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Glioma-neuron interactions:
insights from neural plasticity
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The development of gliomas is linked to neuroplasticity. Neurons, which are

largely nonregenerative in adulthood, rely on axons and synapses to rebuild the

neural network in response to experience and injury. Neural stem cells and

immune cells coordinate “creation” (e.g., neurogenesis) and “clearance” (e.g.,

synaptic pruning), guided by signals from neural circuits. This review summarizes

neuroplasticity mechanisms and explores their connection to gliomas, revealing

that glioma cells hijack neural network derived signals to promote growth,

migration, and stem-like properties, while simultaneously disrupting normal

neural conduction. Similar to oligodendrocyte precursor cells (OPCs), gliomas

exploit neural network regulation but are prone to uncontrolled proliferation.

Moreover, glioma induced neural hyperexcitability disrupts circuit homeostasis,

creating a permissive microenvironment for glioma progression. Consequently,

neuroplasticity will contribute to the study of glioma related mechanisms and the

development of more targeted strategies for prevention and control.
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GRAPHICAL ABSTRACT

A schematic that visually defines the structure of this review.
1 Introduction

Gliomas, which originate from central nervous system (CNS)

cells and account for 75% of malignant primary brain tumors in

adults, are the most common type of primary brain tumor (1–5).

Classically, tumor cell proliferation was regarded as an

“autonomous” process driven by genetic defects, with neural

signaling interactions considered secondary (6). However, recent

evidence indicates glioma cells are active participants, expressing

neuron-like ion channels and neurotransmitter receptors to decode

neural signals and regulate invasion, metabolism, and drug

resistance (7, 8).

In the normal brain, neurons form a complex signaling network

through electrical activity and neurotransmitter release (e.g.,

glutamate, g-aminobutyric acid (GABA)) to regulate cognition

and movement, a process termed neural plasticity (9, 10).
Abbreviations: ADAM10, A Disintegrin and Metalloproteinase10; AMPAR, a-

Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors; BDNF, Brain

Derived Neurotrophic Factor; CCL4, CC chemokine 4; CCL5, CC chemokine 5;

CD200, Cluster of Differentiation 200; CNS, Central Nervous System; CX3CL1,

Chemokine (C-X3-C Motif) Ligand 1; DMG, Diffuse Midline Glioma; GABA, g-

aminobutyric acid; GSCs, Glioma Stem Cells; hiPSCs, Human induced

Pluripotent Stem Cells; KCC2, K+-Cl- cotransporter 2; MADM, Mosaic

Analysis with Double Markers; NF1, Neurofibromatosis type 1; NLGNs,

Neuroligins; NLGN3, Neuroligin-3; NSCs, Neural Stem Cells; NKCC1, Na-K-

2Cl cotransporter; NRXNs, Neurexins; OLs, Oligodendrocytes; OPG, Optic

Pathway Glioma; OPCs, Oligodendrocyte Precursor Cells; RAX2, Retina and

anterior neural fold homeobox 2; SEMA4F, Semaphorin 4F; SIC, Spontaneous

Inward Currents; SNAP25, Synaptosomal-associated protein 25; SVZ,

Subventricular Zone; s-NLGN3, secreted NLGN3; TM, Tumor Microtubules;

SEMA3A, Semaphorin 3A.
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Histopathologic and lineage analyses confirm that neural stem

cells (NSCs), glial progenitors (e.g., OPCs), and astrocytes are

potential origins of gliomas (11–13). These cells are all involved

in regulating nervous system plasticity in the brain (14). It is widely

recognized that cancer arises from the dysregulation of homeostatic

mechanisms governing tissue repair and stem cell self-renewal (15).

In the adult brain, NSCs and glial progenitor cells exhibit

characteristics associated with central nervous system cancers,

including a strong proliferative potential and diversity (16).

