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Predicting the recurrence
risk of liver metastasis from
colorectal cancer: a study
based on preoperative CT
intratumoral and peritumoral
radiomics features
Dongying Zhang*, Peiheng Li, Yong Wei, Mingmei Xue,
Fangfang Guo and Chenguang Li

Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
Objective: This study aims to explore the value of predicting the recurrence risk

of colorectal cancer liver metastasis (CRLM) based on preoperative CT

intratumoral and peritumoral radiomics features.

Methods: This study utilized retrospectively collected preoperative CT data of 201

CRLM patients, comprising 145 cases from the hospital one and 56 cases from an

external hospital two. Liver metastases were precisely segmented via manual

annotation. Subsequently, the intratumoral region of interest (ROIIntra) was

isotropically dilated to radii of 2 mm, 4 mm, and 6 mm, resulting in peri-tumoral

ROIs (ROIPeri2mm, ROIPeri4mm and ROIPeri6mm). We established the prediction

models based on support vector machine (SVM), random forest (RF), and

multilayer perceptron (MLP) algorithms. The area under the subject operating

characteristic curve (AUC) was used to evaluate the predictive performance.

Results: Compared with SVM and RF, MLP demonstrated superior predictive

performance for estimating the recurrence risk of CRLM patients. The best

radiomics signatures for predicting the recurrence risk of CRLM were ROIIntra

+Peri4mm model, and the AUCs of the ROIIntra model, ROIIntra+Peri2mm model,

ROIIntra+Peri4mm model, and ROIIntra+Peri6mm model constructed by MLP are 0.758

(95% confidence interval (CI), 0.621 - 0.865), 0.815 (95% CI, 0.684 - 0.908), 0.855

(95% CI, 0.731 - 0.936), and 0.825 (95% CI, 0.696 - 0.915), respectively, in the

external test set.

Conclusion: Preoperative CT-based radiomics features extracted from intra-

tumoral (ROIIntra) and peritumoral (ROIIntra+Peri2mm, ROIIntra+Peri4mm, and ROIIntra

+Peri6mm) regions can effectively predict recurrence risk in CRLM patients.
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Introduction

Colorectal cancer ranks as the third most prevalent cancer

worldwide, accounting for approximately 10% of all cancer cases,

and represents the second leading cause of cancer-related mortality

globally (1, 2). Approximately 25% of colorectal cancer patients

develop liver metastases, for which hepatic resection remains the

primary curative treatment (3, 4). Despite advances in surgical

techniques and medical oncology that have increased resectability

rates, multiple studies have demonstrated that the pooled recurrence

rate after liver resection remains alarmingly high at 60-80%,

constituting the leading cause of mortality in these patients (5, 6).

Precise prediction of recurrence risk is therefore critically important

for developing personalized therapeutic strategies and accurate

prognostic assessments in patients with colorectal liver metastases

(CRLM) (7–9). Clinically, the diagnostic utility of liver biopsy is often

constrained by its invasive nature, the potential for procedural

complications, and the elevated risk of false-negative results

attributable to inadequate tissue sampling or sampling errors. As a

routine imaging modality for patients with CRLM, preoperative

computed tomography (CT) not only provides detailed anatomical

information, including the size, location, and morphology of hepatic

lesions, but also captures subtle, indirect indicators of tumor biology

(10, 11). These microscale features, imperceptible to the human eye,

can be systematically extracted by radiomics through the

identification of intratumoral patterns, textural heterogeneities, and

spatial relationships within CT images, ultimately transforming them

into quantifiable and mineable data for enhanced diagnostic and

prognostic insights (12–14). Support vector machine (SVM), random

forest (RF), and multilayer perceptron (MLP), as established machine

learning algorithms with robust feature extraction capabilities, enable

the development of predictive models for CRLM recurrence risk (15–

18). By integrating radiomics - based CT feature extraction with

SVM, RF, and MLP modeling frameworks, this approach offers a

novel, non-invasive solution for personalized risk stratification in

CRLM management.

Current radiomics - based studies on preoperative CT imaging

for CRLM have predominantly focused on risk prediction (19, 20),

chemotherapy response (12, 21), and prognosis (22, 23). However,

there remains a critical gap in the development of predictive models

for postoperative recurrence risk, which constitutes a major

determinant of long-term survival in this patient population.

Additionally, the evolution and progression of tumors are affected

by the interactions between cells within the tumor and constituents

in the peritumoral region (24). Previous research indicates that

tumors are composed not only of malignant cells but also

stromal components, immune elements and inflammatory

elements. These factors induce the stromal remodeling, creating a

microenvironment conducive to tumor progression (25). The

tumor necrosis factor signaling pathway, which is connected to

abnormal blood - vessel formation driven by cancer cells, as well as

invasion and metastasis, is related to the features of the peritumoral

area (26, 27). In light of this, both the tumor’s intratumoral and

peritumoral microenvironments are likely reservoirs of pivotal

biological signals and CRLM recurrence indicators.
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In this study, we develop and validate a radiomics - based

recurrence risk prediction model for CRLM using advanced

machine learning algorithms, including SVM, RF, and MLP,

applied to preoperative CT imaging. By integrating quantitative

imaging features extracted from both intratumoral and peritumoral

regions, with the optimal peritumoral area associated with

recurrence risk identified, our approach bridges the current gap

in postoperative recurrence prediction. Furthermore, by

incorporating clinical parameters, we establish a novel, non-

invasive prognostic tool to guide postoperative surveillance and

personalized treatment strategies, ultimately improving clinical

outcomes for CRLM patients.
Materials and methods

Patient collective

For this retrospective, multiple-centers, IRB-approved study,

201 patients with proven colorectal cancer and CRLM were

identified, including 148 CRLM patients from hospital one and

53 patients from hospital two (Table 1). The ethics committee of

this institution approved the study and waived informed consent.

