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Introduction: Glioblastoma (GBM) is a highly aggressive brain tumor with a

median survival of only 15 months. A major challenge in GBMmanagement is the

pronounced inter- and intratumoral heterogeneity, which complicates prognosis

and therapy. Radiomics, the quantitative extraction of features from medical

images, can capture this heterogeneity across the entire tumor volume, but the

biological basis of radiographic phenotypes remains poorly understood.

Methods: We integrated preoperative MRI-based radiomic stratification with

multi-platform transcriptomics (bulk RNA-seq, single-cell RNA-seq, and spatial

transcriptomics) in IDH-wildtype GBM patients. Unsupervised clustering of

radiomic features identified four imaging subtypes.

Results: Group 4 emerged as a high-risk subtype associated with significantly

worse survival and a distinctive MRI pattern of peripheral contrast enhancement.

Transcriptomic analyses revealed that Group 4 tumors were enriched in cell-

cycle and proliferation markers and exhibited neural stem cell–like gene

expression signatures. Single-cell profiling confirmed an elevated proportion of

stem-like malignant cells in this subtype. Spatial transcriptomics further

demonstrated that these proliferative, stem-like programs were localized

predominantly to the tumor periphery, corresponding to the rim-enhancing

regions on MRI. Finally, we identified the developmental transcription factor

VAX2 as a candidate driver of the Group 4 gene network; functional assays

showed that VAX2 promotes GBM cell proliferation in vitro.

Discussion: Our findings link a radiomics-defined MRI phenotype to specific

molecular programs and cell populations in GBM, suggesting that radiomic

subtypes can serve as noninvasive biomarkers of tumor biology and

highlighting potential therapeutic targets in aggressive, stem-like tumor

cell populations.
KEYWORDS

radiogenomics, glioblastoma, single-cell transcriptomics, spatial transcriptomics,
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1 Introduction

Glioblastoma (GBM) is the most lethal primary brain tumor,

with a median survival of 12–15 months despite standard therapy

(1). One major factor underlying this poor prognosis is the extreme

inter- and intra-tumor molecular heterogeneity of GBM (2). GBM

tumors contain diverse cellular subpopulations; for example, a small

fraction of glioma stem-like cells is thought to drive therapy

resistance and recurrence (3). Furthermore, GBM is characterized

by diffuse infiltration of malignant cells into surrounding brain

tissue (4). Most tumors recur locally, often arising from residual

cells at the resection margin (3). This biological complexity poses a

significant challenge for clinical management, as single-sample

assays may miss the most aggressive populations.

Magnetic resonance imaging (MRI) is a standard tool for GBM

diagnosis and monitoring, providing a whole-tumor view (5).

However, conventional radiological interpretations offer limited

insight into tumor biology and can be subjective (6). Radiomics

has emerged as an approach to objectively quantify imaging

features, converting images into high-dimensional data that

capture tumor morphology and texture (7). In GBM, radiomic

features have shown promise for prognostication – for example,

radiomic risk scores can stratify patients by survival risk in both

discovery and validation cohorts (8). Yet, the radiogenomic

associations (linking imaging phenotypes to molecular profiles)

remain largely unexplored and inconsistent (6). Recent studies

suggest that imaging subtypes defined by radiomics may reflect

distinct genomic programs (2). This implies that quantitative MRI

phenotypes could serve as surrogates for underlying tumor biology,

but a deeper multi-scale annotation of radiographic features is

needed to fully realize this potential.

Integrating radiomic data with modern transcriptomic profiling

offers an opportunity to better interpret imaging phenotypes in

biological terms. Bulk RNA sequencing provides an overview of

gene expression in tumor tissue, whereas single-cell RNA

sequencing (scRNA-seq) can resolve the diverse cell types and

states within a tumor (4). Notably, scRNA-seq studies have

identified multiple coexisting malignant cell states in GBM,

including neural-progenitor-like, oligodendrocyte progenitor–like,

astrocyte-like, and mesenchymal-like cells, which can each

contribute to tumor growth (1). Spatial transcriptomics adds

another dimension by mapping gene expression to specific

locations in the tumor, revealing how molecular programs differ

between the hypoxic tumor core and the invasive margin (4).

Despite these advances, few studies integrate radiomics with

single-cell or spatial data, and relationships to spatially resolved

cellular architecture remain unclear.

Here, we address this gap by investigating how radiomics-

defined MRI phenotypes correlate with underlying gene

expression programs at bulk, single-cell, and spatial levels in

GBM. We performed unsupervised clustering of radiomic features

extracted from preoperative MRIs to define imaging-based GBM

subtypes. We then integrated these imaging subtypes with

transcriptomic profiles, including bulk tumor RNA-seq as well as
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scRNA-seq and spatial transcriptomics from representative tumors,