Meanwhile, NSCs are regulated by the same cellular pathways

that are active in brain tumors, such as the Notch, Wnt, and NF-

kB signaling pathways (17–19). In the stem cells of the adult brain,

OPCs constitute a major proliferative population, uniformly

distributed throughout the adult rodent brain (20, 21). Numerous

studies have shown that OPC or earlier pre-OPC cells are present in

various forms of gliomas (22, 23). Dysregulation of myelin plasticity

promotes glioma cell proliferation in primary brain cancer (24).

Synaptosomal-associated protein 25 (SNAP25), a synaptic plasticity

protein, is significantly correlated with the progression of glioma

(25, 26). In summary, neuroplasticity is closely linked to the

initiation and progression of gliomas, particularly in myelin

plasticity. Aberrant plastic repair mechanisms may drive the

development of gliomas, while post-glioma repair processes can

further promote glioma progression.

This review summarizes current knowledge on glioma-neuron

interactions from the perspective of neuroplasticity, dissecting the

intricate mechanisms and structural alterations underlying

neuroplasticity. Previous studies have discussed the interrelationship

between myelin plasticity and glioma-neuron interactions, proposing

that gliomas hijackmyelin growth signals to promote self-proliferation

(27, 28). Based on these findings, we analyze the relationship between

normal neuroplasticity and abnormal glioma behavior in terms of
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proliferation, migration, stem-like properties, and immune

interactions. We further explore the impacts of local neural signals,

remote neural signals, and external signals on gliomas (Figure 1). We

found that glioma-neuron interactions closely resemble the

mechanisms of neuroplasticity, but disrupt the homeostatic balance

inherent to normal neuroplasticity. The objective of this review is to

delineate the correlations between neuroplasticity and glioma-neuron

interactions, offering promising future directions for research.
2 Neuroplasticity

Neuroplasticity refers to the brain’s capacity to reorganize its

structure, function, or connectivity in response to intrinsic or

extrinsic stimuli, a process that elicits both functional and

morphological alterations. This dynamic process allows us to

adapt to different environments and plays an important role in

learning, memory, and injury recovery (29). It is well known that

neurons in the adult brain are not regenerative upon death (30).

Consequently, the remodeling following injury and learning
Frontiers in Oncology 03
primarily relies on the regrowth and reinnervation of axons (31).

Axonal growth forms or strengthens more synaptic connections.

Synaptic connections are highly plastic, with the number and

strength of synapses changing significantly during development

or in response to training (32).

Glia cells act as active regulators of neuroplasticity through their

interactions with neurons and exhibit structural plasticity during

learning (33, 34). The glia-neuronal crosstalk differs in physiological

conditions and various brain disorders (35). Axonal growth relies

on the regeneration of myelin sheaths. During the development of

the brain, Oligodendrocytes (OLs) are the myelinating cells of the

CNS that are generated from OPCs (36), which proliferate and

differentiate during embryonic development. OPCs originate in the

subventricular zone (SVZ) (37). However, to promote brain repair,

OPCs are typically distributed throughout the gray and white

matter, where they exhibit strong proliferative and migratory

capabilities, as well as the constant capacity for surveillance (20,

38). During the development, myelin sheaths are “optimally

distributed” throughout the nervous system. After developmental

maturation, OPCs generate OLs involved in adaptive myelination
FIGURE 1

Specific aspects of glioma-neuron interactions and neural plasticity. Neural plasticity governs myelin, axon, and synaptic remodeling via neuronal
signaling, with gliomas preferentially arising in highly plastic regions. Gliomas hijack neural stem cell repair mechanisms—forming synapses to
receive neurotransmitters and paracrine factors—while neural inputs (e.g., visual/olfactory stimuli, anesthesia) significantly impact glioma growth.
Bidirectional glioma-neuron communication drives epileptogenesis and impairs functions. Distant neurons participate via neural networks. Neuronal
signals enhance glioma cell migration and the acquisition of stem-like properties. Neurons also indirectly regulate gliomas through immune cell
crosstalk.
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(39). Neuronal activity, learning, and socialization influence myelin

formation, this dynamic change in turn regulates signaling in neural

circuits and is associated with emotional and cognitive functions,

known as “myelin adaptation” (40) (Figure 2). Consequently,

neuroplasticity can be summarized as three interrelated aspects of

axonal plasticity myelin plasticity, and synaptic plasticity, which

together form the basis of brain adaptation and plasticity.
3 Neural signals influencing glioma
growth

