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Predicting the recurrence
risk of liver metastasis from
colorectal cancer: a study
based on preoperative CT
intratumoral and peritumoral
radiomics features

Dongying Zhang*, Peiheng Li, Yong Wei, Mingmei Xue,
Fangfang Guo and Chenguang Li

Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China

Objective: This study aims to explore the value of predicting the recurrence risk
of colorectal cancer liver metastasis (CRLM) based on preoperative CT
intratumoral and peritumoral radiomics features.

Methods: This study utilized retrospectively collected preoperative CT data of 201
CRLM patients, comprising 145 cases from the hospital one and 56 cases from an
external hospital two. Liver metastases were precisely segmented via manual
annotation. Subsequently, the intratumoral region of interest (ROlhya) was
isotropically dilated to radii of 2 mm, 4 mm, and 6 mm, resulting in peri-tumoral
ROIs (ROlperizmm: ROlperiamm and ROlperismm). We established the prediction
models based on support vector machine (SVM), random forest (RF), and
multilayer perceptron (MLP) algorithms. The area under the subject operating
characteristic curve (AUC) was used to evaluate the predictive performance.
Results: Compared with SVM and RF, MLP demonstrated superior predictive
performance for estimating the recurrence risk of CRLM patients. The best
radiomics signatures for predicting the recurrence risk of CRLM were ROl 4
+periamm Model, and the AUCs of the ROl s model, ROlhtratperizmm Model,
ROl htratperiamm Model, and RO has perismm Model constructed by MLP are 0.758
(95% confidence interval (Cl), 0.621 - 0.865), 0.815 (95% Cl, 0.684 - 0.908), 0.855
(95% ClI, 0.731 - 0.936), and 0.825 (95% Cl, 0.696 - 0.915), respectively, in the
external test set.

Conclusion: Preoperative CT-based radiomics features extracted from intra-
tumoral (ROljnya) and peritumoral (ROl jntrasperizmm: ROlntra+periamm. and ROl jnira
+perismm) regions can effectively predict recurrence risk in CRLM patients.
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Introduction

Colorectal cancer ranks as the third most prevalent cancer
worldwide, accounting for approximately 10% of all cancer cases,
and represents the second leading cause of cancer-related mortality
globally (1, 2). Approximately 25% of colorectal cancer patients
develop liver metastases, for which hepatic resection remains the
primary curative treatment (3, 4). Despite advances in surgical
techniques and medical oncology that have increased resectability
rates, multiple studies have demonstrated that the pooled recurrence
rate after liver resection remains alarmingly high at 60-80%,
constituting the leading cause of mortality in these patients (5, 6).
Precise prediction of recurrence risk is therefore critically important
for developing personalized therapeutic strategies and accurate
prognostic assessments in patients with colorectal liver metastases
(CRLM) (7-9). Clinically, the diagnostic utility of liver biopsy is often
constrained by its invasive nature, the potential for procedural
complications, and the elevated risk of false-negative results
attributable to inadequate tissue sampling or sampling errors. As a
routine imaging modality for patients with CRLM, preoperative
computed tomography (CT) not only provides detailed anatomical
information, including the size, location, and morphology of hepatic
lesions, but also captures subtle, indirect indicators of tumor biology
(10, 11). These microscale features, imperceptible to the human eye,
can be systematically extracted by radiomics through the
identification of intratumoral patterns, textural heterogeneities, and
spatial relationships within CT images, ultimately transforming them
into quantifiable and mineable data for enhanced diagnostic and
prognostic insights (12-14). Support vector machine (SVM), random
forest (RF), and multilayer perceptron (MLP), as established machine
learning algorithms with robust feature extraction capabilities, enable
the development of predictive models for CRLM recurrence risk (15-
18). By integrating radiomics - based CT feature extraction with
SVM, RF, and MLP modeling frameworks, this approach offers a
novel, non-invasive solution for personalized risk stratification in
CRLM management.

Current radiomics - based studies on preoperative CT imaging
for CRLM have predominantly focused on risk prediction (19, 20),
chemotherapy response (12, 21), and prognosis (22, 23). However,
there remains a critical gap in the development of predictive models
for postoperative recurrence risk, which constitutes a major
determinant of long-term survival in this patient population.
Additionally, the evolution and progression of tumors are affected
by the interactions between cells within the tumor and constituents
in the peritumoral region (24). Previous research indicates that
tumors are composed not only of malignant cells but also
stromal components, immune elements and inflammatory
elements. These factors induce the stromal remodeling, creating a
microenvironment conducive to tumor progression (25). The
tumor necrosis factor signaling pathway, which is connected to
abnormal blood - vessel formation driven by cancer cells, as well as
invasion and metastasis, is related to the features of the peritumoral
area (26, 27). In light of this, both the tumor’s intratumoral and
peritumoral microenvironments are likely reservoirs of pivotal
biological signals and CRLM recurrence indicators.
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In this study, we develop and validate a radiomics - based
recurrence risk prediction model for CRLM using advanced
machine learning algorithms, including SVM, RF, and MLP,
applied to preoperative CT imaging. By integrating quantitative
imaging features extracted from both intratumoral and peritumoral
regions, with the optimal peritumoral area associated with
recurrence risk identified, our approach bridges the current gap
in postoperative recurrence prediction. Furthermore, by
incorporating clinical parameters, we establish a novel, non-
invasive prognostic tool to guide postoperative surveillance and
personalized treatment strategies, ultimately improving clinical
outcomes for CRLM patients.

