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Purpose

Sepsis is a leading cause of mortality, especially among immunocompromised patients with lung cancer. We aimed to establish machine learning (ML) based model to accurately forecast ICU mortality in patients with sepsis combined lung cancer.





Methods

We incorporated patients with sepsis combined lung cancer from Medical Information Mart for Intensive Care IV (MIMIC IV) database. Univariate and multivariate logistic analysis were employed to select variables. Recursive Feature Elimination (RFE) method based on 6 ML algorithms was used for feature selection. We harnessed 13 ML algorithms to construct prediction model, which were assessed by area under the curve (AUC), accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores. The best ML model was constructed to predict ICU mortality, and the predictive results were interpretated by SHapley Additive exPlanations (SHAP) framework.





Results

A sum of 1096 lung cancer patients combined sepsis from MIMIC IV database and 251 patients from the external validation set were included. We utilized 13 clinical variables to establish prediction model for ICU mortality. CatBoost model was identified as the prime prediction model with the highest AUC in the training (0.931 [0.921, 0.945]), internal validation (0.698 [0.673, 0.724]) and external validation (0.794 [0.725, 0.879]) cohorts. Oxford Acute Severity of Illness Score (OASIS) had the greatest influence on ICU mortality according to SHAP interpretation.






Conclusions

Our ML models demonstrate excellent accuracy and reliability, facilitating more rigorous personalized prognostic forecast to lung cancer patients combined sepsis.
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Introduction

Sepsis is triggered by an acute infection that induces an excessive and dysregulated immune response in the body, causing multiple organ dysfunctions (1). Each year, approximately 49 million people worldwide are affected by sepsis (2), and about 30% of intensive care unit (ICU) patients are diagnosed with it (3). The mortality rate for sepsis can be as high as 40% (4). Treatment options and outcomes for sepsis patients vary widely due to the differences in infectious agents, individual characteristics, and medical history. Consequently, it is impractical to assess and manage sepsis cases using a single scoring system, and greater attention should be given to the heterogeneity among sepsis patients (5).

Lung cancer remains one of the most prevalent and deadly tumors in the world, with complex challenges in diagnosis, staging, therapy, and future outlook. Accurate diagnosis and staging are crucial for guiding treatment decisions and assessing prognosis. Diagnostic methods involve imaging techniques such as computed tomography (CT) and positron emission tomography (PET), along with histopathological examination and the use of molecular markers to identify specific mutations (e.g., EGFR, ALK) (6). Molecular typing of lung carcinoma, particularly the distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), has further refined treatment approaches, enabling targeted therapies that improve patient outcomes (7). Treatment strategies for lung cancer have evolved significantly, transitioning from conventional chemotherapy and radiation to more individualized approaches. Targeted therapies and immune checkpoint inhibitors, which harness the body’s immune response against cancer cells, have demonstrated efficacy in NSCLC patients with specific genetic alterations (8). For instance, EGFR inhibitors and ALK inhibitors have shown improved survival in patients with these mutations (9). Meanwhile, immunotherapies such as PD-1 and PD-L1 inhibitors have revolutionized treatment for advanced or metastatic cases by extending survival times, although their efficacy varies widely among patients (10). In clinical practice, diagnosing and treating patients with lung cancer complicated by sepsis presents significant challenges. Patients with lung cancer often have compromised immune function, making them more susceptible to infections that can rapidly progress to sepsis, leading to multi-organ dysfunction and increased mortality (11). The complexity of managing lung cancer with concurrent sepsis stems from factors such as tumor burden, immunosuppression, and the adverse effects of anticancer treatments, which complicate early diagnosis and treatment strategies (12).

Nowadays, nomograms have gained widespread application in predicting tumor mortality (13). However, the sensitivity, specificity and generalizability of the previous models, as well as the existing assessment tools, could be inadequate, highlighting the pressing need for more accurate and specific prognostic prediction methods (14). Machine learning (ML), a branch of artificial intelligence, has garnered increasing popularity owing to its proficiency in managing complex, non-linear relationships, especially when dealing with large datasets and loosely structured data (15). The emergence of big data analytics and ML algorithms has rendered new approaches for identifying risk factors influencing prediction feasible. A number of predictive models utilizing these technologies have demonstrated exceptional performance and are progressively being incorporated into clinical practice (16). Nevertheless, to date, no elaborate model exists for predicting ICU mortality in patients with sepsis complicated by lung cancer, underscoring the necessity for the construction and verification of a new ML model for risk stratification. To the best of our knowledge, our research represents the first endeavor to construct and verify a predictive model employing multiple ML algorithms for ICU mortality prediction in patients with sepsis and lung cancer. Our model harnesses extensive population information and the competence of ML, thereby providing an individual predictive model that can help clinicians in meticulously appraising the ICU mortality risk of septic patients with lung cancer.





Materials and methods




Data collection and study population

The MIMIC-IV database is a publicly available resource containing records of over 76,000 ICU admissions at Beth Israel Deaconess Medical Center in Boston, Massachusetts, USA, from 2008 to 2019. It provides detailed data for every admission, involving laboratory results, vital signs, medications, and discharge status (17). Patients from Xuzhou Central Hospital and Huai’an Hospital Affiliated to Xuzhou Medical University were included to form an external validation set. The research was conducted based on the guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of Xuzhou Central Hospital and Huai’an Hospital Affiliated to Xuzhou Medical University. Informed consent was acquired from patients involved in our research. The flowchart of the patient selection procedure is displayed in Figure 1. Inclusion criteria comprised individuals diagnosed as lung cancer and sepsis based on International Classification of Diseases (Ninth Revision code), as well as aged over eighteen years at the time admitted by ICU. Sepsis diagnosis was conducted according to sepsis definition 3.0 (18). Exclusion criteria comprised patients with repeated ICU admissions except for the first time or clinical variables with more than 50% missing data. Clinical information of septic lung cancer patients in MIMIC IV database included the following (listed in Table 1): (1) demographics (age and sex); (2) tumor stages, with distant metastasis defined by the American Joint Committee on Cancer 8th edition; (3) chronic conditions such as hypertension or diabetes; (4) organ functions assessed by the Sequential Organ Failure Assessment (SOFA) score; (5) laboratory tests. Vital signs and laboratory results from the first 24 hours of ICU admission were included. Missing information was tackled with multiple imputation by chained equations (MICE). The study’s endpoints were ICU death or safe discharge. Raw data extraction via Navicat for SQL Server was processed using R software. We determined the minimum sample size needed for an external validation cohort by formula of Riley et al. (19).

