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Purpose: Sepsis is a leading cause of mortality, especially among

immunocompromised patients with lung cancer. We aimed to establish machine

learning (ML) based model to accurately forecast ICU mortality in patients with

sepsis combined lung cancer.

Methods: We incorporated patients with sepsis combined lung cancer from

Medical Information Mart for Intensive Care IV (MIMIC IV) database. Univariate

and multivariate logistic analysis were employed to select variables. Recursive

Feature Elimination (RFE) method based on 6 ML algorithms was used for feature

selection. We harnessed 13 ML algorithms to construct prediction model, which

were assessed by area under the curve (AUC), accuracy, sensitivity, specificity,

precision, cross-entropy and Brier scores. The best MLmodel was constructed to

predict ICU mortality, and the predictive results were interpretated by SHapley

Additive exPlanations (SHAP) framework.

Results: A sum of 1096 lung cancer patients combined sepsis from MIMIC IV

database and 251 patients from the external validation set were included. We

utilized 13 clinical variables to establish prediction model for ICU mortality.

CatBoost model was identified as the prime prediction model with the highest

AUC in the training (0.931 [0.921, 0.945]), internal validation (0.698 [0.673, 0.724])

and external validation (0.794 [0.725, 0.879]) cohorts. Oxford Acute Severity of

Illness Score (OASIS) had the greatest influence on ICU mortality according to

SHAP interpretation.

Conclusions: Our ML models demonstrate excellent accuracy and reliability,

facilitating more rigorous personalized prognostic forecast to lung cancer

patients combined sepsis.
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Introduction

Sepsis is triggered by an acute infection that induces an

excessive and dysregulated immune response in the body, causing

multiple organ dysfunctions (1). Each year, approximately 49

million people worldwide are affected by sepsis (2), and about

30% of intensive care unit (ICU) patients are diagnosed with it (3).

The mortality rate for sepsis can be as high as 40% (4). Treatment

options and outcomes for sepsis patients vary widely due to the

differences in infectious agents, individual characteristics, and

medical history. Consequently, it is impractical to assess and

manage sepsis cases using a single scoring system, and greater

attention should be given to the heterogeneity among sepsis

patients (5).

Lung cancer remains one of the most prevalent and deadly

tumors in the world, with complex challenges in diagnosis, staging,

therapy, and future outlook. Accurate diagnosis and staging are

crucial for guiding treatment decisions and assessing prognosis.

Diagnostic methods involve imaging techniques such as computed

tomography (CT) and positron emission tomography (PET), along

with histopathological examination and the use of molecular markers

to identify specific mutations (e.g., EGFR, ALK) (6). Molecular typing

of lung carcinoma, particularly the distinction between small cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC), has further

refined treatment approaches, enabling targeted therapies that

improve patient outcomes (7). Treatment strategies for lung cancer

have evolved significantly, transitioning from conventional

chemotherapy and radiation to more individualized approaches.

Targeted therapies and immune checkpoint inhibitors, which

harness the body’s immune response against cancer cells, have

demonstrated efficacy in NSCLC patients with specific genetic

alterations (8). For instance, EGFR inhibitors and ALK inhibitors

have shown improved survival in patients with these mutations (9).

Meanwhile, immunotherapies such as PD-1 and PD-L1 inhibitors

have revolutionized treatment for advanced or metastatic cases by

extending survival times, although their efficacy varies widely among

patients (10). In clinical practice, diagnosing and treating patients

with lung cancer complicated by sepsis presents significant

challenges. Patients with lung cancer often have compromised

immune function, making them more susceptible to infections that

can rapidly progress to sepsis, leading tomulti-organ dysfunction and

increased mortality (11). The complexity of managing lung cancer

with concurrent sepsis stems from factors such as tumor burden,

immunosuppression, and the adverse effects of anticancer treatments,

which complicate early diagnosis and treatment strategies (12).

Nowadays, nomograms have gained widespread application in

predicting tumor mortality (13). However, the sensitivity, specificity

and generalizability of the previous models, as well as the existing

assessment tools, could be inadequate, highlighting the pressing

need for more accurate and specific prognostic prediction methods

(14). Machine learning (ML), a branch of artificial intelligence, has

garnered increasing popularity owing to its proficiency in managing

complex, non-linear relationships, especially when dealing with

large datasets and loosely structured data (15). The emergence of

big data analytics and ML algorithms has rendered new approaches
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for identifying risk factors influencing prediction feasible. A

number of predictive models utilizing these technologies have

demonstrated exceptional performance and are progressively

being incorporated into clinical practice (16). Nevertheless, to

date, no elaborate model exists for predicting ICU mortality in

patients with sepsis complicated by lung cancer, underscoring the

necessity for the construction and verification of a new ML model

for risk stratification. To the best of our knowledge, our research

represents the first endeavor to construct and verify a predictive

model employing multiple ML algorithms for ICU mortality

prediction in patients with sepsis and lung cancer. Our model

harnesses extensive population information and the competence of

ML, thereby providing an individual predictive model that can help

clinicians in meticulously appraising the ICU mortality risk of

septic patients with lung cancer.
Materials and methods

Data collection and study population

The MIMIC-IV database is a publicly available resource

containing records of over 76,000 ICU admissions at Beth Israel

Deaconess Medical Center in Boston, Massachusetts, USA, from

2008 to 2019. It provides detailed data for every admission,

involving laboratory results, vital signs, medications, and

discharge status (17). Patients from Xuzhou Central Hospital and

Huai’an Hospital Affiliated to Xuzhou Medical University were

included to form an external validation set. The research was

conducted based on the guidelines of the Declaration of Helsinki

and was approved by the Ethics Committee of Xuzhou Central

Hospital and Huai’an Hospital Affiliated to Xuzhou Medical

University. Informed consent was acquired from patients

involved in our research. The flowchart of the patient selection

procedure is displayed in Figure 1. Inclusion criteria comprised

individuals diagnosed as lung cancer and sepsis based on

International Classification of Diseases (Ninth Revision code), as

well as aged over eighteen years at the time admitted by ICU. Sepsis

diagnosis was conducted according to sepsis definition 3.0 (18).