Inclusion criteria: 1). Pathologically confirmed CRLM; 2).

Availability of histopathological reports for both liver tumor and

non-tumorous hepatic parenchyma; 3). Preoperative portal venous

phase contrast-enhanced CT imaging acquired within 6 weeks

prior to hepatic resection; 4). The follow-up duration is at least 24

months. The follow-up process involved regular clinical

evaluations, including serum tumor marker testing and imaging

assessments every year. Exclusion criteria: 1). Preoperative hepatic

arterial infusion chemotherapy; 2). Prior local tumor ablation

therapy or more than three wedge resections of the liver; 3). No

visible tumor on preoperative imaging. The flowchart of the patient

selection process is presented in Figure 1. The clinical information

available in the datasets included: gender, age, body mass index at

operation, carcinoembryonic antigen test, lymph node status,

colon primary status, presence of multiple lobes, presence of

major comorbidity, maximum tumor size and the liver

recurrence status. Recurrence was defined based on a

combination of imaging and pathological evidence. Detection of

new lesions on cross-sectional imaging with typical radiological

features of metastatic disease, e.g., enhancing hepatic nodules,

extrahepatic masses, that were not present at baseline and

persisted or enlarged on subsequent scans. Histopathological

verification of malignant cells from biopsy or surgical resection

of suspected recurrent lesions, which served as the gold standard

when available.
Imaging protocols

All study participants underwent a standardized contrast-

enhanced CT scan according to predefined imaging protocols.

Abdominal imaging was performed using a multidetector CT
frontiersin.org
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scanner (Lightspeed 16 and VCT; GE Healthcare, Madison, WI,

USA) with the following key settings: autoMA ranged from 220 to

380, a noise index of 12 to 14, a rotation time of 0.7 to 0.8

milliseconds, and a scan delay of 80 seconds (28).
Intratumoral segmentation and peritumoral
dilation

Intratumoral segmentation was performed on CT images using

the ITK-SNAP software (Version 3.60, http://www.itk-snap.org).

Two radiologists with 8 and 10 years of experience in abdominal

imaging diagnosis, respectively, independently carried out the

segmentation process. If the region of interest (ROI) defined by

two radiologists showed a discrepancy ≥5%, a senior radiologist

with two decades of expertise conducted re-segmentation to finalize

the ROIs. The segmented ROI served as the ROIIntra, which was

expanded by 2 mm, 4 mm, and 6 mm into the peritumoral region

using standard morphological operations, yielding ROIPeri2mm,
Frontiers in Oncology 03
ROIPeri4mm and ROIPeri6mm, respectively. The ROIPeri k mm

excluded skin, air, and muscles.
Data preprocessing

Prior to the extraction of radiomics features, all CT images

underwent resampling to achieve a uniform voxel resolution of

1×1×1 mm³. Subsequently, the intensity histograms of the images

were discretized using a bin width of 25, ensuring consistent and

standardized feature extraction across the dataset. This

preprocessing step is crucial for maintaining the comparability

and reliability of the extracted radiomics features.
Radiomics feature extraction

Radiomics features were extracted from the ROI

using the open-source software PyRadiomics (Version 2.20,
TABLE 1 Clinical characteristics of CRLM patients in the training and test sets.

Variable

Training set (hospital one) Test set (hospital two)
z/t/c2
value

P
valueRecurrence (n

= 87)
Non-recurrence

(n = 61)
Recurrence (n

= 27)
Non-recurrence

(n = 26)

Age (years) 58.37 ± 12.31 61.11 ± 11.66 63.18 ± 10.58 64.58 ± 12.14 1.360 0.176

Gender 2.581 0.1082

Male 44 (50.57 %) 39 (63.93 %) 19 (70.37 %) 16 (61.54 %)

Female 43 (49.43 %) 22 (36.07 %) 8 (29.63 %) 10 (38.46 %)

Body mass index (kg/ m2) 26.86 ± 4.86 27.83 ± 5.25 26.56 ± 4.10 23.05 ± 2.85 -1.134 0.257

Carcinoembryonic antigen test 31.79 ± 116.83 36.57 ± 124.98 36.52 ± 58.95 56.55 ± 149.21 -1.385 0.166

Positive lymph node of
primary tumor

0.019 0.8903

Yes 29 (33.33 %) 29 (33.33 %) 15 (55.56 %) 12 (46.15 %)

No 58 (66.67 %) 58 (66.67 %) 12 (44.44 %) 14 (53.85 %)

