantification (89), while
AuNP-DNA fluorescence quenching enables continuous biomarker
monitoring. Near-field communication (NFC) integration further
streamlines data acquisition, enhancing clinical utility (90).

Beyond CA125, AuNP-based sensors target biomarkers including
P53, HE4, exosomes, and DNA methylation (91, 103-106). Following
Weiwei et al.” s MOF-AuNPs for CA125 (95), Xu and team developed
a sandwich electrochemical immunosensor using synergistic signal
amplification between Prussian blue (PB) and thiolated ionic MOF
composites (TIMOF-KB@AuNPs) for HE4 quantification (107).
The platform employs TIMOF-KB@AuNPs as conductive sensing
substrates for capture antibody (Ab;) immobilization, while PB
nanoparticles carry detection antibodies (Ab,). HE4 binding forms
an Ab;-HE4-Ab,-PB complex, generating electrochemical signals
proportional to concentration (linear range: 0.1~80ng/mL, LOD:
0.02ng/mL) (107). Demonstrating high selectivity, reproducibility,
and stability with 97.10~114.07% serum recovery, it enables early
ovarian cancer diagnosis (Figure 8). Separately, superparamagnetic
CoFeB enhances AuNPs-based p53 detection (LOD: 0.006 U/mL)
(104). Furthermore, exosomes predict ovarian cancer chemotherapy
response. Meshach and team developed a cysteine-functionalized
AuNP (Au-cys) biosensor using SERS to simultaneously capture
cisplatin and small extracellular vesicles from biological samples,
enabling concurrent early detection and treatment efficacy
assessment (102).

AuNPs facilitate ovarian cancer diagnosis via urine, exhaled gas,
and cyst fluid analysis (108, 109). Thomas and team pioneered
nanopore sensing where AuNPs capture 13 cysteine-containing
urinary peptides within o-hemolysin nanopores, generating
distinct current signatures: stepwise reductions for small peptides
versus polymorphic fluctuations for larger ones, enabling prolonged
single-molecule characterization (108). AuNPs-based platforms
also detect microbiome-derived Volatile organic compounds
(VOCs) in exhaled breath with 82% screening accuracy (110).

3.1.3 AuNPs-enabled innovative imaging
strategies

AuNPs drive transformative ovarian cancer imaging advances (19).
Dheeraj and team engineered FA-targeted, hydrazinonicotinamide-
chelated AuNPs enabling efficient 99mTc radiolabeling for tumor-
specific single-photon emission computed tomography (SPECT)
contrast (111). Further functionalization yielded GO/SPIO/AuNP
composite sheets integrating PTT, radiotherapy, and MRI within a
unified theranostic platform (112).

MARS spectral photon-counting CT (SPCCT), though primarily
preclinical, enables material-specific imaging via energy-dependent X-
ray attenuation. Dhiraj et al. functionalized AuNPs with LHRH via
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One pot synthesis of paclitaxel functionalized gold nanoparticles and their anticancer studies (70). (Copyright permission obtained).

PEG tethers for ovarian cancer targeting (113). Intraperitoneal
administration in murine models achieved selective accumulation in
peritoneal tumors (0.46~2.12ng/mg, ICP-MS). While current SPCCT
sensitivity limited absolute quantification, it mapped gold distribution
patterns (113). Increased LHRH density (3000~15000molecules/
particle) enhanced targeting while maintaining >60% metabolic
activity at therapeutic concentrations (12~30ug/mL), establishing a
novel theranostic strategy (113).

Functionalized AuNPs support ovarian cancer-specific
detection via fluorescence lifetime imaging (114), dark-field (115),
and confocal Raman microscopy (116). SERS imaging further
enables chemoresistance prediction and survival outcome
assessment (117).

3.2 Treatment

3.2 .1. AuNPs-based drug delivery systems

AuNPs enable targeted ovarian cancer drug delivery, enhancing
dispersion or internalization of agents like linalool, cetuximab,
paclitaxel, let-7a miRNA, and nidocarcinoma-derived factor(Table 6).
DOX-AuNPs show superior tumor growth inhibition versus free
doxorubicin while overcoming payload leakage limitations (118).
Engineered for MICU1-targeting siRNA delivery, they achieve >85%
silencing efficiency via lysosome evasion, addressing key shortcomings
of conventional carriers (119).