Studies have shown that neuronal activity can drive glioma

progression via synaptic connections (7, 8), with early neuronal

activity found to promote OPC proliferation and differentiation

(41). A mouse model in which general anesthesia was used to

reduce neuronal activity has demonstrated that low neural signals

inhibited the growth and invasion of patient-derived glioblastoma

(7). In normal physiological conditions, neural signals from external

sensory stimuli can directly impact glioma development, and

manipulating olfactory receptor neuron activity influences glioma

progression (42). Additionally, stimulation of optic nerve activity

promotes optic nerve glioma growth, while reducing visual input

inhibits tumor formation and maintenance (43). Surprisingly,
Frontiers in Oncology 04
radiotherapy—a common treatment modality—accelerates tumor

growth by enhancing neuronal activity (44). Collectively, these

results indicate that neural signals promote glioma proliferation

and differentiation, with such signals being moderately associated

with learning and remodeling of the nervous system.
3.1 Synaptic transmission

Myelin plasticity homeostasis is important for the prevention of

gliomas. The structural basis of myelin adaptation lies in OPCs’ ability

to form true synapses with glutamatergic and GABAergic neurons,

suggesting neuronal electrical activity regulates OPC proliferation and

differentiation (45). In OPCs, GABA positively stimulates signaling

cascades, which promote myelination as well as neural recovery (46,

47). Recent studies have further revealed that the OPC can receive

inputs from multiple brain regions, illustrating that OPCs have

strikingly comprehensive synaptic access to brain-wide projection

networks (48). OPC postsynaptic molecules gradually lose the ability

to be modulated by neurons during differentiation. As the unique glial

cell to forms synapses with neurons, OPCs can accurately predict the

location of future myelin production (49).

In recent years, Michelle Monje has illustrated the formation of

structural synapses between glioma cells and neurons in the tumor
FIGURE 2

Glioma-neuron interactions of myelin plasticity and glioma intervention. During development, the SVZ serves as the primary source of OPCs. In the
adult brain, OPCs that are distributed and reserved throughout the brain establish synaptic connections with neurons to receive repair and
remodeling signals. These signals drive OPC proliferation and differentiation into mature OLs, which myelinate axons to facilitate neural network
formation. Notably, glioma harbors OPC-like glioma cells that usurp this neuroregulatory pathway: these cells aberrantly repurpose neuronal-
derived signals—originally dedicated to myelin repair—for autonomous growth, thereby illuminating a pivotal crosstalk between myelin plasticity and
oncogenic mechanisms.
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microenvironment through electrophysiological and ultrastructural

observations in two works from 2019 (7, 8), which opens up new

directions for researchers. Interestingly, it has been revealed

through single-cell transcriptomics that glioma cells forming

synaptic structures predominantly belong to an OPC-like

subpopulation (8). Spontaneous glutamatergic postsynaptic

currents are present in such cells. It has been demonstrated that

neuronal action potentials induce spontaneous inward currents

(SIC) in GB, thereby promoting cancer development (7).

Neuron-glioma signal transmission occurs via calcium

permeable AMPA receptors. Glutamate released from presynaptic

membranes triggers depolarization by activating AMPARs on

glioma cell membranes, with receptor inhibitors significantly

impeding synaptic communication (7). Similarly, neuronal

activity that promotes OPC myelination also involves AMPA

glutamate receptors (50). However, in addition to glutamatergic

synapses, GABAergic synapses have recently been discovered

between gliomas and neurons, with both types able to coexist on

a single glioma cell (51). Similar to OPCs in the early developmental

stage, the Na-K-2Cl cotransporter (NKCC1) elevates Cl− levels in

glioma cells (52), which tends to an efflux of Cl− upon activation of

GABAARs. Therefore, GABAergic neuron-to-OPC and GABAergic

neuron-to-glioma cell synapses cause depolarization (53). Notably,

mature OPCs receive GABA-A-mediated inhibition through

upregulated K+-Cl- cotransporter 2 (KCC2), while early

developmental OPCs respond to promotive signals (47), but

gliomas show only promotive effects (Figure 3).