Colon primary at operation 0.361 0.5482

Yes 47 (54.02 %) 21 (34.43 %) 9 (33.33 %) 4 (15.38 %)

No 40 (45.98 %) 40 (65.57 %) 18 (66.67 %) 22 (84.62 %)

Disease in multiple lobes 4.892 0.0270

Yes 46 (52.87 %) 21 (34.43 %) 10 (37.04 %) 10 (38.46 %)

No 41 (47.13 %) 40 (65.57 %) 17 (62.96 %) 16 (61.54 %)

Major comorbidity 3.265 0.0708

Yes 44 (50.57 %) 40 (65.57 %) 15 (55.56 %) 18 (69.23 %)

No 43 (49.43 %) 21 (34.43 %) 12 (44.44 %) 8 (30.77 %)

Max tumor size (cm) 3.64 ± 2.22 2.95 ± 2.39 5.08 ± 3.91 4.50 ± 1.66 -2.434 0.015
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https://github.com/Radiomics/pyradiomics). A comprehensive set

of 12 filters, including Original, AdditiveGaussianNoise, Binomial,

Normalize, LaplacianSharpening, CurvatureFlow, wavelet,

ShotNoise, BoxMean, LoG, DiscreteGaussian, and BoxSigmaImage,

were applied to enhance the extraction of radiomics features. A total

of 201 patients in this study yielded 1197 high-dimensional radiomics

features. To reduce the complexity or bias inherent in the radiomics

feature set, dimensionality reduction techniques were employed. The

primary objective of feature dimensionality reduction is to simplify

the feature space while retaining the most informative features. In the

training dataset, we first performed feature dimensionality reduction

using the least absolute shrinkage and selection operator (LASSO)

regression analysis, with the regularization parameter a set to 0.001

(29). Subsequently, the top 15 features with the highest correlation

were selected based on the maximum relevance and minimum

redundancy (mRMR) method (30). These methods help in

selecting the most discriminative features, thereby improving the

performance of subsequent predictive models.
Model construction

Using radiomics features extracted from ROIIntra and its

peritumoral extensions (ROIIntra+Peri2mm, ROIIntra+Peri4mm, and
Frontiers in Oncology 04
ROIIntra+Peri6mm), predictive models were developed using machine

learning algorithms, including SVM, RF, and MLP, to predict

recurrence risk in CRLM. The radiomics workflow is shown in

Figure 2. The details of these classifiers were shown in Table 2.
Statistical analysis

In the analysis of count data, comparisons between groups were

performed using the Chi-square test, which is appropriate for

categorical variables. For continuous data, comparisons between

groups were conducted using either the Mann-Whitney U test or

the independent samples t-test, depending on the normality

assumptions of the data. The performance of the predictive

models was evaluated using several metrics, including the area

under the subject operating characteristic curve (AUC), sensitivity,

and specificity. Decision curve analysis (DCA) and calibration curve

were employed to independently evaluate the stability and clinical

net benefit of the predictive model, respectively. These metrics

provide a comprehensive assessment of the model’s ability to

distinguish between different outcomes. All statistical analyses

were conducted using the R software (Version 4.3.3). A

significance level of P < 0.05 was adopted to indicate statistically

significant differences.
FIGURE 1

Subject selection flowchart for this experiments.
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Results

Statistical analysis of clinical features

A total of 114 patients with recurrent CRLM and 87 patients

without recurrence were included. Among the clinical

characteristics, significant differences were observed between the

two groups in terms of presence of multiple lobes and the maximum

tumor diameter. Consequently, presence of multiple lobes and the

maximum tumor diameter were incorporated as clinical indicators

into the predictive model (Table 1). The two variables were selected

due to their statistical significance, suggesting their potential
Frontiers in Oncology 05
importance in influencing the recurrence risk of CRLM. Including

these clinical indicators enhances the model’s ability to accurately

predict recurrence by accounting for relevant patient-

specific factors.
Radiomics feature selection and predictive
performance

From the CT-based ROIs (ROIIntra, ROIIntra+Peri2mm,

ROIIntra+Peri4mm, and ROIIntra+Peri6mm), 15 radiomics features were

ultimately selected based on their significant association with

recurrence risk. The extracted radiomics features by ROIIntra,

ROIIntra+Peri2mm, ROIIntra+Peri4mm, and ROIIntra+Peri6mm, which are

presented in Tables 3, 4, 5, and 6. The results of recurrence risk

prediction for CRLM patients, achieved by integrating radiomics

features with clinical characteristics and constructing predictive

models using SVM, RF, and MLP, are presented in Table 3, 4. The

predictive performance of the three machine learning models

(SVM, RF, and MLP) improved consistently when incorporating

peritumoral regions into the radiomics signature. The optimal

performance was observed with the MLP model using

ROIIntra+Peri4mm, achieving the highest AUC of 0.905 (95% CI:

0.846 - 0.947) in the training set and 0.855 (95% CI: 0.731 -

0.936) in the test set. The significance level P for all nine models

was less than 0.0001 (Table 7).
FIGURE 2

Radiomics analysis and machine learning workflow for predicting the recurrence risk in CRLM patients.
TABLE 2 The details of different classifiers.

