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Objectives: To develop a CT-based habitat radiomics model for preoperative
differentiation of adenocarcinoma in situ/minimally invasive adenocarcinoma
(AIS/MIA) from invasive adenocarcinoma (IAC) manifesting as ground-glass
nodules (GGNs), and to construct a combined model integrating clinical risk
factors for optimizing individualized treatment decisions.

Methods: We retrospectively collected imaging and clinical data from 630
patients with pathologically confirmed ground-glass nodules (GGNs) who
underwent surgical resection at two medical centers between January 2020
and December 2024. Patients from Center 1 were randomly divided into training
and internal validation sets at a 7:3 ratio, while patients from Center 2 served as
the external validation set. Tumor habitats were generated using K-means
clustering, and radiomics features were extracted from intratumoral,
peritumoral Imm, peritumoral 2mm, and habitat regions. Feature selection was
performed using Least Absolute Shrinkage and Selection Operator (LASSO)
regression, and predictive models were constructed using multiple machine
learning algorithms. A combined nomogram was developed by integrating the
Habitat model, Intratumoral model, and Clinic model. Model performance was
evaluated using receiver operating characteristic (ROC) curves, calibration
curves, and decision curve analysis (DCA).

Results: In the training set, the Combined model demonstrated optimal
performance (AUC = 0.928), followed by the Habitat model (AUC = 0.924),
both significantly outperforming the Intratumoral model (AUC = 0.879),
Peritumoral Imm model (AUC = 0.874), Peritumoral 2mm model (AUC =
0.868), and Clinic model (AUC = 0.807) (P<0.05). In the external validation set,
the Combined model maintained superior performance (AUC = 0.897),
significantly exceeding all other models (P<0.05). The Habitat model showed

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1660071/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1660071&domain=pdf&date_stamp=2025-10-15
mailto:1340565393@qq.com
https://doi.org/10.3389/fonc.2025.1660071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1660071
https://www.frontiersin.org/journals/oncology

Dong et al.

10.3389/fonc.2025.1660071

the second-best performance in external validation (AUC = 0.840). Hosmer-
Lemeshow test and calibration curves demonstrated good calibration for both
the Combined and Habitat models across all cohorts. DCA indicated high net
benefit for both models in clinical applications.

Conclusion: CT-based habitat radiomics effectively quantifies intratumoral
heterogeneity, significantly improving the differentiation between AIS/MIA and
IAC. The combined nomogram integrating habitat features, intratumoral
features, and clinical factors demonstrates excellent diagnostic performance
and generalizability, providing a reliable preoperative assessment tool for
individualized treatment decision-making in ground-glass nodular
lung adenocarcinoma.

computed tomography, habitat, lung adenocarcinoma, radiomics, ground-

glass nodules

1 Introduction

Lung cancer remains the most prevalent cancer type globally and
the leading cause of cancer-related mortality (1). Lung
adenocarcinoma represents the most common histological subtype
of lung cancer (2). With the widespread implementation of low-dose
computed tomography (CT) in lung cancer screening, the detection
rate of ground-glass nodules (GGNSs) has increased substantially (3),
with GGNs being a common manifestation of lung adenocarcinoma
(4). The 2021 World Health Organization Classification of Thoracic
Tumors categorizes lung adenocarcinoma into precursor glandular
lesions (including atypical adenomatous hyperplasia and
adenocarcinoma in situ [AIS]), minimally invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IAC) (5). AIS/MIA
demonstrates excellent prognosis with a 5-year disease-free survival
(DES) rate of 100% after surgery (6), whereas IAC shows poorer
outcomes with 5-year DFS rates ranging from 38% to 86% (7, 8).
Surgical approaches also differ significantly: lobectomy remains the
standard treatment for IAC, while sublobar resection is preferred for
AIS/MIA (9). Therefore, accurate preoperative differentiation
between AIS/MIA and IAC is crucial for developing individualized
treatment strategies and avoiding overtreatment or undertreatment.

Conventional imaging examinations have limitations in
differentiating the invasiveness of GGNs. Although nodule size,
morphological features, and density correlate with invasiveness,
these qualitative or semi-quantitative assessment methods are
subjective and demonstrate limited accuracy in distinguishing
AIS/MIA from IAC (10, 11). Radiomics, an emerging artificial
intelligence-based imaging analysis approach, efficiently extracts
high-throughput feature information from massive medical images,
encompassing shape, texture, signal intensity, and numerous other
aspects. These rich and detailed features have been widely applied in
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disease diagnosis, prognosis assessment, and treatment response
monitoring, demonstrating significant clinical value and
development potential (12-14). Recent years have witnessed
substantial progress in CT radiomics-based differentiation of AIS/
MIA from IAC. These studies provide important evidence for early
diagnosis and treatment decision-making of IAC by extracting and
analyzing high-dimensional features from CT images (8, 15-17).
Despite their innovation and promising predictive performance,
these studies treat the entire tumor as a single region of interest
(ROI) for feature extraction, overlooking the significant
heterogeneity characteristic of ground-glass nodular lung
adenocarcinoma (18).

