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Introduction: Glioblastoma (GBM) is a highly aggressive brain tumor with a
median survival of only 15 months. A major challenge in GBM management is the
pronounced inter- and intratumoral heterogeneity, which complicates prognosis
and therapy. Radiomics, the quantitative extraction of features from medical
images, can capture this heterogeneity across the entire tumor volume, but the
biological basis of radiographic phenotypes remains poorly understood.
Methods: We integrated preoperative MRI-based radiomic stratification with
multi-platform transcriptomics (bulk RNA-seq, single-cell RNA-seq, and spatial
transcriptomics) in IDH-wildtype GBM patients. Unsupervised clustering of
radiomic features identified four imaging subtypes.

Results: Group 4 emerged as a high-risk subtype associated with significantly
worse survival and a distinctive MRI pattern of peripheral contrast enhancement.
Transcriptomic analyses revealed that Group 4 tumors were enriched in cell-
cycle and proliferation markers and exhibited neural stem cell-like gene
expression signatures. Single-cell profiling confirmed an elevated proportion of
stem-like malignant cells in this subtype. Spatial transcriptomics further
demonstrated that these proliferative, stem-like programs were localized
predominantly to the tumor periphery, corresponding to the rim-enhancing
regions on MRI. Finally, we identified the developmental transcription factor
VAX2 as a candidate driver of the Group 4 gene network; functional assays
showed that VAX2 promotes GBM cell proliferation in vitro.

Discussion: Our findings link a radiomics-defined MRI phenotype to specific
molecular programs and cell populations in GBM, suggesting that radiomic
subtypes can serve as noninvasive biomarkers of tumor biology and
highlighting potential therapeutic targets in aggressive, stem-like tumor
cell populations.
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1 Introduction

Glioblastoma (GBM) is the most lethal primary brain tumor,
with a median survival of 12-15 months despite standard therapy
(1). One major factor underlying this poor prognosis is the extreme
inter- and intra-tumor molecular heterogeneity of GBM (2). GBM
tumors contain diverse cellular subpopulations; for example, a small
fraction of glioma stem-like cells is thought to drive therapy
resistance and recurrence (3). Furthermore, GBM is characterized
by diffuse infiltration of malignant cells into surrounding brain
tissue (4). Most tumors recur locally, often arising from residual
cells at the resection margin (3). This biological complexity poses a
significant challenge for clinical management, as single-sample
assays may miss the most aggressive populations.

Magnetic resonance imaging (MRI) is a standard tool for GBM
diagnosis and monitoring, providing a whole-tumor view (5).
However, conventional radiological interpretations offer limited
insight into tumor biology and can be subjective (6). Radiomics
has emerged as an approach to objectively quantify imaging
features, converting images into high-dimensional data that
capture tumor morphology and texture (7). In GBM, radiomic
features have shown promise for prognostication - for example,
radiomic risk scores can stratify patients by survival risk in both
discovery and validation cohorts (8). Yet, the radiogenomic
associations (linking imaging phenotypes to molecular profiles)
remain largely unexplored and inconsistent (6). Recent studies
suggest that imaging subtypes defined by radiomics may reflect
distinct genomic programs (2). This implies that quantitative MRI
phenotypes could serve as surrogates for underlying tumor biology,
but a deeper multi-scale annotation of radiographic features is
needed to fully realize this potential.

Integrating radiomic data with modern transcriptomic profiling
offers an opportunity to better interpret imaging phenotypes in
biological terms. Bulk RNA sequencing provides an overview of
gene expression in tumor tissue, whereas single-cell RNA
sequencing (scRNA-seq) can resolve the diverse cell types and
states within a tumor (4). Notably, scRNA-seq studies have
identified multiple coexisting malignant cell states in GBM,
including neural-progenitor-like, oligodendrocyte progenitor-like,
astrocyte-like, and mesenchymal-like cells, which can each
contribute to tumor growth (1). Spatial transcriptomics adds
another dimension by mapping gene expression to specific
locations in the tumor, revealing how molecular programs differ
between the hypoxic tumor core and the invasive margin (4).
Despite these advances, few studies integrate radiomics with
single-cell or spatial data, and relationships to spatially resolved
cellular architecture remain unclear.

Here, we address this gap by investigating how radiomics-
defined MRI phenotypes correlate with underlying gene
expression programs at bulk, single-cell, and spatial levels in
GBM. We performed unsupervised clustering of radiomic features
extracted from preoperative MRIs to define imaging-based GBM
subtypes. We then integrated these imaging subtypes with
transcriptomic profiles, including bulk tumor RNA-seq as well as
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scRNA-seq and spatial transcriptomics from representative tumors,
to characterize the molecular and cellular features associated with
each radiomic class. In particular, we focused on a radiomics-
defined high-risk subgroup and identified candidate transcriptional
regulators of its aggressive phenotype. Finally, we conducted
functional experiments to validate the role of a novel
transcription factor (VAX2) implicated by our analysis. By
combining noninvasive imaging with multi-omics, this study aims
to clarify GBM heterogeneity and identify imaging-linked
biomarkers for prognosis and therapy.

2 Materials and methods

2.1 MRI image acquisition and patient
selection

A total of 61 preoperative MRI scans of GBM patients with
complete clinical annotations were obtained from The Cancer
Imaging Archive (TCIA) (9). Patient demographics and clinical
features, including age, sex, overall survival (OS), and progression-
free survival (PFS).

2.2 Tumor segmentation and radiomic
feature extraction

MRI images were segmented using 3D Slicer software (version
4.11) (10), manually delineating four tumor subregions: contrast-
enhancing tumor (ET), non-enhancing tumor (NET), necrotic core
(NEC), and edema (ED). Segmentations were performed
independently by two neurosurgeons and adjudicated by a senior
neurosurgeon; discrepancies were resolved by consensus, and the
consensus masks were used for all analyses. While formal Dice/ICC
were not computed, this procedure ensured consistent ROI
definitions. Radiomic features were extracted using PyRadiomics
(version 3.0.1) (11), yielding 106 features. Features with zero
variance were excluded; missing values were imputed by the
feature-wise median, and the feature matrix was standardized by
column-wise z-scoring. A comprehensive description of all
radiomics preprocessing, segmentation, and feature extraction
parameters is provided in Supplementary Data Sheet 1 -
Radiomics Workflow Description.

