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Epithelial cells within the gastric corpus mucosa exhibit a dynamic response to
injury, characterized by alterations in gene transcription, cellular phenotype, and
tissue organization, collectively termed metaplasia. Among these changes,
gastric intestinal metaplasia (GIM) represents one of the most prevalent
precancerous lesions associated with intestinal-type gastric cancer (GC). This
pathological progression typically evolves through a sequence of stages: chronic
atrophic gastritis, intestinal metaplasia, atypical hyperplasia, and ultimately, GC. A
deeper understanding of GIM is crucial for advancing diagnostic and therapeutic
strategies in GC management. Despite its clinical significance, progress in
elucidating the underlying mechanisms of GIM has been limited, primarily due
to the lack of reliable and reproducible animal models that accurately
recapitulate this condition. This review systematically examines the existing
mouse, rat, and organoid models utilized for GIM research, providing critical
insights into various methodological approaches and potential mechanisms.
Specifically, we investigate five pivotal aspects of pyloric metaplasia and GIM:
Helicobacter pylori infection, bile acid induction, chemical agent interventions,
transgenic technologies, and gastric organoids. Through this comprehensive
analysis, we aim to establish a robust foundation for future research initiatives
focused on unraveling the molecular mechanisms driving GIM development and
formulating effective prevention and treatment strategies.
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1 Introduction

Gastric intestinal metaplasia (GIM) is a well-established
precancerous lesion or condition associated with a significantly
elevated risk of gastric cancer (GC) (1). According to the classical
Correa cascade theory, intestinal-type GC develops through a well-
defined sequence of histopathological stages: from healthy gastric
mucosa to chronic superficial gastritis, atrophic gastritis, GIM,
dysplasia, and finally intestinal-type GC (2). GIM is classified into
two distinct categories: complete and incomplete GIM. Complete
intestinal metaplasia is marked by the presence of metaplastic
glands composed of goblet cells, columnar cells with a well-
defined brush border, and occasionally Paneth cells. This category
is further subdivided into three subtypes: small intestine metaplasia
type I, small intestine metaplasia type II, and colonic metaplasia (3).
Subsequently, several reports indicate that GIM can also exhibit a
mixed type combining both colonic and small intestinal phenotypes
(4, 5). In contrast, incomplete GIM shows poorly formed brush
borders, irregularly distributed immature goblet cells, and glands
with predominantly colonic morphology. This subtype may also
contain columnar cells with mixed phenotypic features, such as the
presence of mucin droplets typically seen in goblet cells (6, 7). In
essence, GIM involves the replacement of gastric epithelium with
intestinal-type cells. As a result, proteins normally expressed in the
intestine—including caudal type homeobox 2 (CDX2), mucin 2
(MUC2), and trefoil factor 3 (TFF3)—serve as useful molecular
biomarkers for detecting and investigating GIM (7, 8).

When gastric corpus glands lose parietal and chief cells, they
acquire morphological and molecular features resembling those of
pyloric glands. This phenotypic shift is particularly noticeable at the
base of atrophic corpus glands, where structural remodeling leads to
the marked upregulation of trefoil factor 2 (TFF2) and other specific
genes, conferring an antral gland-like appearance. The
identification of a previously unrecognized basal cell lineage in
these atrophic glands represents a definitive metaplastic transition,
now classified as spasmolytic polypeptide-expressing metaplasia
(SPEM) (9). Based on immunohistochemical profiling of markers
such as Ki67 and Muc2, Goldenring et al. suggested that SPEM may
progressively evolve into a GIM phenotype, indicating that GIM
represents only one of several possible precursor or intermediate
stages in gastric carcinogenesis (10). SPEM is considered a response
in the gastric mucosal injury repair process and may also represent
an early-stage lesion in gastric carcinogenesis. Nowadays, SPEM
serves as a critical model for investigating the mechanisms
underlying gastric carcinogenesis, particularly in elucidating the
transition from chronic inflammation to cancer.

The early detection and management of gastric precancerous
lesions, particularly GIM, are vital to preventing GC and reducing
its incidence. This necessitates a deeper investigation into the
molecular mechanisms and signaling pathways governing the
transition from normal mucosa to cancer. It also demands the
development of physiologically relevant animal models that
accurately simulate human disease for improved translational
research. This review provides a comprehensive and systematic
analysis of current methodologies for establishing GIM models,
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with particular emphasis on five key approaches: Helicobacter pylori
(H. pylori) infection, bile acid induction, chemical agent
intervention, transgenic technologies, and gastric organoids
(Figure 1). By critically evaluating existing experimental evidence,
we aim to establish a robust foundation for animal-based research
on gastric precancerous lesions and to provide valuable theoretical
insights that may guide future mechanistic studies and
therapeutic development.