to characterize the molecular and cellular features associated with

each radiomic class. In particular, we focused on a radiomics-

defined high-risk subgroup and identified candidate transcriptional

regulators of its aggressive phenotype. Finally, we conducted

functional experiments to validate the role of a novel

transcription factor (VAX2) implicated by our analysis. By

combining noninvasive imaging with multi-omics, this study aims

to clarify GBM heterogeneity and identify imaging-linked

biomarkers for prognosis and therapy.
2 Materials and methods

2.1 MRI image acquisition and patient
selection

A total of 61 preoperative MRI scans of GBM patients with

complete clinical annotations were obtained from The Cancer

Imaging Archive (TCIA) (9). Patient demographics and clinical

features, including age, sex, overall survival (OS), and progression-

free survival (PFS).
2.2 Tumor segmentation and radiomic
feature extraction

MRI images were segmented using 3D Slicer software (version

4.11) (10), manually delineating four tumor subregions: contrast-

enhancing tumor (ET), non-enhancing tumor (NET), necrotic core

(NEC), and edema (ED). Segmentations were performed

independently by two neurosurgeons and adjudicated by a senior

neurosurgeon; discrepancies were resolved by consensus, and the

consensus masks were used for all analyses. While formal Dice/ICC

were not computed, this procedure ensured consistent ROI

definitions. Radiomic features were extracted using PyRadiomics

(version 3.0.1) (11), yielding 106 features. Features with zero

variance were excluded; missing values were imputed by the

feature-wise median, and the feature matrix was standardized by

column-wise z-scoring. A comprehensive description of all

radiomics preprocessing, segmentation, and feature extraction

parameters is provided in Supplementary Data Sheet 1 –

Radiomics Workflow Description.
2.3 Radiomic clustering and prognostic
analysis

Principal Component Analysis (PCA) (12) was first used to

explore structure in the radiomic feature space. The optimal

number of groups (n=4) was determined using the elbow method

based on within-group sum of squares. To assess robustness beyond

PCA, we performed consensus clustering using k-means with 100–

150 resamples, sub-sampling 90% of subjects and 80% of features
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per iteration; the resulting consensus matrix supported a four-

cluster solution. Prognostic significance was evaluated using

Cox proportional hazards regression adjusting for age and sex.

In addition to the primary Cox models, we conducted small-

sample–robust sensitivity analyses: (i) Firth-penalized Cox for

the prespecified contrast; (ii) restricted mean survival time

(RMST) with t determined from the follow-up distribution

(t=761 days); and (iii) proportional hazards diagnostics using

Schoenfeld residuals.
2.4 Bulk RNA-seq data processing

Publicly available matched bulk RNA-seq data corresponding to

the MRI-derived radiomic groups were analyzed. Differential

expression analysis was performed using the Limma package (13),

with significance defined as |log2 fold change| ≥ 1 and FDR < 0.05

(Benjamini–Hochberg adjusted). Functional annotation of DEGs

was conducted using Gene Ontology (GO) (14) enrichment and

GSEA (MSigDB Hallmark sets) (15).
2.5 Single-cell RNA-seq data analysis

Publicly available single-cell RNA-seq datasets from

glioblastoma (GSE103224) (16) were processed using the Seurat

package (version 5.0) (17). Clustering resolution was optimized

using Clustree (18), selecting a resolution of 0.6 to define 22

transcriptionally distinct clusters. Cell-type annotation was

performed using canonical markers and the scMayoMap (19).

Pearson correlation analysis assessed the association between

Group 4 specific DEGs and annotated cell-type marker genes.
2.6 Pseudotime trajectory analysis

Trajectory inference was conducted using Slingshot (20),

with neural stem cells (NSCs) designated as the starting cell

population based on correlation analysis. Lineage trajectories and

pseudotime distributions were visualized to investigate cell

developmental dynamics.
2.7 Spatial transcriptomics and
deconvolution analysis

Spatial transcriptomic data were obtained from publicly

available glioblastoma samples (GSE194329) (21) and processed

using Seurat and SPATA2 (22) for cell-type deconvolution. Group 4

DEG module scores were computed and spatially visualized.

Hotspot analysis and Moran’s I were utilized to assess spatial

autocorrelation and clustering significance. The spatial

transcriptomic maps were interpreted at a regional level rather

than through voxel-wise registration with MRI. Specifically, spatial
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enrichment of Group 4 gene modules was evaluated relative to

histologically defined tumor compartments (core vs. periphery) that

correspond to the macroanatomical regions visible on MRI,

acknowledging the difference in physical resolution between

transcriptomic spots (55–100 μm) and MRI voxels (>1 mm³).
2.8 Cell culture and siRNA transfection

Human LN229 glioblastoma cells (ATCC, CRL-2611) were

cultured according to supplier guidelines in Dulbecco’s modified

Eagle medium (DMEM) supplemented with 10% FBS and

antibiotics (penicillin/streptomycin). Cells were transfected with

siRNAs targeting VAX2 using Lipofectamine RNAiMAX (Thermo

Fisher) according to the manufacturer’s instructions. The siRNA

sequences were: si-VAX2.1: 5’-UUCGGGAAAUUGUCCUGCC-3’,

si-VAX2.2: 5’-GCAGAAGAAAGACCAGAGC-3’ (23).

A non-targeting scrambled siRNA (siNC) (SMARTpool) was

used as control. Transfection efficiency and knockdown were

validated by quantitative RT-PCR at 48 hours post-transfection.
2.9 Quantitative real-time PCR

Total RNA was extracted from LN229 cells using the TRIzol

extraction Kit (Invitrogen) following the manufacturer’s

instructions. cDNA synthesis was conducted with the Reverse

Transcription Kit (Takara). Real-time PCR was performed using

SYBR Green PCR Master Mix (Takara) on a QuantStudio 6 Real-

Time PCR System (Thermo Fisher) under the following conditions:

initial denaturation at 95°C for 5 min, followed by 40 cycles of 95°C

for 30 sec, 60°C for 40 sec, and 72°C for 1 min.

VAX2 F: CAAGCGGACACGTACATCCTT, R: GCCG

CAGAATGTTGGAGGT.