Exclusion criteria comprised patients with repeated ICU admissions

except for the first time or clinical variables with more than 50%

missing data. Clinical information of septic lung cancer patients in

MIMIC IV database included the following (listed in Table 1): (1)

demographics (age and sex); (2) tumor stages, with distant

metastasis defined by the American Joint Committee on Cancer

8th edition; (3) chronic conditions such as hypertension or diabetes;

(4) organ functions assessed by the Sequential Organ Failure

Assessment (SOFA) score; (5) laboratory tests. Vital signs and

laboratory results from the first 24 hours of ICU admission were

included. Missing information was tackled with multiple

imputation by chained equations (MICE). The study’s endpoints

were ICU death or safe discharge. Raw data extraction via Navicat

for SQL Server was processed using R software. We determined the

minimum sample size needed for an external validation cohort by

formula of Riley et al. (19).
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Feature selection

In our initial analysis, clinic variables with a significance level of

P < 0.05 in both univariate and multivariate logistic analyses within

the training dataset were selected for feature selection. We then

applied Recursive Feature Elimination (RFE) according to six ML

approaches, namely categorical boosting (CatBoost), random forest

(RF), support vector machine (SVM), extreme gradient boosting

(XGB), decision tree (DT), and gradient boosting machine (GBM),

coupled with 10-fold cross-validation to select the clinic variables.

The RFE process involves iteratively building models and ranking

features by their importance, systematically removing the least

significant ones to generate a comprehensive feature ranking (20).

A random seed of “123” was determined for our analysis.

Subsequently, the Robust Rank Aggregation (RRA) algorithm was

employed to consolidate the feature importance rankings from the

six ML algorithms utilized in RFE, yielding a comprehensive
Frontiers in Oncology 03
ranking of all factors (21). Following the selection of key features,

we proceed to the model development stage.
Development and verification of the
predictive model for ICU mortality

To develop the ML model, we utilized thirteen ML algorithms,

involving CatBoost, RF, SVM, XGB, DT, GBM, k-nearest neighbor

(KNN), logistic regression (LR), naive bayes classifier (NBC), linear

discriminant analysis (LDA), quadratic discriminant analysis

(QDA), neural network (NNET) and generalized linear model

(GLM) to forecast ICU mortality with “mlr3” R package (22).

This method facilitated the comparison of model performances

and the selection of the optimal predictive model. To address class

imbalance, which can significantly distort performance metrics, we

applied the Synthetic Minority Over-sampling Technique
FIGURE 1

The workflow diagram for study design and patient screening.
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(SMOTE) during model training (23). We then enhanced our

methodology by conducting nested resampling, involving a two-

tiered k-fold cross-validation process: one for hyperparameter

tuning and another for model selection. Additionally, we

conducted a 1000-evaluation random searching within a 10-fold

cross-validation framework, repeating five times in every model.

The best model was selected based on the highest Area Under the

Curve (AUC) and the lowest Brier score, while ensuring a well-

calibrated curve. Internal and external validation was performed

using 10-fold cross-validation. The Precision-Recall Curve (PRC)

was used to assess the performances of classification models on

imbalanced data. The calibration curve evaluated the model’s

discriminative ability, and Decision Curve Analysis (DCA) was

conducted to validate the clinical benefits of the MLmodel using the

“runway” R package (https://github.com/ML4LHS/runway). The

importance of every factor was quantified by calculating its mean

contribution to the AUC as a percentage relative to the full model

using the “DALEX” R package (24). SHapley Additive exPlanations

(SHAP) values were employed to demonstrate the predictions of the

optimal model and to clarify the black-box ML framework using the

“shapviz” R package (https://github.com/ModelOriented/

shapviz) (25).
Results

Demographic composition and baseline
data

A sum of 1096 lung cancer patients combined with sepsis from

MIMIC IV database and 251 patients from Xuzhou Central

Hospital and Huai’an Hospital Affiliated to Xuzhou Medical

University were involved. We separated patients in MIMIC IV

cohort randomly into training and internal testing cohorts with a

7:3 ratio, respectively. Meanwhile, patients in Xuzhou Central

Hospital and Huai’an Hospital Affiliated to Xuzhou Medical

University were involved as the external testing cohort. For

patients in MIMIC IV cohort, 854 cases (77.65%) were alive,

while 245 cases (22.35%) suffered ICU mortality (Table 1). More

clinic data of the training and two testing cohorts can be found in

Table 2. In the training, internal validation and external validation

sets, the ICU mortality was 161 (20.8%), 84 (26.2%) and 40 (15.9%)

(Table 2). The detailed selection process of patients in MIMIC IV

cohort is displayed in Figure 1.
Feature selection of the predictive model

We used the multiple imputation by chained equations (MICE)

method to address the missing information in our patient data from

MIMIC IV database (Figure 2A). Ultimately, five imputed datasets

were created, and Rubin’s rules were utilized to amalgamate the

final analytical outcomes (Supplementary Figure 1). Drawing from

our clinical expertise, these clinic variables were chosen for

subsequent logistic regression analysis (Table 3), with variables
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with a correlation coefficient exceeding 0.6 excluded (Figure 2B).