The tumor microenvironment plays a pivotal role in shaping
tumor heterogeneity. The diversity of stromal cell types and
functional heterogeneity directly sculpts the complex environmental
landscape within tumors (19). Stromal components including cancer-
associated fibroblasts, tumor-associated macrophages, and vascular
endothelial cells create spatially heterogeneous microenvironmental
gradients through secretion of different growth factors and cytokines.
This spatial microenvironmental heterogeneity further promotes
adaptive evolution of tumor cells under selective pressure, leading to
the emergence of tumor cell subpopulations with different phenotypic
and functional characteristics, ultimately forming complex patterns of
intratumoral heterogeneity (20). Given this inherent spatial complexity
within tumors, traditional radiomics approaches that analyze tumors as
single homogeneous entities may inadequately capture the full
spectrum of biological diversity present in these heterogeneous
tissues (21, 22). To address this limitation and better reflect the
spatial complexity of tumor biology, habitat radiomics quantifies
intratumoral heterogeneity by segmenting complex tumors into
distinct subregions (called habitats) (23). This approach overcomes
the limitation of traditional radiomics that treats tumors as
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homogeneous entities, enabling deeper analysis of biological differences
between tumor regions and providing more reliable imaging evidence
for personalized treatment strategies (24). Multiple studies have
demonstrated the promising application value of habitat radiomics in
predicting glioma molecular markers, Human Epidermal Growth
Factor Receptor 2 expression status in breast cancer, and
lymphovascular space invasion in cervical cancer (25-27). The
peritumoral region, as an integral component of the tumor
microenvironment, contains information related to tumor molecular
subtypes, invasiveness, and lymph node metastasis, holding significant
value in tumor molecular subtyping, prognosis assessment, and
metastasis prediction (28-30).

This study aims to develop a CT-based habitat radiomics model
for differentiating AIS/MIA from IAC manifesting as GGNs.
Furthermore, we integrate the habitat model with intratumoral
(or peritumoral) features and clinical risk factors to construct a
combined nomogram model, providing clinicians with more
comprehensive and accurate diagnostic evidence to optimize
individualized treatment decision-making.

Information Acquisition
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2 Materials and methods

2.1 Patients

This multicenter study was approved by the ethics committees
of Yantaishan Hospital and Affiliated Hospital of Binzhou Medical
University. Given the retrospective nature of this study, the
requirement for informed consent was waived. Figure 1 illustrates
the specific workflow of this study.

We retrospectively collected imaging and clinical data from
patients with GGNs who underwent surgical resection at Center 1
(Yantaishan Hospital) and Center 2 (Affiliated Hospital of Binzhou
Medical University) between January 2020 and December 2024.
Inclusion criteria were as follows (1): pathologically confirmed AIS,
MIA, or IAC after surgery (2); nodule long diameter <3 cm
measured on lung window (window width: 1200 Hounsfield
Units [HU]; window level: -600 HU) (3); thin-slice chest CT
examination within two weeks before surgical resection, with slice
thickness less than 2 mm. Exclusion criteria were (1): poor CT
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The overall workflow of this study. CAL, calibration; CH, Calinski-Harabasz; DCA, decision curve analysis; Lasso, least absolute shrinkage and
selection operator; LR, Logistic Regression; RF, Random Forest; ROC, receiver operating characteristic; SVM, Support Vector Machine.
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image quality (severe respiratory artifacts, metal artifacts, etc.) (2);
previous radiotherapy, chemotherapy, or other antitumor treatment
(3); concomitant other malignancies (4); multiple GGNs in the
same lobe. Ultimately, 630 GGNs from 630 eligible patients were
included in this study. The 522 GGNs from Center 1 were randomly
divided into training and internal validation sets at a 7:3 ratio, while
the 108 GGNs from Center 2 served as the external validation
set (Figure 2).

2.2 Image acquisition and preprocessing
This study employed a multicenter imaging acquisition protocol.

Both centers were equipped with CT scanners from Philips Medical
Systems (Cleveland, USA), including Brilliance 64, Brilliance 128, and

Patients with GGNs who underwent
surgical resection from January
2020 to December 2024 at Center 1

A 4

10.3389/fonc.2025.1660071

Incisive 64. All patients received standardized breathing training
before scanning and were positioned supine (head first, arms raised
and placed beside the head). Scanning was performed at maximum
inspiratory breath-hold. For the pulmonary nodule region, a targeted
scanning protocol was used to obtain non-contrast high-resolution
images with the following parameters: tube voltage 120 kV, tube
current 300 mA, pitch 0.6, collimation 0.625 mm x 64, matrix size
1024 x 1024, field of view 200 mm, reconstruction slice thickness
0.670 mm, reconstruction slice interval 0.340 mm, and sharp
reconstruction algorithm. To reduce inter-equipment variability
and improve the comparability and reproducibility of radiomics
features, thereby enhancing model robustness and generalizability,
voxel spacing was first resampled to 1 mm x 1 mm x 1 mm using
nearest neighbor interpolation, followed by histogram
standardization of intensity values.

Patients with GGNs who underwent
surgical resection from January
2020 to December 2024 at Center 2

Inclusion criteria:

Exclusion criteria:
metal artifacts);

treatments;

(1) Postoperative pathology confirmed AIS, MIA, or IAC;

(2) Nodule long diameter < 3 cm measured using lung window;

(3) Thin-slice chest CT examination ( slice thickness <2 mm )
performed within two weeks before surgical resection.

(1) Poor CT image quality (severe respiratory/motion artifacts,
(2) Preoperative radiotherapy, chemotherapy, or other anti-tumor

(3) Presence of other malignant tumors;
(4) Multiple GGNs in the same pulmonary lobe.