Materials and methods
Patient collective

For this retrospective, multiple-centers, IRB-approved study,
201 patients with proven colorectal cancer and CRLM were
identified, including 148 CRLM patients from hospital one and
53 patients from hospital two (Table 1). The ethics committee of
this institution approved the study and waived informed consent.
Inclusion criteria: 1). Pathologically confirmed CRLM; 2).
Availability of histopathological reports for both liver tumor and
non-tumorous hepatic parenchyma; 3). Preoperative portal venous
phase contrast-enhanced CT imaging acquired within 6 weeks
prior to hepatic resection; 4). The follow-up duration is at least 24
months. The follow-up process involved regular clinical
evaluations, including serum tumor marker testing and imaging
assessments every year. Exclusion criteria: 1). Preoperative hepatic
arterial infusion chemotherapy; 2). Prior local tumor ablation
therapy or more than three wedge resections of the liver; 3). No
visible tumor on preoperative imaging. The flowchart of the patient
selection process is presented in Figure 1. The clinical information
available in the datasets included: gender, age, body mass index at
operation, carcinoembryonic antigen test, lymph node status,
colon primary status, presence of multiple lobes, presence of
major comorbidity, maximum tumor size and the liver
recurrence status. Recurrence was defined based on a
combination of imaging and pathological evidence. Detection of
new lesions on cross-sectional imaging with typical radiological
features of metastatic disease, e.g., enhancing hepatic nodules,
extrahepatic masses, that were not present at baseline and
persisted or enlarged on subsequent scans. Histopathological
verification of malignant cells from biopsy or surgical resection
of suspected recurrent lesions, which served as the gold standard
when available.

Imaging protocols
All study participants underwent a standardized contrast-

enhanced CT scan according to predefined imaging protocols.
Abdominal imaging was performed using a multidetector CT
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TABLE 1 Clinical characteristics of CRLM patients in the training and test sets.

Training set (hospital one)

Test set (hospital two)

Variable z/ t/XZ
Recurrence (n Non-recurrence  Recurrence (n Non-recurrence value

= 87) (n=61) = 27) (n = 26)
Age (years) 5837 + 1231 61.11 + 11.66 63.18 + 10.58 64.58 + 12.14 1.360 0.176
Gender 2.581 0.1082
Male 44 (50.57 %) 39 (63.93 %) 19 (70.37 %) 16 (61.54 %)
Female 43 (49.43 %) 22 (36.07 %) 8 (29.63 %) 10 (38.46 %)
Body mass index (kg/ m?) 26.86 + 4.86 27.83 + 525 2656 + 4.10 23.05 + 2.85 -1.134 0.257
Carcinoembryonic antigen test 3179 + 116.83 36.57 + 124.98 36.52 + 58.95 56.55 + 149.21 -1.385 0.166
zzit;‘s tﬁr:"fr‘ LocEet 0019  0.8903
Yes 29 (33.33 %) 29 (33.33 %) 15 (55.56 %) 12 (46.15 %)
No 58 (66.67 %) 58 (66.67 %) 12 (44.44 %) 14 (53.85 %)
Colon primary at operation ‘ 0.361 0.5482
Yes 47 (54.02 %) 21 (3443 %) 9 (33.33 %) 4 (15.38 %)
No 40 (45.98 %) 40 (65.57 %) 18 (66.67 %) 22 (84.62 %)
Disease in multiple lobes ‘ 4.892 0.0270
Yes 46 (52.87 %) 21 (34.43 %) 10 (37.04 %) 10 (38.46 %)
No 41 (47.13 %) 40 (65.57 %) 17 (62.96 %) 16 (61.54 %)
Major comorbidity ‘ 3.265 0.0708
Yes 44 (50.57 %) 40 (65.57 %) 15 (55.56 %) 18 (69.23 %)
No 43 (49.43 %) 21 (3443 %) 12 (44.44 %) 8 (30.77 %)
Max tumor size (cm) 3.64 +222 295 +2.39 5.08 +3.91 4.50 + 1.66 2434 0.015

scanner (Lightspeed 16 and VCT; GE Healthcare, Madison, W1,
USA) with the following key settings: autoMA ranged from 220 to
380, a noise index of 12 to 14, a rotation time of 0.7 to 0.8
milliseconds, and a scan delay of 80 seconds (28).

Intratumoral segmentation and peritumoral
dilation

Intratumoral segmentation was performed on CT images using
the ITK-SNAP software (Version 3.60, http://www.itk-snap.org).
Two radiologists with 8 and 10 years of experience in abdominal
imaging diagnosis, respectively, independently carried out the
segmentation process. If the region of interest (ROI) defined by
two radiologists showed a discrepancy >5%, a senior radiologist
with two decades of expertise conducted re-segmentation to finalize
the ROIs. The segmented ROI served as the ROy, which was
expanded by 2 mm, 4 mm, and 6 mm into the peritumoral region
using standard morphological operations, yielding ROIperizmms
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ROIperiamm and ROIperigmm, respectively. The ROIperi k mm
excluded skin, air, and muscles.