2 Experimental models of H. pylori-
induced GIM

H. pylori, classified as a Class I carcinogen by the World Health
Organization, plays a pivotal role in the development of gastritis, GIM,
and GC (11). Given its strong association with gastric pathologies, H.
pylori is widely used in experimental models to study precancerous
lesions of gastric cancer (PLGC) and GC. In this section, we focus on
summarizing the roles and mechanisms by which H. pylori
contributes to the induction of GIM (Table 1). Chen et al.
demonstrated that H. pylori infection upregulates the oncogene
Activin A receptor type I (ACVRI), which subsequently promotes
GIM by regulating CDX2 expression through comprehensive in vivo
and in vitro experiments (12). A recent study further revealed that H.
pylori infection activates the cGAS/STING/IRF3 signaling pathway,
stimulating the kynurenine pathway of tryptophan metabolism. This
metabolic shift leads to increased production of xanthurenic acid, a
key mediator that drives the development of GIM (13). Additionally,
H. pylori infection involves the Hippo LATS2/YAP1/TEAD signaling
pathway, which is crucial for maintaining mucosal homeostasis. The
Hippo signaling pathway acts as a protective mechanism to preserve
the epithelial phenotype of gastric cells and limit H. pylori-induced
precancerous lesions (14). Another study demonstrated that H. felis-
infected mice developed characteristic gastric histopathological
changes, including severe chronic gastritis with lymphoid follicle
formation, mucous neck cell hyperplasia, oxyntic atrophy, and
SPEM, with predominant pathological manifestations observed in
the gastric corpus. Importantly, the study further revealed that both H.
felis-induced SPEM and intestinal metaplastic phenotypes were
reversible following bacterial eradication (15). Early studies showed
that NOD1-deficient mice exhibit increased susceptibility to H. pylori
infection (16). When NOD1-deficient mice were infected with H.
pylori for 12 months, goblet cells were observed in the gastric mucosa,
accompanied by significantly elevated expression of GIM markers
(17). The GIM modeling process relying solely on H. pylori infection
proves to be both time-intensive and technically challenging. To
address these limitations, researchers have developed comprehensive
modeling approaches that integrate H. pylori with additional
modalities. For example, the Mistl-Kras mouse model, featuring
tamoxifen-induced activation of the constitutively active Kras allele
(G12D) in chief cells, effectively recapitulates the sequential
progression from normal gastric epithelium to SPEM, GIM, and
dysplasia. Valerie et al. further expanded the utility of this model by
incorporating H. pylori infection. Their findings revealed that in H.
pylori-infected Mistl-Kras mice, the staining patterns of griffonia
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Overview of the GIM models, with particular emphasis on five key approaches: H. pylori infection, bile acid induction, chemical intervention,

transgenic technologies, and gastric organoids.

simplicifolia lectin II (GS-II) and MUC2 exhibited consistent trends,
characterized by a decrease in GS-II and an increase in MUC2
between 6 and 12 weeks post-infection (18). Moreover, using the
same model, they demonstrated that H. pylori isolates collected from
different disease stages of the same individual displayed distinct
colonization capacities in both healthy and metaplastic gastric
glands (19). This finding reveals that H. pylori dynamically evolves
during gastric carcinogenesis—early-stage strains may preferentially
colonize healthy mucosa, while late-stage strains adapted to
metaplastic niches acquire a competitive advantage in lesioned
tissues. Such colonization selectivity likely serves as a core driver of
pathological progression. Numerous alternative H. pylori co-molding
methodologies will be systematically discussed in subsequent sections.
Critically, this pathogen drives GIM by orchestrating complex
interactions between bacterial infection, host signaling pathways,
and gastric microenvironmental remodeling, collectively advancing
the development of gastric precancerous lesions.

Emerging evidence from next-generation sequencing has
uncovered a complex gastric microbial ecosystem, challenging the
long-held notion of H. pylori as the exclusive etiological
microorganism in gastric precancerous lesions and GC. A recent
study demonstrated that gastric microbiota from GIM or GC patients
exhibits selective colonization in murine stomachs, triggering
precancerous lesions. Notably, histopathological analysis
documented significant marked dysplastic changes by 12 months
post-inoculation (20). This discovery provides novel insights into the
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mechanistic and translational modeling of GIM, while offering the
prospect of intercepting gastric precancerous lesion progression
through an innovative ecotherapeutic paradigm—precision
microbiota modulation.

3 Experimental models of bile acid-
induced GIM

Bile acids, which are cholesterol derivatives, play a vital role in
fat absorption and transport and are predominantly found in
organs such as the liver, gallbladder, and intestines (21).
Hepatocytes synthesize these compounds through CYP-mediated
cholesterol oxidation via two principal pathways. The classical
pathway produces primary bile acids via cholesterol hydroxylase
activity, including cholic acid (CA) and chenodeoxycholic acid
(CDCA), which are subsequently conjugated to taurine (mice) or
glycine (humans), forming TCA, TCDCA, GCA, and GCDCA (22).
These are exported into the bile ducts via bile salt export
pumps (23).

Bile acids can induce GIM through a variety of pathways and
regulatory mechanisms in animal models (Table 1). In one study,
researchers administered CDCA and DCA to C57BL/6] mice via a
plastic feeding tube and discovered that bile acids could promote
the upregulation of CDX2 and MUC2 in gastric epithelium via
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TABLE 1 Animal models of H. pylori and bile acid-induced GIM.