2.3 Radiomic clustering and prognostic
analysis

Principal Component Analysis (PCA) (12) was first used to
explore structure in the radiomic feature space. The optimal
number of groups (n=4) was determined using the elbow method
based on within-group sum of squares. To assess robustness beyond
PCA, we performed consensus clustering using k-means with 100-
150 resamples, sub-sampling 90% of subjects and 80% of features
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per iteration; the resulting consensus matrix supported a four-
cluster solution. Prognostic significance was evaluated using
Cox proportional hazards regression adjusting for age and sex.
In addition to the primary Cox models, we conducted small-
sample-robust sensitivity analyses: (i) Firth-penalized Cox for
the prespecified contrast; (ii) restricted mean survival time
(RMST) with T determined from the follow-up distribution
(t=761 days); and (iii) proportional hazards diagnostics using
Schoenfeld residuals.

2.4 Bulk RNA-seq data processing

Publicly available matched bulk RNA-seq data corresponding to
the MRI-derived radiomic groups were analyzed. Differential
expression analysis was performed using the Limma package (13),
with significance defined as |log, fold change| > 1 and FDR < 0.05
(Benjamini-Hochberg adjusted). Functional annotation of DEGs
was conducted using Gene Ontology (GO) (14) enrichment and
GSEA (MSigDB Hallmark sets) (15).

2.5 Single-cell RNA-seq data analysis

Publicly available single-cell RNA-seq datasets from
glioblastoma (GSE103224) (16) were processed using the Seurat
package (version 5.0) (17). Clustering resolution was optimized
using Clustree (18), selecting a resolution of 0.6 to define 22
transcriptionally distinct clusters. Cell-type annotation was
performed using canonical markers and the scMayoMap (19).
Pearson correlation analysis assessed the association between
Group 4 specific DEGs and annotated cell-type marker genes.

2.6 Pseudotime trajectory analysis

Trajectory inference was conducted using Slingshot (20),
with neural stem cells (NSCs) designated as the starting cell
population based on correlation analysis. Lineage trajectories and
pseudotime distributions were visualized to investigate cell
developmental dynamics.

2.7 Spatial transcriptomics and
deconvolution analysis

Spatial transcriptomic data were obtained from publicly
available glioblastoma samples (GSE194329) (21) and processed
using Seurat and SPATA2 (22) for cell-type deconvolution. Group 4
DEG module scores were computed and spatially visualized.
Hotspot analysis and Moran’s I were utilized to assess spatial
autocorrelation and clustering significance. The spatial
transcriptomic maps were interpreted at a regional level rather
than through voxel-wise registration with MRI. Specifically, spatial
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enrichment of Group 4 gene modules was evaluated relative to
histologically defined tumor compartments (core vs. periphery) that
correspond to the macroanatomical regions visible on MRI,
acknowledging the difference in physical resolution between
transcriptomic spots (55-100 um) and MRI voxels (>1 mm?).

2.8 Cell culture and siRNA transfection

Human LN229 glioblastoma cells (ATCC, CRL-2611) were
cultured according to supplier guidelines in Dulbecco’s modified
Eagle medium (DMEM) supplemented with 10% FBS and
antibiotics (penicillin/streptomycin). Cells were transfected with
siRNAs targeting VAX2 using Lipofectamine RNAIMAX (Thermo
Fisher) according to the manufacturer’s instructions. The siRNA
sequences were: si-VAX2.1: 5-UUCGGGAAAUUGUCCUGCC-3’,
si-VAX2.2: 5-GCAGAAGAAAGACCAGAGC-3’ (23).

A non-targeting scrambled siRNA (siNC) (SMARTpool) was
used as control. Transfection efficiency and knockdown were
validated by quantitative RT-PCR at 48 hours post-transfection.

2.9 Quantitative real-time PCR

Total RNA was extracted from LN229 cells using the TRIzol
extraction Kit (Invitrogen) following the manufacturer’s
instructions. cDNA synthesis was conducted with the Reverse
Transcription Kit (Takara). Real-time PCR was performed using
SYBR Green PCR Master Mix (Takara) on a QuantStudio 6 Real-
Time PCR System (Thermo Fisher) under the following conditions:
initial denaturation at 95°C for 5 min, followed by 40 cycles of 95°C
for 30 sec, 60°C for 40 sec, and 72°C for 1 min.

VAX2 F: CAAGCGGACACGTACATCCTT, R: GCCG
CAGAATGTTGGAGGT.

OTP F: CAGGCTAGGTATGAAAGATGCC, R: GAAGC
AGGGGTAGAGCCCA.

C1QL2 F: CACCTGCCGCATGATCTGT, R: TGGTC
CCTGGATAAACGGAGG.

GAPDH F: AGGTCGGTGTGAACGGATTTG, R: TGTAGAC
CATGTAGTTGAGGTCA was used as an internal reference gene.

2.10 Cell proliferation assay

Cell viability was assessed using the CellTiter-Glo®
Luminescent Cell Viability Assay kit (Promega), adhering closely
to the manufacturer’s guidelines. LN229 cells were seeded in 96-well
plates at 5x10° cells per well and transfected as described above.
Luminescence was measured at 24, 48, and 72 hours post-
transfection using the POLARstar Optima Microplate Reader
(BMG). Results were expressed as mean * standard deviation
from three independent replicates. Statistical significance was
evaluated using one-way ANOVA followed by Tukey’s post-
hoc tests.
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3 Result

3.1 Radiomics-based grouping of GBM MRI
features reveals distinct prognostic
subgroups

To investigate the prognostic relevance of MRI-derived
radiomic features in GBM, we analyzed preoperative MRI scans
from 61 patients retrieved from TCIA, all with complete clinical
annotations. Clinical characteristics of the cohort are summarized
in Figure 1A, with a mean age of 57.6 years (SD 13.9), male
predominance (60.7%), and a high mortality rate (88.5%) at last
follow-up. The median OS and PFS were approximately 476 and
242 days, respectively. Tumor subregions, including ED, ET,
NET, and NEC, were manually segmented on MRI using 3D
Slicer (Figure 1B).

A total of 106 radiomic features were extracted using the
PyRadiomics package. After removing features with zero variance,
missing values were median-imputed, and features were
standardized by column-wise z-scoring. Unsupervised grouping
was first performed using PCA, and an elbow plot of within-
group sum of squares suggested an optimal cluster number of
four (Figure 1C). PCA visualization showed a distinct distribution
of patients across the four subtypes (Figure 1D). To assess
robustness beyond PCA and elbow, consensus clustering (k-
means; 100-150 resamples; 90% subjects x 80% features)
produced a well-structured consensus matrix with four clear co-
assignment blocks (Figure 1E). Bootstrap resampling yielded
consistently high within-cluster consensus values (>0.8),
supporting the robustness of the four-group structure despite the
limited cohort size. (Figure 1E).