[image: Flowchart depicting the study design for analyzing septic patients with lung cancer based on septic-3 criteria. Starting with 1,569 patients, 473 were excluded due to incomplete data, repeated ICU admissions, or being under 18. The remaining 1,096 patients were split into a training cohort of 775 and a validation cohort of 321, with an additional external validation cohort of 251. Initial screening was done via logistic regression, followed by feature selection with Recursive Feature Elimination. Machine learning models were established using thirteen algorithms, validated through k-fold cross-validation, and explained using precision recall curves, ROC curves, calibration curve, and decision curve analysis.]
Figure 1 | The workflow diagram for study design and patient screening.


Table 1 | Clinicopathological characteristics of septic patients with lung cancer from MIMIC IV database in the ICU Non-Mortality group and ICU Mortality group.
	Variable
	ICU Non-Mortality N = 851
	ICU Mortality N = 245
	p.overall



	Age
	68.4 (12.3)
	68.4 (12.8)
	0.968


	Gender:
	 
	 
	0.095


	 Female
	384 (45.1%)
	126 (51.4%)
	 


	 Male
	467 (54.9%)
	119 (48.6%)
	 


	Race:
	 
	 
	0.066


	 Asian
	50 (5.88%)
	17 (6.94%)
	 


	 Black
	90 (10.6%)
	30 (12.2%)
	 


	 Other
	108 (12.7%)
	45 (18.4%)
	 


	 White
	603 (70.9%)
	153 (62.4%)
	 


	Marital status:
	 
	 
	0.418


	 Divorced
	65 (7.64%)
	14 (5.71%)
	 


	 Married
	440 (51.7%)
	119 (48.6%)
	 


	 Null
	36 (4.23%)
	15 (6.12%)
	 


	 Single
	198 (23.3%)
	66 (26.9%)
	 


	 Widowed
	112 (13.2%)
	31 (12.7%)
	 


	Hypertension:
	 
	 
	0.183


	No
	510 (59.9%)
	159 (64.9%)
	 


	Yes
	341 (40.1%)
	86 (35.1%)
	 


	Diabetes:
	 
	 
	0.161


	No
	693 (81.4%)
	189 (77.1%)
	 


	Yes
	158 (18.6%)
	56 (22.9%)
	 


	Cardiac arrhythmia:
	 
	 
	0.599


	No
	807 (94.8%)
	235 (95.9%)
	 


	Yes
	44 (5.17%)
	10 (4.08%)
	 


	Metastatic Cancer:
	 
	 
	0.047


	No
	480 (56.4%)
	120 (49.0%)
	 


	Yes
	371 (43.6%)
	125 (51.0%)
	 


	Weight
	74.9 (21.6)
	73.1 (23.4)
	0.269


	SOFA
	4.65 (2.93)
	6.89 (3.66)
	<0.001


	Acute Physiology Score III
	47.0 (18.2)
	63.6 (23.0)
	<0.001


	SIRS
	2.71 (0.86)
	2.97 (0.80)
	<0.001


	SAPS II
	43.2 (12.8)
	53.2 (15.7)
	<0.001


	OASIS
	32.8 (7.81)
	39.6 (8.58)
	<0.001


	Glasgow Coma Scale
	13.6 (2.54)
	13.1 (3.33)
	0.06


	WBC
	11.9 (7.88)
	14.8 (11.2)
	<0.001


	RBC
	3.44 (0.67)
	3.38 (0.63)
	0.155


	Platelet
	235 (133)
	239 (148)
	0.686


	Hemoglobin
	10.1 (1.92)
	9.76 (1.77)
	0.013


	RDW
	16.0 (2.54)
	16.7 (2.48)
	<0.001


	Hematocrit
	31.0 (5.65)
	30.5 (5.25)
	0.155


	Sodium
	137 (4.65)
	137 (5.83)
	0.028


	Potassium
	4.24 (0.59)
	4.47 (0.70)
	<0.001


	Calcium
	8.32 (0.84)
	8.32 (1.06)
	0.964


	Chloride
	103 (5.99)
	101 (6.76)
	0.015


	Glucose
	137 (54.7)
	140 (51.7)
	0.553


	Anion gap
	14.7 (3.51)
	15.6 (4.04)
	0.001


	PH
	7.37 (0.07)
	7.34 (0.09)
	<0.001


	pCO2
	43.5 (12.0)
	46.9 (13.6)
	0.001


	pO2
	108 (69.2)
	103 (51.8)
	0.287


	Lactate
	1.98 (1.48)
	2.79 (2.24)
	<0.001


	Total CO2
	26.0 (6.07)
	25.9 (6.82)
	0.72


	PT
	16.2 (9.10)
	17.3 (8.03)
	0.073


	PTT
	36.2 (18.8)
	39.7 (21.0)
	0.029


	INR
	1.49 (1.03)
	1.60 (0.81)
	0.1


	Urea nitrogen
	26.7 (20.9)
	32.2 (21.4)
	0.001


	Creatinine
	1.29 (1.17)
	1.34 (1.09)
	0.491


	Heart rate
	90.6 (16.2)
	96.5 (17.3)
	<0.001


	Non invasive systolic blood pressure
	114 (20.6)
	126 (263)
	0.502


	Non invasive diastolic blood pressure
	63.2 (10.6)
	61.9 (11.1)
	0.099


	Non invasive mean blood pressure
	75.8 (12.1)
	72.9 (10.7)
	<0.001


	Oxygen saturation
	96.3 (2.12)
	95.6 (3.08)
	<0.001


	Temperature
	36.8 (1.43)
	36.8 (0.51)
	0.428


	Hospital day
	12.4 (11.1)
	6.70 (6.06)
	<0.001


	ICU day
	4.28 (5.32)
	5.58 (5.41)
	0.001


	Hospital survival day
	149 (295)
	6.23 (6.06)
	<0.001


	ICU survival day
	148 (295)
	4.92 (5.42)
	<0.001











Feature selection

In our initial analysis, clinic variables with a significance level of P < 0.05 in both univariate and multivariate logistic analyses within the training dataset were selected for feature selection. We then applied Recursive Feature Elimination (RFE) according to six ML approaches, namely categorical boosting (CatBoost), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB), decision tree (DT), and gradient boosting machine (GBM), coupled with 10-fold cross-validation to select the clinic variables. The RFE process involves iteratively building models and ranking features by their importance, systematically removing the least significant ones to generate a comprehensive feature ranking (20). A random seed of “123” was determined for our analysis. Subsequently, the Robust Rank Aggregation (RRA) algorithm was employed to consolidate the feature importance rankings from the six ML algorithms utilized in RFE, yielding a comprehensive ranking of all factors (21). Following the selection of key features, we proceed to the model development stage.





