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Purpose: Sepsis is a leading cause of mortality, especially among
immunocompromised patients with lung cancer. We aimed to establish machine
learning (ML) based model to accurately forecast ICU mortality in patients with
sepsis combined lung cancer.

Methods: We incorporated patients with sepsis combined lung cancer from
Medical Information Mart for Intensive Care IV (MIMIC IV) database. Univariate
and multivariate logistic analysis were employed to select variables. Recursive
Feature Elimination (RFE) method based on 6 ML algorithms was used for feature
selection. We harnessed 13 ML algorithms to construct prediction model, which
were assessed by area under the curve (AUC), accuracy, sensitivity, specificity,
precision, cross-entropy and Brier scores. The best ML model was constructed to
predict ICU mortality, and the predictive results were interpretated by SHapley
Additive exPlanations (SHAP) framework.

Results: A sum of 1096 lung cancer patients combined sepsis from MIMIC [V
database and 251 patients from the external validation set were included. We
utilized 13 clinical variables to establish prediction model for ICU mortality.
CatBoost model was identified as the prime prediction model with the highest
AUC in the training (0.931[0.921, 0.945]), internal validation (0.698 [0.673, 0.724])
and external validation (0.794 [0.725, 0.879]) cohorts. Oxford Acute Severity of
Illness Score (OASIS) had the greatest influence on ICU mortality according to
SHAP interpretation.

Conclusions: Our ML models demonstrate excellent accuracy and reliability,
facilitating more rigorous personalized prognostic forecast to lung cancer
patients combined sepsis.
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Introduction

Sepsis is triggered by an acute infection that induces an
excessive and dysregulated immune response in the body, causing
multiple organ dysfunctions (1). Each year, approximately 49
million people worldwide are affected by sepsis (2), and about
30% of intensive care unit (ICU) patients are diagnosed with it (3).
The mortality rate for sepsis can be as high as 40% (4). Treatment
options and outcomes for sepsis patients vary widely due to the
differences in infectious agents, individual characteristics, and
medical history. Consequently, it is impractical to assess and
manage sepsis cases using a single scoring system, and greater
attention should be given to the heterogeneity among sepsis
patients (5).

Lung cancer remains one of the most prevalent and deadly
tumors in the world, with complex challenges in diagnosis, staging,
therapy, and future outlook. Accurate diagnosis and staging are
crucial for guiding treatment decisions and assessing prognosis.
Diagnostic methods involve imaging techniques such as computed
tomography (CT) and positron emission tomography (PET), along
with histopathological examination and the use of molecular markers
to identify specific mutations (e.g., EGFR, ALK) (6). Molecular typing
of lung carcinoma, particularly the distinction between small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC), has further
refined treatment approaches, enabling targeted therapies that
improve patient outcomes (7). Treatment strategies for lung cancer
have evolved significantly, transitioning from conventional
chemotherapy and radiation to more individualized approaches.
Targeted therapies and immune checkpoint inhibitors, which
harness the body’s immune response against cancer cells, have
demonstrated efficacy in NSCLC patients with specific genetic
alterations (8). For instance, EGFR inhibitors and ALK inhibitors
have shown improved survival in patients with these mutations (9).
Meanwhile, immunotherapies such as PD-1 and PD-LI inhibitors
have revolutionized treatment for advanced or metastatic cases by
extending survival times, although their efficacy varies widely among
patients (10). In clinical practice, diagnosing and treating patients
with lung cancer complicated by sepsis presents significant
challenges. Patients with lung cancer often have compromised
immune function, making them more susceptible to infections that
can rapidly progress to sepsis, leading to multi-organ dysfunction and
increased mortality (11). The complexity of managing lung cancer
with concurrent sepsis stems from factors such as tumor burden,
immunosuppression, and the adverse effects of anticancer treatments,
which complicate early diagnosis and treatment strategies (12).

Nowadays, nomograms have gained widespread application in
predicting tumor mortality (13). However, the sensitivity, specificity
and generalizability of the previous models, as well as the existing
assessment tools, could be inadequate, highlighting the pressing
need for more accurate and specific prognostic prediction methods
(14). Machine learning (ML), a branch of artificial intelligence, has
garnered increasing popularity owing to its proficiency in managing
complex, non-linear relationships, especially when dealing with
large datasets and loosely structured data (15). The emergence of
big data analytics and ML algorithms has rendered new approaches
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for identifying risk factors influencing prediction feasible. A
number of predictive models utilizing these technologies have
demonstrated exceptional performance and are progressively
being incorporated into clinical practice (16). Nevertheless, to
date, no elaborate model exists for predicting ICU mortality in
patients with sepsis complicated by lung cancer, underscoring the
necessity for the construction and verification of a new ML model
for risk stratification. To the best of our knowledge, our research
represents the first endeavor to construct and verify a predictive
model employing multiple ML algorithms for ICU mortality
prediction in patients with sepsis and lung cancer. Our model
harnesses extensive population information and the competence of
ML, thereby providing an individual predictive model that can help
clinicians in meticulously appraising the ICU mortality risk of
septic patients with lung cancer.