To determine the prognostic significance of these radiomic
groups, we performed multivariable Cox proportional hazards
analysis incorporating group assignment, age, and sex. Compared
to Group 1, Group 4 was significantly associated with worse overall
survival (HR = 6.57, 95% CI: 2.36-18.3; p < 0.001), indicating a high-
risk phenotype (Figure 1F). To address precision concerns raised by
the small size of Group 4, we performed complete-case sensitivity
analyses with small-sample-robust estimators: Cox HR = 1.77 (95%
CI 0.68-4.57; p = 0.239), Firth-penalized HR = 1.92 (95% CI 0.76-
4.83; p = 0.194), Kaplan-Meier log-rank p = 0.32, and RMST at
T =761 days = -89 days for Group 4 vs Group 1 (95% CI —229 to 50;
p = 0.209). The effect direction was consistent across analyses, with
wider intervals expected under reduced sample size. Increasing age
was independently associated with worse survival (HR = 1.06 per
year; p < 0.001), consistent with known clinical patterns in GBM,
whereas sex was not significantly associated with survival outcomes.

In the primary adjusted model (age and sex), the association
between Group 4 and worse overall survival persisted. Given
the small size of Group 4, estimates remain imprecise, and
residual confounding by unmeasured factors (e.g., extent of
resection, MGMT status, treatment regimen) cannot be excluded.
Accordingly, we refrain from asserting age-independence and
interpret these results cautiously (Figure 1G).
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3.2 Radiomic features underlying the high-
risk Group 4 subtype

To further characterize the biological relevance of the
radiomic groups, we systematically examined the distribution of
imaging features across anatomically defined tumor subregions.
A heatmap of standardized radiomic profiles across all 61
patients demonstrated marked inter-group differences in feature
intensity across these compartments, with the top annotation
bar indicating radiomic group membership and the second
annotation bar denoting tumor subregion labels (Figure 2A,
Supplementary Table 1).

Group 4, previously identified as a high-risk group,
displayed consistently elevated values for a broad set of radiomic
features, particularly those derived from the core and peritumoral
edema. These findings suggest that Group 4 tumors are
characterized by more heterogeneous internal architecture and
altered microenvironmental signatures at the imaging level.
Among the features most enriched in Group 4, three were
identified as representative markers: shape sphericity in the NET
(Figure 2B), gray-level run percentage in the ED zone (Figure 2C),
and dependence non-uniformity normalized in the ET (Figure 2D).
Specifically, increased shape sphericity indicates a more rounded
and geometrically uniform tumor core, which may reflect expansion
in a confined anatomical space, possibly associated with aggressive
but symmetric growth patterns. Elevated run percentage in the
edema zone reflects a high degree of local texture homogeneity,
implying that edema in Group 4 is structurally more organized or
spatially constrained. Dependence non-uniformity normalized, a
texture feature quantifying variability in the spatial dependence of
pixel intensities, was significantly increased in the ET, indicating
greater intra-regional heterogeneity within the actively proliferating
component of the tumor.

Notably, none of the radiomic features extracted from the
necrotic compartment showed statistically significant differences
across groups, suggesting that necrosis contributes minimally
to the stratification observed in the unsupervised analysis. A
comprehensive volcano plot comparing Group 4 to all other
groups identified 13 significantly enriched features in Group 4,
including zone variance, gray-level non-uniformity, mesh volume,
and several small-area emphasis metrics. These features collectively
reflect increased morphological irregularity, textural heterogeneity,
and complex spatial organization in Group 4 tumors, suggesting
that Group 4 tumors exhibit radiomic patterns commonly
associated with structural complexity, which may correlate with
more aggressive biological behavior to be validated at the
transcriptomic level.

However, despite the marked differences in radiomic profiles,
none of these features individually exhibited significant prognostic
value in univariate survival analysis. Kaplan-Meier curves for six
top-ranked features demonstrated no statistically significant
differences in overall survival between high- and low-value groups
(Figure 2F), indicating that these radiomic variables are insufficient
as standalone biomarkers for survival prediction.
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FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Radiomics-based clustering reveals a high-risk GBM subgroup with distinct prognosis. (A) Summary of clinical and demographic characteristics of
the 61 GBM patients included in this study. n = 61 patients; descriptive statistics reported as mean (SD) unless noted. (B) Representative examples of
manual MRl segmentation showing four distinct tumor subregions: ED, NET, ET, and NEC, annotated on T1-weighted post-contrast images.
Segmentations by two neurosurgeons with senior adjudication; consensus masks used for all analyses. (C) Elbow plot showing within-cluster sum
of squares for radiomic feature clustering, suggesting an optimal number of clusters at four. Elbow based on within-cluster sum of squares on z-
scored features. (D) Principal component analysis (PCA) plot of radiomic features colored by cluster assignments (Cluster 1-4), demonstrating
partial separation among radiomic subtypes. (E) Consensus clustering of radiomic features (k = 4; 100-150 resamples; 90% subjects x 80% features
per run; k-means; Euclidean). The consensus matrix shows four well-defined within-cluster blocks with high mean co-assignment probabilities
(average within-cluster consensus > 0.8), supporting the robustness of the four-group structure. PCA performed on z-scored features; points
represent individual patients (n = 61). (F) Overall survival for radiomic groups, primary multivariable Cox analysis in the full cohort (n=61, adjusted for
age and sex). Statistical estimates for complementary sensitivity analyses (complete-case, Firth, KM, RMST) are reported in the Results. Consensus
clustering (k = 4; k-means; Euclidean; 100-150 resamples; 90% subjects x 80% features per run). (G) Age distribution and adjusted comparisons;
the risk trend appears largely independent of age in sensitivity analyses, with precision limited by the small size of Group 4.

This discrepancy highlights a critical limitation of purely
image-based phenotyping: although radiomic groups may
reflect integrated tumor states with prognostic significance,
individual features fail to capture the underlying biological
drivers of patient outcome. To resolve this gap, we next
investigated whether the imaging-defined high-risk subtype
corresponds to distinct transcriptional programs within the tumor
and its microenvironment, through integrative analysis of matched
bulk (same 61 patients) and single-cell transcriptomic data.