Development and verification of the predictive model for ICU mortality

To develop the ML model, we utilized thirteen ML algorithms, involving CatBoost, RF, SVM, XGB, DT, GBM, k-nearest neighbor (KNN), logistic regression (LR), naive bayes classifier (NBC), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), neural network (NNET) and generalized linear model (GLM) to forecast ICU mortality with “mlr3” R package (22). This method facilitated the comparison of model performances and the selection of the optimal predictive model. To address class imbalance, which can significantly distort performance metrics, we applied the Synthetic Minority Over-sampling Technique (SMOTE) during model training (23). We then enhanced our methodology by conducting nested resampling, involving a two-tiered k-fold cross-validation process: one for hyperparameter tuning and another for model selection. Additionally, we conducted a 1000-evaluation random searching within a 10-fold cross-validation framework, repeating five times in every model. The best model was selected based on the highest Area Under the Curve (AUC) and the lowest Brier score, while ensuring a well-calibrated curve. Internal and external validation was performed using 10-fold cross-validation. The Precision-Recall Curve (PRC) was used to assess the performances of classification models on imbalanced data. The calibration curve evaluated the model’s discriminative ability, and Decision Curve Analysis (DCA) was conducted to validate the clinical benefits of the ML model using the “runway” R package (https://github.com/ML4LHS/runway). The importance of every factor was quantified by calculating its mean contribution to the AUC as a percentage relative to the full model using the “DALEX” R package (24). SHapley Additive exPlanations (SHAP) values were employed to demonstrate the predictions of the optimal model and to clarify the black-box ML framework using the “shapviz” R package (https://github.com/ModelOriented/shapviz) (25).






Results




Demographic composition and baseline data

A sum of 1096 lung cancer patients combined with sepsis from MIMIC IV database and 251 patients from Xuzhou Central Hospital and Huai’an Hospital Affiliated to Xuzhou Medical University were involved. We separated patients in MIMIC IV cohort randomly into training and internal testing cohorts with a 7:3 ratio, respectively. Meanwhile, patients in Xuzhou Central Hospital and Huai’an Hospital Affiliated to Xuzhou Medical University were involved as the external testing cohort. For patients in MIMIC IV cohort, 854 cases (77.65%) were alive, while 245 cases (22.35%) suffered ICU mortality (Table 1). More clinic data of the training and two testing cohorts can be found in Table 2. In the training, internal validation and external validation sets, the ICU mortality was 161 (20.8%), 84 (26.2%) and 40 (15.9%) (Table 2). The detailed selection process of patients in MIMIC IV cohort is displayed in Figure 1.


Table 2 | Clinicopathological characteristics of septic patients with lung cancer in the training, internal validation and external validation cohorts.
	Variable
	Training Cohort 
N = 775
	Validation Cohort 
N = 321
	External Validation Cohort 
N = 251
	p.overall



	Age
	68.2 (12.3)
	68.9 (12.6)
	68.2 (12.4)
	0.719


	Gender:
	 
	 
	 
	0.932


	 Female
	360 (46.5%)
	150 (46.7%)
	120 (47.8%)
	 


	 Male
	415 (53.5%)
	171 (53.3%)
	131 (52.2%)
	 


	Race:
	 
	 
	 
	<0.001


	 Asian
	49 (6.32%)
	18 (5.61%)
	251 (100%)
	 


	 Black
	88 (11.4%)
	32 (9.97%)
	0 (0.00%)
	 


	 Other
	104 (13.4%)
	49 (15.3%)
	0 (0.00%)
	 


	 White
	534 (68.9%)
	222 (69.2%)
	0 (0.00%)
	 


	Marital status:
	 
	 
	 
	0.455


	 Divorced
	61 (7.87%)
	18 (5.61%)
	18 (7.17%)
	 


	 Married
	385 (49.7%)
	174 (54.2%)
	125 (49.8%)
	 


	 Null
	35 (4.52%)
	16 (4.98%)
	13 (5.18%)
	 


	 Single
	200 (25.8%)
	64 (19.9%)
	62 (24.7%)
	 


	 Widowed
	94 (12.1%)
	49 (15.3%)
	33 (13.1%)
	 


	Hypertension:
	 
	 
	 
	0.988


	No
	474 (61.2%)
	195 (60.7%)
	154 (61.4%)
	 


	Yes
	301 (38.8%)
	126 (39.3%)
	97 (38.6%)
	 


	Diabetes:
	 
	 
	 
	0.844


	No
	624 (80.5%)
	258 (80.4%)
	206 (82.1%)
	 


	Yes
	151 (19.5%)
	63 (19.6%)
	45 (17.9%)
	 


	Cardiac arrhythmia:
	 
	 
	 
	0.221


	No
	742 (95.7%)
	300 (93.5%)
	241 (96.0%)
	 


	Yes
	33 (4.26%)
	21 (6.54%)
	10 (3.98%)
	 


	Metastatic Cancer:
	 
	 
	 
	0.42


	No
	433 (55.9%)
	167 (52.0%)
	132 (52.6%)
	 


	Yes
	342 (44.1%)
	154 (48.0%)
	119 (47.4%)
	 