OTP F: CAGGCTAGGTATGAAAGATGCC, R: GAAGC

AGGGGTAGAGCCCA.

C1QL2 F: CACCTGCCGCATGATCTGT, R: TGGTC

CCTGGATAAACGGAGG.

GAPDH F: AGGTCGGTGTGAACGGATTTG, R: TGTAGAC

CATGTAGTTGAGGTCA was used as an internal reference gene.
2.10 Cell proliferation assay

Cell viability was assessed using the CellTiter-Glo®

Luminescent Cell Viability Assay kit (Promega), adhering closely

to the manufacturer’s guidelines. LN229 cells were seeded in 96-well

plates at 5×10³ cells per well and transfected as described above.

Luminescence was measured at 24, 48, and 72 hours post-

transfection using the POLARstar Optima Microplate Reader

(BMG). Results were expressed as mean ± standard deviation

from three independent replicates. Statistical significance was

evaluated using one-way ANOVA followed by Tukey’s post-

hoc tests.
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3 Result

3.1 Radiomics-based grouping of GBM MRI
features reveals distinct prognostic
subgroups

To investigate the prognostic relevance of MRI-derived

radiomic features in GBM, we analyzed preoperative MRI scans

from 61 patients retrieved from TCIA, all with complete clinical

annotations. Clinical characteristics of the cohort are summarized

in Figure 1A, with a mean age of 57.6 years (SD 13.9), male

predominance (60.7%), and a high mortality rate (88.5%) at last

follow-up. The median OS and PFS were approximately 476 and

242 days, respectively. Tumor subregions, including ED, ET,

NET, and NEC, were manually segmented on MRI using 3D

Slicer (Figure 1B).

A total of 106 radiomic features were extracted using the

PyRadiomics package. After removing features with zero variance,

missing values were median-imputed, and features were

standardized by column-wise z-scoring. Unsupervised grouping

was first performed using PCA, and an elbow plot of within-

group sum of squares suggested an optimal cluster number of

four (Figure 1C). PCA visualization showed a distinct distribution

of patients across the four subtypes (Figure 1D). To assess

robustness beyond PCA and elbow, consensus clustering (k-

means; 100–150 resamples; 90% subjects × 80% features)

produced a well-structured consensus matrix with four clear co-

assignment blocks (Figure 1E). Bootstrap resampling yielded

consistently high within-cluster consensus values (>0.8),

supporting the robustness of the four-group structure despite the

limited cohort size. (Figure 1E).

To determine the prognostic significance of these radiomic

groups, we performed multivariable Cox proportional hazards

analysis incorporating group assignment, age, and sex. Compared

to Group 1, Group 4 was significantly associated with worse overall

survival (HR = 6.57, 95% CI: 2.36–18.3; p < 0.001), indicating a high-

risk phenotype (Figure 1F). To address precision concerns raised by

the small size of Group 4, we performed complete-case sensitivity

analyses with small-sample–robust estimators: Cox HR = 1.77 (95%

CI 0.68–4.57; p = 0.239), Firth-penalized HR = 1.92 (95% CI 0.76–

4.83; p ≈ 0.194), Kaplan–Meier log-rank p = 0.32, and RMST at

t = 761 days = −89 days for Group 4 vs Group 1 (95% CI −229 to 50;

p = 0.209). The effect direction was consistent across analyses, with

wider intervals expected under reduced sample size. Increasing age

was independently associated with worse survival (HR = 1.06 per

year; p < 0.001), consistent with known clinical patterns in GBM,

whereas sex was not significantly associated with survival outcomes.

In the primary adjusted model (age and sex), the association

between Group 4 and worse overall survival persisted. Given

the small size of Group 4, estimates remain imprecise, and

residual confounding by unmeasured factors (e.g., extent of

resection, MGMT status, treatment regimen) cannot be excluded.

Accordingly, we refrain from asserting age-independence and

interpret these results cautiously (Figure 1G).
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3.2 Radiomic features underlying the high-
risk Group 4 subtype

To further characterize the biological relevance of the

radiomic groups, we systematically examined the distribution of

imaging features across anatomically defined tumor subregions.

A heatmap of standardized radiomic profiles across all 61

patients demonstrated marked inter-group differences in feature

intensity across these compartments, with the top annotation

bar indicating radiomic group membership and the second

annotation bar denoting tumor subregion labels (Figure 2A,

Supplementary Table 1).

Group 4, previously identified as a high-risk group,

displayed consistently elevated values for a broad set of radiomic

features, particularly those derived from the core and peritumoral

edema. These findings suggest that Group 4 tumors are

characterized by more heterogeneous internal architecture and

altered microenvironmental signatures at the imaging level.

Among the features most enriched in Group 4, three were

identified as representative markers: shape sphericity in the NET

(Figure 2B), gray-level run percentage in the ED zone (Figure 2C),

and dependence non-uniformity normalized in the ET (Figure 2D).

Specifically, increased shape sphericity indicates a more rounded

and geometrically uniform tumor core, which may reflect expansion

in a confined anatomical space, possibly associated with aggressive

but symmetric growth patterns. Elevated run percentage in the

edema zone reflects a high degree of local texture homogeneity,

implying that edema in Group 4 is structurally more organized or

spatially constrained. Dependence non-uniformity normalized, a

texture feature quantifying variability in the spatial dependence of

pixel intensities, was significantly increased in the ET, indicating

greater intra-regional heterogeneity within the actively proliferating

component of the tumor.

