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Development of a weighted
Alpha-Fetoprotein tumor burden
score-integrated nomogram for
predicting overall survival in
locally ablated hepatocellular
carcinoma patients
Yang Wang1,2,3,4†, Zhixia Gu1,2,3,4†, Wenying Qiao1,2,3,4†,
Xiaoxue Yuan1,2,3,4*, Caixia Hu5* and Ronghua Jin1,2,3,4*

1National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan
Hospital, Capital Medical University, Beijing, China, 2Beijing Institute of Infectious Diseases,
Beijing, China, 3National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical
University, Beijing, China, 4Beijing Key Laboratory of Emerging Infectious Diseases, Institute of
Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China, 5Interventional
Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
Introduction: The Weighted Alpha-Fetoprotein Tumor Burden Score (WATS)

shows promise for hepatocellular carcinoma (HCC) prognosis, but its usefulness

in local ablation patients is uncertain, and no validated nomograms exist for

overall survival (OS) prediction.

Methods: This retrospective study enrolled 862 HCC patients who underwent

local ablation therapy at Beijing You’an Hospital between January 1, 2015 and

December 31, 2022. Participants were randomly allocated into a training cohort

(n=603) and validation cohort (n=259) in a 7:3 ratio. Based on themedian value of

the WATS score, patients were stratified into low-risk (n=431) and high-risk

(n=431) groups. The Kaplan-Meier (KM) curve was used to compare the

prognosis between the two groups. Potential prognostic factors were

screened via least absolute shrinkage and selection operator (Lasso)

regression, followed by construction of a WATS-incorporated nomogram

prediction model using Cox proportional hazards regression. The SHapley

Additive exPlanations (SHAP) method was employed to interpret variable

contributions within the model. Model performance was evaluated via Receiver

operating characteristic (ROC) curve, calibration curve, and decision curve

analysis (DCA). Patients were stratified into low- and high-risk groups

according to the nomogram scores, and KM curves were used to compare OS

differences between the two groups.

Results: The study identified the WATS, age, history of drinking, and prealbumin

as independent prognostic factors for OS, and successfully established a

nomogram model for OS prediction. The ROC curves, calibration curves, and

DCA all confirmed that the model possesses good discriminative ability,

calibration accuracy, and clinical utility. KM curves demonstrated that the

nomogram could effectively stratify patients into different risk categories with

satisfactory predictive performance.
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Conclusion: This study developed and validated a novel prognostic nomogram

incorporating the WATS to assess OS in HCC patients receiving local ablation

therapy. The nomogram demonstrated robust discriminative ability, enabling

accurate prediction of 3-, 5-, and 8-year OS rates, thereby providing clinicians

with a reliable tool for individualized risk assessment and treatment

decision-making.
KEYWORDS

hepatocellular carcinoma, Weighted Alpha-Fetoprotein Tumor Burden Score, overall
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1 Introduction

Hepatocellular carcinoma (HCC) represents over 90% of

primary liver cancers and remains a major global health concern

(1). Globally, it is the sixth most frequently diagnosed malignancy

and the third leading cause of cancer mortality (2). For early-stage

HCC, local ablation serves as a first-line treatment, and recent

advancements in this technique have contributed to improved

patient survival (3). This minimally invasive approach offers

benefits such as reduced surgical trauma, minimal bleeding, and

fewer complications (4). Despite these advantages, post-ablation

outcomes remain suboptimal, with a 5-year overall survival (OS)

rate of only 30-40% (5, 6). Given the widespread prevalence and

unfavorable outcomes of HCC patients who received local ablation,

developing prognostic models to predict OS is essential.

Accurate and objective assessment of tumor burden has long

been a major challenge in oncology. In 2009, Mazzaferro et al.

conceptualized tumor burden through the Metroticket model,

framing tumor progression as a journey in which higher tumor

burden corresponds to a greater cost to survival (7). Building on this

concept, Sasaki et al. developed the Tumor Burden Score (TBS), a

composite index that integrates tumor diameter and number using

the Pythagorean theorem (8). Subsequent studies, including work

by Tsilimigras et al., demonstrated the utility of TBS in stratifying

prognosis among patients undergoing resection for HCC, effectively

reducing heterogeneity within early- and intermediate-stage

disease (9).