Thereafter, univariate and multivariate logistic regression analyses

were conducted within the training cohort to identify the salient

variables predictive of ICU mortality. We then discovered that Urea

nitrogen (BUN, OR 1.19 (1.08-1.25), p = 0.003), Chloride (OR 0.94

(0.91-0.96), p < 0.001), Diastolic blood pressure (DBP, OR 0.99

(0.98-1), p = 0.035), Gender (OR 0.69 (0.5-0.97), p = 0.031),

Hemoglobin (OR 0.84 (0.77-0.93), p < 0.001), Lactate (OR 1.2

(1.08-1.35), p = 0.001), Mean blood pressure (MBP, OR 1.01 (1-

1.04), p = 0.031), Metastatic cancer (OR 2.14 (1.52-3.02), p < 0.001),

Oxygen saturation (OR 0.72 (0.66-0.78), p < 0.001), OASIS (OR 1.1

(1.07-1.13), p < 0.001), PH (OR 0.01 (0-0.09), p < 0.001), SOFA (OR

1.13 (1.06-1.2), p < 0.001), WBC (OR 1.04 (1.02-1.06), p < 0.001),

Age (OR 1.02 (1-1.03), p = 0.031) and Acute Physiology Score III

(OR 1.03 (1.01-1.05), p = 0.009) were exactly important to forecast

ICU mortality, with significance (p < 0.05, Table 3). Correlation

analysis revealed that OASIS is the most influential variable

associated with ICU mortality (Figure 2B). Subsequently, we

employed RFE leveraging six ML algorithms (GBM, SVM, RF,

DT, XGB and CatBoost), coupled with 1–fold cross-validation to

refine the clinical variables (Figures 2C-H). The RFE process

identified the optimal feature set using the CatBoost algorithm,

which retained thirteen variables and achieved the highest AUC of

0.948 (Figure 2C). The RRA algorithm was then applied to generate

a comprehensive ranking of the clinical variables across the six ML

algorithms, with OASIS emerging as the most vital (Supplementary

Table 1). These thirteen variables, selected by RFE, were

subsequently incorporated into the subsequent model

establishment procedures. (Supplementary Table 1).
Construction and verification of ML model
for ICU mortality

To construct an accurate model to forecast ICU mortality, we

included the thirteen clinic factors (“BUN”, “Chloride”, “DBP”,

“Gender”, “Hemoglobin”, “Lactate”, “MBP”, “Metastatic cancer”,

“O2Sat”, “OASIS”, “PH”, “SOFA”, “WBC”) selected by RFE based

on CatBoost. Totally thirteen ML algorithms, involving CatBoost,

RF, SVM, XGB, DT, GBM, KNN, LR, NBC, LDA, QDA, NNET and

GLM, were developed using the selected thirteen variables from the

training set. Hyperparameter tuning were optimized through 5-fold

cross-validation and random searches. The performance of these

thirteen models was then assessed in both internal and external

validation cohorts. ROC curve analysis indicated that the CatBoost

model achieved the highest AUC in the training (0.931 [0.921,

0.945]), internal validation (0.698 [0.673, 0.724]), and external

validation (0.794 [0.725, 0.879]) cohorts (Figures 3A, 4A, 5A).

Following hyperparameter tuning via grid search, the optimal

hyperparameters for CatBoost were identified as depth, 6;

learning_rate, 0.02873998; iterations, 662; 12_leaf_reg, 6.735671.

PRC analysis demonstrated the CatBoost model’s effectiveness in

managing imbalanced data (Figures 3B, 4B, 5B). Calibration curves

revealed that CatBoost algorithm had the best fitting ability and

could accurately predict ICU mortality (Figures 3C, 4C, 5C).
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TABLE 1 Clinicopathological characteristics of septic patients with lung cancer from MIMIC IV database in the ICU Non-Mortality group and ICU
Mortality group.

Variable ICU Non-Mortality N = 851 ICU Mortality N = 245 p.overall

Age 68.4 (12.3) 68.4 (12.8) 0.968

Gender: 0.095

Female 384 (45.1%) 126 (51.4%)

Male 467 (54.9%) 119 (48.6%)

Race: 0.066

Asian 50 (5.88%) 17 (6.94%)

Black 90 (10.6%) 30 (12.2%)

Other 108 (12.7%) 45 (18.4%)

White 603 (70.9%) 153 (62.4%)

Marital status: 0.418

Divorced 65 (7.64%) 14 (5.71%)

Married 440 (51.7%) 119 (48.6%)

Null 36 (4.23%) 15 (6.12%)

Single 198 (23.3%) 66 (26.9%)

Widowed 112 (13.2%) 31 (12.7%)

Hypertension: 0.183

No 510 (59.9%) 159 (64.9%)

Yes 341 (40.1%) 86 (35.1%)

Diabetes: 0.161

No 693 (81.4%) 189 (77.1%)

Yes 158 (18.6%) 56 (22.9%)

Cardiac arrhythmia: 0.599

No 807 (94.8%) 235 (95.9%)

Yes 44 (5.17%) 10 (4.08%)

Metastatic Cancer: 0.047

No 480 (56.4%) 120 (49.0%)

Yes 371 (43.6%) 125 (51.0%)

Weight 74.9 (21.6) 73.1 (23.4) 0.269

SOFA 4.65 (2.93) 6.89 (3.66) <0.001

Acute Physiology Score III 47.0 (18.2) 63.6 (23.0) <0.001

SIRS 2.71 (0.86) 2.97 (0.80) <0.001

SAPS II 43.2 (12.8) 53.2 (15.7) <0.001

OASIS 32.8 (7.81) 39.6 (8.58) <0.001

Glasgow Coma Scale 13.6 (2.54) 13.1 (3.33) 0.06

WBC 11.9 (7.88) 14.8 (11.2) <0.001

RBC 3.44 (0.67) 3.38 (0.63) 0.155

Platelet 235 (133) 239 (148) 0.686

Hemoglobin 10.1 (1.92) 9.76 (1.77) 0.013

(Continued)
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Calibration curves indicated that CatBoost algorithm’s probability

predictions are consistent and well-calibrated, and ensured that the

risk estimates provided by the model can be trusted to reflect the

true likelihood of ICU mortality. DCA curves implied that the

CatBoost algorithm had the highest clinical utility and could

effectively aid in predicting ICU mortality (Figures 3D, 4D, 5D).