Notably, none of the radiomic features extracted from the

necrotic compartment showed statistically significant differences

across groups, suggesting that necrosis contributes minimally

to the stratification observed in the unsupervised analysis. A

comprehensive volcano plot comparing Group 4 to all other

groups identified 13 significantly enriched features in Group 4,

including zone variance, gray-level non-uniformity, mesh volume,

and several small-area emphasis metrics. These features collectively

reflect increased morphological irregularity, textural heterogeneity,

and complex spatial organization in Group 4 tumors, suggesting

that Group 4 tumors exhibit radiomic patterns commonly

associated with structural complexity, which may correlate with

more aggressive biological behavior to be validated at the

transcriptomic level.

However, despite the marked differences in radiomic profiles,

none of these features individually exhibited significant prognostic

value in univariate survival analysis. Kaplan–Meier curves for six

top-ranked features demonstrated no statistically significant

differences in overall survival between high- and low-value groups

(Figure 2F), indicating that these radiomic variables are insufficient

as standalone biomarkers for survival prediction.
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FIGURE 1 (Continued)

Radiomics-based clustering reveals a high-risk GBM subgroup with distinct prognosis. (A) Summary of clinical and demographic characteristics of
the 61 GBM patients included in this study. n = 61 patients; descriptive statistics reported as mean (SD) unless noted. (B) Representative examples of
manual MRI segmentation showing four distinct tumor subregions: ED, NET, ET, and NEC, annotated on T1-weighted post-contrast images.
Segmentations by two neurosurgeons with senior adjudication; consensus masks used for all analyses. (C) Elbow plot showing within-cluster sum
of squares for radiomic feature clustering, suggesting an optimal number of clusters at four. Elbow based on within-cluster sum of squares on z-
scored features. (D) Principal component analysis (PCA) plot of radiomic features colored by cluster assignments (Cluster 1–4), demonstrating
partial separation among radiomic subtypes. (E) Consensus clustering of radiomic features (k = 4; 100–150 resamples; 90% subjects × 80% features
per run; k-means; Euclidean). The consensus matrix shows four well-defined within-cluster blocks with high mean co-assignment probabilities
(average within-cluster consensus > 0.8), supporting the robustness of the four-group structure. PCA performed on z-scored features; points
represent individual patients (n = 61). (F) Overall survival for radiomic groups, primary multivariable Cox analysis in the full cohort (n=61, adjusted for
age and sex). Statistical estimates for complementary sensitivity analyses (complete-case, Firth, KM, RMST) are reported in the Results. Consensus
clustering (k = 4; k-means; Euclidean; 100–150 resamples; 90% subjects × 80% features per run). (G) Age distribution and adjusted comparisons;
the risk trend appears largely independent of age in sensitivity analyses, with precision limited by the small size of Group 4.
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This discrepancy highlights a critical limitation of purely

image-based phenotyping: although radiomic groups may

reflect integrated tumor states with prognostic significance,

individual features fail to capture the underlying biological

drivers of patient outcome. To resolve this gap, we next

investigated whether the imaging-defined high-risk subtype

corresponds to distinct transcriptional programs within the tumor

and its microenvironment, through integrative analysis of matched

bulk (same 61 patients) and single-cell transcriptomic data.
3.3 Transcriptomic profiling reveals a
highly proliferative, mitosis-enriched gene
signature in Group 4 tumors

Given the pronounced radiomic heterogeneity observed in

Group 4, we next sought to determine whether these imaging-

defined subtypes are underpinned by distinct transcriptional

programs. To this end, we performed differential expression

analysis between Group 4 tumors and all other radiomic

subtypes. A total of 1,010 genes were significantly upregulated

and 158 genes were downregulated in Group 4, using a log2 fold

change threshold of ±1 and FDR < 0.05 (Benjamini–Hochberg

adjusted) (Figure 3A).

To functionally characterize these DEG), we performed Gene

Ontology (GO) enrichment analysis across three categories:

biological process (BP), cellular component (CC), and molecular

function (MF). The top enriched terms included mitotic nuclear

division, sister chromatid segregation, chromosome segregation,

ribosome biogenesis, RNA splicing, DNA replication, and nuclear

chromosome segregation (Figure 3B). These annotations strongly

indicate that Group 4 tumors are transcriptionally defined by

heightened proliferative capacity and activation of chromosome

dynamics programs. Enrichment of genes involved in mitotic

spindle organization and RNA processing further supports the

notion that Group 4 represents a transcriptionally active and cell

cycle–engaged tumor state.

To further corroborate these findings, we conducted GSEA

using the MSigDB Hallmark gene sets. The top enriched

pathways included MYC targets V1, E2F targets, DNA repair,

oxidative phosphorylation, and unfolded protein response
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(Figure 3C). These pathways are canonically associated with high

proliferation, biosynthetic activity, and mitochondrial metabolism.

Although not all gene sets reached nominal statistical significance at

p < 0.05, several demonstrated normalized enrichment scores (NES)

exceeding 1.5, and trends were consistent across related pathways.

Notably, the enrichment of G2/M checkpoint, mitotic spindle, and

MTORC1 signaling pathways further supports the interpretation

that Group 4 tumors exhibit a hyperproliferative phenotype with

active mitotic machinery and growth signaling cascades.