While TBS provides a simple and practical anatomical

assessment of tumor burden, it does not fully account for

biological aggressiveness—such as alpha-fetoprotein (AFP) levels,

tumor differentiation, or microvascular invasion. To address this

limitation, the Weighted Alpha-fetoprotein Tumor burden Score

(WATS) was introduced. Originally developed by Lu et al. in a

cohort of 772 HCC patients undergoing curative hepatectomy,

WATS integrates both tumor burden and biological invasiveness

into a single continuous index (10). Through multivariable Cox

regression, three independent predictors of progression-free

survival—tumor number, tumor size, and the natural logarithm

of AFP (ln AFP)—were identified and assigned statistically derived
02
weights of 0.73, 0.17, and 0.10, respectively, normalized to sum to 1.

The resulting formula, WATS = 0.73 × tumor number + 0.17 ×

tumor size + 0.10 × ln AFP, generates a weighted prognostic score

that reflects both anatomical extent and molecular characteristics,

with higher values indicating greater disease aggressiveness (10).

Unlike conventional staging systems, such as Tumor-Node-

Metastasis (TNM) or Barcelona Clinic Liver Cancer (BCLC),

which rely on categorical definitions and arbitrary thresholds,

WATS leverages continuous variables and data-driven weighting

to enable more granular and biologically informed risk

stratification. By simultaneously capturing tumor morphology

and serological biomarkers within a unified framework, WATS

overcomes key limitations of earlier models such as TBS (11, 12).

Validated in both training and internal cohorts, WATS

demonstrates improved prognostic resolution, enhances the

accuracy of survival prediction, and supports more individualized

clinical decision-making—particularly in complex cases where

traditional systems may lack discriminatory power (10).

Nevertheless, as for HCC patients treated with local ablation,

the predictive capability of WATS for prognosis remains uncertain.

Additionally, there is also lacking effective nomograms to predict

patients’ mortality rates. Therefore, this study included WATS in

the analysis and investigated its association with OS. Subsequently,

a nomogram for HCC patients after local ablation was built based

on clinical variables selected by Least Absolute Shrinkage and

Selection Operator (Lasso) Cox regression. Moreover, the

comparison of survival times among different risk groups derived

from the established nomogram was done, aiming to facilitate the

identification of high-risk populations and offer more precise

clinical guidance.
2 Methods

2.1 Study populations

This study enrolled 862 HCC patients who received ablation

treatment at Beijing You’an Hospital, Capital Medical University,

between January 1, 2015, and December 31, 2022. The diagnosis of
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HCC was according to the American Association for the Study of

Liver Disease (AASLD) guideline. The inclusion criteria were as

follows: (1) age from 18 to 80 years; (2) complete clinical and

follow-up data; (3) BCLC stage 0, A or B; (4) Child-Pugh class A or

B. Exclusion criteria: Patients were excluded if they met any one of

the following criteria: (1) received other treatment before ablation;

(2) distant metastasis of HCC; (3) secondary liver cancer; (4)

coagulation function disorders or serious diseases of vital organs,

such as the heart, brain, lung, and kidney.

Approval for this research was obtained from the Ethics

Committee of Beijing You’an Hospital, Capital Medical

University, ensuring adherence to the Declaration of Helsinki

guidelines. The requirement for informed consent was waived due

to the retrospective nature of this study.
2.2 Clinical characteristics and follow-up

Clinical characteristics were gathered before the local ablation,

including: (1) demographic data: age, gender, history of smoking,

drinking, antiviral therapy, hypertension, and diabetes; (2) tumor

information: tumor number (TN), tumor size (TS) and AFP. (3)

liver function indicators: Child-Pugh class, history of liver cirrhosis,

alanine aminotransferase (ALT), aspartate transaminase (AST),

total bilirubin (TBIL), direct bilirubin (DBIL), gamma-glutamyl

transferase (GGT), albumin (ALB), alkaline phosphatase (ALP),

prealbumin (Palb) and globulin (Glob). (4) other characteristics:

prothrombin time (PT), thrombin time (TT), prothrombin time

activity (PTA), activated partial thromboplastin time (APTT), red

blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb).