	Weight
	74.1 (22.0)
	75.4 (22.0)
	73.7 (24.2)
	0.598


	SOFA
	5.07 (3.18)
	5.35 (3.38)
	5.18 (3.31)
	0.417


	Acute Physiology Score III
	50.2 (19.9)
	52.0 (22.0)
	51.4 (20.4)
	0.391


	SIRS
	2.75 (0.84)
	2.81 (0.88)
	2.71 (0.84)
	0.359


	SAPS II
	45.1 (14.2)
	46.3 (13.9)
	46.3 (15.8)
	0.288


	OASIS
	34.1 (8.52)
	34.7 (8.34)
	34.5 (8.93)
	0.564


	Glasgow Coma Scale
	13.5 (2.75)
	13.5 (2.72)
	13.2 (3.07)
	0.484


	WBC
	12.5 (8.71)
	12.7 (9.09)
	12.1 (8.80)
	0.738


	RBC
	3.42 (0.65)
	3.45 (0.69)
	3.44 (0.68)
	0.718


	Platelet
	237 (135)
	232 (139)
	230 (125)
	0.698


	Hemoglobin
	9.97 (1.88)
	10.1 (1.92)
	9.95 (1.87)
	0.483


	RDW
	16.2 (2.54)
	16.1 (2.54)
	16.3 (2.47)
	0.547


	Hematocrit
	30.8 (5.54)
	31.3 (5.62)
	30.6 (5.59)
	0.274


	Sodium
	137 (5.03)
	138 (4.74)
	137 (4.82)
	0.21


	Potassium
	4.29 (0.64)
	4.28 (0.57)
	4.33 (0.66)
	0.594


	Calcium
	8.34 (0.89)
	8.28 (0.88)
	8.35 (0.99)
	0.605


	Chloride
	102 (6.34)
	103 (5.82)
	102 (5.88)
	0.674


	Glucose
	137 (55.0)
	139 (51.7)
	137 (49.3)
	0.878


	Anion gap
	14.8 (3.62)
	15.0 (3.74)
	14.7 (3.64)
	0.552


	PH
	7.36 (0.08)
	7.36 (0.08)
	7.37 (0.08)
	0.631


	pCO2
	44.5 (12.1)
	44.3 (13.5)
	44.5 (12.4)
	0.971


	pO2
	106 (65.2)
	107 (64.5)
	111 (70.6)
	0.642


	Lactate
	2.16 (1.74)
	2.27 (1.79)
	2.14 (1.76)
	0.648


	Total CO2
	26.1 (6.05)
	25.6 (6.77)
	26.3 (6.12)
	0.52


	PT
	16.7 (9.51)
	16.0 (7.13)
	17.5 (12.8)
	0.224


	PTT
	36.7 (18.3)
	37.9 (21.6)
	37.6 (20.7)
	0.634


	INR
	1.54 (1.08)
	1.46 (0.68)
	1.65 (1.58)
	0.199


	Urea nitrogen
	28.1 (21.6)
	27.6 (20.0)
	27.6 (21.0)
	0.89


	Creatinine
	1.29 (1.15)
	1.32 (1.15)
	1.34 (1.38)
	0.816


	Heart rate
	91.4 (16.2)
	93.2 (17.6)
	89.7 (16.4)
	0.041


	Non invasive systolic blood pressure
	114 (20.6)
	125 (232)
	112 (17.2)
	0.262


	Non invasive diastolic blood pressure
	63.0 (10.6)
	62.8 (10.9)
	62.4 (10.2)
	0.797


	Non invasive mean blood pressure
	75.1 (10.8)
	75.2 (14.1)
	74.5 (10.5)
	0.736


	Oxygen saturation
	96.2 (2.33)
	96.1 (2.51)
	96.3 (2.15)
	0.553


	Temperature
	36.8 (1.50)
	36.8 (0.45)
	36.7 (1.27)
	0.417


	Hospital day
	11.2 (10.9)
	11.0 (9.38)
	11.3 (14.0)
	0.967


	ICU day
	4.48 (5.53)
	4.79 (4.92)
	4.60 (6.23)
	0.7


	Hospital survival day
	113 (269)
	103 (235)
	112 (214)
	0.859


	ICU survival day
	112 (269)
	102 (235)
	110 (214)
	0.858


	ICU mortality:
	 
	 
	 
	0.011


	No
	614 (79.2%)
	237 (73.8%)
	211 (84.1%)
	 


	Yes
	161 (20.8%)
	84 (26.2%)
	40 (15.9%)
	 











Feature selection of the predictive model

We used the multiple imputation by chained equations (MICE) method to address the missing information in our patient data from MIMIC IV database (Figure 2A). Ultimately, five imputed datasets were created, and Rubin’s rules were utilized to amalgamate the final analytical outcomes (Supplementary Figure 1). Drawing from our clinical expertise, these clinic variables were chosen for subsequent logistic regression analysis (Table 3), with variables with a correlation coefficient exceeding 0.6 excluded (Figure 2B). Thereafter, univariate and multivariate logistic regression analyses were conducted within the training cohort to identify the salient variables predictive of ICU mortality. We then discovered that Urea nitrogen (BUN, OR 1.19 (1.08-1.25), p = 0.003), Chloride (OR 0.94 (0.91-0.96), p < 0.001), Diastolic blood pressure (DBP, OR 0.99 (0.98-1), p = 0.035), Gender (OR 0.69 (0.5-0.97), p = 0.031), Hemoglobin (OR 0.84 (0.77-0.93), p < 0.001), Lactate (OR 1.2 (1.08-1.35), p = 0.001), Mean blood pressure (MBP, OR 1.01 (1-1.04), p = 0.031), Metastatic cancer (OR 2.14 (1.52-3.02), p < 0.001), Oxygen saturation (OR 0.72 (0.66-0.78), p < 0.001), OASIS (OR 1.1 (1.07-1.13), p < 0.001), PH (OR 0.01 (0-0.09), p < 0.001), SOFA (OR 1.13 (1.06-1.2), p < 0.001), WBC (OR 1.04 (1.02-1.06), p < 0.001), Age (OR 1.02 (1-1.03), p = 0.031) and Acute Physiology Score III (OR 1.03 (1.01-1.05), p = 0.009) were exactly important to forecast ICU mortality, with significance (p < 0.05, Table 3). Correlation analysis revealed that OASIS is the most influential variable associated with ICU mortality (Figure 2B). Subsequently, we employed RFE leveraging six ML algorithms (GBM, SVM, RF, DT, XGB and CatBoost), coupled with 1–fold cross-validation to refine the clinical variables (Figures 2C-H). The RFE process identified the optimal feature set using the CatBoost algorithm, which retained thirteen variables and achieved the highest AUC of 0.948 (Figure 2C). The RRA algorithm was then applied to generate a comprehensive ranking of the clinical variables across the six ML algorithms, with OASIS emerging as the most vital (Supplementary Table 1). These thirteen variables, selected by RFE, were subsequently incorporated into the subsequent model establishment procedures. (Supplementary Table 1).
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Figure 2 | The process of data filtering and feature selection. (A) Visualization of missing data patterns. (B) The heatmap of Spearman’s correlation analysis of the clinic variables with ICU mortality. The correlation index ranges from -1.0 to 1.0, with a brighter color indicating a stronger correlation. (C-H) Feature selection process with Recursive Feature Elimination (RFE) method based on six ML algorithms (CatBoost, GBM, RF, DT, SVM, and XGB).