DCA curves indicated that using the CatBoost model to guide

clinical decision-making would result in net clinical benefit for

patients who are likely to benefit from certain interventions, such as

more aggressive treatment or intensive monitoring. The curves of

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) of the thirteen ML algorithms were plotted
Frontiers in Oncology 06
to extensively identified that the CatBoost algorithm was

outperforming in predicting ICU mortality (Figures 3E, 4E, 5E).

Model performance was further evaluated using accuracy,

sensitivity, specificity, precision, cross-entropy, and Brier scores,

which collectively indicated the robustness of the CatBoost model in

predicting ICU mortality (Figures 3F, 4F, 5F). Tenfold cross-

validation in the training cohort also confirmed the superior

performance of CatBoost (Figure 3G). Confusion matrices

highlighted the outstanding predictive capabilities of CatBoost

across all three cohorts (Figures 3H, 4G, 5G). Hence, CatBoost

was selected as the optimal model for predicting ICU mortality and

model validation was sufficient for proving its capacity.
TABLE 1 Continued

Variable ICU Non-Mortality N = 851 ICU Mortality N = 245 p.overall

RDW 16.0 (2.54) 16.7 (2.48) <0.001

Hematocrit 31.0 (5.65) 30.5 (5.25) 0.155

Sodium 137 (4.65) 137 (5.83) 0.028

Potassium 4.24 (0.59) 4.47 (0.70) <0.001

Calcium 8.32 (0.84) 8.32 (1.06) 0.964

Chloride 103 (5.99) 101 (6.76) 0.015

Glucose 137 (54.7) 140 (51.7) 0.553

Anion gap 14.7 (3.51) 15.6 (4.04) 0.001

PH 7.37 (0.07) 7.34 (0.09) <0.001

pCO2 43.5 (12.0) 46.9 (13.6) 0.001

pO2 108 (69.2) 103 (51.8) 0.287

Lactate 1.98 (1.48) 2.79 (2.24) <0.001

Total CO2 26.0 (6.07) 25.9 (6.82) 0.72

PT 16.2 (9.10) 17.3 (8.03) 0.073

PTT 36.2 (18.8) 39.7 (21.0) 0.029

INR 1.49 (1.03) 1.60 (0.81) 0.1

Urea nitrogen 26.7 (20.9) 32.2 (21.4) 0.001

Creatinine 1.29 (1.17) 1.34 (1.09) 0.491

Heart rate 90.6 (16.2) 96.5 (17.3) <0.001

Non invasive systolic blood pressure 114 (20.6) 126 (263) 0.502

Non invasive diastolic blood pressure 63.2 (10.6) 61.9 (11.1) 0.099

Non invasive mean blood pressure 75.8 (12.1) 72.9 (10.7) <0.001

Oxygen saturation 96.3 (2.12) 95.6 (3.08) <0.001

Temperature 36.8 (1.43) 36.8 (0.51) 0.428

Hospital day 12.4 (11.1) 6.70 (6.06) <0.001

ICU day 4.28 (5.32) 5.58 (5.41) 0.001

Hospital survival day 149 (295) 6.23 (6.06) <0.001

ICU survival day 148 (295) 4.92 (5.42) <0.001
frontiersin.org

https://doi.org/10.3389/fonc.2025.1661212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tang et al. 10.3389/fonc.2025.1661212
TABLE 2 Clinicopathological characteristics of septic patients with lung cancer in the training, internal validation and external validation cohorts.

Variable
Training Cohort
N = 775

Validation Cohort
N = 321

External Validation Cohort
N = 251

p.overall

Age 68.2 (12.3) 68.9 (12.6) 68.2 (12.4) 0.719

Gender: 0.932

Female 360 (46.5%) 150 (46.7%) 120 (47.8%)

Male 415 (53.5%) 171 (53.3%) 131 (52.2%)

Race: <0.001

Asian 49 (6.32%) 18 (5.61%) 251 (100%)

Black 88 (11.4%) 32 (9.97%) 0 (0.00%)

Other 104 (13.4%) 49 (15.3%) 0 (0.00%)

White 534 (68.9%) 222 (69.2%) 0 (0.00%)

Marital status: 0.455

Divorced 61 (7.87%) 18 (5.61%) 18 (7.17%)

Married 385 (49.7%) 174 (54.2%) 125 (49.8%)

Null 35 (4.52%) 16 (4.98%) 13 (5.18%)

Single 200 (25.8%) 64 (19.9%) 62 (24.7%)

Widowed 94 (12.1%) 49 (15.3%) 33 (13.1%)

Hypertension: 0.988

No 474 (61.2%) 195 (60.7%) 154 (61.4%)

Yes 301 (38.8%) 126 (39.3%) 97 (38.6%)

Diabetes: 0.844

No 624 (80.5%) 258 (80.4%) 206 (82.1%)

Yes 151 (19.5%) 63 (19.6%) 45 (17.9%)

Cardiac arrhythmia: 0.221

No 742 (95.7%) 300 (93.5%) 241 (96.0%)

Yes 33 (4.26%) 21 (6.54%) 10 (3.98%)

Metastatic Cancer: 0.42

No 433 (55.9%) 167 (52.0%) 132 (52.6%)

Yes 342 (44.1%) 154 (48.0%) 119 (47.4%)