Antibody or peptide-conjugated AuNPs enable precise ovarian
cancer targeting (128). Edison and team engineered FSH33-AuNPs
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covalently conjugated to tumor-suppressive miR-145 (122). This
system protects miR-145 from degradation, mediates selective
cancer cell internalization, and inhibits proliferation, migration,
anchorage-independent growth, and VEGF secretion. AuNPs
enable co-delivery of multiple therapeutic agents, as demonstrated
by Tommaso et al. who engineered miR-200c and trastuzumab (TZ)-
loaded nanoparticles that dual-target critical pathways driving
SKOV3 cell survival and proliferation in vitro, overcoming TZ
resistance while potentially improving therapeutic outcomes for
HER2-positive ovarian cancer (126). Beyond antibody/peptide
targeting, TME and hyperthermia trigger drug release from
AuNPs'?, Reza et al. engineered antibody-conjugated magneto-
gold composites (TXT@Fe;0,/PVA/Au-SORT) for ovarian cancer
(28). Photothermal AuNPs heating dissociates the PVA matrix,
achieving precise TXT release (94.4 + 4.1% over 180 min in TME).
Ca(OH), pretreatment combined with TXT therapy enhanced
intratumoral accumulation, inhibited migration, and induced DNA
damage, achieving 78.3% tumor suppression with reduced systemic
toxicity (Figure 9).

Notably, AuNPs morphology critically influences therapeutic
outcomes: anisotropic AuNPs@CSA-131 exhibit enhanced
cytotoxicity against ovarian carcinoma versus spherical counterparts
(124). Furthermore, AuNPs modulate drug presentation in vivo,
facilitating theaflavin oxidation to cytotoxic quinone derivatives
(125). Regarding therapeutic side effects, The triple-modality
approach (ultrasound/AuNCs/cisplatin) overcomes cisplatin
resistance in resistant ovarian cancer models, suggesting reduced
chemotherapy side effects with translational potential (129).
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TABLE 5 Sensor design scheme for detecting CA125 based on AuNPs.

Surface
Particle size functionalization of Highlights of Study Clinical sample LOD Linear range Reference
AuNPs

1 - - Cu single-atom/AuNPs modified electrode Artificial serum 0.37 pg/mL;1.58 pg/mL 0.005~500 ng/mL (91)
PAMAM/AuNPs and 3D -MWCNT: dified

2 ~14nm Thiolation; Covalent bonding [Au X S an .rGO X c S moditie Artificial serum 6 LU/mL 0.0005~75 U/mL (92)
electrode;Succinic anhydride-modified chitosan
In-situ grown AuNPs/GaN Schottky junction via H,0,

3 ~15nm Thiolation etching;AuNPs size-controlled Fermi level/charge transfer Serum(4) 0.3 U/ml 1~100 U/mL (93)
efficiency
Target-apt; bindi dulated AuNP. tion f

4 ~13nm - argetraptamer binding modulated AUNES Aggregation 100 gerum(4) 0.015 U/mL37.5 pg/mL 0.01~2.0 U/mL;0.01~0.9 ng/mL | (94)
fluorescence on/off;

5 ~13nm Thiolation Dual-signal detection: DLS particle size and fluorescence; Serum(2) 1.1 fg/mL 5 fg/mL~50 ng/mL (89)
Mi by dified SPCE;Smartphone-based

6 - Thiolation; Covalent bonding leroporous carbon modiie martphonebase Serum(6) 0.4 U/mL 0.5~50.0 U/mL (90)
NEFC signal acquisition;
TDN-enh: d TMSD with AuNPs/Ru/ZIF-MOF signal

7 ~4.5nm - enhance with AuNPs/Ru/ S Serum(4) 0.006 pg/mL 0.01 pg/mL~10 ng/mL (95)
probes;

8 122 + 1inm Thiolation AuNPs modified FTO electrode;Oligonucleotide Serum(3) 2.6 U/mL 10~800 U/mL (%)
recognition elements (antibody-free);

9 - - MZXene-GQD/AuNPs modified electrode Artificial serum 0.075 nU/mL 0.1 uU/mL~1 U/mL (88)

10 - Thiolation; Covalent bonding AuNPs/RGO/PTH-modified DSPCE electrode Artificial serum 0.069 pg/mL; 0.058 pg/mL  1~100 pg/mL (97)

11 ~70nm - AuNPs and DES-synthesized PTB co-modified SPCE Artificial serum 1.20 pg/mL 5~100 pg/mL (98)
Electrods dified with MOF@AuNPs-based