Materials and methods
Data collection and study population

The MIMIC-IV database is a publicly available resource
containing records of over 76,000 ICU admissions at Beth Israel
Deaconess Medical Center in Boston, Massachusetts, USA, from
2008 to 2019. It provides detailed data for every admission,
involving laboratory results, vital signs, medications, and
discharge status (17). Patients from Xuzhou Central Hospital and
Huai’an Hospital Affiliated to Xuzhou Medical University were
included to form an external validation set. The research was
conducted based on the guidelines of the Declaration of Helsinki
and was approved by the Ethics Committee of Xuzhou Central
Hospital and Huai’an Hospital Affiliated to Xuzhou Medical
University. Informed consent was acquired from patients
involved in our research. The flowchart of the patient selection
procedure is displayed in Figure 1. Inclusion criteria comprised
individuals diagnosed as lung cancer and sepsis based on
International Classification of Diseases (Ninth Revision code), as
well as aged over eighteen years at the time admitted by ICU. Sepsis
diagnosis was conducted according to sepsis definition 3.0 (18).
Exclusion criteria comprised patients with repeated ICU admissions
except for the first time or clinical variables with more than 50%
missing data. Clinical information of septic lung cancer patients in
MIMIC IV database included the following (listed in Table 1): (1)
demographics (age and sex); (2) tumor stages, with distant
metastasis defined by the American Joint Committee on Cancer
8th edition; (3) chronic conditions such as hypertension or diabetes;
(4) organ functions assessed by the Sequential Organ Failure
Assessment (SOFA) score; (5) laboratory tests. Vital signs and
laboratory results from the first 24 hours of ICU admission were
included. Missing information was tackled with multiple
imputation by chained equations (MICE). The study’s endpoints
were ICU death or safe discharge. Raw data extraction via Navicat
for SQL Server was processed using R software. We determined the
minimum sample size needed for an external validation cohort by
formula of Riley et al. (19).
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FIGURE 1
The workflow diagram for study design and patient screening

Feature selection

In our initial analysis, clinic variables with a significance level of
P < 0.05 in both univariate and multivariate logistic analyses within
the training dataset were selected for feature selection. We then
applied Recursive Feature Elimination (RFE) according to six ML
approaches, namely categorical boosting (CatBoost), random forest
(RF), support vector machine (SVM), extreme gradient boosting
(XGB), decision tree (DT), and gradient boosting machine (GBM),
coupled with 10-fold cross-validation to select the clinic variables.
The RFE process involves iteratively building models and ranking
features by their importance, systematically removing the least
significant ones to generate a comprehensive feature ranking (20).
A random seed of “123” was determined for our analysis.
Subsequently, the Robust Rank Aggregation (RRA) algorithm was
employed to consolidate the feature importance rankings from the
six ML algorithms utilized in RFE, yielding a comprehensive
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ranking of all factors (21). Following the selection of key features,
we proceed to the model development stage.

Development and verification of the
predictive model for ICU mortality

To develop the ML model, we utilized thirteen ML algorithms,
involving CatBoost, RF, SVM, XGB, DT, GBM, k-nearest neighbor
(KNN), logistic regression (LR), naive bayes classifier (NBC), linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA), neural network (NNET) and generalized linear model
(GLM) to forecast ICU mortality with “mlr3” R package (22).
This method facilitated the comparison of model performances
and the selection of the optimal predictive model. To address class
imbalance, which can significantly distort performance metrics, we
applied the Synthetic Minority Over-sampling Technique
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(SMOTE) during model training (23). We then enhanced our
methodology by conducting nested resampling, involving a two-
tiered k-fold cross-validation process: one for hyperparameter
tuning and another for model selection. Additionally, we
conducted a 1000-evaluation random searching within a 10-fold
cross-validation framework, repeating five times in every model.
The best model was selected based on the highest Area Under the
Curve (AUC) and the lowest Brier score, while ensuring a well-
calibrated curve. Internal and external validation was performed
using 10-fold cross-validation. The Precision-Recall Curve (PRC)
was used to assess the performances of classification models on
imbalanced data. The calibration curve evaluated the model’s
discriminative ability, and Decision Curve Analysis (DCA) was
conducted to validate the clinical benefits of the ML model using the
“runway” R package (https://github.com/ML4LHS/runway). The
importance of every factor was quantified by calculating its mean
contribution to the AUC as a percentage relative to the full model
using the “DALEX” R package (24). SHapley Additive exPlanations
(SHAP) values were employed to demonstrate the predictions of the
optimal model and to clarify the black-box ML framework using the
“shapviz” R package (https://github.com/ModelOriented/
shapviz) (25).

Results

Demographic composition and baseline
data

A sum of 1096 lung cancer patients combined with sepsis from
MIMIC IV database and 251 patients from Xuzhou Central
Hospital and Huai’an Hospital Affiliated to Xuzhou Medical
University were involved. We separated patients in MIMIC IV
cohort randomly into training and internal testing cohorts with a
7:3 ratio, respectively. Meanwhile, patients in Xuzhou Central
Hospital and Huai’an Hospital Affiliated to Xuzhou Medical
University were involved as the external testing cohort. For
patients in MIMIC IV cohort, 854 cases (77.65%) were alive,
while 245 cases (22.35%) suffered ICU mortality (Table 1). More
clinic data of the training and two testing cohorts can be found in
Table 2. In the training, internal validation and external validation
sets, the ICU mortality was 161 (20.8%), 84 (26.2%) and 40 (15.9%)
(Table 2). The detailed selection process of patients in MIMIC IV
cohort is displayed in Figure 1.