Taken together, transcriptomic analysis of Group 4 tumors

revealed upregulation of core cell cycle regulators, mitotic apparatus

components, and DNA replication genes, consistent with a

transcriptional program characteristic of highly proliferative

tumor cells. Enrichment of MYC and E2F target gene sets, along

with pathways involved in chromosomal segregation, ribosome

biogenesis, and oxidative phosphorylation, further supports a

state of elevated biosynthetic and mitotic activity. However, bulk

RNA-seq data do not resolve the cellular origin of these signals,

making it unclear whether they primarily arise from malignant cells

or from specific microenvironmental components. To address this

limitation, we next leveraged single-cell RNA sequencing datasets to

determine the cellular contributors to the proliferation-associated

gene programs in Group 4 and to identify specific tumor or stromal

subpopulations that may underlie its distinct radiogenomic profile.
3.4 Single-cell transcriptomic analysis links
Group 4 programs to proliferative neural
stem-like populations with
pseudotemporal lineage progression

To investigate the cellular basis of the transcriptional programs

enriched in Group 4, we analyzed publicly available single-cell RNA

sequencing data from glioblastoma. This analysis aimed to identify

the cell types most closely associated with Group 4 specific gene

expression patterns and to evaluate whether these cell populations

exhibit developmental trajectories that may account for the

observed transcriptomic and radiographic heterogeneity.

We first performed unsupervised clustering of single cells and

assessed resolution stability using Clustree. A resolution of 0.6 was

selected as optimal, yielding 22 transcriptionally distinct clusters
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FIGURE 2

Radiomic feature profiling reveals distinctive patterns in high-risk Cluster 4. (A) Heatmap of z-score–normalized radiomic features across all 61
patients, stratified by radiomic cluster (bottom annotation) and tumor subregion label (top annotation). Cluster 4 exhibits globally elevated radiomic
intensity, especially in the edema and core regions. (B–D) Representative features enriched in Cluster 4 from different tumor compartments, box
plots show z-scores across clusters; test = one-way ANOVA with Tukey post-hoc: (B) Shape sphericity (NET), (C) Run percentage (ED), (D)
Dependence non-uniformity normalized (NET). Box plots show Z-score distributions across clusters. (E) Volcano plot comparing Cluster 4 to other
clusters reveals 13 significantly enriched radiomic features, including texture- and volume-based metrics such as zone variance, mesh volume, and
several small-area emphasis features. Volcano plot contrasts Group 4 (n = 6) vs others (n = 55); significance defined by FDR (Benjamini–Hochberg)
on feature-wise tests. (F) Kaplan–Meier plots showing overall survival stratified by high vs. low values of three representative radiomic features. None
demonstrated significant prognostic value individually, highlighting the value of composite radiomic subtypes.
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(Figure 4A). The top three marker genes for each cluster are shown

in Figure 4B. Cell types were annotated using canonical markers

and scMayoMap reference mapping, identifying 14 major lineages

including neural stem cells, neuroblasts, neurons, oligodendrocyte

precursor cells, and various glial, vascular, and immune cell

types (Figure 4C).

To assess which of these cell populations were most relevant to

the transcriptional programs enriched in Group 4 tumors, we

correlated the Group 4 specific DEG signature with marker gene

expression across annotated cell types. Neural stem cells exhibited

the strongest positive correlation, followed by neuroblasts and

neurons, while endothelial and immune lineages showed minimal

or negative correlation (Figure 4D). These results suggest that the

cell types most associated with Group 4 specific gene expression,

particularly neural stem cells and neuroblasts, represent

undifferentiated neuroectodermal populations. Given that Group

4 DEGs are enriched for mitotic and biosynthetic processes

(Figure 3), these findings implicate neural stem–like cells as a

likely source of these transcriptional programs.

To further examine whether Group 4 associated cell types

exhibit developmental dynamics that could underlie the observed

transcriptional and radiographic heterogeneity, we performed

pseudotime analysis centered on neural stem cells. These cells

were positioned at the root of inferred lineage trajectories

(Figure 4E), supporting their selection as the origin for trajectory
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inference. Lineage 1 was selected for downstream analysis due to its

continuity from neural stem cells toward neuroblasts and

neurons (Figure 4F).

The pseudotemporal structure was further supported by the

distribution of annotated cell types across pseudotime, where

neural stem cells were enriched at early stages and more

differentiated neuronal populations appeared at later stages

(Figure 4G). Several representative Group 4 DEGs demonstrated

pseudotime-associated expression patterns. For example, OTP,

C1QL2, and VAX2 showed early or peak expression during the

transition from neural stem cells to neuroblasts. These genes have

been implicated in neurodevelopmental regulation, including

regional brain patterning and lineage specification, suggesting that

Group 4 transcriptional signatures are enriched in undifferentiated,

proliferative, and developmentally plastic cellular states (Figure 4H).
3.5 Spatially confined NSC–like niches
define Group 4 tumor architecture

Given the strong association between Group 4 transcriptional

programs and undifferentiated neuroectodermal lineages identified

in single-cell analysis, we next asked whether these gene expression

patterns exhibit spatially localized enrichment within glioblastoma

tissue. Specifically, we investigated whether NSC–associated
FIGURE 3

Transcriptomic profiling of radiomic Group 4 tumors reveals enrichment of proliferative gene programs. (A) Volcano plot of DEGs comparing Group
4 tumors to all other radiomic groups. Red dots indicate significantly upregulated genes, blue dots indicate significantly downregulated genes, and
gray/green represent non-significant genes. Bulk RNA-seq matched to the same 61 MRI patients; differential expression by limma with Benjamini–
Hochberg FDR control; DEGs defined as |log2FC| ≥ 1 and FDR < 0.05 (two-sided). (B) GO enrichment analysis of Group 4 DEGs across BP, CC, and
MF categories. Top enriched terms include mitotic nuclear division, ribosome biogenesis, and chromosomal segregation, indicating increased cell
cycle and biosynthetic activity. GO enrichment on FDR-filtered DEGs; pathway p-values FDR-adjusted (BH). (C) GSEA using MSigDB Hallmark gene
sets. Top enriched pathways include MYC targets, E2F targets, DNA repair, and oxidative phosphorylation, all consistent with a highly proliferative
and metabolically active tumor state. GSEA (MSigDB Hallmark) using preranked statistics; enrichment q-values are FDR-adjusted (BH).
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FIGURE 4