12 - - ectroces moded Wi @AuNPs-base Serum 7.185nU/mL 10~70nU/mL (87)
nanocomposites
Two biocompatible 2D COFs (EP-TD-COF and
AuNPs@COFBTT-DGMH) effectively preserved antibody

13 - Thiolation; Electrostatic adsorption  activity and provided a favorable microenvironment, Artificial serum 0.089mU/mL 0.00027~100U/mL (99)
synergistically enhancing the stability and sensitivity of the
immunosensor
The hybrid nanostructure of o-MnO, nanorods and

14 ~54.61nm - . . Serum 9.82ng/mL 10~70ng/mL (100)
AuNPs enhanced conductivity and sensitivity

15 - - CuCo-ONSs@AuNPs nanocomposite-modified electrode Serum(6) 39nU/mL 0.1uU/mL~1mU/mL (101)
A biosensor capable of simultaneously interacting with
sEV and CDDP was developed, enabling the simultaneous Positive serum(99);

16 - Thiolation quantification of sEV and CDDP using SERS, thereby R ’ - - (102)

. i . negative serum(20)

overcoming the heterogeneity and protein interference
issues in SERS analysis of SEV
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3.2.2 Intrinsic antitumor effects of AuNPs

AuNPs inhibit ovarian carcinoma invasiveness by targeting key
oncogenic pathways: impeding MAPK signaling, suppressing
EMT-associated proteins, and disrupting the IGFBP2/mTOR/
PTEN autoregulatory axis, downregulating IGFBP2, suppressing
PI3K/AKT/mTOR activation, and reactivating PTEN (130, 131).
Current understanding posits that AuNPs disrupt multicellular
TME communication (cancer cells, cancer-associated fibroblasts,
endothelial cells), downregulating pro-tumorigenic cytokines and
growth factors (132, 133). Specifically, they reduce CC-secreted
fibroblast-activating proteins (TGF-B1, PDGF, uPA, TSP1) and
inhibit tumor angiogenesis by blocking VEGF-VEGFR2 signalling
(133, 134). This positions AuNPs as key tools for elucidating and
disrupting pro-tumorigenic crosstalk. AuNPs synchronize
disulfidptosis and ferroptosis in ovarian cancer by modulating the
SLC7A11/GSH/GPX4 axis (135). The composite system exploits
AuNPs’ glucose oxidase-like activity and Ap-mediated GLUT1
downregulation to induce metabolic crisis (135). Glucose
deprivation limits NADPH replenishment, disrupting cystine/
cysteine conversion and resolving the disulfidptosis-ferroptosis
execution paradox. Concurrently, iron-based components deliver
Fe*™ while AuNPs-catalyzed glucose oxidation self-supplies H,O,,
amplifying Fenton reactions and ferroptotic death (135).

Beyond influencing signalling pathways, AuNPs enhance nuclear
rigidity via perinuclear laminA/C overexpression, impeding cancer cell
migration (136). Concurrently, they induce ROS-mediated apoptosis/
autophagy, trapping cells in GO/G1 phase (137). Anisotropic AuNPs
exert enhanced anti-migratory effects versus spherical counterparts
(138). Analogous to cervical cancer applications, morphological
engineering of AuNPs enhances their cytotoxic efficacy against
ovarian cancer cells. Irfan et al. attribute this phenomenon to
elongated-branched antibody-functionalized AuNPs effectively
evading serum protein corona entrapment, thereby facilitating
optimal aptamer binding to HER2 receptors on cancer cell surfaces
(139). This mechanism induces significant cytotoxicity in HER2-
overexpressing SKOV3 cells through targeted apoptosis initiation.
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3.2.3 High-efficiency photothermal tumor
ablation utilizing AuNPs

AuNPs enable synergistic chemo-photothermal therapy for
ovarian cancer (127, 140). Yiting et al. engineered a genetically
fused HSA nanocarrier (RHMHI18@AuD) self-assembling via
histidine hydrophobicity to encapsulate DTX while forming
ultrasmall AuNPs through biomimetic mineralization (141). This
80-nm platform prevents HSA denaturation and reduces inorganic
nanoparticle toxicity. MMP-2 cleavage at tumors releases RGD-
HSA@Au (mediating photothermia) and His@ DTX micelles, with
acidic TME-triggered DTX release. The system demonstrated
targeted cellular uptake, significant tumor suppression, and 100%
survival at 70 days versus complete mortality in monotherapy
groups by day 62, establishing a high-efficacy, low-toxicity
therapeutic strategy.