10.3389/fonc.2025.1664298

Animals = Species Types of H. pylori Method Duration Targets and Markers Phenotype Reference
or Bile acids pathways

Mouse C57BL/6 SS1 Via gavage 1 month ACVRI1 CDX2, MUC2, GIM (12)
(2x10° CFU)/mouse Villin-1

Mouse C57BL/6 PMSS1 Via gavage 2 weeks cGAS/STING/ CDX2, MUC2, GIM (13)
(2x10° CFU)/mouse IRF3 Villin

Mouse C57BL/6] HPARE* Via gavage 3-12 months Hippo LATS2/ CDX2, MUC2 GIM, (14)

YAP1/TEAD dysplasia
Mouse C57BL/6] H. felis Via gavage 3,6, 12 months | / TFEF2, MUC2, SPEM, GIM = (15)
(ATCC 49179) (2.5 x10° CFU)/ CD44, DCLKI,

mouse Villin

Mouse NODI1-deficient ~ ATCC 43504 Via gavage 12 months NODI1/TRAF3/ CDX2, MUC2, GIM (17)

C57BL/6 (25 x10® CFU)/ NF-xB TFE3

mouse

Mouse Mist1-Kras** PMSS1 Via gavage 12 weeks / MUC2, SPEM, GIM = (18, 19)
(5 x 107 CFU)/ TFF3
mouse

Mouse C57BL/6] DCA, CDCA Via a plastic feeding | 45 days FXR/NF-kB CDX2, MUC2 GIM (24)
tube
(10 mM, 150 ul, bid)

Mouse C57BL/6] CDCA Via a plastic feeding | 50 days GATA4/NF-«B CDX2, GIM (25)
tube KLF4,
(10 mM, bid) MUC2

Mouse C57BL/6] TDCA Via a feeding tube 43 weeks IL-6/JAK1/ / gastritis (26)
(120 mg/kg/d) STAT3

Mouse C57BL/6] / Bile acid reflux 50 Weeks STAT3 / dysplasia (26)
surgery

Mouse Rosa26 e DCA Adding to drinking 12 months HDAC6/FOXP3/ | KLF4, GIM (28)
water (0.3%) HNF40, MUGC2, CDX2

Mouse INS-GAS DCA Adding to drinking 6 months TGR5/p-STAT3/ = KLF5 GIM (29)
water (0.2%) KLF5

*CagA and VacA positive.
**Mist1-CreERT2 Tg/+; LSL-K-Ras(G12D) Tg/+.

stimulating FXR/NF-xB signaling pathway (24). However, this
study only validated molecular biomarkers of GIM without
corresponding histopathological evidence, likely because
hematoxylin and eosin (HE) staining and alcian blue-periodic
acid schiff (AB-PAS) staining did not detect significant goblet cell
changes. Using a similar modeling approach, Yang et al.
demonstrated that CDCA promotes GATA4 expression via NF-
KB signaling, while GATA4 and CDX2 form a positive feedback
loop that synergistically enhances MUC2 transcription in GIM (25).
Taurodeoxycholic acid (TDCA) is significantly and positively
correlated with the lipopolysaccharide-producing bacteria in the
gastric juice of bile reflux gastritis and GC patients. Then the
researchers employed two distinct modeling approaches: TDCA
tube feeding and bile acid reflux (BR) surgery in mice. Gastric
inflammation was induced after 45 weeks of TDCA administration,
and histopathological analysis revealed that 3 out of 8 mice in the
BR surgical group developed gastric lesions, including one
precancerous lesion and two cases of atypical hyperplasia (26).

In addition to studies conducted on C57 wild-type mice,
researchers have also utilized mice with specific genetic
backgrounds for bile acid intervention modeling. Wang et al.
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developed a transgenic mouse model in which Lgr5+ gastric
mucosal stem cells specifically expressed Hnf4o. This was
achieved by crossing Lgr5-Cre and LSL-Hnf4o mice, both on a
C57BL6 background, to activate Hnf4or expression (27). Building
on this model, Zhang et al. constructed Rosa26Hnf4o. transgenic
mice, which were administered bile acids (0.3% DCA, pH 7.0) in the
drinking water for 12 months. Their findings demonstrated that
HNF4o0. overexpression, combined with DCA treatment, induced
the gastric mucosa to secrete intestinal mucus and led to abnormal
mucosal structures, including enlarged glands at the
squamocolumnar junction and gastric mucosal atrophy (28).
Additionally, transgenic INS-GAS mice on an FVB/N genetic
background were chronically exposed to 0.2% DCA dissolved in
their drinking water for a period of 6 months. Researchers observed
that DCA administration significantly increased serum total bile
acid levels and accelerated the sequential development of GIM and
subsequent dysplasia (29). INS-GAS mice, characterized by
pancreatic islets secreting carboxyamidated gastrin-17, exhibited
elevated serum amidated gastrin levels, marked thickening of the
oxyntic mucosa, and an increased bromodeoxyuridine (BrdU)
labeling index in the gastric body (30). These mice eventually
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developed progressive parietal cell depletion and hypochlorhydria,
spontaneously progressing to GIM, dysplasia, and GC by 20 months
of age (31). Undoubtedly, using INS-GAS mice for bile acid feeding
can significantly shorten the time required to establish GIM models
while increasing the success rate. Taken together, these studies
highlight the critical role of bile acids in driving gastric mucosal
changes and the progression of precancerous lesions. They also
underscore the importance of utilizing diverse mouse models,
including genetically engineered strains, to better understand the
molecular mechanisms underlying GIM and its transition to GC.
These findings provide valuable insights for developing targeted
interventions to prevent or treat gastric precancerous conditions.