Weight 74.1 (22.0) 75.4 (22.0) 73.7 (24.2) 0.598

SOFA 5.07 (3.18) 5.35 (3.38) 5.18 (3.31) 0.417

Acute Physiology Score III 50.2 (19.9) 52.0 (22.0) 51.4 (20.4) 0.391

SIRS 2.75 (0.84) 2.81 (0.88) 2.71 (0.84) 0.359

SAPS II 45.1 (14.2) 46.3 (13.9) 46.3 (15.8) 0.288

OASIS 34.1 (8.52) 34.7 (8.34) 34.5 (8.93) 0.564

Glasgow Coma Scale 13.5 (2.75) 13.5 (2.72) 13.2 (3.07) 0.484

WBC 12.5 (8.71) 12.7 (9.09) 12.1 (8.80) 0.738

RBC 3.42 (0.65) 3.45 (0.69) 3.44 (0.68) 0.718

Platelet 237 (135) 232 (139) 230 (125) 0.698

Hemoglobin 9.97 (1.88) 10.1 (1.92) 9.95 (1.87) 0.483

(Continued)
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Model interpretation

We computed and depicted the ranking of every feature

importance for every ML model, involving CatBoost, RF, NNET,

GBM, SVM, KNN, DT and GLM models (Figure 6A). The

importance scores were derived from the intrinsic properties of

the respective ML algorithms, highlighting that the factor most

strongly associated with ICU mortality were predominantly
Frontiers in Oncology 08
“OASIS”. Afterwards, we employed the SHAP framework to

elucidate the CatBoost model. We visualized the variables by their

mean absolute SHAP values, which confirmed that “OASIS” was the

most influential variable (Figure 6B). Additionally, a bee swarm plot

illustrated the impact of every clinic variable on ICU mortality

(Figure 6C). The y-axis represents the magnitude of risk factor, and

the x-axis denotes their effect on model output, exactly ICU

mortality, as quantified by the SHAP value. The plot revealed that
TABLE 2 Continued

Variable
Training Cohort
N = 775

Validation Cohort
N = 321

External Validation Cohort
N = 251

p.overall

RDW 16.2 (2.54) 16.1 (2.54) 16.3 (2.47) 0.547

Hematocrit 30.8 (5.54) 31.3 (5.62) 30.6 (5.59) 0.274

Sodium 137 (5.03) 138 (4.74) 137 (4.82) 0.21

Potassium 4.29 (0.64) 4.28 (0.57) 4.33 (0.66) 0.594

Calcium 8.34 (0.89) 8.28 (0.88) 8.35 (0.99) 0.605

Chloride 102 (6.34) 103 (5.82) 102 (5.88) 0.674

Glucose 137 (55.0) 139 (51.7) 137 (49.3) 0.878

Anion gap 14.8 (3.62) 15.0 (3.74) 14.7 (3.64) 0.552

PH 7.36 (0.08) 7.36 (0.08) 7.37 (0.08) 0.631

pCO2 44.5 (12.1) 44.3 (13.5) 44.5 (12.4) 0.971

pO2 106 (65.2) 107 (64.5) 111 (70.6) 0.642

Lactate 2.16 (1.74) 2.27 (1.79) 2.14 (1.76) 0.648

Total CO2 26.1 (6.05) 25.6 (6.77) 26.3 (6.12) 0.52

PT 16.7 (9.51) 16.0 (7.13) 17.5 (12.8) 0.224

PTT 36.7 (18.3) 37.9 (21.6) 37.6 (20.7) 0.634

INR 1.54 (1.08) 1.46 (0.68) 1.65 (1.58) 0.199

Urea nitrogen 28.1 (21.6) 27.6 (20.0) 27.6 (21.0) 0.89

Creatinine 1.29 (1.15) 1.32 (1.15) 1.34 (1.38) 0.816

Heart rate 91.4 (16.2) 93.2 (17.6) 89.7 (16.4) 0.041

Non invasive systolic blood
pressure

114 (20.6) 125 (232) 112 (17.2) 0.262

Non invasive diastolic blood
pressure

63.0 (10.6) 62.8 (10.9) 62.4 (10.2) 0.797

Non invasive mean blood pressure 75.1 (10.8) 75.2 (14.1) 74.5 (10.5) 0.736

Oxygen saturation 96.2 (2.33) 96.1 (2.51) 96.3 (2.15) 0.553

Temperature 36.8 (1.50) 36.8 (0.45) 36.7 (1.27) 0.417

Hospital day 11.2 (10.9) 11.0 (9.38) 11.3 (14.0) 0.967

ICU day 4.48 (5.53) 4.79 (4.92) 4.60 (6.23) 0.7

Hospital survival day 113 (269) 103 (235) 112 (214) 0.859

ICU survival day 112 (269) 102 (235) 110 (214) 0.858

ICU mortality: 0.011

No 614 (79.2%) 237 (73.8%) 211 (84.1%)

Yes 161 (20.8%) 84 (26.2%) 40 (15.9%)
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higher OASIS, SOFA, lactate, and WBC levels were related to an

elevated risk of ICU mortality, and patients with metastatic cancer

were prone to suffer ICU mortality. To demonstrate model

interpretability, we examined two representative patients. SHAP

values were utilized to assess the influence of each feature on the

model’s predictions. In our study, low SHAP values indicated a

reduced likelihood of ICU mortality, whereas high SHAP values

suggested an elevated probability of ICU mortality. We selected the

median score (0.102) as the threshold for predicting low or high
Frontiers in Oncology 09
ICU mortality risk. For example, the first patient, who experienced

ICU mortality, had a higher SHAP value and a prediction score of

0.543, indicating a higher risk of ICU mortality (Figure 6D).