Diverse AuNPs composites serve as photothermal agents for
ovarian cancer PTT. rGO-AuNPs-PEG exhibits strong SERS signals,
NIR-II PA signals, and high photothermal efficiency in tumours under
1061 nm laser irradiation (142). Similarly, silica nanocapsules
containing aggregated AuNPs yolk-shell structures (aAuYS)
demonstrate enhanced photothermal effects with 808 nm laser
exposure (143). Curcumin-incorporated gold nanoshells (Cur-
AuNShs) show efficient photothermal conversion with potential for
selective cancer targeting and treatment. Additionally, AuNPs
morphology influences PTT efficiency (144). For instance, dumbbell-
shaped Au-Fe;0, elevate thermal conversion efficacy (145).

To overcome resolution limitations in image-guided PTT,
Annan et al. developed ultra-small GnRHR-targeted AuNDs (Au-
GRHa, 3.2nm) (146). Prepared via electrochemical displacement
and ligand conjugation, these nanoconstructs enable dual-modal
fluorescence/CT imaging with superior CT contrast (attenuation
coefficient: 5.153cm?/g) and renal clearance. GnRHa targeting
boosted SKOV3 cellular uptake by 76% versus non-targeted
counterparts. Under 808 nm irradiation, localized temperatures
reached 50 °C within 5 min, inducing apoptosis via membrane
disruption and protein denaturation. In vivo peak tumor
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TABLE 6 Design of AuNPs for the treatment of ovarian cancer (drug delivery).

Surface
\[¢} Particle size functionalization of Highlights of Study Animal model Reference
AuNPs
Plasmonic photothermal therapy (PPTT) enables pH-triggered
1 10nm Covalent bonding DTX controll'ed release of docetaxel by dl.sruptmg halloys.lte nano.tube ~ The MTT reéults indicate (115)
(HNT) interlayer hydrogen bonds via Au nanoparticle-mediated low toxicity in 3T3
photothermal effects
GSH- d linalool delivery; CALNN peptids jugation; C -8
2 ~13nm Thiolation; Covalent bonding CALNN;Linalool Ca,P P e. natoot de 1‘ver‘y ” peptide conjugation; Caspase-8/ Considered (120)
p53 activation & NF-kB inhibition
: ~—40nm Thiolation NDC - I:NDC - 2 Thiol-Au conjugated naproxen derivatives; Simple high-loading ~ Considered (121)
platform; 5x lower ICs vs free drugs
DNA-hybridi Dox loading; pH- i lease; 2. i
4 ~13nm Thiolation DOX . ybrldl.zed ox loading; pH-responsive release; 2.5x greater in BALB/c nude mice Considered (118)
vivo suppression vs free Dox
AuNP-embedded siRNA liposomes; Caveolae-mediated uptake
5 ~20 - li - No toxici 119
nm auroliposome enhancement; PDX model efficacy o toxiclty (119)
6 12 + 2 nm Thiolation miR - 145 FSH receptor-targeted delivery via FSH33 peptide - Considered (122)
. ~30nm Electrostatic ad.sorptio.n; . PTX Multimodal imaging (PA/FI.‘/CT); pH-responsive PTX release; mice Considered (123)
Covalent bonding; Thiolation Photothermal-enhanced delivery
8 - B DTX HNT/AuI\‘IP/S-ORT antib‘ody integrat-io‘n; PPTT/pH-triggered release ~ The MTT re‘sults indicate (115)
(44 °C activation); Selective cancer killing low toxicity in 3T3
9 10~150m B TXT Ca(QH)Z t.umor—penetratlon pretreat'mer'lt§ Magnetlc/PPTT/CT mice The MTT reéults indicate 28)
multifunctional system; 89% growth inhibition low toxicity in 3T3
P -sh: AuNP deli f in; i inistrati
10 60 + 5nm*30 + 3nm | Thiolation; Covalent bonding CSA-131 pea:nutt' Sl aped AuNP delivery of ceragenin; Systemic administration BALB/c nude mice No toxicity (124)
otential
Theaflavin-mediated synthesis/stabilization; Low hemolyti
11 ~19nm Thiolation; Covalent bonding TQ catiavin nTe ated synthesis/stabilization; Low hemolytic - No toxicity (125)
nanocomposite
First integrati f miR-200c with AuNPs-TZ 1
12 ~10nm Thiolation TZ; miR-200c 1rst integration of mi cwi unes nanocomplexes - Considered (126)
demonstrated.
QbD-guided functionalization yielded pH/NIR-responsive AuNPs-L-
13 ~20nm Thiolation DOX Dox nanoplatform for selective tumor drug release with reduced - Low toxicity s(127)
systemic toxicity
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Individual TXT
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FIGURE 9