Feature selection of the predictive model

We used the multiple imputation by chained equations (MICE)
method to address the missing information in our patient data from
MIMIC IV database (Figure 2A). Ultimately, five imputed datasets
were created, and Rubin’s rules were utilized to amalgamate the
final analytical outcomes (Supplementary Figure 1). Drawing from
our clinical expertise, these clinic variables were chosen for
subsequent logistic regression analysis (Table 3), with variables
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with a correlation coefficient exceeding 0.6 excluded (Figure 2B).
Thereafter, univariate and multivariate logistic regression analyses
were conducted within the training cohort to identify the salient
variables predictive of ICU mortality. We then discovered that Urea
nitrogen (BUN, OR 1.19 (1.08-1.25), p = 0.003), Chloride (OR 0.94
(0.91-0.96), p < 0.001), Diastolic blood pressure (DBP, OR 0.99
(0.98-1), p = 0.035), Gender (OR 0.69 (0.5-0.97), p = 0.031),
Hemoglobin (OR 0.84 (0.77-0.93), p < 0.001), Lactate (OR 1.2
(1.08-1.35), p = 0.001), Mean blood pressure (MBP, OR 1.01 (1-
1.04), p = 0.031), Metastatic cancer (OR 2.14 (1.52-3.02), p < 0.001),
Oxygen saturation (OR 0.72 (0.66-0.78), p < 0.001), OASIS (OR 1.1
(1.07-1.13), p < 0.001), PH (OR 0.01 (0-0.09), p < 0.001), SOFA (OR
1.13 (1.06-1.2), p < 0.001), WBC (OR 1.04 (1.02-1.06), p < 0.001),
Age (OR 1.02 (1-1.03), p = 0.031) and Acute Physiology Score III
(OR 1.03 (1.01-1.05), p = 0.009) were exactly important to forecast
ICU mortality, with significance (p < 0.05, Table 3). Correlation
analysis revealed that OASIS is the most influential variable
associated with ICU mortality (Figure 2B). Subsequently, we
employed RFE leveraging six ML algorithms (GBM, SVM, RF,
DT, XGB and CatBoost), coupled with 1-fold cross-validation to
refine the clinical variables (Figures 2C-H). The RFE process
identified the optimal feature set using the CatBoost algorithm,
which retained thirteen variables and achieved the highest AUC of
0.948 (Figure 2C). The RRA algorithm was then applied to generate
a comprehensive ranking of the clinical variables across the six ML
algorithms, with OASIS emerging as the most vital (Supplementary
Table 1). These thirteen variables, selected by RFE, were
subsequently incorporated into the subsequent model
establishment procedures. (Supplementary Table 1).

Construction and verification of ML model
for ICU mortality

To construct an accurate model to forecast ICU mortality, we
included the thirteen clinic factors (“BUN”, “Chloride”, “DBP”,
“Gender”, “Hemoglobin”, “Lactate”, “MBP”, “Metastatic cancer”,
“O28at”, “OASIS”, “PH”, “SOFA”, “WBC”) selected by RFE based
on CatBoost. Totally thirteen ML algorithms, involving CatBoost,
RF, SVM, XGB, DT, GBM, KNN, LR, NBC, LDA, QDA, NNET and
GLM, were developed using the selected thirteen variables from the
training set. Hyperparameter tuning were optimized through 5-fold
cross-validation and random searches. The performance of these
thirteen models was then assessed in both internal and external
validation cohorts. ROC curve analysis indicated that the CatBoost
model achieved the highest AUC in the training (0.931 [0.921,
0.945]), internal validation (0.698 [0.673, 0.724]), and external
validation (0.794 [0.725, 0.879]) cohorts (Figures 3A, 4A, 5A).
Following hyperparameter tuning via grid search, the optimal
hyperparameters for CatBoost were identified as depth, 6;
learning rate, 0.02873998; iterations, 662; 12_leaf reg, 6.735671.
PRC analysis demonstrated the CatBoost model’s effectiveness in
managing imbalanced data (Figures 3B, 4B, 5B). Calibration curves
revealed that CatBoost algorithm had the best fitting ability and
could accurately predict ICU mortality (Figures 3C, 4C, 5C).
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TABLE 1 Clinicopathological characteristics of septic patients with lung cancer from MIMIC IV database in the ICU Non-Mortality group and ICU
Mortality group.

Variable ICU Non-Mortality N = 851 ICU Mortality N = 245 p.overall
Age 68.4 (12.3) 68.4 (12.8) 0.968
Gender: 0.095
Female 384 (45.1%) 126 (51.4%)
Male 467 (54.9%) 119 (48.6%)
Race: 0.066
Asian 50 (5.88%) 17 (6.94%)
Black 90 (10.6%) 30 (12.2%)
Other 108 (12.7%) 45 (18.4%)
White 603 (70.9%) 153 (62.4%)
Marital status: 0.418
Divorced 65 (7.64%) 14 (5.71%)
Married 440 (51.7%) 119 (48.6%)
Null 36 (4.23%) 15 (6.12%)
Single 198 (23.3%) 66 (26.9%)
Widowed 112 (13.2%) 31 (12.7%)
Hypertension: 0.183
No 510 (59.9%) 159 (64.9%)
Yes 341 (40.1%) 86 (35.1%)
Diabetes: 0.161
No 693 (81.4%) 189 (77.1%)
Yes 158 (18.6%) 56 (22.9%)
Cardiac arrhythmia: 0.599
No 807 (94.8%) 235 (95.9%)
Yes 44 (5.17%) 10 (4.08%)
Metastatic Cancer: 0.047
No 480 (56.4%) 120 (49.0%)
Yes 371 (43.6%) 125 (51.0%)
Weight 74.9 (21.6) 73.1 (23.4) 0.269
SOFA 4.65 (2.93) 6.89 (3.66) <0.001
Acute Physiology Score IIT 47.0 (18.2) 63.6 (23.0) <0.001
SIRS 2.71 (0.86) 2.97 (0.80) <0.001
SAPS IT 43.2 (12.8) 53.2 (15.7) <0.001
OASIS 32.8 (7.81) 39.6 (8.58) <0.001
Glasgow Coma Scale 13.6 (2.54) 13.1 (3.33) 0.06
WBC 11.9 (7.88) 14.8 (11.2) <0.001
RBC 3.44 (0.67) 3.38 (0.63) 0.155
Platelet 235 (133) 239 (148) 0.686
Hemoglobin 10.1 (1.92) 9.76 (1.77) 0.013