Data preprocessing

Prior to the extraction of radiomics features, all CT images
underwent resampling to achieve a uniform voxel resolution of
1x1x1 mm?®. Subsequently, the intensity histograms of the images
were discretized using a bin width of 25, ensuring consistent and
standardized feature extraction across the dataset. This
preprocessing step is crucial for maintaining the comparability
and reliability of the extracted radiomics features.

Radiomics feature extraction

Radiomics features were extracted from the ROI
using the open-source software PyRadiomics (Version 2.20,
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Patients who pathologically confirmed Patients who pathologically confirmed
with CRLM from hospital one (n=300) with CRLM from hospital two (n=87)

- . Exclusion criteria

Inclusion criteria . . .
Pathologically confirmed CRLM . Preoperatlve hepatic arterial
Availability of histopathological reports for both infusion chemotherapy
liver tumor and non-tumorous hepatic e Prior local tumor ablation
parenchyma therapy or more than three

e Preoperative portal venous phase contrast- wedge resections of the liver
enhanced CT imaging acquired within 6 weeks e No visible tumor on
prior to hepatic resection fived :
o The follow-up duration is at least 24 months. Uil et
The follow-up process involved regular clinical
evaluations, including serum tumor marker
testing and imaging assessments every year
| Patients were finally included in this study (n =201) |
|
)\
Training set from hospital one (n=148) I | Test set from hospital two (n=53)
Recurrence (n=87) Recurrence (n=27)
Non recurrence (n=61) Non recurrence (n=26)
FIGURE 1

Subject selection flowchart for this experiments.

https://github.com/Radiomics/pyradiomics). A comprehensive set
of 12 filters, including Original, AdditiveGaussianNoise, Binomial,
Normalize, LaplacianSharpening, CurvatureFlow, wavelet,
ShotNoise, BoxMean, LoG, DiscreteGaussian, and BoxSigmalmage,
were applied to enhance the extraction of radiomics features. A total
of 201 patients in this study yielded 1197 high-dimensional radiomics
features. To reduce the complexity or bias inherent in the radiomics
feature set, dimensionality reduction techniques were employed. The
primary objective of feature dimensionality reduction is to simplify
the feature space while retaining the most informative features. In the
training dataset, we first performed feature dimensionality reduction
using the least absolute shrinkage and selection operator (LASSO)
regression analysis, with the regularization parameter o set to 0.001
(29). Subsequently, the top 15 features with the highest correlation
were selected based on the maximum relevance and minimum
redundancy (mRMR) method (30). These methods help in
selecting the most discriminative features, thereby improving the
performance of subsequent predictive models.

Model construction

Using radiomics features extracted from ROIj,, and its

peritumoral extensions (ROIj,irasperizmm> ROIintrasperiamm> and
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RO} tra+perismm)> predictive models were developed using machine
learning algorithms, including SVM, RF, and MLP, to predict
recurrence risk in CRLM. The radiomics workflow is shown in
Figure 2. The details of these classifiers were shown in Table 2.

Statistical analysis

In the analysis of count data, comparisons between groups were
performed using the Chi-square test, which is appropriate for
categorical variables. For continuous data, comparisons between
groups were conducted using either the Mann-Whitney U test or
the independent samples t-test, depending on the normality
assumptions of the data. The performance of the predictive
models was evaluated using several metrics, including the area
under the subject operating characteristic curve (AUC), sensitivity,
and specificity. Decision curve analysis (DCA) and calibration curve
were employed to independently evaluate the stability and clinical
net benefit of the predictive model, respectively. These metrics
provide a comprehensive assessment of the model’s ability to
distinguish between different outcomes. All statistical analyses
were conducted using the R software (Version 4.3.3). A
significance level of P < 0.05 was adopted to indicate statistically
significant differences.
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CT Intratumoral reglon . Features selection and
g segmentedand Features extraction -
acquisition peritumoral areas dilated model construction

) — !‘—,,
) LASSO
First order Shape
0(1(2|2 = :_
1201 =
0(1(2]0 =
— 2[0[1]1 R
— Tooe Foon Tom T Toce Yo Tao Tn
= niratumora rrlRMR
e L;io; : Texture Wavelet
= W— Radiomics features
| dilated 2mm
Clinical
data | Peritumoral
- | dilated 4mm
R rcitumorai Clinical features -
\ S dilated 6mm —_—— Prediction model
FIGURE 2

Radiomics analysis and machine learning workflow for predicting the recurrence risk in CRLM patients.

TABLE 2 The details of different classifiers.