Table 3 | Univariate and multivariate logistics analysis of septic patients with lung cancer for predicting ICU mortality in the training cohort.
	Variable
	Univariable logistic analysis
	Multivariate logistic analysis


	term
	OR (95%CI)
	p.value
	OR (95%CI)
	p.value



	Age
	1.01 (1-1.02)
	0.044
	1.02 (1-1.03)
	0.031


	Gender: Female
	Reference
	 
	 
	 


	 Male
	0.77 (0.59-1)
	0.050
	0.69 (0.5-0.97)
	0.031


	 Race: Asian
	Reference
	 
	 
	 


	 Black
	1.53 (0.92-2.51)
	0.099
	0.63 (0.21-1.95)
	0.418


	 Other
	1.91 (1.21-2.99)
	0.005
	1.38 (0.49-3.99)
	0.546


	 White
	1.16 (0.83-1.64)
	0.383
	0.68 (0.27-1.8)
	0.432


	 Marital status: Divorced
	Reference
	 
	 
	 


	 Married
	1.05 (0.62-1.86)
	0.862
	 
	 


	 Null
	1.72 (0.81-3.65)
	0.156
	 
	 


	 Single
	1.38 (0.79-2.5)
	0.269
	 
	 


	 Widowed
	1.25 (0.68-2.37)
	0.484
	 
	 


	Hypertension: No
	Reference
	 
	 
	 


	Yes
	0.81 (0.62-1.07)
	0.137
	 
	 


	Diabetes: No
	Reference
	 
	 
	 


	Yes
	1.29 (0.93-1.76)
	0.120
	 
	 


	Cardiac arrhythmia: No
	Reference
	 
	 
	 


	Yes
	0.85 (0.43-1.57)
	0.629
	 
	 


	Metastatic Cancer: No
	Reference
	 
	 
	 


	Yes
	1.28 (0.99-1.67)
	0.063
	2.14 (1.52-3.02)
	<0.001


	Weight
	0.99 (0.99-1)
	0.048
	 
	 


	SOFA
	1.2 (1.15-1.25)
	<0.001
	1.13 (1.06-1.2)
	<0.001


	Acute Physiology Score III
	1.04 (1.03-1.04)
	<0.001
	1.03 (1.01-1.05)
	0.009


	SIRS
	1.48 (1.26-1.75)
	<0.001
	1 (0.72-1.39)
	1


	SAPS II
	1.05 (1.04-1.05)
	<0.001
	1.01 (0.98-1.04)
	0.515


	OASIS
	1.1 (1.08-1.12)
	<0.001
	1.1 (1.07-1.13)
	<0.001


	Glasgow Coma Scale
	0.95 (0.92-1)
	0.037
	0.97 (0.93-1.06)
	0.061


	WBC
	1.03 (1.02-1.05)
	<0.001
	1.04 (1.02-1.06)
	<0.001


	RBC
	0.89 (0.72-1.08)
	0.249
	 
	 


	Platelet
	1 (1-1)
	0.252
	 
	 


	Hemoglobin
	0.92 (0.85-0.98)
	0.018
	0.84 (0.77-0.93)
	<0.001


	RDW
	1.1 (1.04-1.15)
	<0.001
	1.15 (0.94-1.27)
	0.067


	Hematocrit
	0.98 (0.96-1.01)
	0.167
	 
	 


	Sodium
	0.96 (0.94-0.99)
	0.004
	0.92 (0.83-1.02)
	0.135


	Potassium
	1.72 (1.4-2.1)
	<0.001
	1.47 (0.94-2.4)
	0.055


	Calcium
	1.08 (0.94-1.25)
	0.285
	 
	 


	Chloride
	0.96 (0.94-0.99)
	<0.001
	0.94 (0.91-0.96)
	<0.001


	Glucose
	1 (1-1)
	0.543
	 
	 


	Anion gap
	1.06 (1.03-1.1)
	<0.001
	1.02 (0.92-1.14)
	0.683


	PH
	0 (0-0.02)
	<0.001
	0.01 (0-0.09)
	<0.001


	pCO2
	1.02 (1.01-1.03)
	<0.001
	1.08 (0.94-1.23)
	0.061


	pO2
	1 (1-1)
	0.250
	 
	 


	Lactate
	1.25 (1.15-1.36)
	<0.001
	1.2 (1.08-1.35)
	0.001


	Total CO2
	1 (0.98-1.02)
	0.942
	 
	 


	PT
	1.01 (1-1.02)
	0.132
	 
	 


	PTT
	1.01 (1-1.01)
	0.016
	1 (0.99-1.01)
	0.987


	INR
	1.07 (0.95-1.2)
	0.257
	 
	 


	Urea nitrogen
	1.01 (1-1.02)
	<0.001
	1.19 (1.08-1.25)
	0.003


	Creatinine
	1 (0.89-1.11)
	0.964
	 
	 


	Heart rate
	1.02 (1.02-1.03)
	<0.001
	1.01 (0.99-1.02)
	0.366


	Non invasive systolic blood pressure
	1 (1-1)
	0.311
	 
	 


	Non invasive diastolic blood pressure
	0.98 (0.97-1)
	0.009
	0.99 (0.98-1)
	0.035


	Non invasive mean blood pressure
	0.98 (0.97-0.99)
	0.002
	1.01 (1-1.04)
	0.031


	Oxygen saturation
	0.88 (0.83-0.92)
	<0.001
	0.72 (0.66-0.78)
	<0.001


	Temperature
	1.08 (0.95-1.37)
	0.425
	 
	 











Construction and verification of ML model for ICU mortality

To construct an accurate model to forecast ICU mortality, we included the thirteen clinic factors (“BUN”, “Chloride”, “DBP”, “Gender”, “Hemoglobin”, “Lactate”, “MBP”, “Metastatic cancer”, “O2Sat”, “OASIS”, “PH”, “SOFA”, “WBC”) selected by RFE based on CatBoost. Totally thirteen ML algorithms, involving CatBoost, RF, SVM, XGB, DT, GBM, KNN, LR, NBC, LDA, QDA, NNET and GLM, were developed using the selected thirteen variables from the training set. Hyperparameter tuning were optimized through 5-fold cross-validation and random searches. The performance of these thirteen models was then assessed in both internal and external validation cohorts. ROC curve analysis indicated that the CatBoost model achieved the highest AUC in the training (0.931 [0.921, 0.945]), internal validation (0.698 [0.673, 0.724]), and external validation (0.794 [0.725, 0.879]) cohorts (Figures 3A, 4A, 5A). Following hyperparameter tuning via grid search, the optimal hyperparameters for CatBoost were identified as depth, 6; learning_rate, 0.02873998; iterations, 662; 12_leaf_reg, 6.735671. PRC analysis demonstrated the CatBoost model’s effectiveness in managing imbalanced data (Figures 3B, 4B, 5B). Calibration curves revealed that CatBoost algorithm had the best fitting ability and could accurately predict ICU mortality (Figures 3C, 4C, 5C). Calibration curves indicated that CatBoost algorithm’s probability predictions are consistent and well-calibrated, and ensured that the risk estimates provided by the model can be trusted to reflect the true likelihood of ICU mortality. DCA curves implied that the CatBoost algorithm had the highest clinical utility and could effectively aid in predicting ICU mortality (Figures 3D, 4D, 5D). DCA curves indicated that using the CatBoost model to guide clinical decision-making would result in net clinical benefit for patients who are likely to benefit from certain interventions, such as more aggressive treatment or intensive monitoring. The curves of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the thirteen ML algorithms were plotted to extensively identified that the CatBoost algorithm was outperforming in predicting ICU mortality (Figures 3E, 4E, 5E). Model performance was further evaluated using accuracy, sensitivity, specificity, precision, cross-entropy, and Brier scores, which collectively indicated the robustness of the CatBoost model in predicting ICU mortality (Figures 3F, 4F, 5F). Tenfold cross-validation in the training cohort also confirmed the superior performance of CatBoost (Figure 3G). Confusion matrices highlighted the outstanding predictive capabilities of CatBoost across all three cohorts (Figures 3H, 4G, 5G). Hence, CatBoost was selected as the optimal model for predicting ICU mortality and model validation was sufficient for proving its capacity.