A 4

Enrolled patients (n=522)
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FIGURE 2
Flowchart of inclusion and exclusion criteria
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2.3 ROl segmentation and peritumoral
region generation

A junior radiologist A (5 years of experience in chest imaging
diagnosis) used ITK-SNAP software (version 3.8.0; http://
www.itksnap.org) to manually delineate ROI along nodule edges
layer by layer under lung window settings (window width: 1200
HU; window level: -600 HU) until the entire nodule was covered,
obtaining three-dimensional volume of interest (VOI). Large vessels
and bronchi within nodules were carefully excluded during
delineation. Subsequently, a senior radiologist B (20 years of
experience in chest imaging diagnosis) reviewed the delineation
results. Disagreements between the two radiologists were resolved
through consensus. Both radiologists were blinded to pathological
results throughout the process to ensure objectivity. Finally, using
the VOI outer surface as a reference, morphological dilation
algorithms were applied to generate peritumoral regions
extending 1 mm and 2 mm outward. Non-lung tissues such as
chest wall, ribs, and heart covered during the dilation process were
manually excluded.

2.4 Habitat generation

To generate tumor habitats, 12 local features were extracted
from each voxel within the three-dimensional VOI (Figure 3 shows
feature visualization), followed by K-means clustering to delineate

10.3389/fonc.2025.1660071

habitat regions. Cluster numbers from 2 to 9 were evaluated, with
the optimal number selected based on Calinski-Harabasz scores
(31). Specific details regarding habitat generation are provided in
the Supplementary Materials.

2.5 Feature extraction and selection

Multi-regional radiomics feature extraction was performed
using the PyRadiomics platform (version 3.0.1), including (1):
intratumoral region (2); peritumoral 1mm region (3); peritumoral
2mm region (4); tumor habitat regions. Feature extraction strictly
followed the Imaging Biomarker Standardization Initiative
guidelines (32), encompassing three major categories (1): first-
order statistics features, characterizing signal intensity distribution
(2); shape features, quantifying spatial geometric attributes of
lesions (3); higher-order texture features, analyzing inter-pixel
correlation patterns through Gray Level Co-occurrence Matrix,
Gray Level Dependence Matrix, Gray Level Run Length Matrix,
Gray Level Size Zone Matrix, and Neighboring Gray Tone
Difference Matrix to characterize microscopic heterogeneity.

To assess feature extraction consistency and reproducibility, 30
GGNs were randomly selected for independent ROI segmentation
by radiologists A and B, with interclass correlation coefficients
calculated; 2 weeks later, radiologist A repeated segmentation of
the same nodules to calculate intraclass correlation coefficients.
Features with both intraclass and interclass correlation coefficients
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FIGURE 3
Visualization of local features of voxels within the VOI
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greater than 0.75 were retained for subsequent analysis. Due to the
unsupervised nature of clustering, this process was omitted for
habitat model feature selection. Feature values were standardized
using Z-score normalization based on the mean and standard
deviation of the training cohort to eliminate scale effects. Features
with p<0.05 by t-test were retained. Pearson correlation coefficients
were calculated to identify highly correlated features, with a
threshold of 0.9. The minimum Redundancy Maximum
Relevance algorithm was used to select the top 30 features most
relevant to outcomes with low mutual redundancy. To further
improve model generalizability, the Least Absolute Shrinkage and
Selection Operator (LASSO) regression model was constructed on
the training set, with the optimal regularization parameter A
determined through 10-fold cross-validation. Features with non-
zero coefficients based on the optimal A value were selected for final
predictive model construction.

2.6 Model construction

In this study, we constructed the following four radiomics
models based on different regions (1): Intratumoral (Intra) model
(2); Peritumoral 1mm (Peri 1mm) model (3); Peritumoral 2mm
(Peri 2mm) model (4); Habitat model. For Clinic model
construction, we first performed univariate logistic regression
analysis on all clinical and imaging variables, selecting variables
with p<0.05, followed by multivariate logistic regression analysis to
identify independent risk factors for IAC for modeling. For
radiomics and clinic model construction, we employed various
advanced machine learning algorithms, including Logistic
Regression, Support Vector Machine, Random Forest, eXtreme
Gradient Boosting, and Light Gradient Boosting Machine. To
ensure model performance and stability, we used five-fold cross-
validation and grid search algorithms to determine optimal
hyperparameters for each algorithm. To construct the combined
model, we performed a comprehensive evaluation of model
performance, complementarity, and clinical applicability. The
Habitat model demonstrated superior performance with strong
generalizability (external validation AUC = 0.840), while the Intra
model provided comprehensive tumor characterization (external
validation AUC = 0.756). Although the peritumoral models showed
predictive ability, their relatively lower performance (Peri Imm
external validation AUC = 0.747; Peri 2mm external validation
AUC =0.730) led to their exclusion from the final combined model.
Additionally, including too many radiomics models could increase
model complexity and risk of overfitting. Finally, the Intra model,
Habitat model, and Clinic model were integrated to construct a
combined model, visualized in nomogram form.

2.7 Model evaluation

Model performance was evaluated using receiver operating
characteristic (ROC) curve metrics, specifically including area
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under the curve (AUC), accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value. Through
comparison and analysis of different machine learning algorithms,
the algorithm with the maximum AUC in the internal validation set
was selected as the basis for constructing corresponding radiomics
and Clinic models. To validate differences in predictive
performance between models, pairwise comparisons were
performed using the DeLong test. For model calibration
assessment, calibration curves were used to visually present the
consistency between predicted probabilities and actual occurrence
probabilities, with the Hosmer-Lemeshow test providing
quantitative assessment of calibration ability. Decision curve
analysis (DCA) was employed to evaluate the clinical net benefit
of models at different risk thresholds.

2.8 Statistical analysis

Statistical analysis was performed using SPSS (version 26.0) and
Python (version 3.9.7). Continuous variables were expressed as mean
+ standard deviation, with between-group comparisons using
independent sample t-tests. Categorical variables were expressed as
frequencies and percentages, with between-group differences
compared using chi-square tests or Fisher’s exact test. All statistical
tests were two-sided, with p<0.05 considered statistically significant.