Classifier Parameters

SVM Penalty factor C: 1.0; Gamma:0.001; Kernel: rbf; Threshold:0.5

Criterion method: gini; Maximum depth of tree: 3; Minimum
RF number of tree leaf: 1; Minimum number of splitter sample: 2;
Number of estimators: 200; Threshold: 0.5

Number of hidden layer: 2, Sizes of hidden layer: 64, Activation:
sigmoid, 64, Learning rate: 0.001, Optimizer: Adam optimizer
with default parameters (B, = 0.9, B, = 0.999), Regularization:
L2, Batch size: 32, Epochs: 200, Initialization: Glorot uniform,

MLP

Loss function: binary cross entropy

SVM, support vector machine; RF, random forest; MLP, multilayer perceptron

Results
Statistical analysis of clinical features

A total of 114 patients with recurrent CRLM and 87 patients
without recurrence were included. Among the clinical
characteristics, significant differences were observed between the
two groups in terms of presence of multiple lobes and the maximum
tumor diameter. Consequently, presence of multiple lobes and the
maximum tumor diameter were incorporated as clinical indicators
into the predictive model (Table 1). The two variables were selected
due to their statistical significance, suggesting their potential
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importance in influencing the recurrence risk of CRLM. Including
these clinical indicators enhances the model’s ability to accurately
predict recurrence by accounting for relevant patient-
specific factors.

Radiomics feature selection and predictive
performance

From the CT-based ROIs (ROI;sras ROIintrasperizmms
ROl trasperiamms> aNd ROIjrasperiemm)> 15 radiomics features were
ultimately selected based on their significant association with
recurrence risk. The extracted radiomics features by ROIjra
ROItrasperizmms ROIggrasrperiamms and ROIiyratperiomm> Which are
presented in Tables 3, 4, 5, and 6. The results of recurrence risk
prediction for CRLM patients, achieved by integrating radiomics
features with clinical characteristics and constructing predictive
models using SVM, RF, and MLP, are presented in Table 3, 4. The
predictive performance of the three machine learning models
(SVM, RF, and MLP) improved consistently when incorporating
peritumoral regions into the radiomics signature. The optimal
performance was observed with the MLP model using
ROy ra+periamms> achieving the highest AUC of 0.905 (95% CI:
0.846 - 0.947) in the training set and 0.855 (95% CI: 0.731 -
0.936) in the test set. The significance level P for all nine models
was less than 0.0001 (Table 7).
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TABLE 3 The key radiomics features selected out through ROl ¢ra.

Features type

Radiomics features

10.3389/fonc.2025.1662354

Correlation coefficient

Texture feature original_glrlm_LongRunHighGrayLevelEmphasis 2,616
First order statistic original_firstorder_Mean 2.455
Shape feature original_shape_Sphericity 1.979
Texture feature log-sigma-3-0-mm-3D_glcm_Id 1.718
Texture feature wavelet-HLL_glrlm_LowGrayLevelRunEmphasis 1.627
Shape feature original_shape_LeastAxisLength 1.406
Texture feature wavelet-HHL_glrlm_LowGrayLevelRunEmphasis 1.072
Texture feature original_glszm_SmallAreaLowGrayLevelEmphasis 0.962
Texture feature wavelet-LHH_ngtdm_Coarseness 0.874
First order statistic wavelet-LHL_firstorder_Energy 0.691
Texture feature wavelet-HLH_glem_MaximumProbability 0.439
Texture feature wavelet-LLH_glcm_Contrast 0.323
Texture feature wavelet- 0.254
HHH_glrlm_LongRunLowGrayLevelEmphasis
Texture feature wavelet-HHL_glem_Contrast 0.108
Texture feature log-sigma-5-mm-3D_glszm_SizeZoneNonUniformity | 0.057

The ROC curves (Figure 3) illustrate that models constructed
using CT intratumoral and peritumoral radiomics features are
effective in predicting the recurrence risk of CRLM, with all
models achieving AUC values exceeding 0.735 in the test set.
Based on the H-L test, the P-values for the ROIy,,, model,
ROIintra+perizmm model, ROIiyirasperiamm model, and

TABLE 4 The key radiomics features selected out through ROl ra+perizmm-

Features type Radiomics features

ROl rasperismm model by SVM compared to actual observations
were 0.2262, 0.2298, 0.3631, and 0.0110, respectively. The P-values
for the RO, model, ROIyyasperizmm model, ROIpyrarperiamm
model, and ROIj,rasperismm model by RE compared to actual
observations were 0.4532, 0.3038, 0.3190, and 0.1586, respectively.
The P-values for the ROlIy,, model, ROIj, i ayperizmm model,

Correlation coefficient

Texture feature wavelet-LLH_glcm_ Correlation 3.029
Texture feature wavelet-LLH_glcm_DifferenceEntropy 3.006
Texture feature wavelet-LLH_gldm_DependenceNonUniformity 2.861
Texture feature wavelet-HLH_glem_ClusterTendency 2.554
Texture feature wavelet-HHL_glszm_GrayLevelNonUniformity 2.175
Texture feature log-sigma-5-mm-3D_glem_MCC 1.401
Texture feature original_glcm_SumAverage 1.272
Shape feature original_shape_SphericalDisproportion 1.143
Texture feature wavelet-LLH_glszm_HighGrayLevelZoneEmphasis 1.015
Texture feature log-sigma-3-mm- 0.823
3D_glrlm_ShortRunHighGrayLevelEmphasis
Shape feature original_shape_LeastAxisLength 0.753
Texture feature wavelet-LLL_gldm_GrayLevelVariance 0.554
Texture feature wavelet-LLL_gldm_LowGrayLevelEmphasis 0.371
Shape feature original_shape_SurfaceArea 0.118
Shape feature original_shape_Maximum3DDiameter 0.082
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TABLE 5 The key radiomics features selected out through ROl j¢ra+periamm-