4 Experimental models of MNNG-
induced GIM

Methyl-N’-nitro-N-nitrosoguanidine (MNNG), a potent
environmental chemical carcinogen, is strongly associated with
the development of PLGC and GC (32). MNNG was instrumental
in establishing the first rat model for gastric tumors, although the
underlying mechanisms remain largely unexplored (33).
Subsequently, MNNG was widely used in the modeling of gastric
precancerous lesions (Table 2). Wistar rats treated with MNNG (83
mg/mL) in drinking water for >4 months exhibited GIM in 80-
100% of cases (34). Lower concentrations (25, 50, 100 mg/mL) in
drinking water over 32 weeks also consistently induced GIM (35).
Drinking MNNG solution (200 pg/mL) combined with alternating
hunger-satiety cycles effectively induced PLGC in Sprague Dawley
(SD) rats (36-38). To better replicate complex pathogenesis, models
combining MNNG (170 pg/mL) with feeding schedules like 1-day
feed/1-day fast or 2-day feed/1-day fast cause gastric mucosal
thinning, gland reduction, and GIM (39). Additionally, GIM was
observed during the construction of a chronic atrophic gastritis
model in rats fed MNNG for 12 weeks (40).

In studies utilizing MNNG to establish animal models of GIM,
specific chemical co-factors are often required to more effectively
simulate the complex environment of human GIM development
and enhance modeling efficiency. These co-factors operate through
distinct mechanisms, synergizing with MNNG to promote gastric
mucosal damage, inflammation, and metaplastic transformation.
Key chemical synergistic agents commonly employed in research
include ranitidine, sodium salicylate, ethanol, and high-salt diet.
Ranitidine, an H2 receptor antagonist that alters the gastric
microenvironment by suppressing gastric acid secretion, was
incorporated into feed (0.03%, 0.05%, 0.3%) to enhance lesion
development (41-44). Sodium salicylate which induce mucosal
injury and inflammation was administered via gavage (2%
solution at 10 mL/kg) on fasting days (41). This study revealed
that Celastrus orbiculatus ethyl acetate extract could reverse PLGC
progression by modulating the PDCD4-ATG5 signaling pathway.
Ethanol was directly used to compromise the gastric mucosal
barrier and trigger inflammation and mucosal damage (40%
ethanol at 10 mL/kg/d via gavage) (42). Integrated protocols
combining MNNG (120-200 pg/mL in water), ranitidine feed,
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specific fasting regimens, and gavage of irritants like ethanol,
sodium salicylate, or high salt have successfully established robust
PLGC and GIM models for evaluating therapeutic interventions.

Compared to adding MNNG to drinking water, administering
MNNG to mice via gastric gavage is a more direct and effective
approach. For instance, SD rats were given an MNNG solution
dissolved in drinking water containing 5% alcohol by gavage every
two days for 24 weeks. This model was used to investigate the potential
mechanisms of GIM and found that OLFM4 contributes to the
progression of GIM through activation of the MYH9/GSK3B/j-
catenin pathway (45). Similarly, Wistar rats were delivered 0.02 mol/
L MNNG solution by gavage for 24 weeks, in combination with a
hunger-satiety disorder regimen, and subjected to emotional stress via
the tail-pinching method weekly to establish PLGC animal models
(46). Rats were given MNNG at 200 mg/kg by oral gavage on days 0
and 14, followed by saturated NaCl (1 ml per rat) three times per week
for the first three weeks. Subsequently, MNNG (600 pg/kg) and
saturated NaCl were administered every other day. Following 35
weeks of induction, moderate to severe GIM was observed in the
gastric antrum of model rats (47). Lv et al. utilized the MNNG-
ammonia composite modeling method to establish a rat model of
PLGC, demonstrating that Ginsenoside Rg3 induced apoptosis and
inhibited proliferation in rats with PLGC (48). Using the same
modeling approach, Zeng et al. found that GRg3 attenuated
angiogenesis and moderated microvascular abnormalities in rats
with PLGC, potentially through its suppression of the aberrant
activation of GLUT1 and GLUT4 (49). Another PLGC rat model
was established by administering MNNG at 5 ml/kg via gavage once a
week, combined with free access to MNNG solution (200 pg/ml) in
drinking water. This model was used to investigate the effects and
mechanisms of Atractylenolide III on PLGC (50). In summary,
combining MNNG with other factors (dietary disruption, chemical
irritants, stress) significantly enhances model fidelity by better
mimicking the multifactorial etiology of human gastric
precancerous lesions.

N-Propyl-N’-nitro-N-nitrosoguanidine (PNNG), a propyl
derivative of MNNG, is also a potent nitroso compound
carcinogen used to induce gastric lesions. Administered to Wistar
rats via drinking water (59.5 pg/ml), PNNG induced GIM in the
glandular stomach with increasing incidence over time: 25% at 4
months, 75% at 8 months, and 83% at 12 months (51). Although
PNNG has been shown to have a weaker carcinogenic effect on the
stomach compared to MNNG, GIM was observed in the glandular
stomach following exposure to PNNG (52).

5 Experimental models of MNU-
induced GIM

N-methyl-N-nitrosourea (MNU), a potent direct-acting
carcinogen, induces tumors in multiple organs and contributes to
gastric carcinogenesis, including the development of GIM (53). Key
modeling approaches and findings are shown in Table 2. Mice
administered 300 pg/mL MNU in drinking water combined with
alternate-day fasting for 20 weeks developed GIM. AB-PAS staining
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TABLE 2 Animal models of chemical carcinogen-induced GIM.