Classifier Parameters

SVM Penalty factor C: 1.0; Gamma:0.001; Kernel: rbf; Threshold:0.5

RF
Criterion method: gini; Maximum depth of tree: 3; Minimum
number of tree leaf: 1; Minimum number of splitter sample: 2;
Number of estimators: 200; Threshold: 0.5

MLP

Number of hidden layer: 2, Sizes of hidden layer: 64, Activation:
sigmoid, 64, Learning rate: 0.001, Optimizer: Adam optimizer
with default parameters (b1 = 0.9, b2 = 0.999), Regularization:
L2, Batch size: 32, Epochs: 200, Initialization: Glorot uniform,
Loss function: binary cross entropy
SVM, support vector machine; RF, random forest; MLP, multilayer perceptron
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The ROC curves (Figure 3) illustrate that models constructed

using CT intratumoral and peritumoral radiomics features are

effective in predicting the recurrence risk of CRLM, with all

models achieving AUC values exceeding 0.735 in the test set.

Based on the H-L test, the P-values for the ROIIntra model,

ROIIn t r a+Pe r i 2mm model , ROIIn t r a+Pe r i 4mm model , and
Frontiers in Oncology 06
ROIIntra+Peri6mm model by SVM compared to actual observations

were 0.2262, 0.2298, 0.3631, and 0.0110, respectively. The P-values

for the ROIIntra model, ROIIntra+Peri2mm model, ROIIntra+Peri4mm

model, and ROIIntra+Peri6mm model by RF compared to actual

observations were 0.4532, 0.3038, 0.3190, and 0.1586, respectively.

The P-values for the ROIIntra model, ROIIntra+Peri2mm model,
TABLE 3 The key radiomics features selected out through ROIIntra.

Features type Radiomics features Correlation coefficient

Texture feature original_glrlm_LongRunHighGrayLevelEmphasis 2.616

First order statistic original_firstorder_Mean 2.455

Shape feature original_shape_Sphericity 1.979

Texture feature log-sigma-3-0-mm-3D_glcm_Id 1.718

Texture feature wavelet-HLL_glrlm_LowGrayLevelRunEmphasis 1.627

Shape feature original_shape_LeastAxisLength 1.406

Texture feature wavelet-HHL_glrlm_LowGrayLevelRunEmphasis 1.072

Texture feature original_glszm_SmallAreaLowGrayLevelEmphasis 0.962

Texture feature wavelet-LHH_ngtdm_Coarseness 0.874

First order statistic wavelet-LHL_firstorder_Energy 0.691

Texture feature wavelet-HLH_glcm_MaximumProbability 0.439

Texture feature wavelet-LLH_glcm_Contrast 0.323

Texture feature
wavelet-
HHH_glrlm_LongRunLowGrayLevelEmphasis

0.254

Texture feature wavelet-HHL_glcm_Contrast 0.108

Texture feature log-sigma-5-mm-3D_glszm_SizeZoneNonUniformity 0.057
TABLE 4 The key radiomics features selected out through ROIIntra+Peri2mm.

Features type Radiomics features Correlation coefficient

Texture feature wavelet-LLH_glcm_Correlation 3.029

Texture feature wavelet-LLH_glcm_DifferenceEntropy 3.006

Texture feature wavelet-LLH_gldm_DependenceNonUniformity 2.861

Texture feature wavelet-HLH_glcm_ClusterTendency 2.554

Texture feature wavelet-HHL_glszm_GrayLevelNonUniformity 2.175

Texture feature log-sigma-5-mm-3D_glcm_MCC 1.401

Texture feature original_glcm_SumAverage 1.272

Shape feature original_shape_SphericalDisproportion 1.143

Texture feature wavelet-LLH_glszm_HighGrayLevelZoneEmphasis 1.015

Texture feature
log-sigma-3-mm-
3D_glrlm_ShortRunHighGrayLevelEmphasis

0.823

Shape feature original_shape_LeastAxisLength 0.753

Texture feature wavelet-LLL_gldm_GrayLevelVariance 0.554

Texture feature wavelet-LLL_gldm_LowGrayLevelEmphasis 0.371

Shape feature original_shape_SurfaceArea 0.118

Shape feature original_shape_Maximum3DDiameter 0.082
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ROIIntra+Peri4mm model, and ROIIntra+Peri6mm model by MLP

compared to actual observations were 0.3068, 0.3845, 0.8556, and

0.4218, respectively. The decision curve analysis evaluated the

clinical utility of all the predictive models (ROIIntra, ROIIntra
Frontiers in Oncology 07
+Peri2mm, ROIIntra+Peri4mm, and ROIIntra+Peri6mm) across a range of

threshold probabilities (Figure 4). The calibration curves assessed

the agreement between predicted probabilities and observed

outcomes (Figure 5). The results demonstrated that all models
TABLE 5 The key radiomics features selected out through ROIIntra+Peri4mm.