Conversely, the second patient, who did not experience ICU

mortality, had a lower SHAP value and a prediction score of

-0.332, indicating a lower risk of ICU mortality (Figure 6E). Since

the higher the prediction score, the higher the probability of ICU

mortality, we could use the model to distinguish between different

survival probabilities and help clinical decision-making.
FIGURE 2

The process of data filtering and feature selection. (A) Visualization of missing data patterns. (B) The heatmap of Spearman’s correlation analysis of the
clinic variables with ICU mortality. The correlation index ranges from -1.0 to 1.0, with a brighter color indicating a stronger correlation. (C-H) Feature
selection process with Recursive Feature Elimination (RFE) method based on six ML algorithms (CatBoost, GBM, RF, DT, SVM, and XGB).
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TABLE 3 Univariate and multivariate logistics analysis of septic patients with lung cancer for predicting ICU mortality in the training cohort.

Variable Univariable logistic analysis Multivariate logistic analysis

term OR (95%CI) p.value OR (95%CI) p.value

Age 1.01 (1-1.02) 0.044 1.02 (1-1.03) 0.031

Gender: Female Reference

Male 0.77 (0.59-1) 0.050 0.69 (0.5-0.97) 0.031

Race: Asian Reference

Black 1.53 (0.92-2.51) 0.099 0.63 (0.21-1.95) 0.418

Other 1.91 (1.21-2.99) 0.005 1.38 (0.49-3.99) 0.546

White 1.16 (0.83-1.64) 0.383 0.68 (0.27-1.8) 0.432

Marital status: Divorced Reference

Married 1.05 (0.62-1.86) 0.862

Null 1.72 (0.81-3.65) 0.156

Single 1.38 (0.79-2.5) 0.269

Widowed 1.25 (0.68-2.37) 0.484

Hypertension: No Reference

Yes 0.81 (0.62-1.07) 0.137

Diabetes: No Reference

Yes 1.29 (0.93-1.76) 0.120

Cardiac arrhythmia: No Reference

Yes 0.85 (0.43-1.57) 0.629

Metastatic Cancer: No Reference

Yes 1.28 (0.99-1.67) 0.063 2.14 (1.52-3.02) <0.001

Weight 0.99 (0.99-1) 0.048

SOFA 1.2 (1.15-1.25) <0.001 1.13 (1.06-1.2) <0.001

Acute Physiology Score III 1.04 (1.03-1.04) <0.001 1.03 (1.01-1.05) 0.009

SIRS 1.48 (1.26-1.75) <0.001 1 (0.72-1.39) 1

SAPS II 1.05 (1.04-1.05) <0.001 1.01 (0.98-1.04) 0.515

OASIS 1.1 (1.08-1.12) <0.001 1.1 (1.07-1.13) <0.001

Glasgow Coma Scale 0.95 (0.92-1) 0.037 0.97 (0.93-1.06) 0.061

WBC 1.03 (1.02-1.05) <0.001 1.04 (1.02-1.06) <0.001

RBC 0.89 (0.72-1.08) 0.249

Platelet 1 (1-1) 0.252

Hemoglobin 0.92 (0.85-0.98) 0.018 0.84 (0.77-0.93) <0.001

RDW 1.1 (1.04-1.15) <0.001 1.15 (0.94-1.27) 0.067

Hematocrit 0.98 (0.96-1.01) 0.167

Sodium 0.96 (0.94-0.99) 0.004 0.92 (0.83-1.02) 0.135

Potassium 1.72 (1.4-2.1) <0.001 1.47 (0.94-2.4) 0.055

Calcium 1.08 (0.94-1.25) 0.285

Chloride 0.96 (0.94-0.99) <0.001 0.94 (0.91-0.96) <0.001

(Continued)
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Discussion

Because of the immunosuppression occurred in cancer patients,

sepsis may begin and develop suddenly. The co-occurrence of lung

cancer and sepsis presents significant challenges in diagnosis,

treatment, and prognosis. Diagnostically, distinguishing between

infection-induced systemic inflammatory response syndrome

(SIRS) and tumor-related fever is complex, often leading to delays

in appropriate therapy. Advanced imaging and biomarker analysis

are essential but may be limited by the patient’s critical condition,

calling a need for an outstanding biomarker to predict prognosis. In

our study, we found that Oxford Acute Severity of Illness Score

(OASIS) has the maximum predictability for ICU mortality in

patients with sepsis and lung cancer. Several studies have

compared OASIS with other severity scores such as Sequential

Organ Failure Assessment (SOFA), Simplified Acute Physiology

Score II (SAPS II), and Acute Physiology and Chronic Health

Evaluation II (APACHE-II). A previous study demonstrated that

OASIS, APACHE II, and SAPS II all presented good discrimination

and calibration in predicting the 28-day mortality risk of acute

kidney injury patients. OASIS, APACHE II, and SAPS II had better

predictive accuracy than SOFA, but due to the complexity of

APACHE II and SAPS II calculations, OASIS is a good substitute
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(26). Another study compared APACHE II, SOFA, SAPS II, and

OASIS in predicting mortality in patients with sepsis or septic

shock. The study found that all scoring systems were positively

correlated with mortality, with SAPS II and OASIS showing higher

correlations compared to others (27). These studies support our

findings that OASIS is a robust predictor in the context of critical

illness, which shed light on its predictive capabilities for septic

patients with lung cancer.

Therapeutically, managing sepsis in lung cancer patients

requires a delicate balance. Immunosuppressive effects of

chemotherapy and the cancer itself increase susceptibility to

infections, complicating sepsis management. Broad-spectrum

antibiotics are standard; however, the potential for drug

interactions and organ dysfunction necessitates careful selection

and dosing. Recent studies have explored targeted therapies, such as

aumolertinib, a third-generation EGFR-TKI, which has shown

effectiveness in NSCLC cases with EGFR mutations (28). In the

phase 3 AENEAS trial, aumolertinib significantly extended

progression-free survival compared to gefitinib in patients

diagnosed as advanced EGFR mutation-positive NSCLC (29).