10.3389/fonc.2025.1664298

Animals Species Chemicals Dosages Methods Duration Phenotype Reference

Rat Wistar MNNG 83 ug/ml Adding to 4 months GIM (34)
drinking water

Rat Wistar MNNG 25, 50, 100 ug/ml ~ Adding to 32 weeks GIM (35)
drinking water

Rat SD MNNG 200 ug/ml Adding to 20 weeks GIM (36)
drinking water

Rat SD MNNG 200 ug/ml Adding to 16 weeks GIM (37, 38)
drinking water

Rat SD MNNG 170 ug/ml Adding to 10 weeks GIM (39)
drinking water

Rat Wistar MNNG 167 ug/ml Adding to 12 weeks GIM (40)
drinking water

Rat SD MNNG* 170 ug/ml Adding to 12 weeks GIM (41)
drinking water

Rat SD MNNG* 200 ug/ml Adding to 40 weeks GIM (42)
drinking water

Rat Wistar MNNG* 100 ug/ml Adding to 16 weeks GIM (43)
drinking water

Rat Wistar MNNG* 120 ug/ml Adding to 32 weeks GPL (44)
drinking water

Rat SD MNNG 170 ug/ml By oral gavage 24 weeks GIM (45)

Rat Wistar MNNG 0.02 mol/L By oral gavage 24 weeks GIM (46)

Rat Wistar MNNG* 200 mg/kg & By oral gavage days 0 and GIM (47)

600ug/kg 14, 32 weeks

Rat SD MNNG** 200 ug/ml By oral gavage 8 weeks GIM (48)

Rat SD MNNG** 200 ug/ml By oral gavage 20 weeks GIM (49)

Rat SD MNNG 5 ml/kg & By oral gavage & 20 weeks GIM (50)

200 ug/ml Adding to

drinking water

Rat Wistar PNNG 59.5 mg/ml Adding to 4,8, and 12 GIM (51)
drinking water months

Mouse BABL/C MNU 300ug/ml Adding to 20 weeks GIM (54)
drinking water

Meriones Mongolian MNU +HP 20 ppm & Adding to 20 weeks GIM (56)

unguiculatus gerbils (ATCC 43504) 30 ppm drinking water

Meriones Mongolian MNU +HP 10 ppm Adding to 20 weeks GIM (57)

unguiculatus gerbils (ATCC 43504) drinking water

Mouse C57BL/6 MNU +HP (SS1) 240 ppm Adding to 5 weeks GIM (58)
drinking water

Rat Wistar MNU +X-ray 100 ppm Adding to 15 weeks GIM (53)

irradiation drinking water

*MNNG is not the only medication used in model construction.
**The rats were also given an ammonia solution with a concentration of 0.1%.

confirmed the presence of acidic mucin characteristic of GIM (54).
Combining MNU in drinking water with H. pylori inoculation
consistently induces both preneoplastic and neoplastic gastric lesions
in murine models (55). Rats inoculated with H. pylori and treated with
MNU exhibited higher degrees of inflammation, GIM, and
submucosal multicystic glands compared to those inoculated with

Frontiers in Oncology

06

H. pylori alone (56). Long-term H. pylori infection combined with
MNU exposure results in more severe inflammatory cell infiltration,
hyperplasia, GIM, and cellular proliferation (BrdU labeling) in the
gastric mucosa than shorter infection durations with MNU (57).

A specific mouse model using cyclic MNU administration (1
week on/1 week off for 5 weeks) plus totally three times of H. pylori
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inoculation resulted in either preneoplastic or neoplastic lesions in 9
out of 19 mice: 4 with GIM, 1 with dysplasia, and 4 with
adenocarcinoma (58). An early study noted X-ray irradiation
increased GIM and alkaline phosphatase (ALP)-positive foci.
While MNU effectively drives carcinogenesis and GIM formation,
particularly with H. pylori co-exposure, the study found it did not
significantly accelerate the progression of existing GIM to gastric
tumors in rats (53). MNU is a significant tool for modeling gastric
carcinogenesis and GIM. Its effects are markedly potentiated by
concurrent H. pylori infection, leading to robust and consistent
development of preneoplastic lesions in rodent models.

6 Experimental models of chemical
agent-induced SPEM

Beyond MNNG and MNU, specific chemicals are used to
induce metaplasia, particularly acute models of SPEM in mice
(Table 3). The transition to SPEM in murine gastric injury
models is driven by the synergistic action of parietal cell
disappearance and microenvironmental immune cell cytokine
signals (59). Tamoxifen, DMP-777, and L1635 are prominent
agents for inducing acute SPEM. Huh et al. demonstrated that
tamoxifen injection (5 mg/20g mouse, 3 consecutive days) causes
massive parietal cell loss (>90%), hyperproliferation of stem/
progenitor cells, and chief cell morphological changes (60). Saenz
et al. elucidated a tamoxifen administration regimen to recapitulate
oxyntic atrophy and the early preneoplastic events leading to gastric
dysplasia (61). Both tamoxifen and DMP-777 can induce
metaplasia even after prior parietal cell ablation (62). Miao et al.
used high-dose tamoxifen/DMP-777 models with scRNA-seq to
show that metabolic and mitochondrial changes are critical for
damage response, regeneration, and metaplasia (paligenosis) (63).