Glioma cells exhibit cellular properties similar to those of OPCs,

suggesting that interactions between these cancer cells and neurons
Frontiers in Oncology 05
may be informed by the known neuronal regulation of their

putative cellular origins (27).
3.2 Neural paracrine NLGN-3

In addition to neuronal regulation of synaptic transmission,

Glioma cells appear to have also learned to respond to neuronal

signals by the paracrine signaling of neural plasticity. Neurexins

(NRXNs) and Neuroligins (NLGNs) are synaptic cell adhesion

molecules that mediate presynaptic-postsynaptic neuronal

connections and play critical roles in synapse development and

signaling (54, 55). Neuroligin-3 (NLGN3) is predominantly

distributed within the postsynaptic membranes of neurons and

OPCs (56). This protein is released from these membranes in an

activity-dependent manner, with secreted NLGN3(s-NLGN3) being

cleaved from neurons and oligodendrocyte progenitor cells (OPCs)

by A Disintegrin And Metalloproteinase10 (ADAM10) (57). As

postsynaptic regulators of synaptic plasticity (58), s-NLGN3

critically mediates neuromodulation in gliomas by binding to

glioma cell membranes (59). Gai1/3 is activated by s-NLGN3

induction and mediates downstream oncogenic signaling

pathways (60). Additionally, s-NLGN3 activates the PI3K-mTOR

pathway, thereby promoting the proliferation and migration of

glioma cells (61, 62). Unexpectedly, P13K upregulates NLGN-3

gene expression in glioma cells, generating more sNLGN-3 in the

glioma microenvironment (57, 61) (Figure 4).

ADAM10 is highly enriched in synaptic vesicles (63).

Reportedly, treatment with ADAM10 inhibitors suppresses the
FIGURE 3

Neuro-OPC vs. neuro-glioma synaptic transmission. As the only glial cells forming synapses with neurons, OPCs undergo neural remodeling and
repair regulated by neuronal-released neurotransmitters (e.g., GABA, glutamate). OPC postsynaptic membranes express AMPAR, NMDAR, GABA-A,
and GABA-B receptors to integrate excitatory/inhibitory signals from the neurons. In contrast, certain glioma cells also express AMPAR and GABA-A
receptors to promote self-growth. AMPAR activation opens Na+/Ca²+ channels, with cation influx inducing membrane depolarization. GABA-A
activation opens Cl- channels, causing efflux of intracellularly accumulated Cl- (due to NKCC1 transporter activity) and inducing depolarization.
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growth of adult and pediatric glioblastoma cells, an effect mediated

by blocking ADAM10-dependent release of NLGN3 from neurons

(64). s-NLGN3 shedding in the tumor microenvironment also

drives optic pathway glioma (OPG) formation and growth.

Mutations in the tumor suppressor gene NF1 (neurofibromatosis

1) in retinal neurons and increased optic nerve activity were both

associated with increased NLGN3 shedding (43). Notably, NLGN3

is not the exclusive regulator of activity-dependent glioma growth,

as NLGN3 deficiency only partially attenuates glioma cell mitogenic

potential rather than completely abolishing it.
3.3 BDNF

Brain-derived neurotrophic factor (BDNF) is a survival factor

for certain neurons during development (65). Signals via two

different types of receptors: myosin-related kinase (Trk) B and

p75 kilodalton neurotrophic receptor (p75). BDNF exerts divergent

roles in distinct cell types and microenvironments, potentially

exhibiting either oncogenic or tumor-suppressive effects (66).