ScRNA-seq analysis reveals that Group 4 gene signatures are enriched in NSC–like populations. (A) Clustree plot displaying clustering resolution
optimization. Resolution 0.6 was selected to define 22 transcriptionally distinct cell populations. (B) Heatmap showing canonical marker gene
expression across identified clusters, enabling annotation of major glioblastoma-associated cell types. (C) UMAP plot of all single cells colored by
annotated cell types, including neural stem cells, astrocytes, oligodendrocytes, neurons, and immune cells. (D) Pearson correlation coefficients
between cell-type marker gene expression and Group 4 DEGs, highlighting NSC–like and neuroblast populations as most correlated. (E) Slingshot
pseudotime trajectory analysis, with inferred lineage paths showing developmental progression from stem-like to differentiated cell states.
(F) Visualization of lineage 1 with cells colored by pseudotime values, illustrating dynamic transitions among neural populations. (G) Distribution of
pseudotime across annotated cell types, with stem-like and progenitor cells enriched at early pseudotime stages. (H) Pseudotime expression
dynamics of selected Group 4 DEGs (e.g., VAX2, CDCA2, TPX2), demonstrating coordinated temporal activation patterns during lineage progression.
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programs, implicated in Group 4, are confined to distinct

tumor regions.

To address this, we first applied deconvolution analysis to

spatial transcriptomic data to infer the distribution of major cell

types. The resulting cell type map revealed regional enrichment of
Frontiers in Oncology 10
NSCs and related neuroectodermal populations, such as

interneurons and OPCs (Figure 5A). We then calculated a

module score using Group 4 DEGs and visualized its spatial

distribution (Figure 5B). Regions with high scores were non-

uniformly distributed, suggesting potential spatial patterning.
FIGURE 5

Spatial transcriptomics reveals enrichment of NSC–like populations in regions with high Group 4 gene expression. (A) Representative spatial
transcriptomic map of a glioblastoma section, annotated with predicted cell types from deconvolution analysis. (B) Spatial distribution of Group 4
DEG module scores across the tissue section, with high scores localized to peripheral regions. (C) Hotspot analysis identifying significant spatial
enrichment of Group 4 module scores using Getis-Ord Gi* statistics. (D) Correlation analysis showing a positive relationship between neural stem
cell density and Group 4 module scores (r = 0.53). (E) Moran’s I spatial autocorrelation analysis demonstrating significant clustering of Group 4
module scores. (F) Density plots of NSC and OPC localization, indicating overlapping but distinct spatial niches.
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Overlaying NSC density revealed substantial co-localization with

Group 4 module scores, as highlighted by hotspot enrichment

(Figure 5C). This spatial concordance was quantitatively supported

by a positive correlation between NSC density and Group 4

score across spatial spots (r = 0.553, Figure 5D), and further

confirmed by spatial autocorrelation analysis indicating non-

random clustering (Figure 5E).

To examine potential niche exclusivity, we compared NSC and

OPC spatial densities, which showed largely complementary

patterns, suggesting that NSC-enriched regions are distinct from

those dominated by OPCs (Figure 5F).
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Notably, these NSC-like gene expression domains were

primarily localized to the tumor periphery, a spatial pattern that

aligns with imaging features of peripheral enhancement and

suggests a potential role in driving boundary expansion or

invasion. This spatial confinement to the tumor edge highlights a

proliferative and undifferentiated niche that may contribute

to therapeutic resistance and recurrence, underscoring its

significance as a biologically and clinically relevant compartment

within Group 4 tumors. This correspondence was evaluated at a

macroscopic level, comparing regional enrichment patterns rather

than direct spatial registration, as the physical resolution of spatial
FIGURE 6

Functional validation of VAX2 in glioblastoma cell proliferation. (A) qRT-PCR analysis of VAX2, OTP, and C1QL2 expression in LN229 cells. VAX2
showed robust expression, whereas OTP and C1QL2 were expressed at levels indistinguishable from background, and were excluded from further
functional validation. (B) Validation of siRNA-mediated knockdown efficiency of VAX2 at 48 hours post-transfection. Both siVAX2.1 and siVAX2.2
significantly reduced VAX2 mRNA levels compared to siNC. (C) Cell viability assay (CCK-8) performed at 24, 48, and 72 hours post-transfection.
Knockdown of VAX2 led to a significant reduction in cell proliferation compared to siNC and untreated control groups at all time points. Data
represent mean ± SD of four independent replicates. Statistical significance was determined by one-way ANOVA with Tukey’s post hoc test
(*p < 0.05; **p < 0.01; ****p < 0.0001; ns, not significant).
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transcriptomics (tens of microns) is substantially higher than that of

MRI (millimeter scale). Thus, the observed alignment represents a

multi-scale association between molecular niches and imaging-

defined tumor architecture.
3.6 VAX2 knockdown inhibits glioma cell
proliferation

To investigate the biological relevance of candidate

transcription factors enriched in the NSC-like compartment, we

next performed functional validation of OTP, C1QL2, and VAX2

using the LN229 glioblastoma cell line (ATCC, CRL-2611).