Widc2-knockout mice are resistant to oxyntic atrophy, SPEM, and
M2 macrophage accumulation in models induced by DMP-777, L635,
or tamoxifen. Exogenous WFDC2 protein upregulates IL-33, promotes

TABLE 3 Animal models of chemical agent-induced SPEM.
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M2 macrophage differentiation, and drives SPEM pathogenesis (64).
These acute drug-induced models using tamoxifen or DMP-777 are
crucial tools to study H. pylori interactions with metaplastic tissues,
evaluate therapeutic agents, and dissect the fundamental cellular and
molecular mechanisms driving SPEM (65-67). Kevin A. et al.
conducted single-cell RNA sequencing in both tamoxifen-induced
parietal cell ablation and chronic (4-month) TxA23 autoimmune
gastric metaplasia mouse models. Their findings revealed that SPEM
development follows a conserved cellular program regardless of
etiology, while acquiring immunoregulatory properties specifically in
chronic inflammatory contexts (68). These models consistently
highlight the indispensable roles of parietal cell disappearance and
specific immune signaling, particularly involving M2 macrophages and
cytokines like IL-33 in SPEM pathogenesis. They reveal a core
conserved cellular program for SPEM development while also
uncovering context-specific features, significantly advancing the
understanding of gastric metaplasia mechanisms.

7 GIM transgenic animal models

Transgenic mice serve as essential models for investigating gene
function, elucidating disease mechanisms, and facilitating drug
development, significantly advancing the field of biomedical
research. Petersen et al. summarized transgenic mouse models of
parietal cell loss, including Claudin-18 null mice, Kruppel-like
factor 4 null mice, Runx3 null mice, and H/K-cholera toxin mice.
These models could start with normal mucosa and then develop
progressively increasing levels of atrophy and metaplasia (69). In
this section, we summarize the transgenic mouse models utilized in
the study of GIM (Table 4). The Atp4a gene encodes a subunit of
the H+/K+-ATPase proton pump essential for gastric acid
production. Knocking out Atp4a impairs parietal cell function,
leading to chronic achlorhydria and hypergastrinemia, triggering
progressive precancerous changes in aged mice, including
hyperplasia, mucolytic alterations, and GIM (70, 71). Atp4a
knockout mice recapitulate human GIM development linked to

Animals Species Chemicals Dosages Methods Duration Phenotype Reference
Mouse C57BL/6 DMP-777 350 mg/kg Oral 7 days or 14 days = SPEM (62, 63)
Tamoxifen 5mg/20 g Intraperitoneal 3 days
injections
Mouse C57BL/6 DMP-777 350 mg/kg Oral 7 days or 14 days = SPEM (64)
L635 350 mg/kg Oral 3 days
Tamoxifen 5mg/20 g Intraperitoneal 3 days
injections
Mouse C57BL/6 Tamoxifen 5mg/20 g Intraperitoneal 3 days SPEM (65, 66)
injections
Mouse C57BL/6 5-fluorouracil + 150 mg/kg, bid + Intraperitoneal 2 days + 3 days SPEM (67)
Tamoxifen 250 mg/kg injections
Mouse BALB/c Tamoxifen 5mg/20 g Intraperitoneal 3 days SPEM (68)
injections
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acid loss (72-75). Studies using Atp4a-/- mice have revealed
activation of the Warburg effect and PI3K/AKT/mTOR signaling
during GIM progression and the potential of metformin to inhibit
GIM by suppressing inflammation and apoptosis pathways (73, 74).
The protective effects of traditional formulations like Weiwei
decoction exerted protective effects against SPEM in Atp4a-/-
mice (75). Thus, Atp4a knockout mice provide a powerful
platform for dissecting GIM mechanisms and evaluating
therapeutic interventions.

Similarly, ATPase H+/K+ transporting subunit beta (Atp4b)
deficient mouse models have been used to study the relationship
between achlorhydria and hypergastrinemia. Compared to Atp4a-/-
mice, Atp4b-/- mice exhibited more severe hyperplasia and cyst
formation but fewer focal changes such as adenomas, polyps, and
submucosal invasion by GC, revealing significant distinctions in
gastric pathological manifestations between these experimental

TABLE 4 GIM transgenic animal models.

10.3389/fonc.2025.1664298

models (71, 76). Notably, Atp4b knockout mice have been shown
to develop SPEM (76). In an innovative study, parietal cell-specific
Slc26a9 knockout mice (Slc26a91l/fl/ Atp4b-Cre) were generated by
crossing Slc26a9fl/fl with Atp4b-Cre mice. This model sequentially
developed parietal cell loss and oxyntic atrophy with mucous
metaplasia at 1 and 6 months, progressing to high-grade
intraepithelial neoplasia (HGIN) by 14 months (77). Additionally,
researchers observed varying degrees of GIM in Atp4b-Cre; MycOE
mice at 12, 25, and 35 weeks of age, with the most severe GIM
occurring at 25 weeks (78).

Studies have also explored the role of oncogenic mutations in
gastric metaplasia. For example, the presence of oncogenic K-ras
mutations in K19-expressing gastric epithelial progenitor cells
triggers inflammatory pathways, leading to gastric atrophy,
metaplasia, and dysplasia (79). In a tamoxifen-induced genetic
engineering model, the expression of activated Ras in the chief