3 Results
3.1 Patient characteristics

This study included 630 patients from two centers, comprising 365
patients in the training set (mean age 56.46 + 11.59 years), 157 patients
in the internal validation set (mean age 55.79 + 11.43 years), and 108
patients in the external validation set (mean age 53.75 + 10.75 years).
Age, long diameter, short diameter, CT value, lobulation, spiculation,
vessel changes, shape, and type showed statistically significant
differences between AIS/MIA and IAC groups across all three
cohorts. Specifically, in all cohorts, the IAC group had higher age of
onset than the AIS/MIA group, with larger long and short diameters
and higher CT values. Additionally, the incidence of lobulation,
spiculation, vessel changes, round nodules, and mixed ground-glass
nodules was significantly higher in the IAC group than in the AIS/MIA
group. Detailed data are presented in Table 1.

3.2 Habitat generation

When generating habitat subregions, we evaluated subregion
numbers from 2 to 9. As shown in Supplementary Figure SI, the
Calinski-Harabasz score increased when the number of subregions
increased from 2 to 3, then gradually decreased, indicating the
optimal number of subregions was 3. The different subregions were
named Habitat 1, Habitat 2, and Habitat 3.
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TABLE 1 Comparison of clinical and imaging characteristics between the AIS/MIA group and the IAC group in the three cohorts.

Training cohort Internal validation External validation
(n=365) cohort cohort
Features (n=157) (n=108)

AIS/MIA IAC AIS/MIA IAC AIS/MIA IAC

(n=195) (n=170) (n=85) (n=72) (n=70) (n=38)
Age (years) 52.76 + 12.24 60.69 + 9.14 <0.001 52.35 +11.77 59.85 + 9.60 <0.001 51.03 = 10.21 58.76 + 10.01 = <0.001
CEA (ng/ml) 1.74 + 1.22 2.08 +1.17 <0.001 1.83 + 1.46 322 +11.17 0.189 1.73 £ 0.81 2.20 + 1.67 0.256
NSE (ng/ml) 15.53 + 5.56 15.59 + 4.58 0.496 14.05 £ 4.15 16.30 + 6.48 0.040 12.79 £ 3.37 13.05 + 3.74 0.731
Long diameter (mm) 9.12 + 2.66 15.64 + 5.79 <0.001 9.67 + 3.55 15.20 £ 5.57 <0.001 8.86 + 4.50 15.40 + 5.57 <0.001
Short diameter (mm) 7.07 £ 2.07 11.06 + 4.25 <0.001 7.46 +2.74 10.63 + 3.87 <0.001 7.07 £ 2.15 11.76 + 4.10 <0.001
CT value (HU) 476.56 + 175.74 3?;3;; <0.001 466.15 + 180.94 3?:;3(2); <0.001 484.31 + 184.17 324215;61 <0.001
Gender [n (%)] 0.072 0.457 0.026
Male 71(36.41) 46(27.06) 26(30.59) 27(37.50) 14(20.00) 16(42.11)
Female 124(63.59) 124(72.94) 59(69.41) 45(62.50) 56(80.00) 22(57.89)
Smoking [n (%)] 0.770 0.025 0.087
No 175(89.74) 150(88.24) 78(91.76) 56(77.78) 62(88.57) 28(73.68)
Yes 20(10.26) 20(11.76) 7(8.24) 16(22.22) 8(11.43) 10(26.32)
Location [n (%)] 0.932 0.436 0.705
RUL 61(31.28) 53(31.18) 29(34.12) 21(29.17) 24(34.29) 14(36.84)
RML 12(6.15) 12(7.06) 4(4.71) 7(9.72) 4(5.71) 1(2.63)
RLL 29(14.87) 30(17.65) 16(18.82) 15(20.83) 11(15.71) 9(23.68)
LUL 58(29.74) 48(28.24) 27(31.76) 17(23.61) 21(30.00) 8(21.05)
LLL 35(17.95) 27(15.88) 9(10.59) 12(16.67) 10(14.29) 6(15.79)
Lobulation [n (%)] <0.001 <0.001 <0.001
No 71(36.41) 11(6.47) 33(38.82) 3(4.17) 36(51.43) 2(5.26)
Yes 124(63.59) 159(93.53) 52(61.18) 69(95.83) 34(48.57) 36(94.74)
Spiculation [n (%)] <0.001 0.003 <0.001
No 156(80.00) 81(47.65) 60(70.59) 33(45.83) 59(84.29) 15(39.47)
Yes 39(20.00) 89(52.35) 25(29.41) 39(54.17) 11(15.71) 23(60.53)
Margin [n (%)] <0.001 0.100 0.003
Clear 140(71.79) 92(54.12) 58(68.24) 39(54.17) 51(72.86) 16(42.11)
Unclear 55(28.21) 78(45.88) 27(31.76) 33(45.83) 19(27.14) 22(57.89)
?;j;se] changes [n <0001 <0001 <0.001
No 102(52.31) 24(14.12) 44(51.76) 5(6.94) 36(51.43) 5(13.16)
Yes 93(47.69) 146(85.88) 41(48.24) 67(93.06) 34(48.57) 33(86.84)
izl)’]ble lucency [n 0.007 0.057 0.018
No 148(75.90) 106(62.35) 71(83.53) 50(69.44) 49(70.00) 17(44.74)
Yes 47(24.10) 64(37.65) 14(16.47) 22(30.56) 21(30.00) 21(55.26)
Pleural retraction [n
%)] <0.001 <0.001 0.076