Cancerous cell (ATCC HTB76)

Confocal images of the subjected TXT@Fe304/PVA/Au nano-therapeutic to the stained cells. Green: HTB76 cancerous, and blue: NIH 3T3 fibroblast
cells (106 DFU), in the presence of the individual TXT, TXT@Fe304/PVA/Au (Cargo), and TXT@Fe304/PVA/Au-SORT particles (Cargo-SORT) particles.
Cell staining was performed using crystal violet, and incubation was carried out at 37 °C with 95% humidity for 2 hours. Pretreatment was done with
Ca(OH)2@Fe304/PVA/Au-SORT particles in the same dosage with the TXT-containing therapeutic (10ug/mL) (28)

accumulation occurred at 2 h, with subsequent PTT significantly
suppressing tumor growth without hemolysis or toxicity,
establishing a precise image-guided therapeutic platform.

PDT and PTT act synergistically against ovarian cancer. A
multifunctional nanomicrogel (Au@MSN-Ter/THPP@CM@
GeIMA/CAT) demonstrates concurrent photodynamic efficacy
(650nm) and photothermal ablation (980nm) (147).

3.2.4 Radiosensitization effects of AuUNPs in
radiotherapy

AuNPs exhibit radiosensitizing effects, exemplified by
thioglucose-bound nanoparticles (Glu-GNPs) enhancing ovarian
cancer radiotherapy (148). The GO-SPIO-Au nanoflower platform
integrates graphene oxide (NIR-PTT), AuNPs (radiosensitization),
and superparamagnetic iron oxide (MRI) for image-guided therapy
(112). In murine models, combined PTT/RT yielded 1.85x and
1.44x higher efficacy than PTT or RT alone, respectively. Kinga
et al. developed a novel cancer therapy combining antibody-drug
conjugates (ADCs) with B-emitting "*>AuNPs conjugated to
trastuzumab emtansine (T-DM1), demonstrating specific HER2
affinity and synergistic efficacy against HER2-overexpressing
cancers at low T-DMI1 doses (0.015~0.124pg/mL) with 10-20
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MBg/mL radiation (149). Continuous 7-day treatment (20 MBgq/
mL+0.031pug/mL T-DMI1) disrupted 3D tumor spheroids,
suggesting potential for HER2-positive breast/ovarian cancer
treatment despite preferential suitability of inorganic
nanoradiopharmaceuticals for localized delivery (Figure 10) (149).

4 Integrated diagnostic and
therapeutic platform

AuNPs serve as pivotal components in multimodal theranostic
platforms owing to their distinctive physicochemical properties,
enabling visualized precision therapy of pathological lesions.
Diversified therapeutic strategies demonstrate that targeted
accumulation of AuNPs at disease sites generates synergistic
effects, with imaging guidance being critical for maximizing
diagnostic-therapeutic efficacy. Current research has developed
functionalized AuNPs-based visualization approaches for
gynecological malignancies. Zhang’s team overcame single-
modality imaging limitations by establishing a PAI/CT/MRI
multimodal system centered on functionalized AuNPs, effectively
addressing the low X-ray attenuation coefficient inherent to
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inorganic materials (67). At 200 ug/mL, Au-UCNPs-DSPE-PEG
precisely delineated cervical cancer location, dimensions and
morphological characteristics in murine models, while their
photothermal conversion capability simultaneously enabled
photoacoustic imaging-guided combination photothermal and
photodynamic therapy (67). Beyond physical modalities, AuNPs
function as chemotherapeutic carriers. Taheri et al. employed CT to
monitor TXT@AuNPs distribution for efficacy assessment, yet
single-modality CT proved inadequate for tracking drug release
kinetics (28). Wang’s team addressed this through multimodal
imaging (PAI/FL/CT) for real-time surveillance of drug-loaded
AuNPs. Paclitaxel release induced fluorescence signal fluctuations
due to AuNP surface restructuring while accelerating nanoparticle
metabolic clearance, consequently reducing photoacoustic intensity
in lesions (123). For quantitative release monitoring, Yim’s team
innovatively leveraged AuNPs’ low X-ray attenuation property (66).
Electrostatic adsorption-triggered aggregation of radioiodinated
AuNPs, occurring through opposite surface charges after DOX
release, significantly enhanced lesion signals on PET-CT imaging
(66). These aggregates maintained prolonged high-signal states due
to extended half-life, enabling sustained dynamic observation.