Animals Genetic Species Duration Markers Phenotype Reference
modification
Rat Atp4a'/’ a mixed 129Sv] and 10-12 weeks =/ GIM (70)
Black Swiss
Mouse Atp4a'/' a mixed 129Sv] and 12 months / Incomplete GIM (72)
Black Swiss
Mouse Atpda”” C57BL/6 16 weeks MUC2 GIM (73)
Mouse Atpda™” / 24 weeks CDX2 GIM (74)
Mouse Atp4a'/ B / 10 weeks Clu, Cftr, Wfdc2, Dmbtl, Gpx2, GSIT*, SPEM (75)
Clusterin
Mouse Atp4b'/' BALB/c 12 months TFF2, Clu, MUC6, CD44, WEDC2 (HE4) SPEM (76)
Mouse S1c26a9""/ Atp4b-Cre C57BL/6] 6 months; TFF2, MUC6;CDX2, MUC2, TFF3 SPEM, GIM, (77)
14 months Dysplasia
Mouse Atpdb-Cre; Myc°F C57BL/6 25 weeks; MUC2 GIM, Adenoma (78)
35 weeks
Mouse K-ras C57BL/6 3 months / GIM, Dysplasia (79)
Mouse Mist1-Kras** / 3-4 months Clu, GSII, CD44v9, TFF3, MUC2, CDX1, SPEM, GIM, (80-82)
(Tamoxifen) CDX2, Trop2 Dysplasia
Mouse IL-1B C57BL/6 12 months / GIM, Dysplasia (83)
IL-1B + HP
(ATCC 49179)
Mouse IL-1B + H. felis C57BL/6 12 months / GIM, Dysplasia (84)
Mouse INS-GAS + H. felis FVB/N 6 weeks*** / GIM (85)
Mouse INS-GAS + HP C57BL/6 4 months™*  / GIM (86)
(PMSS1)
Mouse INS-GAS + HP / 16weeks*** CDX2 GIM (87)
(PMSS1)
Mouse CDX2 / 1-15 Villin, FABP1, MUC2, TFF3, GCC GIM (88)
months
Mouse CDX2 C57BL/6 37 days, MUC6, MUC5AC GIM (89)
244 days
Mouse TxA23 BALB/c 4 months TFF2, WFDC2 (HE4) SPEM (90)

*Griffonia simplicifolia (GSII) lectin binds MUCES.
**Mist1-CreERT2 Tg/+; LSL-K-Ras(G12D) Tg/+.
**Duration of H. pylori infection.
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cells of Mistl-Kras mice induced a complete spectrum of
metaplastic changes, including both SPEM and GIM (80). This
genetically engineered mouse model has significantly shortened the
time required for modeling GIM, representing a discovery of
considerable importance. Consistent with these findings, two
independent studies demonstrated that Mistl-Kras mice
developed distinct pathological features over time: pyloric
metaplasia glands containing SPEM cell lineages were observed as
early as 1 month post-induction, followed by the progression to
dysplastic glands at 4 months post-induction (81, 82).

Another study found that over 70% of aged transgenic mice with
high-expression polymorphisms of interleukin-1f3 (IL-1B) exhibited
severe hyperplasia, chronic inflammation, tissue atrophy, metaplasia,
and dysplasia. When these IL-1f transgenic mice were infected with
H. felis, they developed exacerbated gastric inflammation and more
pronounced histopathological changes within five months post-
infection (83). Interestingly, H+/K+-ATPase-IFN-y mice crossed
with IL-1P transgenic mice did not exhibit spontaneous gastric
epithelial hyperplasia or mucosal heterotopia. However, IL-1j
transgenic mice infected with H. felis showed rapid progression of
metaplasia and high-grade dysplasia (84).

The INS-GAS transgenic mouse model, which causes
hypergastrinemia, has been previously mentioned in the context
of bile acid-induced GIM (29). This model has been extensively
used to study gastric carcinogenesis, although it undergoes a distinct
GIM phase before progressing to GC. Following H. pylori infection,
INS-GAS mice develop GIM as early as 6 weeks post-infection,
characterized by elongation of epithelial columnar cells, formation
of microvillous brush borders, and the appearance of cytoplasmic
lipid vesicles resembling goblet cells (85). Four months post-
infection, male INS-GAS mice exhibited significant gastric
mucosal pathology, including pronounced inflammatory cell
infiltration and marked GIM. Notably, GC progression in this
model shows sexual dimorphism, with aged male INS-GAS mice
developing spontaneous lesions more rapidly, a process accelerated
by H. pylori infection (86). However, not all H. pylori-infected INS-
GAS mice developed GC, although they exhibited significant
inflammation and mild GIM (87).

CDX2, an intestine-specific transcription factor, is minimally
expressed in normal gastric mucosa. Its ectopic expression is
strongly associated with the development of GIM, making CDX2
a crucial molecular marker for this condition (8). Foxa3/Cdx2
transgenic mice, which ectopically express CDX2, develop GIM
with goblet cells restricted to the distal stomach (88). Similarly,
Mutoh et al. generated a CDX2 transgenic mouse model that
exhibited complete disruption of normal mucosal architecture by
postnatal day 37, characterized by extensive goblet cell distribution
and columnar intestinal-type epithelial cells with well-developed
microvilli. This metaplastic transformation persisted throughout
the experimental period, as evidenced by the stomachs of transgenic
mice on day 244, which were entirely replaced by intestinal
metaplastic mucosa (89). By 4 months of age, TxA23 mice exhibit
autoimmune-driven chronic gastritis characterized by parietal cell
atrophy, hyperplasia of mucous neck cells, and the development of
SPEM. This model has proven instrumental in dissecting the
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contributions of immune cell subsets and cytokine networks to
the pathogenesis of gastritis and gastric metaplasia (90). Based on
the TxA23 mouse model, Christine et al. generated TxA23xIl4ro.
mice, which develop gastritis but lack expression of the IL-4/IL-13
receptor subunit IL-4Ro. The study demonstrated that IL-13
promotes metaplastic epithelial changes associated with gastric
carcinogenesis (91). These studies collectively highlight the utility
of genetic models in understanding the mechanisms of gastric
metaplasia and underscore the critical roles of parietal cell
dysfunction, inflammatory signaling, and biomarkers of GIM like
CDX2 in the development of GIM and SPEM.