Tumor number and maximum tumor diameter were assessed

based on preoperative multimodal imaging, including contrast-

enhanced ultrasound, computed tomography (CT), and/or magnetic

resonance imaging (MRI). These evaluations were performed by

experienced radiologists who were blinded to the patients’

pathological outcomes and clinical prognoses, thereby minimizing

interpretation bias and ensuring assessment consistency. Preoperative

blood samples were collected and analyzed at our institutional central

laboratory using standardized platforms and commercial assay kits to

measure AFP, liver function parameters, and coagulation profiles. This

centralized testing approach was implemented to reduce inter-assay

variability and ensure data uniformity and reliability across all

study participants.

In our study, the previously reported WATS score was used as

the core variable to stratify patients into high-risk and low-risk

groups according to its median value, for the prediction of OS in

HCC patients undergoing local ablation. WATS = 0.73 × tumor

number + 0.17 × tumor size + 0.10 × ln AFP (10).

Patients with HCC were recommended to undergo regular

follow-ups in line with clinical guidelines after local ablation.

Typically, these patients were followed up 3 to 6 months, which

comprised clinical characteristics and adverse events. OS, as the

primary endpoint of this study, was defined as the interval from

local ablation to either the occurrence of death or the last follow-up.
Frontiers in Oncology 03
2.3 Ablation procedure

All enrolled patients were treated with local ablation, which was

performed by qualified hepatologists and interventional radiologists.

The specific process includes 5 items: (1) Appropriate position for

ablation was determined by CT or MRI. (2) The ablation needle was

inserted in the marked skin, and followed by image scanning to track

the ablation process. (3) For the purpose of attaining complete

ablation, operators should expand the ablative range and

contemplate multiple sites, overlapping, or repeated ablation. (4) In

order to prevent tumor implantation and postoperative bleeding, the

needle track required to be heated in the final stage. (5) Following the

ablation, all patients underwent imaging examinations to assess

treatment efficacy and possible complications.
2.4 Statistical analysis

Categorical variables were expressed as frequencies (percentages),

whereas continuous variables were reported as means ± standard

deviation or medians (quartiles). Comparisons between two groups

were analyzed by Student’s t test, Chi-square test, or non-parametric

test as appropriate. All statistical analyses were conducted using R

software (version 4.5.0). All tests were two-tailed and statistical

significance was set at P < 0.05.

Firstly, the Kaplan-Meier (KM) curve and log-rank test were

used to assess the performance of WATS score in HCC OS. To

address potential multicollinearity among variables, select the most

predictive and parsimonious set of features, and mitigate the risk of

overfitting, we employed Lasso regression analysis, incorporating

10-fold cross-validation. The optimal value of the regularization

parameter (l) was determined by minimizing the cross-validated

partial likelihood deviance. Variables retaining non-zero coefficients

after Lasso penalization were selected as candidate predictors. These

Lasso-selected variables were subsequently incorporated into a

multivariate Cox proportional hazards regression model.

Variables that remained statistically significant (typically defined

as P < 0.05) in this multivariate model were identified as

independent prognostic factors for OS. Based on the results of the

final multivariate Cox regression model, we constructed a

nomogram using the rms package in R software. This nomogram

provides a graphical representation of the multivariate Cox model.

Each independent prognostic factor, including the WATS score as a

key variable, is assigned a specific point value on the “Points” scale

at the top of the nomogram. The points for each predictor are

summed to yield a total point score. This total score is then

projected downward to the lower scales of the nomogram to

estimate the probability of OS at specific time points (3-year, 5-

year, and 8-year). In order to determine the relative importance of

the variables, we employed a statistical machine learning approach,

Shapley Additive Explanations (SHAP). Furthermore, receiver

operating characteristic curves (ROC) were plotted and the area

under the curves (AUC) were calculated to evaluate the

discrimination of the model. The calibration and decision curve
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analysis (DCA) were then used to validate the calibration

performance and clinical utility. At last, patients were classified

into low-risk and high-risk groups on the basis of the nomogram.

KM curves were applied to compare the OS between two groups.
3 Results

3.1 Baseline characteristics

During the period from January 1, 2015, to December 31, 2022,

a total of 862 HCC patients after local ablation were recruited in this

study and randomized into two groups with a 7:3 ratio. There were

603 patients constituted the training set, while 259 formed the

validation set (Table 1). The result revealed no statistical differences

between the two groups, except the history of diabetes. Our research

concluded patients’ last follow-up on July 1, 2024, with a median

follow-up duration of 52.7 months.