Features type Radiomics features Correlation coefficient
Texture feature wavelet-HHL_glszm_HighGrayLevelZoneEmphasis 3.917
Texture feature wavelet-HHL_glszm_LargeAreaEmphasis 3.558
Texture feature wavelet-HHL_glszm_ZoneEntropy 2.614
Texture feature wavelet-HHL_ngtdm_Coarseness 2.305
Texture feature log-sigma-3-mm-3D_ngtdm_Coarseness 1.923
Texture feature original_gldm_GrayLevelNonUniformity 1.824
Texture feature wavelet-LLL_ngtdm_Busyness 1.438
First order statistic log-sigma-5-mm-3D_firstorder_TotalEnergy 1.117

Texture feature

Texture feature

Texture feature

First order statistic

Texture feature

original_gldm_LargeDependenceHighGrayLevelEmphasis = 0.925

wavelet-LLL_glszm_ZonePercentage 0.759
wavelet-LLL_glszm_LargeAreaEmphasis 0.668
log-sigma-5-mm-3D_firstorder_Median 0.503

original_gldm_SmallDependenceHighGrayLevelEmphasis | 0.249

Texture feature

wavelet-LLL_glrlm_ShortRunEmphasis 0.176

Texture feature

wavelet-

0.094
LLL_glszm_GrayLevelNonUniformityNormalized

ROIIntra+Peri4mm mOdel) and ROIIntra+Per16mm mOdel bY MLP +Peri2mm> ROIIntra+Peri4mm> and ROIIntra+Peri6mm) across a range Of
compared to actual observations were 0.3068, 0.3845, 0.8556, and  threshold probabilities (Figure 4). The calibration curves assessed
0.4218, respectively. The decision curve analysis evaluated the  the agreement between predicted probabilities and observed

clinical utility of all the predictive models (ROIjyia, ROIpyira  outcomes (Figure 5). The results demonstrated that all models

TABLE 6 The key radiomics features selected out through ROl tra+perismm-

Features type

Texture feature

Radiomics features Correlation coefficient

wavelet-

2.734
LLL_glrlm_GrayLevelNonUniformityNormalized 73

Texture feature wavelet-LLL_glrlm_LongRunEmphasis 2.439
Texture feature log-sigma-5-mm-3D_glcm_JointEntropy 2.402
First order statistic original_firstorder_RobustMeanAbsoluteDeviation 2.078
First order statistic wavelet-HLH_firstorder_TotalEnergy 1.891
Texture feature wavelet-LLL_glszm_GrayLevelNonUniformity 1.547
Texture feature log-sigma-5-mm-3D_gldm_LowGrayLevelEmphasis 1.430
First order statistic original_firstorder_Mean 1.271

Texture feature

wavelet-LLL_glszm_SizeZoneNonUniformityNormalized | 0.869

Texture feature log-sigma-5-mm-3D_gldm_GrayLevelNonUniformity 0.724
Texture feature wavelet-HLH_glem_ClusterProminence 0.502
Texture feature wavelet-LLL_glszm_ZonePercentage 0.418
Shape feature original_shape_Maximum2DDiameterColumn 0.401
Texture feature wavelet-HLH_glem_Contrast 0.259
First order statistic original_firstorder_90Percentile 0.127
Frontiers in Oncology 07 frontiersin.org
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TABLE 7 Performance metrics SVM, RF, and MLP models across different ROl radiomics signature in the training set.

Radiomics

et e Algorithm AUC (95% ClI) Sensitivity (%) Specifcity (%) Standard error
SVM 0.844 (0.776 - 0.899) 86.21 86.89 0.0346
ROTjpira RF 0.860 (0.793 - 0.911) 87.36 88.52 0.0343
MLP 0.872 (0.807 - 0.921) 89.66 90.16 0.0344
SVM 0.861 (0.795 - 0.912) 87.36 88.52 0.0328
ROTnieaperizemm RF 0.898 (0.837 - 0.941) 89.66 90.16 0.0317
MLP 0.905 (0.846 - 0.947) 90.80 90.16 0.0284
SVM 0.893 (0.832 - 0.938) 8851 91.80 0.0302
ROTniras peritmm RF 0.909 (0.850 - 0.950) 90.80 90.16 0.0269
MLP 0.929 (0.875 - 0.965) 9425 93.44 0.0247
SVM 0.906 (0.847 - 0.948) 91.95 90.16 0.0285
ROTniea peribmm RF 0.911 (0.854 - 0.952) 8851 90.16 0.0260
MLP 0.914 (0.856 - 0.954) 91.95 86.89 0.0259

95% CI, confidence interval; SVM, support vector machine; RF, random forest; MLP, multilayer perceptron

provided net benefit, indicating their potential clinical applicability
for predicting recurrence risk in CRLM patients (Table 8).