(Continued)
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TABLE 1 Continued

10.3389/fonc.2025.1661212

Variable ICU Non-Mortality N = 851 ICU Mortality N = 245 p.overall
RDW 16.0 (2.54) 16.7 (2.48) <0.001
Hematocrit 31.0 (5.65) 30.5 (5.25) 0.155
Sodium 137 (4.65) 137 (5.83) 0.028
Potassium 424 (0.59) 447 (0.70) <0.001
Calcium 8.32 (0.84) 8.32 (1.06) 0.964
Chloride 103 (5.99) 101 (6.76) 0.015
Glucose 137 (54.7) 140 (51.7) 0.553
Anion gap 14.7 (3.51) 15.6 (4.04) 0.001
PH 7.37 (0.07) 7.34 (0.09) <0.001
pCO2 43.5 (12.0) 46.9 (13.6) 0.001
pO2 108 (69.2) 103 (51.8) 0.287
Lactate 1.98 (1.48) 2.79 (2.24) <0.001
Total CO2 26.0 (6.07) 25.9 (6.82) 0.72
PT 16.2 (9.10) 17.3 (8.03) 0.073
PTT 36.2 (18.8) 39.7 (21.0) 0.029
INR 1.49 (1.03) 1.60 (0.81) 0.1
Urea nitrogen 26.7 (20.9) 322 (21.4) 0.001
Creatinine 1.29 (1.17) 1.34 (1.09) 0.491
Heart rate 90.6 (16.2) 96.5 (17.3) <0.001
Non invasive systolic blood pressure 114 (20.6) 126 (263) 0.502
Non invasive diastolic blood pressure 63.2 (10.6) 61.9 (11.1) 0.099
Non invasive mean blood pressure 75.8 (12.1) 72.9 (10.7) <0.001
Oxygen saturation 96.3 (2.12) 95.6 (3.08) <0.001
Temperature 36.8 (1.43) 36.8 (0.51) 0.428
Hospital day 12.4 (11.1) 6.70 (6.06) <0.001
ICU day 4.28 (5.32) 5.58 (5.41) 0.001
Hospital survival day 149 (295) 6.23 (6.06) <0.001
ICU survival day 148 (295) 4.92 (5.42) <0.001

Calibration curves indicated that CatBoost algorithm’s probability
predictions are consistent and well-calibrated, and ensured that the
risk estimates provided by the model can be trusted to reflect the
true likelihood of ICU mortality. DCA curves implied that the
CatBoost algorithm had the highest clinical utility and could
effectively aid in predicting ICU mortality (Figures 3D, 4D, 5D).
DCA curves indicated that using the CatBoost model to guide
clinical decision-making would result in net clinical benefit for
patients who are likely to benefit from certain interventions, such as
more aggressive treatment or intensive monitoring. The curves of
sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of the thirteen ML algorithms were plotted
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to extensively identified that the CatBoost algorithm was
outperforming in predicting ICU mortality (Figures 3E, 4E, 5E).
Model performance was further evaluated using accuracy,
sensitivity, specificity, precision, cross-entropy, and Brier scores,
which collectively indicated the robustness of the CatBoost model in
predicting ICU mortality (Figures 3F, 4F, 5F). Tenfold cross-
validation in the training cohort also confirmed the superior
performance of CatBoost (Figure 3G). Confusion matrices
highlighted the outstanding predictive capabilities of CatBoost
across all three cohorts (Figures 3H, 4G, 5G). Hence, CatBoost
was selected as the optimal model for predicting ICU mortality and
model validation was sufficient for proving its capacity.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1661212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Tang et al.

10.3389/fonc.2025.1661212

TABLE 2 Clinicopathological characteristics of septic patients with lung cancer in the training, internal validation and external validation cohorts.

Training Cohort

Validation Cohort

External Validation Cohort

Variable N = 775 N = 321 N = 251 p.overall
Age 68.2 (12.3) 68.9 (12.6) 68.2 (12.4) 0.719
Gender: 0.932
Female 360 (46.5%) 150 (46.7%) 120 (47.8%)
Male 415 (53.5%) 171 (53.3%) 131 (52.2%)
Race: <0.001
Asian 49 (6.32%) 18 (5.61%) 251 (100%)
Black 88 (11.4%) 32 (9.97%) 0 (0.00%)
Other 104 (13.4%) 49 (15.3%) 0 (0.00%)
White 534 (68.9%) 222 (69.2%) 0 (0.00%)
Marital status: 0.455
Divorced 61 (7.87%) 18 (5.61%) 18 (7.17%)
Married 385 (49.7%) 174 (54.2%) 125 (49.8%)
Null 35 (4.52%) 16 (4.98%) 13 (5.18%)
Single 200 (25.8%) 64 (19.9%) 62 (24.7%)
Widowed 94 (12.1%) 49 (15.3%) 33 (13.1%)
Hypertension: 0.988
No 474 (61.2%) 195 (60.7%) 154 (61.4%)
Yes 301 (38.8%) 126 (39.3%) 97 (38.6%)
Diabetes: 0.844
No 624 (80.5%) 258 (80.4%) 206 (82.1%)
Yes 151 (19.5%) 63 (19.6%) 45 (17.9%)
Cardiac arrhythmia: 0.221
No 742 (95.7%) 300 (93.5%) 241 (96.0%)
Yes 33 (4.26%) 21 (6.54%) 10 (3.98%)
Metastatic Cancer: 0.42
No 433 (55.9%) 167 (52.0%) 132 (52.6%)
Yes 342 (44.1%) 154 (48.0%) 119 (47.4%)
Weight 74.1 (22.0) 75.4 (22.0) 73.7 (24.2) 0.598
SOFA 507 (3.18) 5.35 (3.38) 5.18 (3.31) 0.417
Acute Physiology Score IIT 50.2 (19.9) 52.0 (22.0) 51.4 (20.4) 0.391
SIRS 2.75 (0.84) 2.81 (0.88) 2.71 (0.84) 0.359
SAPS 1T 45.1 (14.2) 46.3 (13.9) 46.3 (15.8) 0.288
OASIS 34.1 (8.52) 34.7 (8.34) 34.5 (8.93) 0.564
Glasgow Coma Scale 13.5 (2.75) 13.5 (2.72) 13.2 (3.07) 0.484
WBC 12.5 (8.71) 12.7 (9.09) 12.1 (8.80) 0.738
RBC 3.42 (0.65) 3.45 (0.69) 3.44 (0.68) 0.718
Platelet 237 (135) 232 (139) 230 (125) 0.698
Hemoglobin 9.97 (1.88) 10.1 (1.92) 9.95 (1.87) 0.483
(Continued)
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TABLE 2 Continued