3.3 Transcriptomic profiling reveals a
highly proliferative, mitosis-enriched gene
signature in Group 4 tumors

Given the pronounced radiomic heterogeneity observed in
Group 4, we next sought to determine whether these imaging-
defined subtypes are underpinned by distinct transcriptional
programs. To this end, we performed differential expression
analysis between Group 4 tumors and all other radiomic
subtypes. A total of 1,010 genes were significantly upregulated
and 158 genes were downregulated in Group 4, using a log, fold
change threshold of +1 and FDR < 0.05 (Benjamini-Hochberg
adjusted) (Figure 3A).

To functionally characterize these DEG), we performed Gene
Ontology (GO) enrichment analysis across three categories:
biological process (BP), cellular component (CC), and molecular
function (MF). The top enriched terms included mitotic nuclear
division, sister chromatid segregation, chromosome segregation,
ribosome biogenesis, RNA splicing, DNA replication, and nuclear
chromosome segregation (Figure 3B). These annotations strongly
indicate that Group 4 tumors are transcriptionally defined by
heightened proliferative capacity and activation of chromosome
dynamics programs. Enrichment of genes involved in mitotic
spindle organization and RNA processing further supports the
notion that Group 4 represents a transcriptionally active and cell
cycle-engaged tumor state.

To further corroborate these findings, we conducted GSEA
using the MSigDB Hallmark gene sets. The top enriched
pathways included MYC targets V1, E2F targets, DNA repair,
oxidative phosphorylation, and unfolded protein response
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(Figure 3C). These pathways are canonically associated with high
proliferation, biosynthetic activity, and mitochondrial metabolism.
Although not all gene sets reached nominal statistical significance at
p <0.05, several demonstrated normalized enrichment scores (NES)
exceeding 1.5, and trends were consistent across related pathways.
Notably, the enrichment of G2/M checkpoint, mitotic spindle, and
MTORCI signaling pathways further supports the interpretation
that Group 4 tumors exhibit a hyperproliferative phenotype with
active mitotic machinery and growth signaling cascades.

Taken together, transcriptomic analysis of Group 4 tumors
revealed upregulation of core cell cycle regulators, mitotic apparatus
components, and DNA replication genes, consistent with a
transcriptional program characteristic of highly proliferative
tumor cells. Enrichment of MYC and E2F target gene sets, along
with pathways involved in chromosomal segregation, ribosome
biogenesis, and oxidative phosphorylation, further supports a
state of elevated biosynthetic and mitotic activity. However, bulk
RNA-seq data do not resolve the cellular origin of these signals,
making it unclear whether they primarily arise from malignant cells
or from specific microenvironmental components. To address this
limitation, we next leveraged single-cell RNA sequencing datasets to
determine the cellular contributors to the proliferation-associated
gene programs in Group 4 and to identify specific tumor or stromal
subpopulations that may underlie its distinct radiogenomic profile.

3.4 Single-cell transcriptomic analysis links
Group 4 programs to proliferative neural
stem-like populations with
pseudotemporal lineage progression

To investigate the cellular basis of the transcriptional programs
enriched in Group 4, we analyzed publicly available single-cell RNA
sequencing data from glioblastoma. This analysis aimed to identify
the cell types most closely associated with Group 4 specific gene
expression patterns and to evaluate whether these cell populations
exhibit developmental trajectories that may account for the
observed transcriptomic and radiographic heterogeneity.

We first performed unsupervised clustering of single cells and
assessed resolution stability using Clustree. A resolution of 0.6 was
selected as optimal, yielding 22 transcriptionally distinct clusters
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FIGURE 2

Radiomic feature profiling reveals distinctive patterns in high-risk Cluster 4. (A) Heatmap of z-score—normalized radiomic features across all 61
patients, stratified by radiomic cluster (bottom annotation) and tumor subregion label (top annotation). Cluster 4 exhibits globally elevated radiomic
intensity, especially in the edema and core regions. (B—D) Representative features enriched in Cluster 4 from different tumor compartments, box
plots show z-scores across clusters; test = one-way ANOVA with Tukey post-hoc: (B) Shape sphericity (NET), (C) Run percentage (ED), (D)
Dependence non-uniformity normalized (NET). Box plots show Z-score distributions across clusters. (E) Volcano plot comparing Cluster 4 to other
clusters reveals 13 significantly enriched radiomic features, including texture- and volume-based metrics such as zone variance, mesh volume, and
several small-area emphasis features. Volcano plot contrasts Group 4 (n = 6) vs others (n = 55); significance defined by FDR (Benjamini—Hochberg)
on feature-wise tests. (F) Kaplan—Meier plots showing overall survival stratified by high vs. low values of three representative radiomic features. None
demonstrated significant prognostic value individually, highlighting the value of composite radiomic subtypes.
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FIGURE 3
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(Figure 4A). The top three marker genes for each cluster are shown
in Figure 4B. Cell types were annotated using canonical markers
and scMayoMap reference mapping, identifying 14 major lineages
including neural stem cells, neuroblasts, neurons, oligodendrocyte
precursor cells, and various glial, vascular, and immune cell
types (Figure 4C).

To assess which of these cell populations were most relevant to
the transcriptional programs enriched in Group 4 tumors, we
correlated the Group 4 specific DEG signature with marker gene
expression across annotated cell types. Neural stem cells exhibited
the strongest positive correlation, followed by neuroblasts and
neurons, while endothelial and immune lineages showed minimal
or negative correlation (Figure 4D). These results suggest that the
cell types most associated with Group 4 specific gene expression,
particularly neural stem cells and neuroblasts, represent
undifferentiated neuroectodermal populations. Given that Group
4 DEGs are enriched for mitotic and biosynthetic processes
(Figure 3), these findings implicate neural stem-like cells as a
likely source of these transcriptional programs.

To further examine whether Group 4 associated cell types
exhibit developmental dynamics that could underlie the observed
transcriptional and radiographic heterogeneity, we performed
pseudotime analysis centered on neural stem cells. These cells
were positioned at the root of inferred lineage trajectories
(Figure 4E), supporting their selection as the origin for trajectory

Frontiers in Oncology

inference. Lineage 1 was selected for downstream analysis due to its
continuity from neural stem cells toward neuroblasts and
neurons (Figure 4F).