Discussion

Radiomics - based analyses of preoperative CT imaging have
been extensively validated for predicting metastatic risk,
chemotherapy response, and prognosis in CRLM patients. For
example, a study by Jing et al. showed that a radiomics model
based on CT for preoperative prediction of liver metastases after
surgery for colorectal cancer, with AUC of 0.761 in the test set (19).
Karagkounis et al. constructed the radiomics prediction model
using CT features of 85 Patients who underwent resection for
CRLM, and the results showed that this model can provide a
valuable reference for pathological response assessment (13).
However, the potential of radiomics for recurrence risk
stratification remains relatively underexplored in this patient
population. This knowledge gap is particularly concerning given
that recurrence patterns in CRLM are highly heterogeneous, with
liver metastases and local hepatic recurrences exhibiting distinct
clinical behaviors. Meanwhile, existing studies predominantly focus
on intralesional features, overlooking the recurrence value of
peritumoral texture patterns that may reflect microenvironmental
changes associated with tumor dissemination. To address these
gaps, our study systematically evaluated the predictive performance
of radiomics models for recurrence risk by constructing separate
SVM, RF, and MLP algorithms using four distinct radiomics feature
sets derived from the intra-tumoral ROI (ROIy,,) and its
peritumoral extensions (ROIj,irayperizmm> ROlntrasperiamms> and
ROIihra+periomm)-

Biologically, the peritumoral region plays a critical role in tumor
progression, as it is where cancer cells interact with stromal tissue,
immune cells, and blood vessels, processes that drive local invasion
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and recurrence (13). Studies on hepatic metastases have shown that
pathological changes extend beyond the visible tumor boundary,
with distinct biological signatures observed at varying distances
from the tumor edge (31). Specifically, the 2mm zone primarily
reflects immediate tumor-stroma interactions, including early
invasive activity and extracellular matrix remodeling. The 4mm
zone captures broader paracrine effects and immune responses that
mediate tumor survival and spread. The 6mm zone encompasses
more distant microenvironmental changes, such as hepatic
sinusoidal remodeling, which can facilitate micrometastasis
formation. For instance, Shang et al. predicted the invasiveness of
lung adenocarcinoma by analyzing radiomic features extracted
from both tumor cores and 4mm peritumoral regions on CT
imaging (32). Qin et al. established through MRI analysis that
systematic evaluation of peritumoral ROIs expanded by 2mm,
4mm, and 6mm beyond tumor margins provides clinically
significant predictive value for assessing pathological treatment
response in locally advanced rectal cancer patients following
neoadjuvant chemoradiotherapy (33). Clinically, these distances
align with previous radiomic studies on malignancies, where 2 -
6mm peritumoral regions have been associated with recurrence risk
and treatment response. We selected 2mm, 4mm, and 6mm to span
this clinically relevant range, allowing us to capture both proximal
and distal microenvironmental influences on recurrence.

The extraction of radiomics features is based on the principles
of quantitative imaging analysis, which systematically quantifies the
spatial and intensity distributions of voxel patterns within medical
images. These features capture tumor heterogeneity and
microenvironmental characteristics, thereby possessing significant
biological relevance in medical research. As shown in Table 3, the
first column displays the categories corresponding to the radiomics
features, the second column lists the names of the selected features,
and the third column presents the mRMR correlation coefficients
between the radiomics features and the recurrence risk. We have
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ROC of the predictive models constructed by different radiomics signatures in the test set. (A) ROljntra, (B) ROlintrarperizmm. (C€) ROlintratperiamm:

(D) ROI Intra+Peri6mm-

analyzed the biological significance of the 3 radiomics features that
are most strongly associated with the risk of recurrence.
Original_glrlm_LongRunHighGrayLevelEmphasis measures the
distribution of long contiguous pixel runs with high gray-level
intensity values. The high value may correspond to highly
ordered proliferative regions within the tumor or high cell density
zones around necrotic areas, and is associated with the degree of
tumor differentiation. Original_firstorder_Mean represents
arithmetic mean of all pixel intensities within the tumor ROL
Low mean values may indicate necrotic areas, while high values
suggest vascularized tumor regions. Original_shape_Sphericity
measures how closely the tumor shape approximates a perfect
sphere. Lower sphericity correlates with infiltrative growth
patterns and desmoplastic reaction.

The radiomics features extracted by ROl a4 perizmm are shown in
Table 4. The top 3 radiomic features most associated with the risk of
recurrence are wavelet-LLH_glem_Correlation, wavelet-
LLH_glem_DifferenceEntropy, wavelet-LLH_gldm_Dependence

Frontiers in Oncology

NonUniformity, respectively. Wavelet-LLH_glcm_Correlation
quantifies how correlated a pixel is to its neighbor in the LLH
wavelet space. High values indicate organized tissue structures, e.g.,
regular tumor stroma, and low values suggest chaotic tissue patterns.
Wavelet-LLH_glem_DifferenceEntropy calculates the entropy of
gray-level difference distribution. Higher values indicate more
heterogeneous tissue patterns. Wavelet-LLH_gldm_Dependence
NonUniformity measures the variability of gray-level dependencies
in local neighborhoods. It reflects complex microenvironment
interactions in the CRLM tumor.