[image: The image shows multiple panels of data visualizations comparing different machine learning models. Panels A and B display ROC and Precision-Recall curves, respectively, for various learners like SVM, XGBoost, and Random Forest. Panel C depicts calibration plots, while Panel D shows decision curves, both highlighting multiple models. Panel E presents performance thresholds. Panel F is a heatmap of performance metrics like accuracy and sensitivity across models. Panel G illustrates a stability plot of different learners over iterations. Panel H presents a bar chart comparing counts of mortality and non-mortality in truth and response categories.]
Figure 3 | Establishment and evaluation of the ML models in the training set. (A) ROC curves of different ML models in the training set. (B) PR curves of different ML models in the training set. (C) Calibration curves of different ML models in the training set. (D) DCA curves of different ML models in the training set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set. (F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the training set. (G) Ten-fold cross-validation results of different ML models in the training set. (H) Confusion matrix of the best ML model in the training set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN, k-nearest neighbor.

[image: The image contains multiple data visualizations comparing machine learning models. Chart A is a ROC curve showing model sensitivity versus 1-specificity. Chart B is a precision-recall curve. Chart C displays calibration plots for different probabilities. Chart D shows decision curves. Chart E presents performance plots across thresholds. Chart F is a heatmap comparing different models with metrics like accuracy and specificity. Chart G is a bar chart depicting the count of mortality versus non-mortality features. Each chart uses different models such as CatBoost, randomForest, and XGBoost for evaluation.]
Figure 4 | Evaluation of the ML models in the internal validation set. (A) ROC curves of different ML models in the internal validation set. (B) PR curves of different ML models in the internal validation set. (C) Calibration curves of different ML models in the internal validation set. (D) DCA curves of different ML models in the internal validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set. (F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the internal validation set. (G) Confusion matrix of the best ML model in the internal validation set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN, k-nearest neighbor.

[image: A multi-panel figure with data visualizations of machine learning models:   A) A ROC curve showing sensitivity vs. one minus specificity for multiple learners with a legend identifying each model by color.   B) A precision-recall curve for the same learners.   C) A calibration curve depicting observed vs. predicted probability for different models.  D) A decision curve analysis for various thresholds.  E) Three performance plots showing probability, Brier score, and log loss for different models.  F) A heatmap comparing performance metrics across models, with scores on accuracy, sensitivity, etc.  G) A bar chart comparing counts of mortality vs. non-mortality in truth and response categories.]
Figure 5 | Evaluation of the ML models in the external validation set. (A) ROC curves of different ML models in the external validation set. (B) PR curves of different ML models in the external validation set. (C) Calibration curves of different ML models in the external validation set. (D) DCA curves of different ML models in the external validation set. (E) The curves of sensitivity, specificity, PPV and NPV of the 13 ML models in the training set. (F) The performance of 13 ML models in terms of AUC, accuracy, sensitivity, specificity, precision, cross-entropy and Brier scores in the external validation set. (G) Confusion matrix of the best ML model in the external validation set. ML, machine learning; CAT, categorical boosting; LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; GBM, gradient boosting machine; NB, Naive Bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; NNET, neural network; GLMNET, generalized linear models with elastic net regularization; SVM, support vector machine; KNN, k-nearest neighbor.





Model interpretation

We computed and depicted the ranking of every feature importance for every ML model, involving CatBoost, RF, NNET, GBM, SVM, KNN, DT and GLM models (Figure 6A). The importance scores were derived from the intrinsic properties of the respective ML algorithms, highlighting that the factor most strongly associated with ICU mortality were predominantly “OASIS”. Afterwards, we employed the SHAP framework to elucidate the CatBoost model. We visualized the variables by their mean absolute SHAP values, which confirmed that “OASIS” was the most influential variable (Figure 6B). Additionally, a bee swarm plot illustrated the impact of every clinic variable on ICU mortality (Figure 6C). The y-axis represents the magnitude of risk factor, and the x-axis denotes their effect on model output, exactly ICU mortality, as quantified by the SHAP value. The plot revealed that higher OASIS, SOFA, lactate, and WBC levels were related to an elevated risk of ICU mortality, and patients with metastatic cancer were prone to suffer ICU mortality. To demonstrate model interpretability, we examined two representative patients. SHAP values were utilized to assess the influence of each feature on the model’s predictions. In our study, low SHAP values indicated a reduced likelihood of ICU mortality, whereas high SHAP values suggested an elevated probability of ICU mortality. We selected the median score (0.102) as the threshold for predicting low or high ICU mortality risk. For example, the first patient, who experienced ICU mortality, had a higher SHAP value and a prediction score of 0.543, indicating a higher risk of ICU mortality (Figure 6D). Conversely, the second patient, who did not experience ICU mortality, had a lower SHAP value and a prediction score of -0.332, indicating a lower risk of ICU mortality (Figure 6E). Since the higher the prediction score, the higher the probability of ICU mortality, we could use the model to distinguish between different survival probabilities and help clinical decision-making.

[image: Panel A shows feature importance plots for various machine learning models, with different features ranked by one minus their AUC values. Panel B displays a bar chart of feature importance ranks based on SHAP values for the CatBoost model, highlighting top features. Panel C uses a violin plot to represent SHAP values and feature values, indicating their impact and distribution. Panel D is a SHAP summary plot detailing individual feature contributions to a model's prediction. Panel E presents another SHAP summary plot, with bars indicating contributions of features toward the prediction, including positive and negative influences.]
Figure 6 | ML model interpretation. (A) Importance ranking of features in 13 ML prediction algorithms (CatBoost, RF, NNET, GBM, SVM, KNN, DT and GLM). (B) The importance ranking of different variables according to the mean (|SHAP value|) using the optimal CatBoost model. (C) The importance ranking of different risk factors with stability and interpretation using the optimal CatBoost model. The higher SHAP value of a feature is given, the higher risk of ICU mortality the patient would have. The yellow part in feature value represents higher value. (D) SHAP value explanation in a classical sample with ICU mortality. (E) SHAP value explanation in a classical sample without ICU mortality.