The pseudotemporal structure was further supported by the
distribution of annotated cell types across pseudotime, where
neural stem cells were enriched at early stages and more
differentiated neuronal populations appeared at later stages
(Figure 4G). Several representative Group 4 DEGs demonstrated
pseudotime-associated expression patterns. For example, OTP,
C1QL2, and VAX2 showed early or peak expression during the
transition from neural stem cells to neuroblasts. These genes have
been implicated in neurodevelopmental regulation, including
regional brain patterning and lineage specification, suggesting that
Group 4 transcriptional signatures are enriched in undifferentiated,
proliferative, and developmentally plastic cellular states (Figure 4H).

3.5 Spatially confined NSC-like niches
define Group 4 tumor architecture

Given the strong association between Group 4 transcriptional
programs and undifferentiated neuroectodermal lineages identified
in single-cell analysis, we next asked whether these gene expression
patterns exhibit spatially localized enrichment within glioblastoma
tissue. Specifically, we investigated whether NSC-associated
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programs, implicated in Group 4, are confined to distinct ~NSCs and related neuroectodermal populations, such as
tumor regions. interneurons and OPCs (Figure 5A). We then calculated a
To address this, we first applied deconvolution analysis to ~ module score using Group 4 DEGs and visualized its spatial
spatial transcriptomic data to infer the distribution of major cell  distribution (Figure 5B). Regions with high scores were non-
types. The resulting cell type map revealed regional enrichment of  uniformly distributed, suggesting potential spatial patterning.
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Functional validation of VAX2 in glioblastoma cell proliferation. (A) gRT-PCR analysis of VAX2, OTP, and C1QL2 expression in LN229 cells. VAX2
showed robust expression, whereas OTP and C1QL2 were expressed at levels indistinguishable from background, and were excluded from further
functional validation. (B) Validation of siRNA-mediated knockdown efficiency of VAX2 at 48 hours post-transfection. Both siVAX2.1 and siVAX2.2
significantly reduced VAX2 mRNA levels compared to siNC. (C) Cell viability assay (CCK-8) performed at 24, 48, and 72 hours post-transfection.
Knockdown of VAX2 led to a significant reduction in cell proliferation compared to siNC and untreated control groups at all time points. Data
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(*p < 0.05; **p < 0.01; ****p < 0.0001; ns, not significant).

Overlaying NSC density revealed substantial co-localization with
Group 4 module scores, as highlighted by hotspot enrichment
(Figure 5C). This spatial concordance was quantitatively supported
by a positive correlation between NSC density and Group 4
score across spatial spots (p = 0.553, Figure 5D), and further
confirmed by spatial autocorrelation analysis indicating non-
random clustering (Figure 5E).

To examine potential niche exclusivity, we compared NSC and
OPC spatial densities, which showed largely complementary
patterns, suggesting that NSC-enriched regions are distinct from
those dominated by OPCs (Figure 5F).
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Notably, these NSC-like gene expression domains were
primarily localized to the tumor periphery, a spatial pattern that
aligns with imaging features of peripheral enhancement and
suggests a potential role in driving boundary expansion or
invasion. This spatial confinement to the tumor edge highlights a
proliferative and undifferentiated niche that may contribute
to therapeutic resistance and recurrence, underscoring its
significance as a biologically and clinically relevant compartment
within Group 4 tumors. This correspondence was evaluated at a
macroscopic level, comparing regional enrichment patterns rather
than direct spatial registration, as the physical resolution of spatial
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transcriptomics (tens of microns) is substantially higher than that of
MRI (millimeter scale). Thus, the observed alignment represents a
multi-scale association between molecular niches and imaging-
defined tumor architecture.

3.6 VAX2 knockdown inhibits glioma cell
proliferation

To investigate the biological relevance of candidate
transcription factors enriched in the NSC-like compartment, we
next performed functional validation of OTP, C1QL2, and VAX2
using the LN229 glioblastoma cell line (ATCC, CRL-2611).
Quantitative RT-PCR confirmed that both OTP and C1QL2 were
expressed at very low levels in LN229 cells (Figure 6A), with Ct
values approaching those of RT- controls. This low expression may
reflect cell line limitations or context-specific expression restricted
to in vivo settings, such as patient-derived or spatially distinct
tumor regions. Due to this ambiguity, we excluded OTP and C1QL2
from further in vitro analyses and focused subsequent experiments
on VAX2, which showed robust expression in LN229.

To assess the knockdown efficiency, we transfected LN229 cells
with two independent siRNAs targeting VAX2 and measured
mRNA levels 48 hours post-transfection. Both siVAX2.1 and
siVAX2.2 significantly reduced VAX2 transcript abundance
compared to siNC (Figure 6B), validating their efficacy.

We then evaluated the impact of VAX2 knockdown on LN229
cell proliferation using an ATP-based assay at 24, 48, and 72 hours
post-transfection. VAX2 silencing led to a consistent reduction in
cell growth at each time point, with statistically significant
differences observed by 48 and 72 hours (Figure 6C). These
results suggest that VAX2 plays a functional role in promoting
glioma cell proliferation and may contribute to the proliferative
potential of NSC-like tumor subpopulations in Group 4.

4 Discussion

Our integrative analysis of radiologic and transcriptomic data
provides new evidence linking imaging heterogeneity to distinct
molecular programs in GBM. We found that radiomics-based
clustering of preoperative MRIs can stratify patients by outcome,
identifying a particularly aggressive subgroup (Group 4)
characterized by a peripheral rim-enhancing radiographic
phenotype and markedly poorer survival. Molecularly, this high-
risk imaging phenotype corresponded to transcriptional programs
enriched for cell cycle regulators and NSC-like signatures,
indicative of a highly proliferative, undifferentiated cell state.
Using single-cell and spatial transcriptomics, we further showed
that these proliferative stem-like tumor cells are not uniformly
distributed but instead concentrate at the tumor’s invasive edges.
This spatial pattern aligns closely with the MRI features of Group 4
tumors, providing a biological basis for the imaging-defined risk
subtype. These findings build on foundational radiomics/
radiogenomics work establishing that quantitative imaging
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patterns can reflect tumor biology and prognosis in GBM and
other cancers (24, 25). Our study extends this framework by linking
a preoperative MRI phenotype to paired transcriptomic programs
at the patient level.