The radiomics features extracted by ROIjyatperismm are shown in
Table 5. The top 3 radiomic features most associated with the risk of
recurrence are wavelet-HHL_glszm_HighGrayLevelZoneEmphasis,
wavelet-HHL_glszm_LargeAreaEmphasis, wavelet-HHL_glszm_
ZoneEntropy, respectively. Wavelet-HHL_glszm_HighGrayLevel
ZoneEmphasis measures the relative distribution of high gray-level
zones and emphasizes zones with higher gray-level values within the
HHL wavelet-transformed image space. It may correlate with regions of
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TABLE 8 Performance metrics SVM, RF, and MLP models across different ROI radiomics signature in the test set.

Radiomics

et e Algorithm AUC (95% ClI) Sensitivity (%) Specifcity (%) Standard error
SVM 0.735 (0.596 - 0.847) 77.78 76.92 0.0744
ROTjpira RF 0.755 (0.617 - 0.863) 77.78 76.92 0.0724
MLP 0.758 (0.621 - 0.865) 8148 80.77 0.0727
SVM 0.766 (0.630 - 0.872) 77.78 80.77 0.0703
ROTnieaperizemm RF 0.771 (0.635 - 0.875) 8148 80.77 0.0712
MLP 0.815 (0.684 - 0.908) 77.78 84.62 0.0629
SVM 0.806 (0.675 - 0.902) 8148 80.77 0.0620
ROTniras peritmm RF 0.825 (0.696 - 0.915) 85.19 80.77 0.0602
MLP 0.855 (0.731 - 0.936) 85.19 80.77 0.0529
SVM 0.808 (0.676 - 0.903) 8148 80.77 0.0661
ROTniea peribmm RF 0.821 (0.691 - 0.912) 8148 80.77 0.0615
MLP 0.825 (0.696 - 0.915) 81.48 84.62 0.0615

95% CI, confidence interval; SVM, support vector machine; RF, random forest; MLP, multilayer perceptron

active tumor metabolism or hypervascularized subregions. Wavelet-  progression. Among the evaluated radiomic regions - ROy,
HHL_glszm_LargeAreaEmphasis quantifies the distribution of large  ROIjntratperizmms ROIintratperiamm> @a0d ROIintratperiemm
homogeneous zones and emphasizes larger zone sizes within the HHL ~ demonstrated the best balance between sensitivity and specificity
wavelet space. It may relate to areas of tumor stability or defined growth ~ across all machine learning models. Although the SVM model
patterns. Wavelet-HHL_glszm_ZoneEntropy assesses the randomness ~ demonstrated a marginal improvement in AUC (+0.002) when
or disorder in the distribution of zone sizes throughout the image, expanding the peritumoral region from ROIj,ra+periamm tO
specifically within the HHL wavelet-transformed space. High values  ROIj,iasperimm i the test set, both the RF and MLP models
suggest a more irregular and heterogeneous distribution of tumor zones, ~ exhibited superior performance with the smaller ROIyyra+periamm
indicating complex microenvironmental interactions or varied cellular  signature. This suggests that, for these algorithms, the inclusion of
compositions. Low values imply a more uniform and organized  excessive peritumoral information may introduce noise or
arrangement of tumor zones. redundancy, thereby diminishing predictive accuracy. The optimal
The radiomics features extracted by ROI o+ perismm are shownin — peritumoral expansion size appears to be context-dependent, with
Table 6. The top 3 radiomic features most associated with the risk of ~ smaller regions (4 mm) potentially striking a better balance between
recurrence are wavelet-LLL_glrlm_GrayLevelNonUniformity  feature informativeness and model generalizability. In contrast, the
Normalized, wavelet-LLL_glrlm_LongRunEmphasis, log-sigma-5-  minimal peritumoral inclusion (ROIjasperiomm) failed to capture
mm-3D_glem_JointEntropy, respectively. Wavelet-LLL_glrlm_ sufficient prognostic information, underscoring the importance of an
GrayLevelNonUniformityNormalized quantifies gray-level  optimized radiomic capture radius. ,
distribution uniformity within runs. It may be related to infiltrative Machine learning model selection significantly influenced
growth patterns with irregular cellular density. Wavelet-  predictive accuracy. The selection of SVM, RF, and MLP was
LLL_glrlm_LongRunEmphasis detects large-scale and spatially  based on their distinct strengths and wide applicability in
coherent tissue regions in LLL-filtered images. Higher values may  radiomic research. SVM was used for its robustness in handling
correlate with well-organized tumor architectures. Log-sigma-5-mm-  high-dimensional data and its ability to find optimal hyperplanes
3D_glem_JointEntropy enhances edges at 5 mm resolution and  for classification, which is valuable given the high dimensionality of
captures mid-range heterogeneity. our radiomic feature set. RF was selected due to its superiority in
The inclusion of peritumoral regions (Peris,ym, Perigymm, Perigmm)  capturing non-linear relationships and interactions between
consistently improved model performance compared to intralesional ~ features, as well as its built-in feature importance evaluation.
features alone (ROly,y,). For example, in the training set, MLP’s AUC ~ MLP was included to account for potential complex, non-linear
increased from 0.872 (ROIyya) t0 0.929 (ROIpyra+periamm)> While in - patterns in the data that traditional statistical models might miss,
the test set, the best-performing model (MLP with ROly,yasperiamm) ~ leveraging its capability to model hierarchical feature
achieved an AUC of 0.855, compared to 0.735 for SVM with ROI},,  representations. The performance of SVM, RF, and MLP models
alone. The performance of recurrence risk prediction models  varied significantly across different radiomics signatures, both in the
improved significantly with the inclusion of peritumoral radiomics  training and test sets. MLP demonstrated superior performance in
features, confirming that tumor-stromal interactions in the  both training and testing, particularly when incorporating
peritumoral microenvironment contribute to metastatic  peritumoral features, likely due to its ability to model hierarchical
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feature interactions. RF showed consistent performance across
signatures but generally lagged behind MLP, suggesting that
ensemble methods may not fully exploit the radiomics feature
space in this context. SVM, while computationally efficient,
exhibited the greatest performance decline in testing (e.g., AUC
dropped from 0.893 to 0.806 for ROl a4 periamm)> highlighting its
vulnerability to overfitting in high-dimensional radiomics data. The
superior performance of the MLP can be attributed to its unique
ability to capture the complex, non-linear relationships and
hierarchical feature interactions inherent in our radiomic dataset,
particularly the combined intratumoral and peritumoral features.
Unlike SVM, which focuses on finding optimal hyperplanes for
binary classification, or RF, which relies on ensemble decision trees,
MLP’s multi-layered neural network structure allows it to model
intricate patterns across high-dimensional radiomic features. In our
dataset, recurrence risk is influenced by a confluence of factors,
including tumor size, margin status, and peritumoral inflammatory
changes, features that manifest as non-linear associations in
imaging data. Additionally, the MLP’s capacity for incremental
learning allowed it to adapt to the subtle variations in imaging
protocols between our training and external validation cohorts,
contributing to its stable performance across both datasets.