Prognostically, the combination of lung cancer and sepsis

portends a poor outcome. Sepsis exacerbates the already

compromised physiological state due to malignancy, leading to
TABLE 3 Continued

Variable Univariable logistic analysis Multivariate logistic analysis

term OR (95%CI) p.value OR (95%CI) p.value

Glucose 1 (1-1) 0.543

Anion gap 1.06 (1.03-1.1) <0.001 1.02 (0.92-1.14) 0.683

PH 0 (0-0.02) <0.001 0.01 (0-0.09) <0.001

pCO2 1.02 (1.01-1.03) <0.001 1.08 (0.94-1.23) 0.061

pO2 1 (1-1) 0.250

Lactate 1.25 (1.15-1.36) <0.001 1.2 (1.08-1.35) 0.001

Total CO2 1 (0.98-1.02) 0.942

PT 1.01 (1-1.02) 0.132

PTT 1.01 (1-1.01) 0.016 1 (0.99-1.01) 0.987

INR 1.07 (0.95-1.2) 0.257

Urea nitrogen 1.01 (1-1.02) <0.001 1.19 (1.08-1.25) 0.003

Creatinine 1 (0.89-1.11) 0.964

Heart rate 1.02 (1.02-1.03) <0.001 1.01 (0.99-1.02) 0.366

Non invasive systolic blood
pressure

1 (1-1) 0.311

Non invasive diastolic blood
pressure

0.98 (0.97-1) 0.009 0.99 (0.98-1) 0.035

Non invasive mean blood
pressure

0.98 (0.97-0.99) 0.002 1.01 (1-1.04) 0.031

Oxygen saturation 0.88 (0.83-0.92) <0.001 0.72 (0.66-0.78) <0.001

Temperature 1.08 (0.95-1.37) 0.425
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higher mortality rates. Early recognition and prompt, aggressive

treatment of sepsis are crucial to improving survival (30).

Due to these challenges, accurate prediction of ICU mortality

and identification of its risk factors are crucial for lung cancer

patients with sepsis. The goal of our study is to establish a novel ML

model for early ICU mortality prediction. By collecting essential

clinic information and constructing ML models using a benchmark

framework, we calculated risk scores for ICU mortality prediction,

enabling precise prediction of ICU death probability. Once the risk

tiers are established, the next step is to translating these into

actionable clinical adjustments, which involves tailoring

interventions based on the identified risk level. The clinical

significance of this work is in enhancing patient management and

therapy plan for patients with both lung cancer and sepsis, aiding

clinicians in planning more informed, individual therapies.

Moreover, the model’s predictions can assist in selecting adjuvant

therapies, determining follow-up frequency, and deciding on

additional lab tests. Incorporating this predictive model into clinic

practices promotes data-driven decision-making, enhancing

therapy outcomes and optimizing resource utilization. Ultimately,

this integration helps standardize care across various healthcare

providers and institutions, potentially decreasing diversity in

treatment methods and therapy outcomes.

Besides, the key contribution of our study is the demonstration

of how interpretable ML algorithms, particularly using SHAP

values, can effectively identify critical factors influencing ICU

mortality. The CatBoost algorithm, a gradient boosting

framework based on symmetric decision trees (oblivious trees),

excels in accuracy and efficiency, especially in handling categorical

features, while requiring fewer parameters (31). Its performance

often matches or surpasses that of other advanced ML algorithms,

displaying outperforming discrimination, calibration, and clinical

utility. However, due to its black-box nature, interpretation is

essential for ML model. SHAP summary plots and force maps

provide clinicians with clear, visual insights into the factors driving

predictions, enhancing the model’s interpretability and highlighting

key risk factors. Additionally, advanced ML techniques such as

RFECV for feature selection, GridSearchCV for hyperparameter

tuning, and SMOTE oversampling to address sample imbalance

further improved the accuracy of ICU death prediction. This precise

predictive model enables clinicians to develop personalized

treatment strategies, ensuring timely interventions and improving

the prognosis of lung cancer patients combined sepsis.

For critically sick patients, proactive and proactive treatment to

address risk variables is essential (32). Nevertheless, some clinical

variables are challenging to obtain in clinical practice, and many

clinic variables show varying degrees of limitations in terms of

accuracy, sensitivity, or specificity. Studies have indicated that

SOFA scores often lack both sensitivity and specificity (33).

Additionally, the clinical profiles and therapy outcomes of

patients with both sepsis and lung carcinoma differ significantly

from these patients with no cancer (34). Notably, the majority of

critical illness scoring systems fail to consider cancer-specific factors

(35). Specifically, we conducted univariate and multivariate logistic

regression analyses to identify significant predictors of ICU
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mortality, including some cancer-related clinical factors.

Leveraging these readily accessible clinic data, we successfully

developed a robust CatBoost model for early ICU mortality

prediction, thereby assisting clinicians in personalized therapy

and decision-making. As observed in Table 2, there are some

notable differences in the baseline profiles of patients among the

training, internal testing and external testing databases, likely

attributable to variations in hospital admissions. Despite these

differences, the model demonstrated brilliant performances in

both internal and external validation datasets, highlighting its

robust applicability.

In our research, we observed that the presence of distant metastasis

is linked to poor prognosis, likely due to the immunocompromised state

of these patients (36). Immunosuppression has been shown to correlate

with adverse outcomes in septic patients (37). Greater focus is needed on

managing patients with distant metastasis to improve their outcomes.