8 Gastric organoids and GIM

Gastric organoids, renowned for recapitulating normal and tumor
tissue characteristics, are revolutionizing gastric disease research. Jin
et al. established organoids from FVB/N and INS-GAS mice, using in
vitro deoxycholic acid (DCA) treatment to elucidate the TGR5/p-
STAT3/KLF5 signaling axis in gastric epithelium (29). Advances now
enable generation from mouse corpus and antrum, forming 2-D
epithelial monolayers after 6-7 days of 3D culture, providing robust
models. Human gastric organoids were also generated from sleeve
gastrectomy biopsies. Co-culture studies with H. pylori and dendritic
cells using these monolayers demonstrated induction of TLR9
expression, IFNou secretion, and Schlafen-expressing Myeloid-
Derived Suppressor Cell (SLFN-MDSC) polarization; crucially, in
vivo IFNa neutralization attenuated H. pylori-induced SPEM
development (92). Researchers established a temporal progression
model using Mistl-Kras mice, isolating gastric glands 3- and 4-
months post-tamoxifen for organoid culture (Meta3/Meta4). Meta4
organoids displayed significant architectural abnormalities, including
multilayered organization, mirroring in vivo glandular hyperplasia,
and basal fission at 4 months (93). Furthermore, novel mouse
organoids stably expressing HNF4A or CDX2 were developed. Both
factors activated intestinal differentiation markers (alkaline
phosphatase, lysozyme). Using CDX2 enhancer-deficient organoids,
researchers proved that HNF4A-mediated intestinalization depends
on CDX2 signaling, revealing mechanisms of gastric epithelial
plasticity (94). Wataru et al. generated organoids from the antral
region of mice following H. pylori infection or MNU carcinogen
treatment (240 ppm) (15). Transplantation into immunodeficient
NOD/SCID mice revealed MNU-derived organoids exhibited
accelerated proliferation, abnormal morphology, and formed tumors
within two months. Similarly, Li et al. induced GIM in C57BL/6]
mouse organoids using MNNG, showing RAS pathway activation
drives GIM progression, recapitulating human gastric GIM molecular
and histopathological features (95). A recent study employed human
GIM-derived organoids to demonstrate that nitazoxanide effectively
attenuates CagA-induced SPEM (96). Sarah et al. performed multi-
omics analysis on human normal gastric, GIM, and colon/ileum
organoids, capturing genetic/epigenetic perturbations in GIM and
establishing a unique progression model (97). These organoids
represent valuable cellular models that reflect the underlying
biological mechanisms of the GIM process. In summary, gastric
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organoids have emerged as a versatile and powerful tool in gastric
disease research, bridging the gap between in vitro and in vivo studies.
Their ability to recapitulate complex biological processes and disease
states makes them invaluable for advancing our understanding of
gastric biology and developing targeted therapeutic strategies.

9 Conclusion and perspectives

As GIM gains recognition as a clinically significant precancerous
condition, there is an urgent need to establish a stratified framework
integrating molecular drivers with clinicopathological features to
optimize risk-adapted surveillance protocols. A synthesis of
evidence from existing models—including H. pylori infection, bile
acid exposure, chemical carcinogens, and genetically engineered
systems—reveals several convergent mechanisms driving GIM
pathogenesis. Chronic inflammation, triggered by H. pylori or
chemical agents, initiates a cascade of epithelial damage
and reparative reprogramming. Parietal cell loss, induced
pharmacologically or through inflammatory injury, disrupts normal
glandular homeostasis and creates a permissive microenvironment
for metaplastic transformation. This is frequently accompanied by
aberrant activation of CDX2 and other intestinal transcription
factors, which redirect gastric epithelial differentiation toward an
intestinal phenotype. Together, these core pathways—chronic
inflammation, parietal cell depletion, and CDX2-driven
reprogramming—constitute a unifying framework for GIM
development. Moving forward, integrated modeling strategies that
combine genetic manipulation with complementary insults (e.g., H.
pylori, bile acids, or dietary shifts) will enhance pathophysiological
relevance and experimental efficiency. Furthermore, organoid models
offer significant advantages for investigating the pathogenesis of GIM,
including their remarkable ability to recapitulate the in
vivo microenvironment, experimental tractability, and high
reproducibility. However, conventional GIM organoids are
primarily epithelial models. They lack critical components of the
native tumor immune microenvironment (TIME), such as immune
cells, cancer-associated fibroblasts, and the complex extracellular
matrix. This limits their ability to fully replicate the disease biology
and predict responses to therapies that involve the immune system.
Introducing specific immune cells into traditional organoid systems
for co-culture may effectively simulate the TIME, offering a highly
promising research strategy for future studies. Despite the variety of
methods for animal modeling, the field still lacks a standardized and
reproducible scheme for establishing GIM models. This
methodological limitation poses substantial challenges in
investigating the precancerous stages of gastric carcinogenesis.
Therefore, there is an urgent need to leverage advancements in
genetic engineering and biotechnology to develop more reliable
experimental models and deepen our understanding of GIM
pathogenesis. In the future, leveraging multiple models and
integrating multi-omics data will enable the construction of a
comprehensive GIM profile and the elucidation of its
heterogeneity. The application of machine learning (ML) and
artificial intelligence technologies to analyze multi-omics data will
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further facilitate disease prediction, biomarker discovery, and the
identification of novel drug targets.
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