Features type Radiomics features Correlation coefficient

Texture feature wavelet-HHL_glszm_HighGrayLevelZoneEmphasis 3.917

Texture feature wavelet-HHL_glszm_LargeAreaEmphasis 3.558

Texture feature wavelet-HHL_glszm_ZoneEntropy 2.614

Texture feature wavelet-HHL_ngtdm_Coarseness 2.305

Texture feature log-sigma-3-mm-3D_ngtdm_Coarseness 1.923

Texture feature original_gldm_GrayLevelNonUniformity 1.824

Texture feature wavelet-LLL_ngtdm_Busyness 1.438

First order statistic log-sigma-5-mm-3D_firstorder_TotalEnergy 1.117

Texture feature original_gldm_LargeDependenceHighGrayLevelEmphasis 0.925

Texture feature wavelet-LLL_glszm_ZonePercentage 0.759

Texture feature wavelet-LLL_glszm_LargeAreaEmphasis 0.668

First order statistic log-sigma-5-mm-3D_firstorder_Median 0.503

Texture feature original_gldm_SmallDependenceHighGrayLevelEmphasis 0.249

Texture feature wavelet-LLL_glrlm_ShortRunEmphasis 0.176

Texture feature
wavelet-
LLL_glszm_GrayLevelNonUniformityNormalized

0.094
TABLE 6 The key radiomics features selected out through ROIIntra+Peri6mm.

Features type Radiomics features Correlation coefficient

Texture feature
wavelet-
LLL_glrlm_GrayLevelNonUniformityNormalized

2.734

Texture feature wavelet-LLL_glrlm_LongRunEmphasis 2.439

Texture feature log-sigma-5-mm-3D_glcm_JointEntropy 2.402

First order statistic original_firstorder_RobustMeanAbsoluteDeviation 2.078

First order statistic wavelet-HLH_firstorder_TotalEnergy 1.891

Texture feature wavelet-LLL_glszm_GrayLevelNonUniformity 1.547

Texture feature log-sigma-5-mm-3D_gldm_LowGrayLevelEmphasis 1.430

First order statistic original_firstorder_Mean 1.271

Texture feature wavelet-LLL_glszm_SizeZoneNonUniformityNormalized 0.869

Texture feature log-sigma-5-mm-3D_gldm_GrayLevelNonUniformity 0.724

Texture feature wavelet-HLH_glcm_ClusterProminence 0.502

Texture feature wavelet-LLL_glszm_ZonePercentage 0.418

Shape feature original_shape_Maximum2DDiameterColumn 0.401

Texture feature wavelet-HLH_glcm_Contrast 0.259

First order statistic original_firstorder_90Percentile 0.127
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provided net benefit, indicating their potential clinical applicability

for predicting recurrence risk in CRLM patients (Table 8).
Discussion

Radiomics - based analyses of preoperative CT imaging have

been extensively validated for predicting metastatic risk,

chemotherapy response, and prognosis in CRLM patients. For

example, a study by Jing et al. showed that a radiomics model

based on CT for preoperative prediction of liver metastases after

surgery for colorectal cancer, with AUC of 0.761 in the test set (19).

Karagkounis et al. constructed the radiomics prediction model

using CT features of 85 Patients who underwent resection for

CRLM, and the results showed that this model can provide a

valuable reference for pathological response assessment (13).

However, the potential of radiomics for recurrence risk

stratification remains relatively underexplored in this patient

population. This knowledge gap is particularly concerning given

that recurrence patterns in CRLM are highly heterogeneous, with

liver metastases and local hepatic recurrences exhibiting distinct

clinical behaviors. Meanwhile, existing studies predominantly focus

on intralesional features, overlooking the recurrence value of

peritumoral texture patterns that may reflect microenvironmental

changes associated with tumor dissemination. To address these

gaps, our study systematically evaluated the predictive performance

of radiomics models for recurrence risk by constructing separate

SVM, RF, and MLP algorithms using four distinct radiomics feature

sets derived from the intra-tumoral ROI (ROIIntra) and its

peritumoral extensions (ROIIntra+Peri2mm, ROIIntra+Peri4mm, and

ROIIntra+Peri6mm).

Biologically, the peritumoral region plays a critical role in tumor

progression, as it is where cancer cells interact with stromal tissue,

immune cells, and blood vessels, processes that drive local invasion
Frontiers in Oncology 08
and recurrence (13). Studies on hepatic metastases have shown that

pathological changes extend beyond the visible tumor boundary,

with distinct biological signatures observed at varying distances

from the tumor edge (31). Specifically, the 2mm zone primarily

reflects immediate tumor-stroma interactions, including early

invasive activity and extracellular matrix remodeling. The 4mm

zone captures broader paracrine effects and immune responses that

mediate tumor survival and spread. The 6mm zone encompasses

more distant microenvironmental changes, such as hepatic

sinusoidal remodeling, which can facilitate micrometastasis

formation. For instance, Shang et al. predicted the invasiveness of

lung adenocarcinoma by analyzing radiomic features extracted

from both tumor cores and 4mm peritumoral regions on CT

imaging (32). Qin et al. established through MRI analysis that

systematic evaluation of peritumoral ROIs expanded by 2mm,

4mm, and 6mm beyond tumor margins provides clinically

significant predictive value for assessing pathological treatment

response in locally advanced rectal cancer patients following

neoadjuvant chemoradiotherapy (33). Clinically, these distances

align with previous radiomic studies on malignancies, where 2 -

6mm peritumoral regions have been associated with recurrence risk

and treatment response. We selected 2mm, 4mm, and 6mm to span

this clinically relevant range, allowing us to capture both proximal

and distal microenvironmental influences on recurrence.