Quantitative RT-PCR confirmed that both OTP and C1QL2 were

expressed at very low levels in LN229 cells (Figure 6A), with Ct

values approaching those of RT– controls. This low expression may

reflect cell line limitations or context-specific expression restricted

to in vivo settings, such as patient-derived or spatially distinct

tumor regions. Due to this ambiguity, we excluded OTP and C1QL2

from further in vitro analyses and focused subsequent experiments

on VAX2, which showed robust expression in LN229.

To assess the knockdown efficiency, we transfected LN229 cells

with two independent siRNAs targeting VAX2 and measured

mRNA levels 48 hours post-transfection. Both siVAX2.1 and

siVAX2.2 significantly reduced VAX2 transcript abundance

compared to siNC (Figure 6B), validating their efficacy.

We then evaluated the impact of VAX2 knockdown on LN229

cell proliferation using an ATP-based assay at 24, 48, and 72 hours

post-transfection. VAX2 silencing led to a consistent reduction in

cell growth at each time point, with statistically significant

differences observed by 48 and 72 hours (Figure 6C). These

results suggest that VAX2 plays a functional role in promoting

glioma cell proliferation and may contribute to the proliferative

potential of NSC-like tumor subpopulations in Group 4.
4 Discussion

Our integrative analysis of radiologic and transcriptomic data

provides new evidence linking imaging heterogeneity to distinct

molecular programs in GBM. We found that radiomics-based

clustering of preoperative MRIs can stratify patients by outcome,

identifying a particularly aggressive subgroup (Group 4)

characterized by a peripheral rim-enhancing radiographic

phenotype and markedly poorer survival. Molecularly, this high-

risk imaging phenotype corresponded to transcriptional programs

enriched for cell cycle regulators and NSC–like signatures,

indicative of a highly proliferative, undifferentiated cell state.

Using single-cell and spatial transcriptomics, we further showed

that these proliferative stem-like tumor cells are not uniformly

distributed but instead concentrate at the tumor’s invasive edges.

This spatial pattern aligns closely with the MRI features of Group 4

tumors, providing a biological basis for the imaging-defined risk

subtype. These findings build on foundational radiomics/

radiogenomics work establishing that quantitative imaging
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patterns can reflect tumor biology and prognosis in GBM and

other cancers (24, 25). Our study extends this framework by linking

a preoperative MRI phenotype to paired transcriptomic programs

at the patient level.

Our spatial transcriptomic data illustrates that the high-risk

radiomic signature (Group 4) and its associated stem-like gene

program are concentrated at the tumor periphery. Single-cell and

spatial datasets are used here as hypothesis-generating context

rather than cohort-level confirmation. In the representative tumor

shown, the radiomic risk score is elevated in peripheral regions

(green/yellow points indicate a high Group 4 score), co-localizing

with areas of elevated neural stem cell–like gene expression (red

shading) at the invasive edge. By contrast, the tumor core shows low

radiomic risk scores and minimal stem-like transcriptional signals

(blue areas). This concordance between the imaging phenotype and

molecular profile supports the notion that rim-enhancing regions

on MRI correspond to biologically distinct, stem cell–rich tumor

habitats at the margin.

The enrichment of a NSC–like, highly proliferative cell

population in peripheral tumor regions offers a compelling

explanation for the worse outcomes observed in Group 4 patients.

Glioma stem-like cells have long been implicated in driving GBM

aggressiveness and recurrence (26), and these cells tend to inhabit

niches at the tumor margin and invasive fronts. Our findings are in

line with this paradigm: the radiographically evident rim of

enhancement in Group 4 tumors corresponds to a tumor

compartment dominated by invasive, stem-like cells at its

periphery. Consistently, other investigators using high-resolution

spatial profiling have reported that GBM cells infiltrating into

adjacent brain tissue upregulate neurodevelopmental pathways

and glial lineage programs (4). This convergence of evidence

suggests that advanced imaging can map the distribution of

clinically important cell states within a tumor noninvasively.

In this case, it can identify tumors that harbor aggressive, stem-

like cells at their edges. This radiogenomic correspondence

aligns with prior reports that radiographic patterns can map

clinically relevant cell states and microenvironmental niches in

GBM (27).

Notably, our radiomics-driven stratification appears to capture

an axis of tumor biology that cuts across the traditional bulk

transcriptomic subtypes of GBM. The classical, mesenchymal, and

proneural transcriptional subtypes defined in prior studies are each

composed of mixtures of malignant cell states, including a neural

progenitor–like (NPC-like) state (28). In our cohort, Group 4

tumors likely spanned multiple of these conventional subtypes,

yet convergently exhibited a predominance of the NPC-like, stem-

associated program. This highlights how an imaging-based

classification can reveal biologically meaningful distinctions that

might be obscured when analyzing whole-tumor averages. Our

imaging–molecular links are based on patient-matched bulk

RNA-seq with Benjamini–Hochberg FDR control, thereby

reducing the risk of spurious associations. Embracing phenotypic

classification approaches has been proposed as a way to better

represent GBM’s heterogeneity (29), and our results affirm that an

imaging phenotype can serve as a surrogate for an aggressive
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molecular profile. In essence, radiomics provided a different lens on

tumor classification, one that identified a high-risk state defined by

cell-intrinsic properties (stemness and proliferation) and spatial

context (tumor edge) rather than by traditional histopathological

features alone.