Our spatial transcriptomic data illustrates that the high-risk
radiomic signature (Group 4) and its associated stem-like gene
program are concentrated at the tumor periphery. Single-cell and
spatial datasets are used here as hypothesis-generating context
rather than cohort-level confirmation. In the representative tumor
shown, the radiomic risk score is elevated in peripheral regions
(green/yellow points indicate a high Group 4 score), co-localizing
with areas of elevated neural stem cell-like gene expression (red
shading) at the invasive edge. By contrast, the tumor core shows low
radiomic risk scores and minimal stem-like transcriptional signals
(blue areas). This concordance between the imaging phenotype and
molecular profile supports the notion that rim-enhancing regions
on MRI correspond to biologically distinct, stem cell-rich tumor
habitats at the margin.

The enrichment of a NSC-like, highly proliferative cell
population in peripheral tumor regions offers a compelling
explanation for the worse outcomes observed in Group 4 patients.
Glioma stem-like cells have long been implicated in driving GBM
aggressiveness and recurrence (26), and these cells tend to inhabit
niches at the tumor margin and invasive fronts. Our findings are in
line with this paradigm: the radiographically evident rim of
enhancement in Group 4 tumors corresponds to a tumor
compartment dominated by invasive, stem-like cells at its
periphery. Consistently, other investigators using high-resolution
spatial profiling have reported that GBM cells infiltrating into
adjacent brain tissue upregulate neurodevelopmental pathways
and glial lineage programs (4). This convergence of evidence
suggests that advanced imaging can map the distribution of
clinically important cell states within a tumor noninvasively.
In this case, it can identify tumors that harbor aggressive, stem-
like cells at their edges. This radiogenomic correspondence
aligns with prior reports that radiographic patterns can map
clinically relevant cell states and microenvironmental niches in
GBM (27).

Notably, our radiomics-driven stratification appears to capture
an axis of tumor biology that cuts across the traditional bulk
transcriptomic subtypes of GBM. The classical, mesenchymal, and
proneural transcriptional subtypes defined in prior studies are each
composed of mixtures of malignant cell states, including a neural
progenitor-like (NPC-like) state (28). In our cohort, Group 4
tumors likely spanned multiple of these conventional subtypes,
yet convergently exhibited a predominance of the NPC-like, stem-
associated program. This highlights how an imaging-based
classification can reveal biologically meaningful distinctions that
might be obscured when analyzing whole-tumor averages. Our
imaging-molecular links are based on patient-matched bulk
RNA-seq with Benjamini-Hochberg FDR control, thereby
reducing the risk of spurious associations. Embracing phenotypic
classification approaches has been proposed as a way to better
represent GBM’s heterogeneity (29), and our results affirm that an
imaging phenotype can serve as a surrogate for an aggressive
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molecular profile. In essence, radiomics provided a different lens on
tumor classification, one that identified a high-risk state defined by
cell-intrinsic properties (stemness and proliferation) and spatial
context (tumor edge) rather than by traditional histopathological
features alone.

One molecular finding in our high-risk subgroup was the
transcription factor VAX2. VAX2 is a homeobox gene involved in
neural development, and it has not been widely studied in
glioblastoma. Interestingly, recent work in other cancers suggests
an oncogenic role for VAX2, for example, VAX2 was found to be
significantly upregulated in gastric cancer and to promote tumor
cell proliferation and invasion (30). In our analysis, VAX2
expression was elevated in Group 4 tumors, and we hypothesized
that it might drive the proliferative, stem-like phenotype of this
subtype. To test this, we inhibited VAX2 in GBM cells in vitro.
Functional assays were limited to LN229 in vitro. In vivo studies
were not performed because animal ethics approval could not be
obtained within the study period; future validation in multiple GBM
models and xenografts is warranted.

LN229 glioblastoma cells transfected with two independent
VAX2-targeting exhibited significantly lower viability over 72
hours compared to cells transfected with a siNC. In the growth
curves shown, VAX2 knockdown cells grew more slowly, with a
~30-40% reduction in cell proliferation by 72 h (p < 0.01),
indicating that suppression of VAX2 inhibits GBM cell growth in
vitro. This result confirms that VAX2 enhances the proliferative
capacity of GBM cells, supporting the notion that VAX2 contributes
to the aggressive biology of the Group 4 subtype.

From a clinical perspective, our findings highlight the potential
of advanced MRI analytics to improve GBM patient stratification
and treatment planning. Incorporating radiomic analysis into the
pre-surgical workflow could enable identification of patients with a
high-risk imaging phenotype (such as Group 4) at diagnosis, who
might benefit from intensified therapy or enrollment in clinical
trials. Indeed, previous studies have demonstrated that radiomics-
based models can successfully stratify GBM patients by survival
risk in independent cohorts (31). Moreover, the tight spatial
correspondence between imaging features and tumor biology
suggests that radiomics might help guide more tailored
interventions. For example, if a tumor displays the peripheral
enhancement pattern characteristic of Group 4, clinicians might
consider extending the surgical resection margin or delivering
boosted radiation to the tumor rim, given that our data indicate
an abundance of aggressive stem-like cells in that region. Targeting
these residual peripheral cells is critical, as they are likely drivers of
post-surgical recurrence (32-34). In fact, recent studies have
emphasized the importance of therapies directed at the invasive
margins of GBMs (4), where therapy-resistant, migratory tumor
cells reside. Additionally, the discovery of VAX2 as a potential
promoter of proliferation opens a new avenue for precision
oncology: while directly targeting a transcription factor like VAX2
is challenging, its downstream effectors or regulatory network could
be investigated for druggable targets, and VAX2 expression itself
may serve as a biomarker for identifying patients with particularly
aggressive, stem-cell-rich tumors.
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This study has several limitations. First, although survival
models adjusted for age and sex, additional clinical covariates
(e.g., extent of resection, MGMT status, and treatment regimen)
were unavailable in TCIA, and residual confounding cannot be
excluded. Second, manual segmentations were adjudicated by a
senior neurosurgeon and used as consensus masks, but formal Dice
or ICC values were not computed. Third, feature harmonization
with ComBat was not applied due to incomplete acquisition
metadata. Fourth, the sample size (n = 61) was modest; however,
internal stability analyses using bootstrap resampling and
consensus clustering demonstrated high within-cluster co-
assignment probabilities (mean > 0.8), supporting the robustness
of the four-group structure. Fifth, external validation in an
independent imaging cohort with matched transcriptomic and
clinical data was not feasible because such datasets remain scarce.
We are currently assembling a multi-institutional dataset to test
whether the Group 4-like imaging phenotype and its associated
transcriptomic program can be reproduced in independent cohorts.
Sixth, functional validation of VAX2 was restricted to a single
GBM cell line with no in vivo experiments because animal ethics
approval was not available during the study period. Finally, while
single-cell and spatial data support biological plausibility, they were
used as hypothesis-generating context rather than for cohort-
level confirmation.