The extraction of radiomics features is based on the principles

of quantitative imaging analysis, which systematically quantifies the

spatial and intensity distributions of voxel patterns within medical

images. These features capture tumor heterogeneity and

microenvironmental characteristics, thereby possessing significant

biological relevance in medical research. As shown in Table 3, the

first column displays the categories corresponding to the radiomics

features, the second column lists the names of the selected features,

and the third column presents the mRMR correlation coefficients

between the radiomics features and the recurrence risk. We have
TABLE 7 Performance metrics SVM, RF, and MLP models across different ROI radiomics signature in the training set.

Radiomics
signature

Algorithm AUC (95% CI) Sensitivity (%) Specifcity (%) Standard error

ROIIntra

SVM 0.844 (0.776 - 0.899) 86.21 86.89 0.0346

RF 0.860 (0.793 - 0.911) 87.36 88.52 0.0343

MLP 0.872 (0.807 - 0.921) 89.66 90.16 0.0344

ROIIntra+Peri2mm

SVM 0.861 (0.795 - 0.912) 87.36 88.52 0.0328

RF 0.898 (0.837 - 0.941) 89.66 90.16 0.0317

MLP 0.905 (0.846 - 0.947) 90.80 90.16 0.0284

ROIIntra+Peri4mm

SVM 0.893 (0.832 - 0.938) 88.51 91.80 0.0302

RF 0.909 (0.850 - 0.950) 90.80 90.16 0.0269

MLP 0.929 (0.875 - 0.965) 94.25 93.44 0.0247

ROIIntra+Peri6mm

SVM 0.906 (0.847 - 0.948) 91.95 90.16 0.0285

RF 0.911 (0.854 - 0.952) 88.51 90.16 0.0260

MLP 0.914 (0.856 - 0.954) 91.95 86.89 0.0259
95% CI, confidence interval; SVM, support vector machine; RF, random forest; MLP, multilayer perceptron
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analyzed the biological significance of the 3 radiomics features that

are most strongly associated with the risk of recurrence.

Original_glrlm_LongRunHighGrayLevelEmphasis measures the

distribution of long contiguous pixel runs with high gray-level

intensity values. The high value may correspond to highly

ordered proliferative regions within the tumor or high cell density

zones around necrotic areas, and is associated with the degree of

tumor differentiation. Original_firstorder_Mean represents

arithmetic mean of all pixel intensities within the tumor ROI.

Low mean values may indicate necrotic areas, while high values

suggest vascularized tumor regions. Original_shape_Sphericity

measures how closely the tumor shape approximates a perfect

sphere. Lower sphericity correlates with infiltrative growth

patterns and desmoplastic reaction.

The radiomics features extracted by ROIIntra+Peri2mm are shown in

Table 4. The top 3 radiomic features most associated with the risk of

recurrence are wavelet-LLH_glcm_Correlation, wavelet-

LLH_glcm_DifferenceEntropy, wavelet-LLH_gldm_Dependence
Frontiers in Oncology 09
NonUniformity, respectively. Wavelet-LLH_glcm_Correlation

quantifies how correlated a pixel is to its neighbor in the LLH

wavelet space. High values indicate organized tissue structures, e.g.,

regular tumor stroma, and low values suggest chaotic tissue patterns.

Wavelet-LLH_glcm_DifferenceEntropy calculates the entropy of

gray-level difference distribution. Higher values indicate more

heterogeneous tissue patterns. Wavelet-LLH_gldm_Dependence

NonUniformity measures the variability of gray-level dependencies

in local neighborhoods. It reflects complex microenvironment

interactions in the CRLM tumor.

The radiomics features extracted by ROIIntra+Peri4mm are shown in

Table 5. The top 3 radiomic features most associated with the risk of

recurrence are wavelet-HHL_glszm_HighGrayLevelZoneEmphasis,

wavelet-HHL_glszm_LargeAreaEmphasis, wavelet-HHL_glszm_

ZoneEntropy, respectively. Wavelet-HHL_glszm_HighGrayLevel

ZoneEmphasis measures the relative distribution of high gray-level

zones and emphasizes zones with higher gray-level values within the

HHL wavelet-transformed image space. It may correlate with regions of
FIGURE 3

ROC of the predictive models constructed by different radiomics signatures in the test set. (A) ROIIntra, (B) ROIIntra+Peri2mm, (C) ROIIntra+Peri4mm,
(D) ROIIntra+Peri6mm.
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FIGURE 4

DCA of the predictive models constructed by different radiomics signatures in the test set. (A) ROIIntra, (B) ROIIntra+Peri2mm, (C) ROIIntra+Peri4mm,
(D) ROIIntra+Peri6mm.
FIGURE 5

Calibration curve of the predictive models constructed by different radiomics signatures in the test set. (A) ROIIntra, (B) ROIIntra+Peri2mm, (C) ROIIntra
+Peri4mm, (D) ROIIntra+Peri6mm.
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active tumor metabolism or hypervascularized subregions. Wavelet-

HHL_glszm_LargeAreaEmphasis quantifies the distribution of large

homogeneous zones and emphasizes larger zone sizes within the HHL

wavelet space. It may relate to areas of tumor stability or defined growth

patterns. Wavelet-HHL_glszm_ZoneEntropy assesses the randomness

or disorder in the distribution of zone sizes throughout the image,

specifically within the HHL wavelet-transformed space. High values

suggest a more irregular and heterogeneous distribution of tumor zones,

indicating complex microenvironmental interactions or varied cellular

compositions. Low values imply a more uniform and organized

arrangement of tumor zones.