Among these patients, the average age was 56.60 years, with 685

(79.5%) males and 177 (20.5%) females. Notably, 377 (43.7%)

patients had a history of smoking and 289 (33.5%) had a history

of drinking. Furthermore, 222 (25.8%) individuals were diagnosed

with hypertension and 180 (20.9%) with diabetes mellitus. The

training and validation cohorts both had a majority of patients in

Child-Pugh class A (76.3% and 75.3%, respectively).
3.2 The performance of WATS for
predicting the OS

According to the median value of WATS score, patients could

be classified into low-risk group (n=431) and high-risk group

(n=431). The comparison of baseline characteristics between two

groups was shown in Table 2. There were significant differences

between two groups in terms of the WATS score.

The KM curve was plotted in Figure 1 for comparing the

prognosis between two groups. The median OS was not reached

in low-risk group and 92.0 months (95% CI: 85.1 months to not

reached) in high-risk group, respectively. The cumulative OS rates

for 3-, 5-, 8-year were 93.0%, 80.9% and 68.1% in the low-risk

group, while 83.3%, 67.9% and 49.1% in the high-risk

group (P < 0.0001).
3.3 Independent prognostic factors
associated with OS

Lasso regression, utilizing a loss function with L1 regularization

to penalize model coefficients while minimizing the objective

function, was employed to screen risk factors associated with OS

(Figure 2). The 10-fold cross-validation method was applied to

select the optimal l value, which was determined to be 0.0283 (Log

l = -1.548). Significant risk factors filtered by Lasso regression were

age, history of drinking, Child-Pugh class, WBC, RBC, AST, Glob,

GGT, Palb, PT, PTA, TT, and WATS. These variables were further
Frontiers in Oncology 04
incorporated into the multivariable Cox regression analysis,

revealing that WATS (HR:1.334, 95% CI: 1.113-1.600), age

(HR:1.031, 95% CI: 1.011-1.052), history of drinking (HR:1.449,

95% CI: 1.058-1.985) and Palb (HR:0.996, 95% CI: 0.992-0.999) as

the independent prognostic factors for OS (Table 3).

In order to assess the specific impact of each variable as a risk

factor on OS, we employed the global interpretation method to

construct SHAP. This approach quantifies the contribution of each

feature to the model and identifies the prediction contribution of

the model to a broader range of outcomes. The risk factors in Lasso-

cox were further presented (Figure 3A), and the correlation heat

map shows the correlation between factors (Figure 3B).
3.4 Development of the nomogram

Based on these independent prognostic factors, we constructed

a nomogram for predicting the OS of HCC patients who received

local ablation (Figure 4). Every risk factor corresponds to a specific

score according to its value on the nomogram. It was necessary to

sum the scores of factors and draw a vertical line at the

corresponding total point. After these steps, the vertical line

intersects with three lines representing mortality risk, which

forecast the 3-, 5-, and 8-year OS.

In the training cohort, the time-dependent ROC curve was

drawn and the C-index in the training set was 0.649 (95% CI: 0.606-

0.692). It showed that AUCs of 3-, 5-, and 8-year were 0.679, 0.683,

and 0.708, respectively (Figure 5A). These outcomes highlighted the

advantageous discriminative ability. Additionally, a calibration

curve (Figure 6A) and DCA curves (Figures 7A–C) were created,

affirming that the nomogram demonstrated good calibration and

clinical utility. According to the nomogram, patients were

categorized into low-risk group (n=301) and high-risk group

(n=302). The Kaplan-Meier curve was plotted, indicating that the

median OS was 82.6 months for the high-risk group, while it was

not reached in the low-risk group (Figure 8A). The cumulative OS

rates for 3-, 5-, and 8-year were 83.7%, 64.3%, and 45.0% in the

high-risk group, while 94.1%, 84.5%, and 73.2% in the low-risk

group. There existed an obvious distinction in OS among the two

groups (P < 0.0001).
3.5 Validation of the nomogram

In order to further validate the reliability of this nomogram, we

performed internal validation in our study. The C-index in the

validation cohort was 0.655 (95% CI: 0.542-0.676) and the AUCs for

3-, 5-, and 8-year were 0.701, 0.663, and 0.633, which suggested the

favorable diagnostic value (Figure 5B). The calibration curve

exhibited a good match (Figure 6B), and the DCA curves also

had good clinical practicability (Figures 7D–F). Patients in the

validation cohort were then also classified into two groups in light

of the nomogram: low-risk group (n=129) and high-risk group

(n=130) (Figure 8B). The median OS were not reached in both of

the low-risk group and the high-risk group. The cumulative OS
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TABLE 1 Clinical characteristics for training and validation cohorts.