One molecular finding in our high-risk subgroup was the

transcription factor VAX2. VAX2 is a homeobox gene involved in

neural development, and it has not been widely studied in

glioblastoma. Interestingly, recent work in other cancers suggests

an oncogenic role for VAX2, for example, VAX2 was found to be

significantly upregulated in gastric cancer and to promote tumor

cell proliferation and invasion (30). In our analysis, VAX2

expression was elevated in Group 4 tumors, and we hypothesized

that it might drive the proliferative, stem-like phenotype of this

subtype. To test this, we inhibited VAX2 in GBM cells in vitro.

Functional assays were limited to LN229 in vitro. In vivo studies

were not performed because animal ethics approval could not be

obtained within the study period; future validation in multiple GBM

models and xenografts is warranted.

LN229 glioblastoma cells transfected with two independent

VAX2-targeting exhibited significantly lower viability over 72

hours compared to cells transfected with a siNC. In the growth

curves shown, VAX2 knockdown cells grew more slowly, with a

~30–40% reduction in cell proliferation by 72 h (p < 0.01),

indicating that suppression of VAX2 inhibits GBM cell growth in

vitro. This result confirms that VAX2 enhances the proliferative

capacity of GBM cells, supporting the notion that VAX2 contributes

to the aggressive biology of the Group 4 subtype.

From a clinical perspective, our findings highlight the potential

of advanced MRI analytics to improve GBM patient stratification

and treatment planning. Incorporating radiomic analysis into the

pre-surgical workflow could enable identification of patients with a

high-risk imaging phenotype (such as Group 4) at diagnosis, who

might benefit from intensified therapy or enrollment in clinical

trials. Indeed, previous studies have demonstrated that radiomics-

based models can successfully stratify GBM patients by survival

risk in independent cohorts (31). Moreover, the tight spatial

correspondence between imaging features and tumor biology

suggests that radiomics might help guide more tailored

interventions. For example, if a tumor displays the peripheral

enhancement pattern characteristic of Group 4, clinicians might

consider extending the surgical resection margin or delivering

boosted radiation to the tumor rim, given that our data indicate

an abundance of aggressive stem-like cells in that region. Targeting

these residual peripheral cells is critical, as they are likely drivers of

post-surgical recurrence (32–34). In fact, recent studies have

emphasized the importance of therapies directed at the invasive

margins of GBMs (4), where therapy-resistant, migratory tumor

cells reside. Additionally, the discovery of VAX2 as a potential

promoter of proliferation opens a new avenue for precision

oncology: while directly targeting a transcription factor like VAX2

is challenging, its downstream effectors or regulatory network could

be investigated for druggable targets, and VAX2 expression itself

may serve as a biomarker for identifying patients with particularly

aggressive, stem-cell-rich tumors.
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This study has several limitations. First, although survival

models adjusted for age and sex, additional clinical covariates

(e.g., extent of resection, MGMT status, and treatment regimen)

were unavailable in TCIA, and residual confounding cannot be

excluded. Second, manual segmentations were adjudicated by a

senior neurosurgeon and used as consensus masks, but formal Dice

or ICC values were not computed. Third, feature harmonization

with ComBat was not applied due to incomplete acquisition

metadata. Fourth, the sample size (n = 61) was modest; however,

internal stability analyses using bootstrap resampling and

consensus clustering demonstrated high within-cluster co-

assignment probabilities (mean > 0.8), supporting the robustness

of the four-group structure. Fifth, external validation in an

independent imaging cohort with matched transcriptomic and

clinical data was not feasible because such datasets remain scarce.

We are currently assembling a multi-institutional dataset to test

whether the Group 4–like imaging phenotype and its associated

transcriptomic program can be reproduced in independent cohorts.

Sixth, functional validation of VAX2 was restricted to a single

GBM cell line with no in vivo experiments because animal ethics

approval was not available during the study period. Finally, while

single-cell and spatial data support biological plausibility, they were

used as hypothesis-generating context rather than for cohort-

level confirmation.

Looking ahead, our study suggests several future directions.

Prospective validation in larger, independent GBM cohorts is

needed to confirm the robustness of the radiomics-defined

subtypes and their transcriptomic signatures. Technical

refinements such as harmonizing MRI acquisition, improving

segmentation (potentially with machine learning), and applying

reproducibility indices will be critical for standardization.

Mechanistic studies, including single-cell lineage tracing and in

vivo models, should clarify how the stem-like, VAX2-positive

population contributes to therapy resistance and recurrence, as

well as its interactions with the immune microenvironment. Finally,

these insights could guide therapeutic development: patients with

the high-risk peripheral enhancement phenotype may be candidates

for intensified local therapy, while VAX2-regulated pathways may

inform novel targeted strategies. Integrating radiomic classifiers

into preoperative workflows could ultimately help personalize

treatment planning.

In conclusion, this study demonstrates the value of combining

radiomics with multi-dimensional transcriptomics to elucidate the

biological underpinnings of GBM imaging phenotypes. By revealing a

spatially localized, stem-like tumor cell program associated with an

adverse radiographic subtype, our work suggests that noninvasive

imaging can stratify patients by tumor biology and potentially guide

more informed, personalized therapeutic strategies.
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