The radiomics features extracted by ROIIntra+Peri6mm are shown in

Table 6. The top 3 radiomic features most associated with the risk of

recurrence are wavelet-LLL_glrlm_GrayLevelNonUniformity

Normalized, wavelet-LLL_glrlm_LongRunEmphasis, log-sigma-5-

mm-3D_glcm_JointEntropy, respectively. Wavelet-LLL_glrlm_

GrayLevelNonUniformityNormalized quantifies gray-level

distribution uniformity within runs. It may be related to infiltrative

growth patterns with irregular cellular density. Wavelet-

LLL_glrlm_LongRunEmphasis detects large-scale and spatially

coherent tissue regions in LLL-filtered images. Higher values may

correlate with well-organized tumor architectures. Log-sigma-5-mm-

3D_glcm_JointEntropy enhances edges at 5 mm resolution and

captures mid-range heterogeneity.

The inclusion of peritumoral regions (Peri2mm, Peri4mm, Peri6mm)

consistently improved model performance compared to intralesional

features alone (ROIIntra). For example, in the training set, MLP’s AUC

increased from 0.872 (ROIIntra) to 0.929 (ROIIntra+Peri4mm), while in

the test set, the best-performing model (MLP with ROIIntra+Peri4mm)

achieved an AUC of 0.855, compared to 0.735 for SVM with ROIIntra
alone. The performance of recurrence risk prediction models

improved significantly with the inclusion of peritumoral radiomics

features, confirming that tumor-stromal interactions in the

peritumoral microenvironment contribute to metastatic
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progression. Among the evaluated radiomic regions - ROIIntra,

ROIIntra+Per i2mm, ROIIntra+Peri4mm, and ROIIntra+Peri6mm

demonstrated the best balance between sensitivity and specificity

across all machine learning models. Although the SVM model

demonstrated a marginal improvement in AUC (+0.002) when

expanding the peritumoral region from ROIIntra+Peri4mm to

ROIIntra+Peri6mm in the test set, both the RF and MLP models

exhibited superior performance with the smaller ROIIntra+Peri4mm

signature. This suggests that, for these algorithms, the inclusion of

excessive peritumoral information may introduce noise or

redundancy, thereby diminishing predictive accuracy. The optimal

peritumoral expansion size appears to be context-dependent, with

smaller regions (4 mm) potentially striking a better balance between

feature informativeness and model generalizability. In contrast, the

minimal peritumoral inclusion (ROIIntra+Peri2mm) failed to capture

sufficient prognostic information, underscoring the importance of an

optimized radiomic capture radius. ,

Machine learning model selection significantly influenced

predictive accuracy. The selection of SVM, RF, and MLP was

based on their distinct strengths and wide applicability in

radiomic research. SVM was used for its robustness in handling

high-dimensional data and its ability to find optimal hyperplanes

for classification, which is valuable given the high dimensionality of

our radiomic feature set. RF was selected due to its superiority in

capturing non-linear relationships and interactions between

features, as well as its built-in feature importance evaluation.

MLP was included to account for potential complex, non-linear

patterns in the data that traditional statistical models might miss,

leveraging its capability to model hierarchical feature

representations. The performance of SVM, RF, and MLP models

varied significantly across different radiomics signatures, both in the

training and test sets. MLP demonstrated superior performance in

both training and testing, particularly when incorporating

peritumoral features, likely due to its ability to model hierarchical
TABLE 8 Performance metrics SVM, RF, and MLP models across different ROI radiomics signature in the test set.

Radiomics
signature

Algorithm AUC (95% CI) Sensitivity (%) Specifcity (%) Standard error

ROIIntra

SVM 0.735 (0.596 - 0.847) 77.78 76.92 0.0744

RF 0.755 (0.617 - 0.863) 77.78 76.92 0.0724

MLP 0.758 (0.621 - 0.865) 81.48 80.77 0.0727

ROIIntra+Peri2mm

SVM 0.766 (0.630 - 0.872) 77.78 80.77 0.0703

RF 0.771 (0.635 - 0.875) 81.48 80.77 0.0712

MLP 0.815 (0.684 - 0.908) 77.78 84.62 0.0629

ROIIntra+Peri4mm

SVM 0.806 (0.675 - 0.902) 81.48 80.77 0.0620

RF 0.825 (0.696 - 0.915) 85.19 80.77 0.0602

MLP 0.855 (0.731 - 0.936) 85.19 80.77 0.0529

ROIIntra+Peri6mm

SVM 0.808 (0.676 - 0.903) 81.48 80.77 0.0661

RF 0.821 (0.691 - 0.912) 81.48 80.77 0.0615

MLP 0.825 (0.696 - 0.915) 81.48 84.62 0.0615
95% CI, confidence interval; SVM, support vector machine; RF, random forest; MLP, multilayer perceptron
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feature interactions. RF showed consistent performance across