Overexpression of BDNF and/or Trk-B has been reported in

multiple cancer types (67). However, in the healthy brain, BDNF

functions as a paracrine trophic factor to promote adaptive synaptic

plasticity (68). During cognitive activities like thinking and

learning, neuronal activity orchestrates BDNF gene transcription,

mRNA trafficking to dendrites, and BDNF protein secretion (69–
Frontiers in Oncology 06
72). BDNF has been shown to promote proliferation and

differentiation of NSCs—particularly into the oligodendroglial

lineage—in a dose-dependent fashion, a process that promotes

myelin remodeling and is regulated by insulin (73, 74).

Interestingly, insulin can also promote the proliferation and

survival of glioblastomas (75). BDNF regulates malignant

synapse-like connections between neurons and glioma cells in

malignant gliomas. BDNF signaling via the tropomyosin-related

kinase B (Trk-B) receptor promotes trafficking of AMPA receptors

to glioma cell membranes, thereby modulating the amplitude of

postsynaptic currents (28). Consequently, neurons are potently

driven to promote malignant tumor proliferation via synaptic-

like connections.
3.4 Neural network remote regulation of
glioma growth

Neuromodulation in gliomas is not regional, with gliomas

forming a close connection with neural networks (76, 77). The

magnitude of regulation of gliomas growing in different brain

regions varies, which is influenced by the surrounding neural

network environment and conduction. Research finds that

gliomas are more frequent in cortical regions that inherently have

higher activity levels (78). Furthermore, the type of neurons that

form synaptic connections with gliomas varies depending on the
FIGURE 4

Gliomas exploit paracrine signals of neural plasticity to promote self-development. Neurons release ADAM10 from synaptic vesicles in an activity-
dependent manner, which cleaves NLGN3 on neuronal or OPC membranes to shed s-NLGN3. Glioma cells competitively combine s-NLGN3 to
activate multiple oncogenic pathways, including PI3K-mTOR, SRC kinase, and the SHC-RAS-RAF-MEK-ERK cascade. Concurrently, ADAM10-
mediated cleavage sheds s-NLGN3 from glioma cell membranes, establishing autocrine positive feedback.
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location in the brain region, with mostly long-distance

glutamatergic neurons in the cortex and short-distance

GABAergic neurons in the striatum (79). This is similar to the

synaptic connections between OPC and neurons (80).

Gliomas have been shown to integrate into the brain’s network

structure, which encompasses connections among tumor-tumor,

neuron-tumor, and tumor-other cell-type interactions (81). In the

network structure, cancer cells are interlinked through specialized

membranous conduits, called tumor microtubules (TM) (76).

However, this interconnection is not ubiquitous. The cellular

network formed by TMs contributes to an enhancement in the

stemness characteristics and drug resistance of the tumor (82).

Based on the network structure, neuronal projections from brain

regions remote from the primary tumor contribute to

tumorigenesis. Activation of neurons contralateral to gliomas

using chemical genetics was revealed to promote not only glioma

proliferation but also early infiltration. Surprisingly, severing the

interhemispheric connections inhibits the activity-dependent

acceleration of infiltration observed in intact controls, while

mechanistic investigations identify Semaphorin 4F (SEMA4F) as a

key mediator linking remote neuronal activity to glioma

progression (83). SEMA4F is expressed by neurons and OPCs,

and it stimulates OPC differentiation (84). In the migration of

OPCs, Sema4F contributes to the correct migration of OPCs along

the nerve, thereby preventing cell dispersion and intermingling

(85). Diffuse midline glioma (DMG), a malignant pediatric tumor

originating in the midline of the brain (86), arises from and closely

resembles oligodendroglial lineage precursors regardless of its

specific anatomical location (23). Recent studies reveal that

mesencephalic cholinergic nuclei drive proliferation of both

healthy OPCs and DMG cells in their projection targets via a

circuit-dependent mechanism, providing the first evidence for

distance regulation by cholinergic neuronal activity (87).

This phenomenon highlights the requirement for global neural

activity in glioma development, which is strongly correlated with

the migration of OPCs during repair and remodeling processes.