Training Cohort

Validation Cohort

10.3389/fonc.2025.1661212

External Validation Cohort

Variable N N = 321 N = 251 p.overall
RDW 16.2 (2.54) 16.1 (2.54) 16.3 (2.47) 0.547
Hematocrit 30.8 (5.54) 313 (5.62) 306 (5.59) 0274
Sodium 137 (5.03) 138 (4.74) 137 (4.82) 0.21
Potassium 4.29 (0.64) 4.28 (0.57) 4.33 (0.66) 0.594
Calcium 8.34 (0.89) 8.28 (0.88) 8.35 (0.99) 0.605
Chloride 102 (6.34) 103 (5.82) 102 (5.88) 0.674
Glucose 137 (55.0) 139 (51.7) 137 (49.3) 0.878
Anion gap 14.8 (3.62) 15.0 (3.74) 14.7 (3.64) 0.552
PH 7.36 (0.08) 7.36 (0.08) 7.37 (0.08) 0.631
pCO2 44.5 (12.1) 44.3 (13.5) 44.5 (12.4) 0.971
pO2 106 (65.2) 107 (64.5) 111 (70.6) 0.642
Lactate 2.16 (1.74) 2.27 (1.79) 2.14 (1.76) 0.648
Total CO2 26.1 (6.05) 25.6 (6.77) 263 (6.12) 0.52
PT 16.7 (9.51) 16.0 (7.13) 17.5 (12.8) 0.224
PTT 36.7 (18.3) 37.9 (21.6) 37.6 (20.7) 0.634
INR 1.54 (1.08) 1.46 (0.68) 1.65 (1.58) 0.199
Urea nitrogen 28.1 (21.6) 27.6 (20.0) 27.6 (21.0) 0.89
Creatinine 1.29 (1.15) 1.32 (1.15) 1.34 (1.38) 0.816
Heart rate 914 (16.2) 932 (17.6) 89.7 (16.4) 0.041
Non invasive systolic blood 114 (206) 125 (232) 112 (172) 0.262
pressure

Non invasive diastolic blood

pressure 63.0 (10.6) 62.8 (10.9) 62.4 (10.2) 0.797
Non invasive mean blood pressure 75.1 (10.8) 75.2 (14.1) 74.5 (10.5) 0.736
Oxygen saturation 96.2 (2.33) 96.1 (2.51) 96.3 (2.15) 0.553
Temperature 36.8 (1.50) 36.8 (0.45) 36.7 (1.27) 0.417
Hospital day 11.2 (10.9) 11.0 (9.38) 11.3 (14.0) 0.967
ICU day 4.48 (5.53) 4.79 (4.92) 4.60 (6.23) 0.7
Hospital survival day 113 (269) 103 (235) 112 (214) 0.859
ICU survival day 112 (269) 102 (235) 110 (214) 0.858
ICU mortality: 0.011
No 614 (79.2%) 237 (73.8%) 211 (84.1%)

Yes 161 (20.8%) 84 (26.2%) 40 (15.9%)

Model interpretation

We computed and depicted the ranking of every feature
importance for every ML model, involving CatBoost, RF, NNET,
GBM, SVM, KNN, DT and GLM models (Figure 6A). The
importance scores were derived from the intrinsic properties of
the respective ML algorithms, highlighting that the factor most
strongly associated with ICU mortality were predominantly
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“OASIS”. Afterwards, we employed the SHAP framework to
elucidate the CatBoost model. We visualized the variables by their
mean absolute SHAP values, which confirmed that “OASIS” was the
most influential variable (Figure 6B). Additionally, a bee swarm plot
illustrated the impact of every clinic variable on ICU mortality
(Figure 6C). The y-axis represents the magnitude of risk factor, and
the x-axis denotes their effect on model output, exactly ICU
mortality, as quantified by the SHAP value. The plot revealed that
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FIGURE 2

The process of data filtering and feature selection. (A) Visualization of missing data patterns. (B) The heatmap of Spearman’s correlation analysis of the
clinic variables with ICU mortality. The correlation index ranges from -1.0 to 1.0, with a brighter color indicating a stronger correlation. (C-H) Feature
selection process with Recursive Feature Elimination (RFE) method based on six ML algorithms (CatBoost, GBM, RF, DT, SVM, and XGB).