(Continued)
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TABLE 1 Continued

Training cohort

Internal validation

10.3389/fonc.2025.1660071

External validation

o cohort cohort
(n=365) (n=157) (n=108)
Features
AIS/MIA IAC AIS/MIA IAC AIS/MIA
(n=195) (n=170) (n=85) (n=72) (n=70)
No 152(77.95) 65(38.24) 59(69.41) 29(40.28) 55(78.57) 23(60.53)
Yes 43(22.05) 105(61.76) 26(30.59) 43(59.72) 15(21.43) 15(39.47)
Shape [n (%)] <0.001 <0.001 <0.001
Round 106(54.36) 29(17.06) 42(49.41) 11(15.28) 58(82.86) 13(34.21)
Irregular 89(45.64) 141(82.94) 43(50.59) 61(84.72) 12(17.14) 25(65.79)
Type [n (%)] <0.001 <0.001 0.013
pGGN 135(69.23) 48(28.24) 53(62.35) 15(20.83) 16(22.86) 1(2.63)
mGGN 60(30.77) 122(71.76) 32(37.65) 57(79.17) 54(77.14) 37(97.37)

AIS, adenocarcinoma in situ; CEA, carcinoembryonic antigen; CT, computed tomography; HU, Hounsfield units; IAC, invasive adenocarcinoma; LLL, left lower lobe; LUL, left upper lobe;
mGGN, mixed round-glass nodules; MIA, minimally invasive adenocarcinoma; NSE, neuron specific enolase; pGGN, pure ground-glass nodules; RLL, right lower lobe; RML, right middle lobe;

RUL, right upper lobe.

3.3 Feature selection and model
construction

From the intratumoral region, peritumoral Imm region,
peritumoral 2mm region, and each habitat subregion, 1834
features were extracted respectively, including first-order features,
shape features, and texture features, resulting in a total of 5502
features extracted from the overall tumor habitat regions. Through
LASSO screening, 15 features were retained from the intratumoral
region, 11 features from the peritumoral Imm region, 16 features
from the peritumoral 2mm region, and 18 features from the habitat
regions for corresponding model construction (Supplementary
Figures S2-54, Figure 4). In Clinic model construction, univariate
logistic regression showed long diameter, short diameter, CT value,
lobulation, spiculation, margin, vessel changes, pleural retraction,
shape, and type as potential risk factors. Further multivariate
logistic regression identified long diameter and CT value for
subsequent modeling (Table 2). Based on AUC evaluation results
in the internal validation set, the Intra model, Peri 1mm model, and
Habitat model all adopted the Logistic Regression algorithm, the
Peri 2mm model adopted the eXtreme Gradient Boosting
algorithm, and the Clinic model adopted the Random Forest
algorithm. Specific performance of each model under different
algorithms is detailed in Supplementary Tables S1-S5 and
Supplementary Figure S5. Finally, the Intra model, Habitat model,
and Clinic model were integrated to construct the combined
nomogram model (Figure 5).

3.4 Model performance and evaluation

ROC curve analysis showed that in the training cohort, the
combined model exhibited optimal diagnostic performance with an
AUC 0f 0.928 (95% CI: 0.901-0.956) and accuracy of 0.874, ranking
first among all models in both AUC and accuracy. The habitat
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model closely followed with an AUC of 0.924 (95% CI: 0.896-0.953)
and accuracy of 0.871. The Intra model, Peri 1mm model, and Peri
2mm model showed similar diagnostic performance (AUC range:
0.868-0.879), all significantly lower than the Combined and Habitat
models. The Clinic model achieved only an AUC of 0.807,
indicating limited clinical diagnostic value. DeLong test further
confirmed that the Combined and Habitat models significantly
outperformed the Intra model, Peri Imm model, Perit 2mm model,
and Clinic model (p<0.05). In the internal validation cohort, models
performance generally decreased, but the Combined model (AUC:
0.871, 95% CI: 0.815-0.926) and Habitat model (AUC: 0.859, 95%
CI: 0.799-0.919) continued to maintain leading advantages. In the
external validation cohort, the Combined model demonstrated the
most excellent generalization ability, with its AUC (0.897, 95% CI:
0.836-0.957) significantly superior to all other single models (Intra
AUC: 0.756, Peri Imm AUC: 0.747, Peri 2mm AUC: 0.730, Clinic
AUC: 0.712, Habitat AUC: 0.840), with DeLong test showing p-
values all less than 0.05. Meanwhile, the Habitat model also showed
good robustness, being the second-best performing model in
external validation. Details are shown in Table 3 and Figure 6.

DCA indicated that both the Combined and Habitat models
demonstrated high net benefit across all three cohorts, particularly
at lower threshold probabilities, suggesting their potential value in
early diagnosis. In contrast, while other models showed some
clinical benefit within specific threshold probability ranges, their
overall performance was notably inferior to the Combined and
Habitat models (Figure 6).