Characteristic Training cohort (N = 603) Validation cohort (N = 259) P value

0.363

0.808

0.415

0.034

0.667

0.854

0.128

0.924

0.821

0.839

0.274

(Continued)
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Age 56.78 ± 8.99 56.17 ± 9.13

Gender (%)

Male 481 (79.8) 204 (78.8)

Female 122 (20.2) 55 (21.2)

Hypertension (%)

No 453 (75.1) 187 (72.2)

Yes 150 (24.9) 72 (27.8)

Diabetes (%)

No 465 (77.1) 217 (83.8)

Yes 138 (22.9) 42 (16.2)

Antiviral (%)

No 279 (46.3) 115 (44.4)

Yes 324 (53.7) 144 (55.6)

Smoking (%)

No 341 (56.6) 144 (55.6)

Yes 262 (43.4) 115 (44.4)

Drinking (%)

No 411 (68.2) 162 (62.5)

Yes 192 (31.8) 97 (37.5)

Cirrhosis (%)

No 83 (13.8) 37 (14.3)

Yes 520 (86.2) 222 (85.7)

Child-Pugh (%)

A 460 (76.3) 195 (75.3)

B 143 (23.7) 64 (24.7)

AFP (ng/mL) 10.23 (3.70, 72.77) 12.17 (3.84, 54.54)

WBC (10^9/L) 5.25 ± 2.25 5.07 ± 2.07
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TABLE 1 Continued

Characteristic Training cohort (N = 603) Validation cohort (N = 259) P value

4.19 ± 0.62 0.505

132.12 ± 18.91 0.119

32.74 ± 19.54 0.593

32.26 ± 12.02 0.808

84.98 ± 39.89 0.422

50.70 (31.95, 85.65) 0.968

19.73 ± 10.27 0.224

6.68 ± 4.82 0.062

37.47 ± 4.80 0.588

27.65 ± 5.02 0.091

33.48 ± 4.48 0.421

12.41 ± 1.59 0.674

15.90 ± 2.27 0.906

1.78 ± 0.71 0.521

transferase; AST, aspartate transferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; DBIL, direct bilirubin; ALB, albumin;
WATS, Weighted Alpha-Fetoprotein Tumor Burden Score.
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RBC (10^12/L) 4.16 ± 0.62

Hb (g/L) 129.91 ± 19.10

ALT (U/L) 31.93 ± 20.88

AST (U/L) 32.54 ± 16.29

ALP (U/L) 87.09 ± 33.25

GGT (U/L) 51.30 (32.25, 83.35)

TBIL (umol/L) 18.84 ± 9.70

DBIL (umol/L) 6.07 ± 4.25

ALB (g/L) 37.28 ± 4.63

Glob (g/L) 28.34 ± 5.60

APTT (s) 33.76 ± 4.69

PT (s) 12.45 ± 1.41

TT (s) 15.88 ± 2.36

WATS 1.82 ± 0.74

AFP, Alpha-Fetoprotein; WBC, white blood cell; RBC, red blood cell; Hb, Hemoglobin; ALT, alanine amino
Glob, globulin; APTT, activated partial thromboplastin time; PT, prothrombin time; TT, thrombin time
Bold values indicate statistically significant results with P < 0.05.
;
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TABLE 2 Patient characteristics between low-risk group and high-risk group.