5 Challenges and limitations

Despite being a promising nanomaterial, AuNPs must
overcome several significant barriers prior to broad clinical
adoption for diagnosing and treating gynecological malignancies.

The safety profile of AuNPs represents a modifiable property,
critically dependent on factors such as particle size, synthesis
method, exposure route, dosage duration, and the specific
biological milieu (150, 151). In numerous studies cited above,
AuNPs are often assumed to be chemically inert and stable
materials, particularly when PEG-modified, exhibiting negligible
toxicity at certain doses. Merely 28 investigations to date have
employed MTT assays and related techniques to evaluate the
cytotoxicity of novel functionalized AuNPs toward normal cells
or animal models. In the clinical context of managing gynecological
malignancies, chemotherapy is typically a protracted process (152).
Repeated administration of functionalized AuNPs during such
long-term treatment carries a significant risk of inducing
antibodies against the nanoparticle surface characteristics. This
immunogenic response could potentially compromise the
targeting efficacy of AuNPs and disrupt normal immune function.
Furthermore, diverse AuNPs synthesis and functionalization
strategies can leave toxic chemical residues on the particle
surfaces. These modifications also alter the chemical properties
and size of the AuNPs, potentially hindering renal clearance and
leading to progressive bioaccumulation. Additionally, compared to
free drugs, administering chemotherapeutic nanoparticles during
ovulation increases ovarian toxicity and reduces fertility (153).
Therefore, the menstrual cycle warrants consideration in the
design and implementation of AuNPs therapies for female
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patients. These concerns underscore the necessity for further
comprehensive evaluation of AuNPs systemic safety in humans
and detailed investigation into nanoparticle pharmacokinetics to
fully assess their absorption, distribution, metabolism, and
excretion processes.

Addressing AuNP safety challenges requires systematic
pharmacokinetic studies (absorption, distribution, metabolism,
excretion) in animal models to define critical thresholds for
nanoparticle-induced irreversible organ damage, enabling
establishment of dimensionally-, morphologically-, and synthesis-
method-dependent safety dosage windows across varied
administration regimens. Green synthesis strategies utilizing novel
catalysts demonstrate promising toxicological safety profiles, potentially
representing key advancement pathways (75, 76). Multifunctional
AuNPs may shorten chemotherapy cycles while combined PTT and
PDT therapies could circumvent antibody responses from chronic
treatment (127, 141). Nevertheless, large-scale animal validation
remains indispensable; current maximum reported cohort sizes of 28
subjects prove insufficient, particularly given physiological disparities
between rodent and human systems, necessitating expansion to rabbit
and non-human primate models. These imperatives collectively
emphasize comprehensive assessment of systemic AuNP safety in
humans and rigorous pharmacokinetic investigation.

The diagnostic and therapeutic efficacy of AuNPs requires
further validation. The majority of studies demonstrating
potential benefits are confined to cell lines or small animal
models, overlooking the substantial complexity of human
physiology. In cervical cancer diagnostics, merely 15 of 34 peer-
reviewed investigations disclosed clinical sample accuracy (n=9) or
spiked serum analyte recovery (n=6), with two HPV detection
reports achieving >95% accuracy in cohorts exceeding 100
specimens. Regarding therapeutic applications, only 2 of 15
cervical cancer publications documented AuNP efficacy in murine
models. Similarly, among 28 ovarian cancer diagnostic analyses, 18
provided clinical validation data (n=4) or serum recovery metrics
(n=14), though clinical specimens numbered <10 per analysis.
Whereas 21 of 28 therapeutic investigations asserted significant
antitumor outcomes, merely 9 confirmed efficacy in animal models
with quantification parameters undisclosed. Humans are
continuously exposed throughout life to diverse natural and
anthropogenic nanoparticles. Such environmental nanoparticle
contamination constitutes a significant exogenous interference
factor, potentially impeding the function of administered AuNPs.
For instance, titanium or iron oxide nanoparticles can inhibit
cancer cell uptake of AuNPs (154). Beyond these exogenous
factors, endogenous human variables also critically influence
AuNPs performance. Evidence indicates that elevated cholesterol
levels and specific lipid ratios disrupt the delivery capacity of DOX-
AuNPs systems (155). Even in Phase III clinical trials, AuNPs-based
drug delivery systems demonstrated suboptimal recognition
efficiency for ovarian cancer, with the majority of intratumoral
nanoparticles becoming either trapped within the extracellular
matrix or sequestered by perivascular tumor-associated
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FIGURE 10