In real-world clinical settings, for patients newly diagnosed with
CRLM, the model can predict the risk of postoperative recurrence
before surgery. For instance, patients at high recurrence risk may require
more aggressive treatment strategies, such as expanding the scope of
liver resection, combining with radiofrequency ablation, or
administering preoperative neoadjuvant chemotherapy to reduce the
activity of micrometastases. In contrast, patients at low risk can adopt
more conservative surgical approaches, such as local hepatic segment
resection, to avoid the risk of complications caused by overtreatment.
Postoperative follow-up is crucial for reducing the mortality rate of
recurrent CRLM. This study can assist physicians in formulating
differentiated follow-up plans for patients with different risk
stratifications. For example, patients at high risk need shorter follow-
up intervals and should be prioritized for more sensitive monitoring
methods, patients at low risk can have extended follow-up cycles, which
reduces unnecessary medical interventions and the economic burden on
patients while optimizing the allocation of medical resources.

To promote the transformation of the model from the research
stage to a routine clinical tool, the following steps need to be
completed in phases: 1) The current model is built based on data
from two centers. The next step will involve conducting external
validation in centers across different regions and with varying levels
of medical resources to verify the stability of the model under
different CT equipment parameters. For any biases identified during
validation, the model’s adaptability can be optimized through
standardized image preprocessing or transfer learning algorithms.
2) The model needs to be embedded into the hospital’s existing
information systems to realize an automated process of image
upload, feature extraction, and risk score generation. 3)
Multidisciplinary training is required to help medical staff
understand the model’s principles, scope of application, and
limitations, thereby avoiding over-reliance on the model or
misjudgment of risks. 4) To promote the model as a clinical
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decision-making tool, it is necessary to complete the application
process in accordance with medical device regulatory requirements
and provide data on its efficacy and safety. The goal is to gradually
transition the model from a research tool to a routine clinical
auxiliary method, ultimately supporting the individualized
management of CRLM patients and improving their prognosis.

Our study has several limitations that warrant consideration. First,
the retrospective design inherently introduces potential biases, such as
selection bias in patient enrollment and variability in clinical data
collection across different time periods. These factors may constrain
the generalizability of the model’s predictive performance, as the
retrospective setting cannot fully simulate real-world clinical scenarios
where patient management is dynamic and influenced by evolving
clinical practices. Second, while we performed external validation to test
the model’s robustness, the sample size of the external cohort was
relatively small, which limits the statistical power to detect subtle
differences in predictive accuracy. A larger external validation cohort,
ideally from multiple centers with diverse patient populations and
clinical practices, would be necessary to confirm the model’s
scalability and adaptability across difterent healthcare settings.
Additionally, the absence of molecular genetic data such as KRAS or
BRAF mutation in the dataset precluded deeper exploration of the
biological underpinnings of recurrence risk, thereby restricting the
study’s translational impact. To address these limitations, we plan to
conduct prospective, multi-center studies with larger sample sizes in the
future. These studies will standardize data collection protocols to
minimize bias, and incorporate comprehensive molecular profiling to
bridge radiomic features with their biological bases. Expanding the
external validation cohort to include more diverse patient populations
will further enhance the model’s clinical applicability. Through these
efforts, we aim to refine the model and strengthen its potential for
translation into clinical practice.

Conclusion

In conclusion, MLP - based models using ROIj,raperiamm
radiomics signatures may offer the best trade-off between
predictive accuracy and generalization for recurrence risk
stratification in CRLM. This study is expected to have a positive
impact on the level of personalized diagnosis and treatment for
CRLM patients, as well as on the accuracy of predicting recurrence
risk, ultimately enhancing patients” survival benefits.
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