signatures but generally lagged behind MLP, suggesting that

ensemble methods may not fully exploit the radiomics feature

space in this context. SVM, while computationally efficient,

exhibited the greatest performance decline in testing (e.g., AUC

dropped from 0.893 to 0.806 for ROIIntra+Peri4mm), highlighting its

vulnerability to overfitting in high-dimensional radiomics data. The

superior performance of the MLP can be attributed to its unique

ability to capture the complex, non-linear relationships and

hierarchical feature interactions inherent in our radiomic dataset,

particularly the combined intratumoral and peritumoral features.

Unlike SVM, which focuses on finding optimal hyperplanes for

binary classification, or RF, which relies on ensemble decision trees,

MLP’s multi-layered neural network structure allows it to model

intricate patterns across high-dimensional radiomic features. In our

dataset, recurrence risk is influenced by a confluence of factors,

including tumor size, margin status, and peritumoral inflammatory

changes, features that manifest as non-linear associations in

imaging data. Additionally, the MLP’s capacity for incremental

learning allowed it to adapt to the subtle variations in imaging

protocols between our training and external validation cohorts,

contributing to its stable performance across both datasets.

In real-world clinical settings, for patients newly diagnosed with

CRLM, the model can predict the risk of postoperative recurrence

before surgery. For instance, patients at high recurrence riskmay require

more aggressive treatment strategies, such as expanding the scope of

liver resection, combining with radiofrequency ablation, or

administering preoperative neoadjuvant chemotherapy to reduce the

activity of micrometastases. In contrast, patients at low risk can adopt

more conservative surgical approaches, such as local hepatic segment

resection, to avoid the risk of complications caused by overtreatment.

Postoperative follow-up is crucial for reducing the mortality rate of

recurrent CRLM. This study can assist physicians in formulating

differentiated follow-up plans for patients with different risk

stratifications. For example, patients at high risk need shorter follow-

up intervals and should be prioritized for more sensitive monitoring

methods, patients at low risk can have extended follow-up cycles, which

reduces unnecessarymedical interventions and the economic burden on

patients while optimizing the allocation of medical resources.

To promote the transformation of the model from the research

stage to a routine clinical tool, the following steps need to be

completed in phases: 1) The current model is built based on data

from two centers. The next step will involve conducting external

validation in centers across different regions and with varying levels

of medical resources to verify the stability of the model under

different CT equipment parameters. For any biases identified during

validation, the model’s adaptability can be optimized through

standardized image preprocessing or transfer learning algorithms.

2) The model needs to be embedded into the hospital’s existing

information systems to realize an automated process of image

upload, feature extraction, and risk score generation. 3)

Multidisciplinary training is required to help medical staff

understand the model’s principles, scope of application, and

limitations, thereby avoiding over-reliance on the model or

misjudgment of risks. 4) To promote the model as a clinical
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decision-making tool, it is necessary to complete the application

process in accordance with medical device regulatory requirements

and provide data on its efficacy and safety. The goal is to gradually

transition the model from a research tool to a routine clinical

auxiliary method, ultimately supporting the individualized

management of CRLM patients and improving their prognosis.

Our study has several limitations that warrant consideration. First,

the retrospective design inherently introduces potential biases, such as

selection bias in patient enrollment and variability in clinical data

collection across different time periods. These factors may constrain

the generalizability of the model’s predictive performance, as the

retrospective setting cannot fully simulate real-world clinical scenarios

where patient management is dynamic and influenced by evolving

clinical practices. Second, while we performed external validation to test

the model’s robustness, the sample size of the external cohort was

relatively small, which limits the statistical power to detect subtle

differences in predictive accuracy. A larger external validation cohort,

ideally from multiple centers with diverse patient populations and

clinical practices, would be necessary to confirm the model’s

scalability and adaptability across different healthcare settings.

Additionally, the absence of molecular genetic data such as KRAS or

BRAF mutation in the dataset precluded deeper exploration of the

biological underpinnings of recurrence risk, thereby restricting the

study’s translational impact. To address these limitations, we plan to

conduct prospective, multi-center studies with larger sample sizes in the

future. These studies will standardize data collection protocols to

minimize bias, and incorporate comprehensive molecular profiling to

bridge radiomic features with their biological bases. Expanding the

external validation cohort to include more diverse patient populations

will further enhance the model’s clinical applicability. Through these

efforts, we aim to refine the model and strengthen its potential for

translation into clinical practice.
Conclusion

In conclusion, MLP - based models using ROIIntra+Peri4mm

radiomics signatures may offer the best trade-off between

predictive accuracy and generalization for recurrence risk

stratification in CRLM. This study is expected to have a positive

impact on the level of personalized diagnosis and treatment for

CRLM patients, as well as on the accuracy of predicting recurrence

risk, ultimately enhancing patients’ survival benefits.
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