Microscopic images of the measured control and compound-treated SKOV-3 spheroids (149).

macrophages (156). Compounding these issues, many studies
report human validation based on single-digit sample cohorts,
lacking comparison with healthy individuals or non-gynecological
cancer patients, and frequently omit detailed accuracy data
(Supplementary Material 1).

Subsequent investigations must validate AuNPs’ true
diagnostic-therapeutic efficacy through large-scale animal models
and clinical trials, with priority assessment of their resistance to
complex biological interferences including protein corona
formation and lipid adsorption. Although functionalized AuNPs
demonstrate anti-interference capabilities in select studies, the
disparity between simulated laboratory conditions and
physiological environments necessitates rigorous in vivo
verification. Novel non-spherical geometries such as high-aspect-
ratio nanostars effectively circumvent protein corona shielding
while enhancing tumor targeting precision (139). Notably,
nanoparticles within the 10~20 nm size range exhibit optimal
performance, yet synthesis-dependent variations in AuNP
dimensions/morphologies demand standardized evaluation
frameworks to enable cross-study comparability and collaborative
advancement. Furthermore, addressing prevalent data limitations
stemming from insufficient clinical samples requires establishing
multicenter validation frameworks. AuNPs’ therapeutic potential
should transcend conventional drug delivery roles toward
multimodal theranostic platforms, exemplified by triple-modality
regimens integrating PTT, controlled chemotherapeutic release,
and radiosensitization, with concurrent treatment monitoring via
PAI and PET-CT. While four diagnostic investigations have
incorporated machine learning for enhanced SERS-based high-
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throughput chip detection, deep learning applications in medical
image interpretation remain unexplored. Integrating big data
analytics with mobile health technologies could establish
intelligent diagnostic networks to reduce misinterpretation risks.
Finally, the cost implications of AuNPs systems demand serious
consideration. In resource-limited developing nations, economic
constraints remain pivotal in restricting large-scale disease
screening initiatives. Most current studies fail to address the cost
structure of AuNPs-based diagnostic platforms, with only a handful
reporting screening expenses or reusability metrics (157). A
predominant focus on novel materials and intricate architectures,
particularly acute within the domain of AuNPs-designed
electrochemical sensors, often overshadows the underlying
premise of screening: low cost and high accessibility.
Furthermore, AuNPs synthesis methodologies themselves
represent significant cost determinants, compounded by concerns
regarding environmental impact and suboptimal production
efficiency (151). These factors establish cost as a paramount
consideration for the clinical translation of AuNPs technologies.
The convergence of artificial intelligence and low-cost
smartphones offers a significant pathway to reduce expenditures
associated with AuNP-based diagnostic systems, effectively
lowering human resource requirements, time costs, and sample
transport losses. Implementing a three-tier diagnostic network
comprising colorimetric detection units, subject mobile client
devices, and hospital data centres substantially enhances
population screening efficiency. A core advantage of this system
lies in the capacity for AI algorithms to perform localized
processing directly on smartphones, enabling preliminary

19 frontiersin.org


https://doi.org/10.3389/fonc.2025.1664340
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al. 10.3389/fonc.2025.1664340
Now Future
2025
N
Synthesis Q?5
of AuNPs Challenges

AE- Diagnosis Strategy
Yommm—gv

(<)
a: Colorimetric detection utilizing AuNPs

c: SERS detection based on AuNPs

1 d:

o

Treatment Strategy

a: AuNPs-based drug delivery systems
b: Intrinstic antitumor effects of AuNPs

utilizing AuNPs

d: Radiosensitization effects of AuNPs in
Radiotherapy

2 bR

b: AuNPs-engineered electrochemical biosensors

AuNPs-enabled innovative imaging stragtegies

c¢: High-efficiency photothermal tumor ablation

a: The biosafety of AuNPs demands careful
consideration

b: The diagnostic efficacy of AuNPs requires
thorough evaluation due to limitations in
cohort size and real-world applicabilit.