Characteristic All patients (n=862) Low-risk patients (n=431) High-risk patients (n=431) P value

0.451

0.129

0.938

0.154

0.001

0.099

0.083

0.922

0.873

<0.001
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Age 56.60 ± 9.03 56.37 ± 9.09 56.83 ± 8.97

Gender (%)

Male 685 (79.5) 333 (77.3) 352 (81.7)

Female 177 (20.5) 98 (22.7) 79 (18.3)

Hypertension (%)

No 640 (74.2) 319 (74.0) 321 (74.5)

Yes 222 (25.8) 112 (26.0) 110 (25.5)

Diabetes (%)

No 682 (79.1) 332 (77.0) 350 (81.2)

Yes 180 (20.9) 99 (23.0) 81 (18.8)

Antiviral (%)

No 394 (45.7) 172 (39.9) 222 (51.5)

Yes 468 (54.3) 259 (60.1) 209 (48.5)

Smoking (%)

No 485 (56.3) 255 (59.2) 230 (53.4)

Yes 377 (43.7) 176 (40.8) 201 (46.6)

Drinking (%)

No 573 (66.5) 299 (69.4) 274 (63.6)

Yes 289 (33.5) 132 (30.6) 157 (36.4)

Cirrhosis (%)

No 120 (13.9) 61 (14.2) 59 (13.7)

Yes 742 (86.1) 370 (85.8) 372 (86.3)

Child-Pugh (%)

A 655 (76.0) 329 (76.3) 326 (75.6)

B 207 (24.0) 102 (23.7) 105 (24.4)

AFP (ng/mL)
10.70
(3.71, 65.34)

5.12
(2.90, 16.35)

32.86
(6.82, 294.65)
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TABLE 2 Continued

Characteristic All patients (n=862) Low-risk patients (n=431) High-risk patients (n=431) P value

5.12 ± 2.22 5.28 ± 2.18 0.275

4.17 ± 0.63 4.16 ± 0.60 0.954

131.01 ± 19.42 130.14 ± 18.70 0.503

29.83 ± 18.23 34.52 ± 22.28 0.001

31.10 ± 14.58 33.81 ± 16.53 0.011

83.91 ± 32.57 89.00 ± 37.81 0.034

46.20
(28.90, 78.85)

58.00
(35.05, 90.85)

<0.001

19.56 ± 10.03 18.66 ± 9.71 0.181

6.52 ± 4.67 5.99 ± 4.17 0.081

37.72 ± 4.73 36.95 ± 4.60 0.015

28.21 ± 5.25 28.05 ± 5.63 0.683

33.62 ± 4.47 33.74 ± 4.78 0.693

12.45 ± 1.59 12.43 ± 1.34 0.898

15.93 ± 2.22 15.84 ± 2.44 0.584

sferase; AST, aspartate transferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; DBIL, direct bilirubin; ALB, albumin;
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WBC (10^9/L) 5.20 ± 2.20

RBC (10^12/L) 4.16 ± 0.62

Hb (g/L) 130.57 ± 19.06

ALT (U/L) 32.17 ± 20.48

AST (U/L) 32.45 ± 15.64

ALP (U/L) 86.45 ± 35.36

GGT (U/L)
51.20
(32.05, 83.95)

TBIL (mmol/L) 19.11 ± 9.88

DBIL (mmol/L) 6.25 ± 4.43

ALB (g/L) 37.33 ± 4.68

Glob (g/L) 28.13 ± 5.44

APTT (s) 33.68 ± 4.62

PT (s) 12.44 ± 1.47

TT (s) 15.88 ± 2.33

AFP, Alpha-Fetoprotein; WBC, white blood cell; RBC, red blood cell; Hb, Hemoglobin; ALT, alanine aminotran
Glob, globulin; APTT, activated partial thromboplastin time; PT, prothrombin time; TT, thrombin time.
Bold values indicate statistically significant results with P < 0.05.
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FIGURE 1

Kaplan-Meier curves of high WATS group and low WATS group. WATS: Weighted Alpha-Fetoprotein Tumor Burden Score; OS, overall survival.
FIGURE 2

Lasso regression employed to further identified risk factors for OS. (A) Lasso regression coefficients paths; (B) Lasso regression cross-validation
curve. Lasso: least absolute shrinkage and selection operator; OS, overall survival.
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rates for 3-, 5-, and 8-year were 79.8%, 68.6%, and 50.6% in the

high-risk group, while 93.5%, 84.5%, and 74.7% in the low-risk

group. In concordance with the training cohort, there was also a

statistically significant discrepancy in OS among the two

groups (P = 0.00058).
4 Discussion

HCC remains a challenging malignancy with heterogeneous

outcomes, particularly after local ablation therapy (13). In this

study, we developed and validated a novel prognostic model

integrating WATS to predict OS in HCC patients undergoing

ablation. The nomogram demonstrated effective discriminative

ability, providing a more individualized risk assessment tool for

clinical decision-making.