Discussion

Because of the immunosuppression occurred in cancer patients, sepsis may begin and develop suddenly. The co-occurrence of lung cancer and sepsis presents significant challenges in diagnosis, treatment, and prognosis. Diagnostically, distinguishing between infection-induced systemic inflammatory response syndrome (SIRS) and tumor-related fever is complex, often leading to delays in appropriate therapy. Advanced imaging and biomarker analysis are essential but may be limited by the patient’s critical condition, calling a need for an outstanding biomarker to predict prognosis. In our study, we found that Oxford Acute Severity of Illness Score (OASIS) has the maximum predictability for ICU mortality in patients with sepsis and lung cancer. Several studies have compared OASIS with other severity scores such as Sequential Organ Failure Assessment (SOFA), Simplified Acute Physiology Score II (SAPS II), and Acute Physiology and Chronic Health Evaluation II (APACHE-II). A previous study demonstrated that OASIS, APACHE II, and SAPS II all presented good discrimination and calibration in predicting the 28-day mortality risk of acute kidney injury patients. OASIS, APACHE II, and SAPS II had better predictive accuracy than SOFA, but due to the complexity of APACHE II and SAPS II calculations, OASIS is a good substitute (26). Another study compared APACHE II, SOFA, SAPS II, and OASIS in predicting mortality in patients with sepsis or septic shock. The study found that all scoring systems were positively correlated with mortality, with SAPS II and OASIS showing higher correlations compared to others (27). These studies support our findings that OASIS is a robust predictor in the context of critical illness, which shed light on its predictive capabilities for septic patients with lung cancer.

Therapeutically, managing sepsis in lung cancer patients requires a delicate balance. Immunosuppressive effects of chemotherapy and the cancer itself increase susceptibility to infections, complicating sepsis management. Broad-spectrum antibiotics are standard; however, the potential for drug interactions and organ dysfunction necessitates careful selection and dosing. Recent studies have explored targeted therapies, such as aumolertinib, a third-generation EGFR-TKI, which has shown effectiveness in NSCLC cases with EGFR mutations (28). In the phase 3 AENEAS trial, aumolertinib significantly extended progression-free survival compared to gefitinib in patients diagnosed as advanced EGFR mutation-positive NSCLC (29). Prognostically, the combination of lung cancer and sepsis portends a poor outcome. Sepsis exacerbates the already compromised physiological state due to malignancy, leading to higher mortality rates. Early recognition and prompt, aggressive treatment of sepsis are crucial to improving survival (30).

Due to these challenges, accurate prediction of ICU mortality and identification of its risk factors are crucial for lung cancer patients with sepsis. The goal of our study is to establish a novel ML model for early ICU mortality prediction. By collecting essential clinic information and constructing ML models using a benchmark framework, we calculated risk scores for ICU mortality prediction, enabling precise prediction of ICU death probability. Once the risk tiers are established, the next step is to translating these into actionable clinical adjustments, which involves tailoring interventions based on the identified risk level. The clinical significance of this work is in enhancing patient management and therapy plan for patients with both lung cancer and sepsis, aiding clinicians in planning more informed, individual therapies. Moreover, the model’s predictions can assist in selecting adjuvant therapies, determining follow-up frequency, and deciding on additional lab tests. Incorporating this predictive model into clinic practices promotes data-driven decision-making, enhancing therapy outcomes and optimizing resource utilization. Ultimately, this integration helps standardize care across various healthcare providers and institutions, potentially decreasing diversity in treatment methods and therapy outcomes.

Besides, the key contribution of our study is the demonstration of how interpretable ML algorithms, particularly using SHAP values, can effectively identify critical factors influencing ICU mortality. The CatBoost algorithm, a gradient boosting framework based on symmetric decision trees (oblivious trees), excels in accuracy and efficiency, especially in handling categorical features, while requiring fewer parameters (31). Its performance often matches or surpasses that of other advanced ML algorithms, displaying outperforming discrimination, calibration, and clinical utility. However, due to its black-box nature, interpretation is essential for ML model. SHAP summary plots and force maps provide clinicians with clear, visual insights into the factors driving predictions, enhancing the model’s interpretability and highlighting key risk factors. Additionally, advanced ML techniques such as RFECV for feature selection, GridSearchCV for hyperparameter tuning, and SMOTE oversampling to address sample imbalance further improved the accuracy of ICU death prediction. This precise predictive model enables clinicians to develop personalized treatment strategies, ensuring timely interventions and improving the prognosis of lung cancer patients combined sepsis.

For critically sick patients, proactive and proactive treatment to address risk variables is essential (32). Nevertheless, some clinical variables are challenging to obtain in clinical practice, and many clinic variables show varying degrees of limitations in terms of accuracy, sensitivity, or specificity. Studies have indicated that SOFA scores often lack both sensitivity and specificity (33). Additionally, the clinical profiles and therapy outcomes of patients with both sepsis and lung carcinoma differ significantly from these patients with no cancer (34). Notably, the majority of critical illness scoring systems fail to consider cancer-specific factors (35). Specifically, we conducted univariate and multivariate logistic regression analyses to identify significant predictors of ICU mortality, including some cancer-related clinical factors. Leveraging these readily accessible clinic data, we successfully developed a robust CatBoost model for early ICU mortality prediction, thereby assisting clinicians in personalized therapy and decision-making. As observed in Table 2, there are some notable differences in the baseline profiles of patients among the training, internal testing and external testing databases, likely attributable to variations in hospital admissions. Despite these differences, the model demonstrated brilliant performances in both internal and external validation datasets, highlighting its robust applicability.

In our research, we observed that the presence of distant metastasis is linked to poor prognosis, likely due to the immunocompromised state of these patients (36). Immunosuppression has been shown to correlate with adverse outcomes in septic patients (37). Greater focus is needed on managing patients with distant metastasis to improve their outcomes. Older patients are at a higher risk of developing sepsis compared to younger individuals, and they often exhibit reduced resilience when managing the condition (38). Previous research has explored the association between the anion gap and prognosis across various diseases. As a well-established marker for evaluating acid–base balance (39), an abnormal anion gap is linked to acid–base disturbances, which are considered to significantly affect outcomes in critically sick patients (40). Similarly, our findings indicate that serum anion gap is a significantly risk variable for ICU mortality in patients with both sepsis and lung carcinoma. Several scoring systems for critical illness, including SAPS II, OASIS and SOFA scores, have been established to assess disease intensity and forecast short-term outcomes. The SAPS II is a scoring system developed to assess the intensity of illness in patients admitted to ICU (35). It evaluates 17 physiological variables, including vital signs and laboratory results, to generate a score that predicts the probability of hospital mortality, which was robust in our research for septic lung cancer patients’ mortality prediction. The OASIS is a prognostic tool to appraise the severity of intensity in critically sick patients. It incorporates variables such as age, heart rate, mean arterial pressure, temperature, respiratory rate, urine output, Glasgow Coma Scale, and specific laboratory values to generate a score that predicts in-hospital mortality (41), which was the most powerful indicator in our analysis for lung cancer patients’ mortality prediction, calling its application especially in lung cancer patients. The SOFA score is a clinical metric used to evaluate and quantify the degree of organ dysfunction across six physiological systems: respiratory, cardiovascular, hepatic, coagulation, renal, and neurological. It is particularly valuable in ICUs for monitoring disease progression, especially in sepsis cases (42), which was also validated in our analysis with septic lung cancer patients.