To evaluate model calibration performance, this study
employed Hosmer-Lemeshow test and calibration curves for
analysis. Hosmer-Lemeshow test results indicated that only the
Combined and Habitat models consistently maintained good
calibration ability across training, internal validation, and external
validation sets (p>0.05) (Table 4). Calibration curves further
visualized the predictive accuracy of each model. In the
calibration curves, both Habitat and Combined model curves

frontiersin.org


https://doi.org/10.3389/fonc.2025.1660071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Dong et al. 10.3389/fonc.2025.1660071
HHTHTHI
0.06 l
0.04 ]

0.2 [
§ 0.02 " ]
& g
g
© 000 ] [
002 l ] l
) ] l l l I I l l l
107 107" 10° 107 10" 10°
C Lambda(A=0.0102) Lambda(A=0.0102)
wavelet HLL glem Idn h2 | mmm Coefficients |
original_glem_ClusterTendency_h2 I
Ibp_3D_m2_firstorder_RootMeanSquared_h1 I
gradient_firstorder_Maximum_h1 . ]
log_sigma_2_0_mm_3D_firstorder_Kurtosis_h3 ——
wavelet_LLL_glem_DifferenceAverage_h2 [ |
Ibp_3D_k_glem_ClusterShade_h2 I
o log_sigma_1_0_mm_3D_firstorder_RootMeanSquared_h1 [ |
g
8 wavelet HLH_glem_DifferenceVariance_h2 |
g log_sigma_1_0_mm_3D_firstorder_Maximum_h1 |
Ibp_3D_k_glszm_ZoneEntropy_h2 [ |
Ibp_3D_m]_ngtdm_Coarseness_h3 ||
exponential_glszm_LowGrayLevelZoneEmphasis_h3 [
Ibp_3D_m2_glrlm_LongRunHighGrayLevelEmphasis_h3 |
gradient_glem_Imc2_h3 |
original_shape_Sphericity_h1 I
wavelet_LLH_firstorder_Minimum_h2 I
exponential_glrlm_ShortRunLowGrayLevelEmphasis_h3 |
0.06 0.04 002 0.00 0.02 0.04 0.06 0.08
FIGURE 4

LASSO regression screening of radiomic features in the Habitat model. (A) LASSO coefficient path plot. This plot illustrates the trajectories of feature

coefficients as the regularization parameter (Lambda) varies. As Lambda increases, the coefficients shrink toward zero, identifying key features at the
optimal Lambda value (dashed line). (B) LASSO regression MSE curve plot. The dashed line marks the optimal Lambda value where MSE is minimized,
determining the final feature subset. (C) LASSO-screened feature coefficient distribution plot. This shows the coefficients of features selected by

LASSO regression. MSE, mean squared error.

remained close to the ideal calibration line (dashed line) across all
three cohorts, indicating high concordance between predicted
probabilities and actual observations (Figure 6).

4 Discussion

This study developed and validated a CT-based habitat
radiomics model for differentiating AIS/MIA from IAC
manifesting as GGNs. The results demonstrate that the habitat
radiomics model possesses unique advantages in capturing
intratumoral heterogeneity, with diagnostic performance
significantly superior to traditional intratumoral and peritumoral
radiomics models. The combined nomogram model integrating
habitat features, intratumoral features, and clinical risk factors
exhibited optimal diagnostic performance, achieving an AUC of
0.897 in the external validation set, providing a reliable quantitative
tool for clinical precision diagnosis and treatment.

Accurate preoperative pathological grading of lung
adenocarcinoma is crucial for developing individualized treatment
strategies. Previous studies have shown that AIS/MIA patients can
achieve a 5-year DFS rate of 100% after surgery, while IAC patients
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have significantly poorer prognosis (7, 33). Therefore, accurate
preoperative differentiation between these two lesion types is
essential for avoiding overtreatment or undertreatment. This
study found that CT value and long diameter were independent
risk factors for IAC, consistent with previous research (4, 34). Lung
adenocarcinoma generally progresses through four stages: AAH,
AIS, MIA, and TAC. During this gradual evolution, increased
nodule size often reflects enhanced tumor cell proliferative
activity and invasiveness (18). Larger nodules are more likely to
contain solid components, typically indicating invasive growth
patterns (35). During invasive adenocarcinoma development,
tumor cells grow along alveolar walls, initially maintaining
alveolar structural integrity with only slight density increases (36).
As invasion deepens, tumor cell density increases, fibrous tissue
proliferates, and angiogenesis increases, leading to further CT value
elevation (37). However, models based solely on clinical factors
demonstrated insufficient diagnostic performance (external test set
AUC: 0.712), indicating that traditional imaging features alone
cannot meet the needs for clinical precision diagnosis.

In recent years, some studies have explored the application value
of radiomics in differentiating lung adenocarcinoma pathological
subtypes. Zheng et al. (38) constructed a model based on 11
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TABLE 2 Univariate and multivariate logistic regression analysis of clinical and imaging variables.

Features

Univariate logistic
regression

OR (95% Cl)

Multivariate logistic

regression

OR (95% Cl)

10.3389/fonc.2025.1660071

Age 1.000 (0.997-1.003) 0.979
CEA 1.015 (0.940-1.096) 0.747
NSE 0.992 (0.982-1.003) 0.228
Long diameter 1.028 (1.014-1.042) 0.001 1.237 (1.116-1.372) 0.001
Short diameter 1.030(1.011-1.049) 0.007 1.063 (0.932-1.213) 0.442
CT value 1.001 (1.001-1.001) 0 1.007 (1.006-1.009) 0
Gender 1.000 (0.811-1.232) 1.000
Smoking 1.000 (0.595-1.682) 1.000
Location 0.947 (0.882-1.016) 0.202
Lobulation 1.282 (1.053-1.562) 0.038 0.785 (0.409-1.504) 0.540
Spiculation 2.282 (1.664-3.130) 0 1.104 (0.650-1.878) 0.759
Margin 1.418 (1.062-1.895) 0.047 0.760 (0.448-1.289) 0.392
Vessel changes 1.570 (1.262-1.952) 0.001 0.732 (0.433-1.239) 0.330
Bubble lucency 1.362 (0.993-1.868) 0.108
Pleural retraction 2.442 (1.813-3.290) 0 1.671 (0.999-2.795) 0.101
Shape 1.584 (1.267-1.980) 0.001 1.737 (0.962-3.139) 0.124
Type 2.033 (1.568-2.635) 0 0.700 (0.418-1.172) 0.256
CEA, carcinoembryonic antigen; CI, confidence interval; CT, computed tomography; NSE, neuron specific enolase; OR, odds ratio.
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FIGURE 5

The integrated nomogram model. CT, computed tomography.
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TABLE 3 Comparison of prediction performance of different models.