Older patients are at a higher risk of developing sepsis compared to

younger individuals, and they often exhibit reduced resilience when

managing the condition (38). Previous research has explored the

association between the anion gap and prognosis across various

diseases. As a well-established marker for evaluating acid–base

balance (39), an abnormal anion gap is linked to acid–base

disturbances, which are considered to significantly affect outcomes in

critically sick patients (40). Similarly, our findings indicate that serum

anion gap is a significantly risk variable for ICU mortality in patients

with both sepsis and lung carcinoma. Several scoring systems for critical

illness, including SAPS II, OASIS and SOFA scores, have been

established to assess disease intensity and forecast short-term

outcomes. The SAPS II is a scoring system developed to assess the

intensity of illness in patients admitted to ICU (35). It evaluates 17

physiological variables, including vital signs and laboratory results, to

generate a score that predicts the probability of hospital mortality, which

was robust in our research for septic lung cancer patients’ mortality

prediction. The OASIS is a prognostic tool to appraise the severity of

intensity in critically sick patients. It incorporates variables such as age,

heart rate, mean arterial pressure, temperature, respiratory rate, urine

output, Glasgow Coma Scale, and specific laboratory values to generate

a score that predicts in-hospital mortality (41), which was the most

powerful indicator in our analysis for lung cancer patients’ mortality

prediction, calling its application especially in lung cancer patients. The

SOFA score is a clinical metric used to evaluate and quantify the degree

of organ dysfunction across six physiological systems: respiratory,

cardiovascular, hepatic, coagulation, renal, and neurological. It is

particularly valuable in ICUs for monitoring disease progression,

especially in sepsis cases (42), which was also validated in our analysis

with septic lung cancer patients.

This study, while showcasing notable strengths, also has several

limitations. First, we determined the required sample size for our

external validation cohort. However, due to the limited availability

of patients with complete follow-up data, we were unable to

assemble a sufficiently large external validation set. While we

acknowledge that larger sample sizes enhance the reliability of

model evaluation, we have endeavored to utilize the maximum

possible sample size given the current research constraints. To

maximize the validation reliability despite the smaller external
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FIGURE 3

Establishment and evaluation of the ML models in the training set. (A) ROC curves of different ML models in the training set. (B) PR curves of
different ML models in the training set. (C) Calibration curves of different ML models in the training set. (D) DCA curves of different ML models in the
training set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set. (F) The performance of 13 ML models in
terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the training set. (G) Ten-fold cross-validation results of
different ML models in the training set. (H) Confusion matrix of the best ML model in the training set. ML, machine learning; CAT, categorical
boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive
Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic
net regularization; SVM, support vector machine; KNN, k-nearest neighbor.
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FIGURE 4

Evaluation of the ML models in the internal validation set. (A) ROC curves of different ML models in the internal validation set. (B) PR curves of
different ML models in the internal validation set. (C) Calibration curves of different ML models in the internal validation set. (D) DCA curves of
different ML models in the internal validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set.
(F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the internal
validation set. (G) Confusion matrix of the best ML model in the internal validation set. ML, machine learning; CAT, categorical boosting; LR, logistic
regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear
discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization;
SVM, support vector machine; KNN, k-nearest neighbor.
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validation set, we employed a 10-fold cross-validation method to

assess the model’s generalizability. Moving forward, we intend to

expand the sample size of the external validation cohort in future

research to further substantiate the model’s universality and
Frontiers in Oncology 15
reliability. Second, the study relies on retrospective information in

the MIMIC IV database, which introduces the potential for

selection bias. Variations in data collection across hospitals and

the retrospective design also resulted in some missing clinical
FIGURE 5

Evaluation of the ML models in the external validation set. (A) ROC curves of different ML models in the external validation set. (B) PR curves of
different ML models in the external validation set. (C) Calibration curves of different ML models in the external validation set. (D) DCA curves of
different ML models in the external validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set.
(F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the external
validation set. (G) Confusion matrix of the best ML model in the external validation set. ML, machine learning; CAT, categorical boosting; LR, logistic
regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear
discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization;
SVM, support vector machine; KNN, k-nearest neighbor.
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features. Additionally, the absence of key clinicopathological

parameters, such as smoking, socioeconomic factors, and gene

mutations, was a limitation, as the MIMIC IV database does not

include imaging data. While we included a broad range of baseline

and routine clinical features to improve predictive accuracy, this
Frontiers in Oncology 16
added complexity to the model’s practical use in clinical settings.

Lastly, the model remains to be integrated into clinic practices,

necessitating additional prospective, multicenter, and large-scale

validation studies to confirm its applicability and practical utility in

future settings.
FIGURE 6

ML model interpretation. (A) Importance ranking of features in 13 ML prediction algorithms (CatBoost, RF, NNET, GBM, SVM, KNN, DT and GLM).
(B) The importance ranking of different variables according to the mean (|SHAP value|) using the optimal CatBoost model. (C) The importance
ranking of different risk factors with stability and interpretation using the optimal CatBoost model. The higher SHAP value of a feature is given, the
higher risk of ICU mortality the patient would have. The yellow part in feature value represents higher value. (D) SHAP value explanation in a classical
sample with ICU mortality. (E) SHAP value explanation in a classical sample without ICU mortality.
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Conclusions

In our research, we successfully established a CatBoost-based

prediction model using a ML benchmark framework to precisely

forecast ICU mortality in lung carcinoma patients combined sepsis.

We succeeded in identifying significantly predictive variables for ICU

mortality in this patient population. This study establishes a

groundwork for subsequent endeavors to refine ICU mortality

predictions and prognostic forecasts, which may assist clinicians in

making informed decisions and customizing therapeutic strategies.
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