higher OASIS, SOFA, lactate, and WBC levels were related to an
elevated risk of ICU mortality, and patients with metastatic cancer
were prone to suffer ICU mortality. To demonstrate model
interpretability, we examined two representative patients. SHAP
values were utilized to assess the influence of each feature on the
model’s predictions. In our study, low SHAP values indicated a
reduced likelihood of ICU mortality, whereas high SHAP values
suggested an elevated probability of ICU mortality. We selected the
median score (0.102) as the threshold for predicting low or high
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ICU mortality risk. For example, the first patient, who experienced
ICU mortality, had a higher SHAP value and a prediction score of
0.543, indicating a higher risk of ICU mortality (Figure 6D).
Conversely, the second patient, who did not experience ICU
mortality, had a lower SHAP value and a prediction score of
-0.332, indicating a lower risk of ICU mortality (Figure 6E). Since
the higher the prediction score, the higher the probability of ICU
mortality, we could use the model to distinguish between different
survival probabilities and help clinical decision-making.
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TABLE 3 Univariate and multivariate logistics analysis of septic patients with lung cancer for predicting ICU mortality in the training cohort.

Variable Univariable logistic analysis Multivariate logistic analysis
term OR (95%Cl) p.value OR (95%Cl) p.value
Age 1.01 (1-1.02) 0.044 1.02 (1-1.03) 0.031
Gender: Female Reference
Male 0.77 (0.59-1) 0.050 0.69 (0.5-0.97) 0.031
Race: Asian Reference
Black 1.53 (0.92-2.51) 0.099 0.63 (0.21-1.95) 0.418
Other 1.91 (1.21-2.99) 0.005 1.38 (0.49-3.99) 0.546
White 1.16 (0.83-1.64) 0.383 0.68 (0.27-1.8) 0.432
Marital status: Divorced Reference
Married 1.05 (0.62-1.86) 0.862
Null 1.72 (0.81-3.65) 0.156
Single 1.38 (0.79-2.5) 0.269
Widowed 1.25 (0.68-2.37) 0.484
Hypertension: No Reference
Yes 0.81 (0.62-1.07) 0.137
Diabetes: No Reference
Yes 1.29 (0.93-1.76) 0.120
Cardiac arrhythmia: No Reference
Yes 0.85 (0.43-1.57) 0.629
Metastatic Cancer: No Reference
Yes 1.28 (0.99-1.67) 0.063 2.14 (1.52-3.02) <0.001
Weight 0.99 (0.99-1) 0.048
SOFA 1.2 (1.15-1.25) <0.001 1.13 (1.06-1.2) <0.001
Acute Physiology Score III 1.04 (1.03-1.04) <0.001 1.03 (1.01-1.05) 0.009
SIRS 1.48 (1.26-1.75) <0.001 1 (0.72-1.39) 1
SAPS 1T 1.05 (1.04-1.05) <0.001 1.01 (0.98-1.04) 0.515
OASIS 1.1 (1.08-1.12) <0.001 1.1 (1.07-1.13) <0.001
Glasgow Coma Scale 0.95 (0.92-1) 0.037 0.97 (0.93-1.06) 0.061
WBC 1.03 (1.02-1.05) <0.001 1.04 (1.02-1.06) <0.001
RBC 0.89 (0.72-1.08) 0.249
Platelet 1(1-1) 0.252
Hemoglobin 0.92 (0.85-0.98) 0.018 0.84 (0.77-0.93) <0.001
RDW 1.1 (1.04-1.15) <0.001 1.15 (0.94-1.27) 0.067
Hematocrit 0.98 (0.96-1.01) 0.167
Sodium 0.96 (0.94-0.99) 0.004 0.92 (0.83-1.02) 0.135
Potassium 1.72 (1.4-2.1) <0.001 1.47 (0.94-2.4) 0.055
Calcium 1.08 (0.94-1.25) 0.285
Chloride 0.96 (0.94-0.99) <0.001 0.94 (0.91-0.96) <0.001
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Variable Univariable logistic analysis Multivariate logistic analysis
term OR (95%Cl) p.value OR (95%Cl) p.value
Glucose 1(1-1) 0.543
Anion gap 1.06 (1.03-1.1) <0.001 1.02 (0.92-1.14) 0.683
PH 0 (0-0.02) <0.001 0.01 (0-0.09) <0.001
pCO2 1.02 (1.01-1.03) <0.001 1.08 (0.94-1.23) 0.061
pO2 1(1-1) 0.250
Lactate 1.25 (1.15-1.36) <0.001 1.2 (1.08-1.35) 0.001
Total CO2 1 (0.98-1.02) 0.942
PT 1.01 (1-1.02) 0.132
PTT 1.01 (1-1.01) 0.016 1 (0.99-1.01) 0.987
INR 1.07 (0.95-1.2) 0.257
Urea nitrogen 1.01 (1-1.02) <0.001 1.19 (1.08-1.25) 0.003
Creatinine 1 (0.89-1.11) 0.964
Heart rate 1.02 (1.02-1.03) <0.001 1.01 (0.99-1.02) 0.366
Non invasive systolic blood 1) 0311
pressure
Non invasive diastolic blood
pressure 0.98 (0.97-1) 0.009 0.99 (0.98-1) 0.035
Non invasive mean blood
pressure 0.98 (0.97-0.99) 0.002 1.01 (1-1.04) 0.031
Oxygen saturation 0.88 (0.83-0.92) <0.001 0.72 (0.66-0.78) <0.001
Temperature 1.08 (0.95-1.37) 0.425