Model AUC (95% ClI)

Accuracy

Sensitivity

10.3389/fonc.2025.1660071

Specificity

Training cohort

Intra 0.879 (0.840 - 0.918) 0.827 0.800 0.851 0.824 0.830
Peri Imm 0.874 (0.835 - 0.914) 0.827 0.712 0.928 0.896 0.787
Peri 2mm 0.868 (0.828 - 0.908) 0.822 0.741 0.892 0.857 0.798
Clinic 0.807 (0.758 - 0.856) 0.797 0.747 0.841 0.804 0.792
Habitat 0.924 (0.896 - 0.953) 0.871 0.794 0.938 0918 0.839
Combined 0.928 (0.901 - 0.956) 0.874 0.771 0.964 0.949 0.828
Internal validation cohort

Intra 0.855 (0.795 - 0.916) 0.809 0.639 0.953 0.920 0.757
Peri lmm 0.850 (0.791 - 0.909) 0.758 0.917 0.624 0.673 0.898
Peri 2mm 0.823 (0.758 - 0.888) 0.752 0.764 0.741 0.714 0.787
Clinic 0.731 (0.650 - 0.812) 0.752 0.792 0.718 0.704 0.803
Habitat 0.859 (0.799 - 0.919) 0.803 0.778 0.824 0.789 0.814
Combined 0.871 (0.815 - 0.926) 0.809 0.667 0.929 0.889 0.767
External validation cohort

Intra 0.756 (0.649 - 0.862) 0.750 0.842 0.700 0.604 0.891
Peri Imm 0.747 (0.637 - 0.857) 0.769 0.737 0.786 0.651 0.846
Peri 2mm 0.730 (0.626 - 0.834) 0.750 0.553 0.857 0.677 0.779
Clinic 0.712 (0.602 - 0.822) 0.731 0.711 0.743 0.600 0.825
Habitat 0.840 (0.759 - 0.922) 0.806 0.789 0.814 0.698 0.877
Combined 0.897 (0.836 - 0.957) 0.843 0.921 0.800 0.714 0.949

AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

radiomics features achieving an AUC of 0.820 in the training set.
Meng et al. (4) selected 8 key features through LASSO regression to
establish a Rad-score for differentiating AIS/MIA from IAC,
achieving a training set AUC of 0.892. Our Intra model achieved a
training set AUC of 0.879, comparable to previous studies but still
inferior to the Habitat model’s predictive performance. This study
systematically evaluated the diagnostic performance of Peri Imm and
Peri 2mm models (training set AUCs of 0.874 and 0.868,
respectively), which, while superior to the Clinic model, were
significantly inferior to the Habitat model. These results indicate
that although the peritumoral region contains important information
related to tumor invasiveness, both intratumoral and peritumoral
models analyze these regions as wholes, failing to fully explore their
internal heterogeneity information. Additionally, we found that Peri
models performed worse than the Intra model, differing from some
previous studies (39, 40). Possible reasons for this discrepancy
include: first, this study included only GGNs, whose peritumoral
microenvironmental changes may be less pronounced than solid
nodules; second, the relatively small peritumoral extension distances
(1-2mm) selected in this study may not have adequately captured key
biological information in the peritumoral region, suggesting that
future research should explore larger peritumoral ranges (such as 3-
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5mm or even broader regions) to comprehensively assess the tumor
microenvironment and potentially identify more valuable
predictive features.

Traditional radiomics treats tumors as single homogeneous
entities for feature extraction, ignoring intratumoral
heterogeneity. However, increasing evidence indicates that tumors
are highly heterogeneous ecosystems containing cell subpopulations
with different phenotypic and functional characteristics (41). Spatial
variations in the tumor microenvironment, including oxygen
concentration gradients, nutrient distribution, and interstitial
pressure differences, drive adaptive evolution of tumor cells,
leading to coexistence of cell subpopulations with different
proliferative capacities, invasiveness, and treatment sensitivities
(19). This heterogeneity is particularly evident in ground-glass
nodular lung adenocarcinoma: the tumor center may have already
undergone invasion while peripheral regions maintain in situ or
minimally invasive growth characteristics (42). This study
employed K-means clustering based on 12 local features to divide
GGNs into 3 habitat subregions, thereby more precisely capturing
spatial heterogeneity information within tumors. Results showed
that the Habitat model’s predictive performance significantly
exceeded other single models (internal validation set AUC: 0.924
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FIGURE 6

Performance evaluation of different models in the training, internal validation, and external validation cohorts. (A-C), ROC curves of different models
in the training, internal validation and external validation cohorts; (D-F), DCA curves of different models in the training, internal validation and
external validation cohorts; (G-I), calibration curves of different models in the training, internal validation and external validation cohorts; (3-L),
Delong test of different models in the training, internal validation and external validation cohorts.

vs 0.879, 0.874, 0.868, 0.807, all p<0.05), consistent with previous
research conclusions. Wu et al. (43) reported that the Habitat model
improved AUC by 6.5% compared to traditional radiomics models
when predicting epidermal growth factor receptor mutation status
in stage I non-small cell lung cancer. Bi et al. (44) reported similar
results in predicting drug resistance in ovarian cancer patients.
Among the 18 features selected through LASSO for the Habitat
model, the top two features—wavelet HLL_glem_Idn_h2 and
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original_glcm_ClusterTendency_h2—are both texture features
derived from gray-level co-occurrence matrix (GLCM) analysis.
The Inverse Difference Normalized (Idn) feature quantifies local
homogeneity in image texture, with higher values indicating more
homogeneous regions, which may reflect areas of uniform cellular
density characteristic of less invasive tumor components (45).
Cluster Tendency measures the grouping of pixels with similar
gray-level values, capturing the spatial organization patterns that
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TABLE 4 Hosmer-Lemeshow test results for different models in three cohorts.