Looking ahead, our study suggests several future directions.
Prospective validation in larger, independent GBM cohorts is
needed to confirm the robustness of the radiomics-defined
subtypes and their transcriptomic signatures. Technical
refinements such as harmonizing MRI acquisition, improving
segmentation (potentially with machine learning), and applying
reproducibility indices will be critical for standardization.
Mechanistic studies, including single-cell lineage tracing and in
vivo models, should clarify how the stem-like, VAX2-positive
population contributes to therapy resistance and recurrence, as
well as its interactions with the immune microenvironment. Finally,
these insights could guide therapeutic development: patients with
the high-risk peripheral enhancement phenotype may be candidates
for intensified local therapy, while VAX2-regulated pathways may
inform novel targeted strategies. Integrating radiomic classifiers
into preoperative workflows could ultimately help personalize
treatment planning.

In conclusion, this study demonstrates the value of combining
radiomics with multi-dimensional transcriptomics to elucidate the
biological underpinnings of GBM imaging phenotypes. By revealing a
spatially localized, stem-like tumor cell program associated with an
adverse radiographic subtype, our work suggests that noninvasive
imaging can stratify patients by tumor biology and potentially guide
more informed, personalized therapeutic strategies.

Data availability statement

The datasets analyzed in this study are publicly available.
Radiological and clinical data for glioblastoma patients were
obtained from The Cancer Imaging Archive (TCIA, https://www.

frontiersin.org


https://www.cancerimagingarchive.net/
https://doi.org/10.3389/fonc.2025.1662401
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

cancerimagingarchive.net/) and The Cancer Genome Atlas (TCGA-
GBM, https://portal.gdc.cancer.gov/). Single-cell and spatial
transcriptomic datasets were retrieved from the Gene Expression
Omnibus under accession numbers GSE103224 and GSE194329.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

ZYZ: Writing - original draft, Writing — review & editing, Formal
analysis, Data curation, Methodology. YL: Validation, Project
administration, Writing - review & editing. ZCZ: Writing — review
& editing, Writing — original draft. TG: Writing - review & editing,
Writing - original draft. YC: Writing - original draft, Writing — review
& editing. QC: Writing — review & editing, Writing — original draft.
XW: Data curation, Formal analysis, Writing - review & editing,
Methodology. LS: Supervision, Writing - review & editing. SL:
Writing - original draft. SW: Investigation, Writing - review &
editing, Conceptualization, Resources, Supervision.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors gratefully acknowledge The Cancer Genome Atlas
and The Cancer Imaging Archive for providing access to genomic
and imaging datasets. We also thank the contributors of publicly
available single-cell and spatial transcriptomic datasets, including
GSE103224 and GSE194329, which were instrumental to the
analyses in this study.

References

1. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al.
Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of
Neuro-Oncology (EANO) consensus review on current management and future
directions. Neuro Oncol. (2020) 22:1073-113. doi: 10.1093/neuonc/noaal06

2. Choi SW, Cho HH, Koo H, Cho KR, Nenning KH, Langs G, et al. Multi-habitat
radiomics unravels distinct phenotypic subtypes of glioblastoma with clinical and
genomic significance. Cancers (Basel). (2020) 12. doi: 10.3390/cancers12071707

3. Nishikawa M, Inoue A, Ohnishi T, Kohno S, Ohue S, Matsumoto S, et al.
Significance of glioma stem-like cells in the tumor periphery that express high levels of
CD44 in tumor invasion, early progression, and poor prognosis in glioblastoma. Stem
Cells Int. (2018) 2018:5387041. doi: 10.1155/2018/5387041

4. Harwood DSL, Pedersen V, Bager NS, Schmidt AY, Stannius TO, Areskeviciute A,
et al. Glioblastoma cells increase expression of notch signaling and synaptic genes

Frontiers in Oncology

10.3389/fonc.2025.1662401

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. We used ChatGPT solely to improve
the English writing of this manuscript. No generative AI was used to
create, analyze, or interpret any data, nor to generate content
beyond language refinement.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1662401/
full#supplementary-material

SUPPLEMENTARY TABLE 1
Standardized radiomic profiles.

SUPPLEMENTARY DATA SHEET 1
Radiomics Workflow Description.

within infiltrated brain tissue. Nat Commun. (2024) 15:7857. doi: 10.1038/s41467-024-
52167-y
5. Hu LS, Ning S, Eschbacher JM, Baxter LC, Gaw N, Ranjbar S, et al. Radiogenomics

to characterize regional genetic heterogeneity in glioblastoma. Neuro-oncology. (2017)
19:128-37. doi: 10.1093/neuonc/now135

6. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New
response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer. (2009) 45:228-47. doi: 10.1016/j.ejca.2008.10.026

7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. (2016) 278:563-77. doi: 10.1148/radiol.2015151169

8. Kickingereder P, Neuberger U, Bonekamp D, Piechotta PL, Gtz M, Wick A, et al.
Radiomic subtyping improves disease stratification beyond key molecular, clinical, and

frontiersin.org


https://www.cancerimagingarchive.net/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/articles/10.3389/fonc.2025.1662401/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1662401/full#supplementary-material
https://doi.org/10.1093/neuonc/noaa106
https://doi.org/10.3390/cancers12071707
https://doi.org/10.1155/2018/5387041
https://doi.org/10.1038/s41467-024-52167-y
https://doi.org/10.1038/s41467-024-52167-y
https://doi.org/10.1093/neuonc/now135
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.3389/fonc.2025.1662401
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

standard imaging characteristics in patients with glioblastoma. Neuro-oncology. (2018)
20:848-57. doi: 10.1093/neuonc/nox188

9. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer
Imaging Archive (TCIA): maintaining and operating a public information repository. J
Digit Imaging. (2013) 26:1045-57. doi: 10.1007/s10278-013-9622-7

10. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al.
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. (2012) 30:1323-41. doi: 10.1016/j.mri.2012.05.001

11. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype. Cancer
Res. (2017) 77:e104-e7. doi: 10.1158/0008-5472.CAN-17-0339

12. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev:
Comput Stat. (2010) 2:433-59. doi: 10.1002/wics.101

13. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet. (2000)
25:25-9. doi: 10.1038/75556

15. Hung J-H, Yang T-H, Hu Z, Weng Z, DeLisi C. Gene set enrichment analysis:
performance evaluation and usage guidelines. Briefings Bioinf. (2012) 13:281-91.
doi: 10.1093/bib/bbr049

16. Yuan J, Levitin HM, Frattini V, Bush EC, Boyett DM, Samanamud J, et al. Single-
cell transcriptome analysis of lineage diversity in high-grade glioma. Genome Med.
(2018) 10:57. doi: 10.1186/s13073-018-0567-9

17. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of
single-cell gene expression data. Nat Biotechnol. (2015) 33:495-502. doi: 10.1038/
nbt.3192

18. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at
multiple resolutions. Gigascience. (2018) 7. doi: 10.1093/gigascience/giy083

19. Yang L, Ng YE, Sun H, Li Y, Chini LCS, LeBrasseur NK, et al. Single-cell Mayo
Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-
sequencing data analysis. BMC Biol. (2023) 21:223. doi: 10.1186/512915-023-01728-6

20. Street K, Risso D, Fletcher RB, Das D, Ngai ], Yosef N, et al. Slingshot: cell lineage
and pseudotime inference for single-cell transcriptomics. BMC Genomics. (2018)
19:477. doi: 10.1186/s12864-018-4772-0

21. Ren Y, Huang Z, Zhou L, Xiao P, Song J, He P, et al. Spatial transcriptomics
reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in
Malignant gliomas. Nat Commun. (2023) 14:1028. doi: 10.1038/s41467-023-36707-6

Frontiers in Oncology

15

10.3389/fonc.2025.1662401

22. Kueckelhaus J, Frerich S, Kada-Benotmane J, Koupourtidou C, Ninkovic J,
Dichgans M, et al. Inferring histology-associated gene expression gradients in spatial
transcriptomic studies. Nat Commun. (2024) 15:7280. doi: 10.1038/s41467-024-50904-x

23. Guo B, Zhang Y, Yuan K, Jiang FX, Cui QB, Zhou Q, et al. Depletion of VAX2
restrains the Malignant progression of papillary thyroid carcinoma by modulating ERK
signaling pathway. Open Life Sci. (2019) 14:237-45. doi: 10.1515/biol-2019-0027

24. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: extracting more information from medical images using
advanced feature analysis. Eur ] Cancer. (2012) 48(4):441-6.

25. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun. (2014) 5:4006.

26. He J, Yan X, Hu S. Glioma stem cells: drivers of tumor progression and
recurrence. Stem Cell Res Ther. (2025) 16:293. doi: 10.1186/s13287-025-04352-z

27. Kickingereder P, Burth S, Wick A, Gotz M, Eidel O, Schlemmer HP, et al.
Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient
Survival with Improved Performance over Established Clinical and Radiologic Risk
Models. Radiology. (2016) 280(3):880-9.

28. Bv H, Jolly MK. Proneural-mesenchymal antagonism dominates the patterns of
phenotypic heterogeneity in glioblastoma. iScience. (2024) 27:109184. doi: 10.1016/
j.isci.2024.109184

29. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of
glioma-intrinsic gene expression subtypes associates with immunological changes in
the microenvironment. Cancer Cell. (2018) 33:152. doi: 10.1016/j.ccell.2017.12.012

30. Hong L, Yang P, Zhang L, Liu X, Wei X, Xiao W, et al. The VAX2-LINC01189-
hnRNPF signaling axis regulates cell invasion and migration in gastric cancer. Cell
Death Discov. (2023) 9:387. doi: 10.1038/s41420-023-01688-4

31. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types
by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. (2002) 99:6567-72.
doi: 10.1073/pnas.082099299

32. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al.
Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy
alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the
EORTC-NCIC trial. Lancet Oncol. (2009) 10:459-66. doi: 10.1016/S1470-2045(09)70025-7

33. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification
of human brain tumour initiating cells. Nature. (2004) 432:396-401. doi: 10.1038/
nature03128

34. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and
characterization of tumorigenic, stem-like neural precursors from human glioblastoma.
Cancer Res. (2004) 64:7011-21. doi: 10.1158/0008-5472.CAN-04-1364

frontiersin.org


https://doi.org/10.1093/neuonc/nox188
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1002/wics.101
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/75556
https://doi.org/10.1093/bib/bbr049
https://doi.org/10.1186/s13073-018-0567-9
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1186/s12915-023-01728-6
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1038/s41467-023-36707-6
https://doi.org/10.1038/s41467-024-50904-x
https://doi.org/10.1515/biol-2019-0027
https://doi.org/10.1186/s13287-025-04352-z
https://doi.org/10.1016/j.isci.2024.109184
https://doi.org/10.1016/j.isci.2024.109184
https://doi.org/10.1016/j.ccell.2017.12.012
https://doi.org/10.1038/s41420-023-01688-4
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1038/nature03128
https://doi.org/10.1038/nature03128
https://doi.org/10.1158/0008-5472.CAN-04-1364
https://doi.org/10.3389/fonc.2025.1662401
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	MRI-based radiomic clustering identifies a glioblastoma subtype enriched for neural stemness and proliferative programs
	1 Introduction
	2 Materials and methods
	2.1 MRI image acquisition and patient selection
	2.2 Tumor segmentation and radiomic feature extraction
	2.3 Radiomic clustering and prognostic analysis
	2.4 Bulk RNA-seq data processing
	2.5 Single-cell RNA-seq data analysis
	2.6 Pseudotime trajectory analysis
	2.7 Spatial transcriptomics and deconvolution analysis
	2.8 Cell culture and siRNA transfection
	2.9 Quantitative real-time PCR
	2.10 Cell proliferation assay

	3 Result
	3.1 Radiomics-based grouping of GBM MRI features reveals distinct prognostic subgroups
	3.2 Radiomic features underlying the high-risk Group 4 subtype
	3.3 Transcriptomic profiling reveals a highly proliferative, mitosis-enriched gene signature in Group 4 tumors
	3.4 Single-cell transcriptomic analysis links Group 4 programs to proliferative neural stem-like populations with pseudotemporal lineage progression
	3.5 Spatially confined NSC–like niches define Group 4 tumor architecture
	3.6 VAX2 knockdown inhibits glioma cell proliferation

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