Disruption of this neural pathway could potentially impede

glioma progression.
4 Neural signals influencing glioma
migration

It is well established that the dissemination of glioma cells

contributes to their incurability (88), yet this process differs

fundamentally from the metastasis of other solid cancers, which

typically do not spread to distant organs (89). There are several

possible reasons: First, although glioma cells bind to blood vessels,

they may not be able to break through the basement membrane into

the vasculature system (90). Second, extra-neural tissues may lack

an appropriate growth microenvironment to support glioma

proliferation. Clinical investigations have shown that following

complete resection, postoperative recurrence predominantly

occurs in the local white matter (91). The neuronal soma resides

in the gray matter, while axons—including those forming the
Frontiers in Oncology 07
corpus callosum, the largest interhemispheric commissure—

occupy the white matter, which is composed of a broad array of

neural fibers (92, 93). Gliomas that spread along the white matter

bundles of the corpus callosum are called butterfly gliomas (94).

The prognosis for these patients is often poor, and severing the

corpus callosum can largely prevent the spread of gliomas (83). The

axonal architecture in the white matter creates a more permissive

microenvironment for the dissemination of glioma cells.

White matter, situated beneath the gray matter cortex, consists

of myelinated neuronal fibers that facilitate rapid signal

transmission within the brain (95). Myelin plays a critical role in

tumor spread. It serves as a highly permissive substrate for glioma

cell adhesion and migration (96). The microenvironment of the

CNS inherently exhibits resistance to glioma cell infiltration.

Inhibitory molecules in CNS myelin (e.g., Nogo/Semaphorins/

Ephrins, etc.) also suppress glioma cell migration and

proliferation (97). This is based on another crucial function of

myelin: to prevent excessive axonal regeneration, sprouting, and

cellular infiltration into the brain parenchyma (98). Neuronal

activity induces adaptive changes in myelin structure and

function. Correspondingly, this activity significantly influences the

invasive behavior of glioblastoma cells, including the formation,

growth, and movement of TMs (99). Neurons paradoxically exhibit

tumor-promoting effects on gliomas, though emerging studies

reveal that adult post-mitotic neurons can induce apoptosis in

both murine and human glioma cells (100). Moreover, in vitro

co-culture reveals that the migratory ability of glioblastoma cells is

inhibited by contact with neurons (101). The underlying

mechanism may involve neuron-regulated glioma cells exhibiting

characteristics resembling those of OPCs (8). Overall, neurons

normally regulate OPCs to promote myelination repair, but may

pathologically facilitate glioma migration along axons by

misidentifying tumor cells as OPCs.
5 Neural networks enhance glioma
cell stemness

The cellular composition of glioma is not homogeneous (102).

Glioma cells with stemness, called glioma stem cells (GSCs),

promote heterogeneity and drug resistance in gliomas (103). As

normal stem and progenitor cells participate in tissue development

and repair, these developmental programs re-emerge in CSCs to

support the development and progressive growth of glioma (104).

Current research suggests that GSC may be derived from NSCs

residing in the SVZ in adults, as they share many common features

(105, 106). The researchers believe that if GSCs are the glioma cells

responsible for generating the tumors, then the developmentally

analogous relationship is the NSC-OPC axis (107). In fully

developed individuals, NSCs can differentiate into OPCs as the

primary source of myelination contribution (108). Olig2 is highly

expressed in OPCs as well as in GSCs (109). Culturing glioma cells

with conditioned medium from OPCs, which contains secreted

factors, indicates that soluble factors secreted by OPCs enhance the

stem-like properties of glioma cells, thereby contributing to
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tumorigenesis, therapeutic resistance, and recurrence (110). OPCs

and macrophages/microglia form a distinct microenvironment for

glioma cells at the tumor boundary, with particularly prominent

aggregation in recurrent lesions. In this microenvironment, OPCs

may drive the acquisition of stemness in glioma cells (91, 110, 111).

Neuronal activity enhances the stemness of glioma cells. Studies

have shown that exosomes derived from active neurons promote

glioma progression and radioresistance by inducing phenotypic and

metabolic transformation of GSCs (112). In summary, we suggest

that the aggregation of OPCs at the tumor may misregulate the

enhancement of glioma stemness, and this regulation can be

potentiated by electrical activity stimulation.
6 Neural-immune interplay in glioma

In addition to directly mediating tumor growth, neurons can

promote the tumor by modulating immune cell function.