Cohort Peri Imm Peri 2mm Clinic Habitat Combined
Training 0.080 1.977x10° 5.737x10” 4.682x107 0.073 ‘ 0.350
Internal Validation 0.309 1.272x10™" 1.282x10™" 3.421x10™ 0.063 ‘ 0.176
External Validation 0.022 1.869x10™* 1.274x10™ 2.775x107™ 0.292 ‘ 0.131

distinguish between the lepidic growth pattern of AIS/MIA and the ~ was relatively limited, which may not fully capture the variability in
more disorganized invasive growth pattern of IAC (46). The feature extraction reproducibility across a broader range of cases.
prominence of these texture features in our model aligns with  Future studies should employ larger sample sizes for consistency
pathological observations that IAC exhibits greater architectural  evaluation to enhance the robustness of reproducibility assessment.
complexity and cellular heterogeneity compared to AIS/MIA,  Third, this study analyzed only non-contrast CT images, failing to
manifesting as more heterogeneous texture patterns on CT  fully utilize rich information provided by multimodal functional
imaging (47). Notably, the Habitat model demonstrated stable  imaging such as contrast-enhanced CT and Positron Emission
diagnostic performance across all cohorts, particularly in external =~ Tomography-CT. These imaging techniques provide important
validation, where performance decline (training set AUC 0.924 vs  information about tissue perfusion and metabolic activity, and
external validation set AUC 0.840) was smaller than other single  integrating multimodal imaging data could significantly improve
models. This suggests that habitat features possess stronger = model diagnostic accuracy and clinical utility (51). Last, current
generalizability and robustness. The reasons may include: first,  habitat generation relies primarily on unsupervised clustering
habitat features reflect tumor microenvironmental heterogeneity,  algorithms. While capable of identifying subregions with different
capturing complex spatial distribution patterns within tumors, with ~ imaging characteristics, it lacks direct validation against pathological
this heterogeneity information remaining relatively stable across  gold standards. Although these habitat subregions theoretically may
different patient populations (48); second, habitat analysis segments  reflect different microenvironments within tumors, the accuracy of
tumors into subregions with similar phenotypic characteristics  these correspondences requires validation through systematic
through clustering methods, and this quantification of spatial  imaging-pathology correlation studies to provide a more solid
heterogeneity more accurately reflects tumor biological properties,  biological theoretical foundation for clinical translation of habitat
providing better transferability between different centers (49). radiomics technology.

The combined nomogram model integrating habitat features, This study successfully constructed a CT-based habitat
intratumoral features, and clinical risk factors demonstrated optimal ~ radiomics diagnostic model achieving precise assessment of
diagnostic performance across all cohorts. The advantages of this  ground-glass nodular lung adenocarcinoma invasiveness. Habitat
multi-dimensional information fusion strategy include: first, different  analysis significantly improved diagnostic accuracy by capturing
types of features provide complementary diagnostic information, with ~ intratumoral spatial heterogeneity information. The nomogram
habitat features capturing intratumoral spatial heterogeneity, — model combining clinical risk factors demonstrated excellent
intratumoral features reflecting overall attributes, and clinical features ~ performance and clinical applicability in multicenter validation.
providing macroscopic morphological information (50); second, the  This innovative approach provides a new tool for early precision
nomogram format is intuitive and user-friendly, enabling clinicians to ~ diagnosis of lung adenocarcinoma, with potential to improve
quickly assess individual patient IAC risk probability and provide  patient treatment decisions and clinical outcomes.
quantitative evidence for clinical decision-making; third, the model
maintained good performance in external validation (AUC = 0.897),
demonstrating feasibility for cross-center application. DCA showed Data avallablllty statement
that the Combined model generated clinical net benefit across a wide
range of threshold probabilities, particularly excelling in low threshold The raw data supporting the conclusions of this article will be
intervals. This holds significant importance for GGN management, as  made available by the authors, without undue reservation.
early identification of IAC can guide timely surgical intervention and
prevent disease progression. Simultaneously, accurate identification of
AIS/MIA can avoid overtreatment, reduce unnecessary lobectomies, Ethics statement
and preserve more lung function.

This study has certain limitations. First, selection bias inherent to The studies involving humans were approved by Ethics Committee
retrospective studies may affect result reliability. To further validate ~ of Yantaishan Hospital Yantaishan Hospital. The studies were
the clinical application value of the constructed models, future large-  conducted in accordance with the local legislation and institutional
sample, multicenter prospective studies are necessary, employing  requirements. Written informed consent for participation was not
rigorous study design and standardized data collection processes to  required from the participants or the participants’ legal guardians/next
improve evidence level and clinical credibility. Second, the sample ~ of kin in accordance with the national legislation and
size used for inter- and intra-observer consistency assessment (n=30)  institutional requirements.
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