This study, while showcasing notable strengths, also has several limitations. First, we determined the required sample size for our external validation cohort. However, due to the limited availability of patients with complete follow-up data, we were unable to assemble a sufficiently large external validation set. While we acknowledge that larger sample sizes enhance the reliability of model evaluation, we have endeavored to utilize the maximum possible sample size given the current research constraints. To maximize the validation reliability despite the smaller external validation set, we employed a 10-fold cross-validation method to assess the model’s generalizability. Moving forward, we intend to expand the sample size of the external validation cohort in future research to further substantiate the model’s universality and reliability. Second, the study relies on retrospective information in the MIMIC IV database, which introduces the potential for selection bias. Variations in data collection across hospitals and the retrospective design also resulted in some missing clinical features. Additionally, the absence of key clinicopathological parameters, such as smoking, socioeconomic factors, and gene mutations, was a limitation, as the MIMIC IV database does not include imaging data. While we included a broad range of baseline and routine clinical features to improve predictive accuracy, this added complexity to the model’s practical use in clinical settings. Lastly, the model remains to be integrated into clinic practices, necessitating additional prospective, multicenter, and large-scale validation studies to confirm its applicability and practical utility in future settings.






Conclusions

In our research, we successfully established a CatBoost-based prediction model using a ML benchmark framework to precisely forecast ICU mortality in lung carcinoma patients combined sepsis. We succeeded in identifying significantly predictive variables for ICU mortality in this patient population. This study establishes a groundwork for subsequent endeavors to refine ICU mortality predictions and prognostic forecasts, which may assist clinicians in making informed decisions and customizing therapeutic strategies.
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OEBPS/Images/table1.jpg
Variable Non-Mortality N = 8 ICU Mortality N p.overall
Age 684 (12.3) 68.4 (12.8) 0.968
Gender: 0.095

Female 384 (45.1%) 126 (51.4%)

Male 467 (54.9%) 119 (48.6%)
Race: 0.066

Asian 50 (5.88%) 17 (6.94%)

Black 90 (10.6%) 30 (12.2%)

Other 108 (12.7%) 45 (18.4%)

White 603 (70.9%) 153 (62.4%)
Marital status: 0.418

Divorced 65 (7.64%) 4 (5.71%)

Married 440 (51.7%) 119 (48.6%)

Null 36 (4.23%) 15 (6.12%)

Single 198 (23.3%) 66 (26.9%)

Widowed 112 (13.2%) 31 (12.7%)
Hypertension: 0.183
No ‘ 510 (59.9%) 159 (64.9%)
Yes 341 (40.1%) 86 (35.1%)
Diabetes: 0.161
No 693 (81.4%) 189 (77.1%)
Yes 158 (18.6%) 56 (22.9%)
Cardiac arrhythmia: 0599
No 807 (94.8%) 235 (95.9%)
Yes 44 (5.17%) 10 (4.08%)
Metastatic Cancer: 0.047
No 480 (56.4%) 120 (49.0%)
Yes 371 (43.6%) 125 (51.0%)
Weight 749 (21.6) 73.1(23.4) 0.269
SOFA 4.65 (2.93) 6.89 (3.66) <0.001
Acute Physiology Score I11 47.0 (18.2) 63.6 (23.0) <0.001
SIRS 2.71 (0.86) 2.97 (0.80) <0.001
SAPS I 432 (12.8) 53.2 (15.7) <0.001
OASIS 328 (7.81) 39.6 (8.58) <0.001
Glasgow Coma Scale 13.6 (2.54) 13.1 (3.33) 0.06
WBC 11.9 (7.88) 14.8 (11.2) <0.001
RBC 3.44 (0.67) 3.38 (0.63) 0.155
Platelet 235 (133) 239 (148) 0.686
Hemoglobin 10.1 (1.92) 9.76 (1.77) 0.013
RDW ‘ 16.0 (2.54) 16.7 (2.48) <0.001
Hematocrit 310 (5.65) 30.5 (5.25) 0.155
Sodium ‘ 137 (4.65) 137 (5.83) 0.028
Potassium 4.24 (0.59) 4.47 (0.70) <0.001
Calcium 8.32 (0.84) 8.32 (1.06) 0.964
Chloride 103 (5.99) 101 (6.76) 0.015
Glucose 137 (54.7) 140 (51.7) 0.553
Anion gap 14.7 (3.51) 15.6 (4.04) 0.001
PH 7.37 (0.07) 7.34 (0.09) <0.001
pCO2 43.5 (12.0) 46.9 (13.6) 0.001
pO2 108 (69.2) 103 (51.8) 0.287
Lactate 1.98 (1.48) 2.79 (2.24) <0.001
Total CO2 26.0 (6.07) 25.9 (6.82) 0.72
PT 16.2 (9.10) 17.3 (8.03) 0.073
BET 36.2 (18.8) 39.7 (21.0) 0.029
INR 1.49 (1.03) 1.60 (0.81) 0.1
Urea nitrogen 26.7 (20.9) 32.2 (21.4) 0.001
Creatinine 1.29 (1.17) 1.34 (1.09) 0.491
Heart rate 90.6 (16.2) 96.5 (17.3) <0.001
Non invasive systolic blood pressure 114 (20.6) 126 (263) 0.502
Non invasive diastolic blood pressure 63.2 (10.6) 61.9 (11.1) 0.099
Non invasive mean blood pressure 75.8 (12.1) 72.9 (10.7) <0.001
Oxygen saturation 96.3 (2.12) 95.6 (3.08) <0.001
Temperature | 368 (143) 36.8 (0.51) 0428
Hospital day 124 (11.1) 6.70 (6.06) <0.001
ICU day 4.28 (5.32) 5.58 (5.41) 0.001
Hospital survival day 149 (295) 6.23 (6.06) <0.001
ICU survival day 148 (295) 4.92 (5.42) <0.001