Local ablation, encompassing techniques such as radiofrequency

ablation (RFA), microwave ablation (MRA), irreversible electroporation

(IRE), cryoablation, and phototherapy, holds a prominent position in

the treatment of HCC (14–16). The ablation process involves inserting

an ablation needle into tumor tissues under the guidance of imaging

techniques, and high-frequency radio waves are applied to damage

HCC cells. Several studies have demonstrated that local ablation

provides effective therapy for patients with early-stage HCC during

long-term clinical practice experience (17–20). Nevertheless, the

prognosis after ablation remains unfavorable, and deserves

further investigation.

The WATS score incorporates three key components, including

tumor size, tumor number, and AFP level. Larger tumor diameter and

multifocal lesions are associated with more aggressive tumor biology,

aligning with previous studies demonstrating the adverse impact of

increased tumor burden on survival (10). In our study, stratification of
Frontiers in Oncology 10
patients into high-risk and low-risk groups based on the WATS

median value yielded a significant difference in OS, demonstrating

its robust discriminatory ability. Compared to conventional staging

systems such as TNM or BCLC, which rely on categorical and static

criteria, WATS leverages continuous variables (ln AFP) and a

weighted algorithm to enhance the precision of risk stratification,

particularly for patients with early- to intermediate-stage HCC.

Meanwhile, elevated AFP levels reflect not only advanced tumor

differentiation but also microenvironmental changes that promote

angiogenesis and immune evasion (21). By integrating these

parameters into a continuous variable, WATS overcomes the

arbitrary cutoffs of traditional staging systems and provides a more

nuanced assessment of tumor aggressiveness (8, 22, 23). This refined

prognostic assessment may help prevent both overtreatment and

undertreatment, thereby overcoming key limitations of traditional

staging systems.

To optimize variable selection and enhance model interpretability,

we employed a machine learning framework combining Lasso-Cox

regression and SHAP analysis (24–27). Lasso-Cox effectively identified

the most predictive variables while minimizing overfitting, and SHAP

values quantified the contribution of each feature. These methods

addressed the limitations of traditional statistical methods by handling

multicollinearity and providing transparent, patient-specific risk

explanations. The robustness of our model was further supported by

its consistent performance across training and validation cohorts,

highlighting the potential of machine learning in improving

prognostic accuracy for HCC patients who received local ablation.

Beyond tumor-related factors, our model identified palb, age, and the

history of drinking as independent predictors of OS. Palb, a marker of

nutritional status and liver synthetic function, underscores the

importance of hepatic reserve in determining post-ablation

outcomes (28–30). Advanced age likely reflects diminished
TABLE 3 Cox proportional hazards regression to predict OS based on Lasso regression.

Variables HR (95%CI) P value

Age 1.031 (1.011-1.052) 0.002

Child-Pugh 1.219 (0.837-1.775) 0.301

Drinking 1.449 (1.058-1.985) 0.021

WBC 0.961 (0.889-1.038) 0.312

RBC 0.980 (0.713-1.347) 0.901

AST 1.007 (0.998-1.016) 0.113

GGT 1.002 (0.999-1.004) 0.076

Glob 1.016 (0.090-1.042) 0.236

Palb 0.996 (0.992-0.999) 0.039

PT 1.002 (0.715-1.403) 0.991

PTA 0.994 (0.962-1.028) 0.739

TT 1.038 (0.970-1.112) 0.277

WATS 1.334 (1.113-1.600) 0.002
WBC, white blood cell; RBC, red blood cell; AST, aspartate transferase; GGT, gamma-glutamyl transferase; Glob, globulin; Palb, prealbumin; PT, prothrombin time; PTA, prothrombin time
activity; TT, thrombin time; WATS, Weighted Alpha-Fetoprotein Tumor Burden Score; Lasso, least absolute shrinkage and selection operator; OS, overall survival.
Bold values indicate statistically significant results with P < 0.05.
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FIGURE 3

The constructed SHAP plot quantified the contribution of each feature to the model. (A) The SHAP plot illustrated the key risk factors identified
through the Lasso-Cox model. (B) The correlation heatmap displayed the correlations among these factors. Lasso: least absolute shrinkage and
selection operator; SHAP, SHapley Additive exPlanations.
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physiological resilience and reduced tolerance to salvage therapies,

while chronic alcohol use exacerbates liver dysfunction and

inflammation, accelerating HCC progression (31–33). These

findings emphasize the multifactorial nature of HCC prognosis and

the need to consider both tumor-specific and patient-specific variables

in clinical decision-making. The inclusion of these factors in our

nomogram enhances its predictive accuracy and relevance to real-

world patient populations.