c: Cost-effectiveness of AuNPs warrants
prudent assessment

>> Recommendation of Countermeasures

a: Rigorous validation through large-scale
animal studies and clinical trials is imperative
b: Synergistic integration of artificial
intelligence with AuNP-based detection
platforms demands prioritization

c: Establishing standardized evaluation
frameworks and pivoting toward scalable,
modular manufacturing constitutes a critical
roadmap b

a

FIGURE 11

Current diagnostic and therapeutic approaches utilizing AUNPs in cervical and ovarian cancers, and associated challenges and future prospects.

screening and interpretation of test results; only data indicating
anomalies require transmission to the hospital data centre for
verification, thereby markedly alleviating the healthcare burden in
resource-limited settings. This tiered network fundamentally
transforms the traditional hierarchical “hospital-centric—
healthcare worker-subject” information delivery model. By
empowering subjects with autonomous testing capabilities, it
shifts the paradigm from passive information reception to
proactive health management, significantly improving participant
engagement and adherence. From a technological development
perspective, research efforts should recalibrate their focus
regarding AuNPs: prioritizing material design optimization that
establishes an optimal cost-accuracy balance over the pursuit of
increasingly complex material combinations; directing energy
towards developing scalable, low-power manufacturing processes;
and advancing clinical integration through modular designs that
reduce the overall system cost.

Notably, clinical trials of AuNPs in gynaecological malignancies
remain limited. However, recent human studies across non-
gynaecological cancers, spanning breast cancer, colorectal
carcinoma and cutaneous disorders, demonstrate expanding
clinical evaluation (158-162). These advances confirm that
current implementation challenges are addressable and reveal

Frontiers in Oncology

diagnostic and therapeutic benefits warranting further translation
in gynaecological oncology. Collectively, AuNPs systems exhibit
significant potential for enhancing diagnostic accuracy, improving
patient quality of life, and optimizing clinical prognoses. Looking
forward, their unique physicochemical properties position AuNPs
as transformative agents in next-generation gynecologic oncology,
enabling minimally invasive theranostics, real-time disease
monitoring, and personalized treatment regimens. Continued
advancements in nanomaterial engineering, refined targeting
methodologies, comprehensive safety evaluations, and integration
of Al further solidify AuNPs platforms to assume an increasingly
critical and expansive role in future integrated theranostic
frameworks (Figure 11).

6 Conclusion

Clinical management of gynecological malignancies faces
significant challenges, including difficulties in early detection, high
therapeutic resistance, substantial risks of residual disease post-
surgery, and considerable toxicity from conventional radiotherapy
and chemotherapy. These critical limitations demand innovative
technological solutions for precision diagnostics and therapeutics.
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Recent advances in nanotechnology provide transformative
momentum for gynecologic oncology, with AuNPs offering
particularly promising strategies due to their tunable dimensions,
morphological versatility, customizable surface functionalization,
and unique optical properties. AuNPs serve as highly sensitive
contrast agents that enhance detection rates for early-stage lesions
and micrometastases. Functionalization with antibodies, peptides,
or aptamers enables precise targeting of therapeutic payloads to
disease sites and facilitates ultrasensitive detection of trace
biomarkers in liquid biopsies. Furthermore, their exceptional
photothermal conversion efficiency and photochemical
capabilities permit concurrent targeted chemotherapy with
spatially precise photothermal and photodynamic therapy at
tumor sites. This integrated theranostic approach positions
AuNPs-based systems to drive a paradigm shift from isolated
interventions toward closed-loop precision management in
gynecologic oncology. Nevertheless, further validation remains
imperative to address clinical translation barriers and long-term
safety profiles.
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Multilayered nanoparticles
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Molybdenum disulfide
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5,5’-Dithiobis-(2-nitrobenzoic acid)
4,4'-Dipyridyl
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Toll-like receptors 7/8
3-Mercaptopropionic acid
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Polyvinylpyrrolidone
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Protoporphyrin IX

Gold nanorods

Dose enhancement factor
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Polyamidoamine
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Graphene oxide/superparamagnetic iron oxide/

gold nanoparticle
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Fluorescence lifetime imaging microscopy
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