D iscussion (26). Another study compared APACHE II, SOFA, SAPS II, and

Because of the immunosuppression occurred in cancer patients,
sepsis may begin and develop suddenly. The co-occurrence of lung
cancer and sepsis presents significant challenges in diagnosis,
treatment, and prognosis. Diagnostically, distinguishing between
infection-induced systemic inflammatory response syndrome
(SIRS) and tumor-related fever is complex, often leading to delays
in appropriate therapy. Advanced imaging and biomarker analysis
are essential but may be limited by the patient’s critical condition,
calling a need for an outstanding biomarker to predict prognosis. In
our study, we found that Oxford Acute Severity of Illness Score
(OASIS) has the maximum predictability for ICU mortality in
patients with sepsis and lung cancer. Several studies have
compared OASIS with other severity scores such as Sequential
Organ Failure Assessment (SOFA), Simplified Acute Physiology
Score II (SAPS II), and Acute Physiology and Chronic Health
Evaluation II (APACHE-II). A previous study demonstrated that
OASIS, APACHEII, and SAPS II all presented good discrimination
and calibration in predicting the 28-day mortality risk of acute
kidney injury patients. OASIS, APACHE II, and SAPS II had better
predictive accuracy than SOFA, but due to the complexity of
APACHE II and SAPS II calculations, OASIS is a good substitute
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OASIS in predicting mortality in patients with sepsis or septic
shock. The study found that all scoring systems were positively
correlated with mortality, with SAPS II and OASIS showing higher
correlations compared to others (27). These studies support our
findings that OASIS is a robust predictor in the context of critical
illness, which shed light on its predictive capabilities for septic
patients with lung cancer.

Therapeutically, managing sepsis in lung cancer patients
requires a delicate balance. Immunosuppressive effects of
chemotherapy and the cancer itself increase susceptibility to
infections, complicating sepsis management. Broad-spectrum
antibiotics are standard; however, the potential for drug
interactions and organ dysfunction necessitates careful selection
and dosing. Recent studies have explored targeted therapies, such as
aumolertinib, a third-generation EGFR-TKI, which has shown
effectiveness in NSCLC cases with EGFR mutations (28). In the
phase 3 AENEAS trial, aumolertinib significantly extended
progression-free survival compared to gefitinib in patients
diagnosed as advanced EGFR mutation-positive NSCLC (29).
Prognostically, the combination of lung cancer and sepsis
portends a poor outcome. Sepsis exacerbates the already
compromised physiological state due to malignancy, leading to
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higher mortality rates. Early recognition and prompt, aggressive
treatment of sepsis are crucial to improving survival (30).

Due to these challenges, accurate prediction of ICU mortality
and identification of its risk factors are crucial for lung cancer
patients with sepsis. The goal of our study is to establish a novel ML
model for early ICU mortality prediction. By collecting essential
clinic information and constructing ML models using a benchmark
framework, we calculated risk scores for ICU mortality prediction,
enabling precise prediction of ICU death probability. Once the risk
tiers are established, the next step is to translating these into
actionable clinical adjustments, which involves tailoring
interventions based on the identified risk level. The clinical
significance of this work is in enhancing patient management and
therapy plan for patients with both lung cancer and sepsis, aiding
clinicians in planning more informed, individual therapies.
Moreover, the model’s predictions can assist in selecting adjuvant
therapies, determining follow-up frequency, and deciding on
additional lab tests. Incorporating this predictive model into clinic
practices promotes data-driven decision-making, enhancing
therapy outcomes and optimizing resource utilization. Ultimately,
this integration helps standardize care across various healthcare
providers and institutions, potentially decreasing diversity in
treatment methods and therapy outcomes.

Besides, the key contribution of our study is the demonstration
of how interpretable ML algorithms, particularly using SHAP
values, can effectively identify critical factors influencing ICU
mortality. The CatBoost algorithm, a gradient boosting
framework based on symmetric decision trees (oblivious trees),
excels in accuracy and efficiency, especially in handling categorical
features, while requiring fewer parameters (31). Its performance
often matches or surpasses that of other advanced ML algorithms,
displaying outperforming discrimination, calibration, and clinical
utility. However, due to its black-box nature, interpretation is
essential for ML model. SHAP summary plots and force maps
provide clinicians with clear, visual insights into the factors driving
predictions, enhancing the model’s interpretability and highlighting
key risk factors. Additionally, advanced ML techniques such as
RFECV for feature selection, GridSearchCV for hyperparameter
tuning, and SMOTE oversampling to address sample imbalance
further improved the accuracy of ICU death prediction. This precise
predictive model enables clinicians to develop personalized
treatment strategies, ensuring timely interventions and improving
the prognosis of lung cancer patients combined sepsis.

For critically sick patients, proactive and proactive treatment to
address risk variables is essential (32). Nevertheless, some clinical
variables are challenging to obtain in clinical practice, and many
clinic variables show varying degrees of limitations in terms of
accuracy, sensitivity, or specificity. Studies have indicated that
SOFA scores often lack both sensitivity and specificity (33).
Additionally, the clinical profiles and therapy outcomes of
patients with both sepsis and lung carcinoma differ significantly
from these patients with no cancer (34). Notably, the majority of
critical illness scoring systems fail to consider cancer-specific factors
(35). Specifically, we conducted univariate and multivariate logistic
regression analyses to identify significant predictors of ICU

Frontiers in Oncology

12

10.3389/fonc.2025.1661212

mortality, including some cancer-related clinical factors.
Leveraging these readily accessible clinic data, we successfully
developed a robust CatBoost model for early ICU mortality
prediction, thereby assisting clinicians in personalized therapy
and decision-making. As observed in Table 2, there are some
notable differences in the baseline profiles of patients among the
training, internal testing and external testing databases, likely
attributable to variations in hospital admissions. Despite these
differences, the model demonstrated brilliant performances in
both internal and external validation datasets, highlighting its
robust applicability.