Astrocytes perform supporting functions for neurons and

oligodendrocytes (113). Microglia are recognized as mononuclear

phagocytic cells that play a significant role in immune response and

homeostasis within the CNS (114). They contribute to the

formation, maintenance, and reshaping of neuronal circuits by

clearing dead cells and participating in neural repair through

pruning (115, 116). In neuroplasticity, complex interactions

between neurons, T cells, and microglia (117). Neurons play a

crucial role in regulating microglia activation, as neurons secrete

factors such as CD200 (118), SEMA3A (119), and CX3CL1 (120)

can modulate microglial cell properties to different degrees.

Whereas this regulation promotes the process of neuronal repair

and remodeling in the normal brain, in the glioma setting, neurons

produce reduced mid-term to activate T cells, which in turn leads to

an increase in T cell Ccl4 secretion and microglial cell secretion of

Ccl5 to sustain glioma cell growth (117).

Overall, while glioma growth stimulates immune cell repair and

participates in neural remodeling, signaling impulses from neurons

can, in turn, facilitate this process. However, this process seems to

be exploited by the glioma cells for the use of self-growth.
7 Disturbance of neural network by
glioma

Neuron–glioma interactions are bidirectional. Based on subdural

electrocorticography, sampling of normal and glioma-infiltrated cortex

during speech showed that glioma infiltration affected the brain’s ability

to encode information during nuanced tasks (121). Recent studies have

revealed that tumor-associated cortical networks exhibit

hyperexcitability (8). Tumor-induced disruption of synaptic network

activity in the peritumoral region leads to alterations in network

excitability (122). Although neuronal over-excitation maintains task-

specific neuronal responses, the tumor-affected cerebral cortex loses the

ability to decode complex words (123).

In addition to impairing brain function, epilepsy is diagnosed in

70–90% of patients with glioma (124). However, further
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peritumoral neuronal network activity and the prevalent

epileptiform activity were closely associated with the formation of

new synapses, with glioma cells forming these new synapses

remaining as OPC-like cells (125). In the glioma-surrounding

tissue, extracellular glutamate levels were found to be 100 times

higher than in the unaffected brain (126). Glutamate secretion from

gliomas stimulates peritumoral neuronal receptors, leading to

neuronal hyperexcitability and epileptic seizures (127).
8 Conclusion and future directions

There is growing evidence that different types of cancers

originate from distinct “progenitor cells”, which undergo the first

or multiple genetic hits leading to the onset of cancer (128).

Therefore, the origin and progression of cancer cells in different

locations depend on the surrounding environment and cell type.

Gliomas, the most prevalent primary malignant tumors in the adult

CNS, are likely triggered by the daily remodeling and repair

processes of glial cells, during which multiple factors induce

malignant changes. OPCs, the most active stem cells in the brain

and responsible for myelin plasticity, are also found aggregating

around gliomas.

The underlying mechanism of this OPC aggregation—whether

driven by reparative recruitment or malignant transformation

during the initial repair process—remains inconclusive. Mosaic

Analysis with Double Markers (MADM)-based lineage tracing

revealed significant abnormal growth prior to malignancy only in

OPCs (129). Notably, accumulating evidence has established that

OPC aggregation significantly accelerates glioma progression. Stem

cells not only have the mission of proliferation and differentiation

but also require multiple factors (e.g., neuroregulatory signals,

paracrine factors) to promote or inhibit the function (130).

Similarly, in gliomas, the factors that regulate OPC also regulate

the glioma cells and even form similar synaptic connections. It

seems that brain cancer learns the mechanisms of neural plasticity.

However, these regulators also exhibit bidirectionality. As a key

modulator of synaptic plasticity (72), BDNF contributes to

physiological synaptic regulation through neuronal activity and

drives tumor progression through BDNF-TrkB-mediated

malignant synapse enhancement (28). Its effects are not

unilaterally protumorigenic: mature BDNF/TrkB signaling drives

glioma growth, migration, and anti-apoptotic effects, while

proBDNF/p75NTR activation inhibits these processes (131).