The WATS score demonstrates broad potential for clinical

translation. It can guide personalized follow-up strategies, with

high-risk patients benefiting from intensified monitoring, while

low-risk patients undergo less frequent follow-up, reducing

healthcare burden and patient anxiety. In the absence of

standardized guidelines for postoperative adjuvant therapy,

WATS helps identify high-risk individuals who may benefit from

targeted or immunotherapies, informing both clinical trial

enrollment and real-world treatment decisions. When integrated

with a nomogram, WATS facilitates shared decision-making by

enabling visual, individualized predictions of survival probability

(e.g., 3-, 5-, or 8-year OS), enhancing patient understanding and

treatment adherence. Additionally, its reliance on routinely

available preoperative clinical parameters (tumor number, tumor

size, and AFP) makes it simple to calculate and highly accessible,

particularly suitable for resource-limited settings. Furthermore,

WATS can serve as a stratification variable in clinical trials and
Frontiers in Oncology 12
aid in developing more sophisticated predictive tools by integrating

emerging biomarkers such as radiomics, liquid biopsy, or

immune profiling.

This study has several limitations. First, its single-center,

retrospective design may introduce selection bias and information

bias, and the characteristics of the study population may limit the

generalizability of the findings. Second, although an internal

validation cohort was used, the lack of external validation in

multicenter, prospective settings restricts the broader clinical

applicability of the model. Additionally, there was an imbalance

in the distribution of diabetes history between the training and

validation cohorts. While this variable was not selected as a

significant predictor in the final model (via Lasso-Cox and SHAP

analyses), it remains a potential confounding factor, and future

studies should ensure balanced representation of comorbid

conditions to enhance model robustness.

Future research should focus on validating the WATS score

and the associated nomogram in multicenter, prospective cohorts

across diverse populations—including varying etiologies, ethnic

backgrounds, and treatment modalities. Furthermore, integrating

emerging biomarkers—such as circulating tumor DNA (ctDNA),

immune microenvironment signatures, or radiomic features—

into the existing framework may further improve predictive

accuracy. Ultimately, interventional studies are warranted to

evaluate whether risk-stratified, WATS-guided management
FIGURE 4

Nomogram for predicting 3-, 5-, and 8-year OS in locally ablated hepatocellular carcinoma patients. OS, overall survival; Palb, prealbumin; WATS,
Weighted Alpha-Fetoprotein Tumor Burden Score.
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FIGURE 5

Receiver operating characteristic (ROC) curve of the nomogram in the training (A) and validation (B) cohorts. AUC, area under the curve.
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FIGURE 6

Calibration curves of the nomogram in the training (A) and validation (B) cohorts.
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FIGURE 7

Decision curve analysis (DCA) of the nomogram in the training (A-C) and validation (D-F) cohorts. (A-C) DCA curve for predicting 3-year OS (A), 5-
year OS (B) and 8-year OS (C) in training cohort. (D-F) DCA curve for predicting 3-year OS (D), 5-year OS (E) and 8-year OS (F) in validation cohort.
OS, overall survival.
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FIGURE 8

Kaplan-Meier curves depict OS in the training (A) and validation (B) cohorts based on nomogram-derived risk groups. OS, overall survival.
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strategies—such as personalized surveillance intervals or adjuvant

therapy allocation—can improve long-term patient outcomes.
5 Conclusion

Our research successfully created and confirmed a new

prediction tool combining the WATS measurement to determine

OS in HCC patients treated with local ablation. This comprehensive

model effectively distinguished between different risk levels,

generating reliable 3-year, 5-year and 8-year OS predictions that

can guide doctors in making tailored treatment choices for

individual patients.
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