In our research, we observed that the presence of distant metastasis
is linked to poor prognosis, likely due to the immunocompromised state
of these patients (36). Immunosuppression has been shown to correlate
with adverse outcomes in septic patients (37). Greater focus is needed on
managing patients with distant metastasis to improve their outcomes.
Older patients are at a higher risk of developing sepsis compared to
younger individuals, and they often exhibit reduced resilience when
managing the condition (38). Previous research has explored the
association between the anion gap and prognosis across various
diseases. As a well-established marker for evaluating acid-base
balance (39), an abnormal anion gap is linked to acid-base
disturbances, which are considered to significantly affect outcomes in
critically sick patients (40). Similarly, our findings indicate that serum
anion gap is a significantly risk variable for ICU mortality in patients
with both sepsis and lung carcinoma. Several scoring systems for critical
illness, including SAPS II, OASIS and SOFA scores, have been
established to assess disease intensity and forecast short-term
outcomes. The SAPS 1II is a scoring system developed to assess the
intensity of illness in patients admitted to ICU (35). It evaluates 17
physiological variables, including vital signs and laboratory results, to
generate a score that predicts the probability of hospital mortality, which
was robust in our research for septic lung cancer patients’ mortality
prediction. The OASIS is a prognostic tool to appraise the severity of
intensity in critically sick patients. It incorporates variables such as age,
heart rate, mean arterial pressure, temperature, respiratory rate, urine
output, Glasgow Coma Scale, and specific laboratory values to generate
a score that predicts in-hospital mortality (41), which was the most
powerful indicator in our analysis for lung cancer patients’ mortality
prediction, calling its application especially in lung cancer patients. The
SOFA score is a clinical metric used to evaluate and quantify the degree
of organ dysfunction across six physiological systems: respiratory,
cardiovascular, hepatic, coagulation, renal, and neurological. It is
particularly valuable in ICUs for monitoring disease progression,
especially in sepsis cases (42), which was also validated in our analysis
with septic lung cancer patients.

This study, while showcasing notable strengths, also has several
limitations. First, we determined the required sample size for our
external validation cohort. However, due to the limited availability
of patients with complete follow-up data, we were unable to
assemble a sufficiently large external validation set. While we
acknowledge that larger sample sizes enhance the reliability of
model evaluation, we have endeavored to utilize the maximum
possible sample size given the current research constraints. To
maximize the validation reliability despite the smaller external
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FIGURE 3

Establishment and evaluation of the ML models in the training set. (A) ROC curves of different ML models in the training set. (B) PR curves of
different ML models in the training set. (C) Calibration curves of different ML models in the training set. (D) DCA curves of different ML models in the
training set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set. (F) The performance of 13 ML models in
terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the training set. (G) Ten-fold cross-validation results of
different ML models in the training set. (H) Confusion matrix of the best ML model in the training set. ML, machine learning; CAT, categorical
boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive
Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic
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FIGURE 4

Evaluation of the ML models in the internal validation set. (A) ROC curves of different ML models in the internal validation set. (B) PR curves of
different ML models in the internal validation set. (C) Calibration curves of different ML models in the internal validation set. (D) DCA curves of
different ML models in the internal validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set.

(F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the internal
validation set. (G) Confusion matrix of the best ML model in the internal validation set. ML, machine learning; CAT, categorical boosting; LR, logistic
regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear
discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization;

SVM, support vector machine; KNN, k-nearest neighbor.
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FIGURE 5

Evaluation of the ML models in the external validation set. (A) ROC curves of different ML models in the external validation set. (B) PR curves of
different ML models in the external validation set. (C) Calibration curves of different ML models in the external validation set. (D) DCA curves of
different ML models in the external validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set.
(F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the external

validation set. (G) Confusion matrix of the best ML model in the external

regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear
discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization;

SVM, support vector machine; KNN, k-nearest neighbor.

validation set, we employed a 10-fold cross-validation method to
assess the model’s generalizability. Moving forward, we intend to
expand the sample size of the external validation cohort in future
research to further substantiate the model’s universality and
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validation set. ML, machine learning; CAT, categorical boosting; LR, logistic

reliability. Second, the study relies on retrospective information in
the MIMIC IV database, which introduces the potential for
selection bias. Variations in data collection across hospitals and
the retrospective design also resulted in some missing clinical
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ML model interpretation. (A) Importance ranking of features in 13 ML prediction algorithms (CatBoost, RF, NNET, GBM, SVM, KNN, DT and GLM).

(B) The importance ranking of different variables according to the mean (|[SHAP value|) using the optimal CatBoost model. (C) The importance
ranking of different risk factors with stability and interpretation using the optimal CatBoost model. The higher SHAP value of a feature is given, the
higher risk of ICU mortality the patient would have. The yellow part in feature value represents higher value. (D) SHAP value explanation in a classical
sample with ICU mortality. (E) SHAP value explanation in a classical sample without ICU mortality.

features. Additionally, the absence of key clinicopathological
parameters, such as smoking, socioeconomic factors, and gene
mutations, was a limitation, as the MIMIC IV database does not
include imaging data. While we included a broad range of baseline
and routine clinical features to improve predictive accuracy, this
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added complexity to the model’s practical use in clinical settings.
Lastly, the model remains to be integrated into clinic practices,
necessitating additional prospective, multicenter, and large-scale
validation studies to confirm its applicability and practical utility in
future settings.
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Conclusions

In our research, we successfully established a CatBoost-based
prediction model using a ML benchmark framework to precisely
forecast ICU mortality in lung carcinoma patients combined sepsis.
We succeeded in identifying significantly predictive variables for ICU
mortality in this patient population. This study establishes a
groundwork for subsequent endeavors to refine ICU mortality
predictions and prognostic forecasts, which may assist clinicians in
making informed decisions and customizing therapeutic strategies.
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