Additionally, lncRNA BDNF-AS suppresses malignancy by

targeting RAX2 (132). This functional difference depends on the

type of cells involved, the selective binding of receptor subtypes, and

microenvironmental characteristics (66). GABA shows more

pronounced bidirectionality (133). In DMG, NKCC1-mediated

high intracellular Cl- converts the action of GABA to membrane

depolarization, promoting proliferation (51). Additionally, GABA

maintains GSC quiescence for post-surgical recurrence (134).

Conversely, GABAaR activation inhibits proliferation in low-grade

gliomas via enhanced inhibitory signaling, although a mechanism
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potentially weakened by GABAaR downregulation in glioblastoma

(135). In vitro experiment, neuronal GABAaR activation directly

suppresses glioma growth (136). This bidirectionality resembles the

functional differences of GABAergic signaling in OPC regulation

(47). This suggests that targeted modulation of Cl- currents in

glioma cells may provide a novel therapeutic approach to halt

tumor progression (137).

Current experimental models of tumor-neuron interactions

predominantly rely on in vitro cell co-culture (138) or xenografts in

immunodeficient mice (8, 61). Though they partially reflect the

interactions between gliomas and neurons, they cannot replicate the

3D structure of in vivo neural circuits, neurotransmitter

microenvironment, or brain region-specific neuroplasticity. However,

related studies have made progress. An in vitro 3D model constructed

using 3D bioprinting technology, consisting of an outer hemisphere

containing neurons and an inner hemisphere containing glioma cells

(139). Modeling glioblastoma invasion using human brain organoids

(140). Co-culture system using patient-derived GBM organoids and

human induced pluripotent stem cells (hiPSCs) (141). Despite these

advancements, further optimization is still needed to more realistically

simulate the physiological environment of tumor-neuron interactions in

vivo. Another important consideration is that there are significant

differences between pediatric and adult gliomas in terms of genetic

background, site of origin, and clinical behavior (142). Adult gliomas

often originate in the supratentorial region and are often accompanied

by neuroplastic compensatory mechanisms. In contrast, pediatric

gliomas predominantly occur in brain regions with active

neurogenesis, including the brainstem and thalamus. The progression

may bemore closely linked to the active neuroplasticity during the brain

development stage (143). Therefore, it is necessary to study the

differences between the contributions of “developmental

neuroplasticity” and “pathological neuroplasticity” in childhood and

adult gliomas.

Molecules related to neuroplasticity may serve as potential

targets for glioma treatment, but the specific mechanisms remain

unclear. ADAM10 is highly expressed in gliomas; however, the

mechanism by which ADAM10 balances neuroplasticity and

glioma phenotypes through cleaving different substrates remains

elusive (64). AMPAR is the core subtype of glutamate receptors.

Pharmacological inhibition of AMPAR activity using Talampanel

has demonstrated potential in the clinical management of newly

diagnosed glioblastoma (144), but the impact of long-term AMPAR

inhibition on normal neurological function has not yet been

systematically validated. Cav3, as a T-type calcium channel in

synaptic plasticity, can be utilized in inhibiting glioma

development through disconnecting nerve cell and OPC-like

glioma cell interaction (145, 146). Rabies-mediated genetic

ablation of neurons halts glioblastoma progression (44).

Unexpectedly, some commonly used drugs have been found to
Frontiers in Oncology 09
have tumor-promoting effects, such as Lorazepam (51). Currently,

there is growing evidence that multiple neuroplasticity signals are

exploited to influence the progression of gliomas, suggesting that

learning and remodeling are closely related to the initiation and

progression of gliomas. We believe that broader plasticity regulatory

mechanisms can inspire the study of abnormal tumor proliferation.

Meanwhile, based on the study and modulation of neuroplasticity,

more effective treatments for controlling the progression of gliomas

will be discovered.
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