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1Department of Radiology, Yantaishan Hospital, Yantai, Shandong, China, 2Department of Radiology,
Yantai Qishan Hospital, Yantai, Shandong, China, 3Department of Radiology, Yantai Yuhuangding
Hospital, Yantai, Shandong, China, 4Department of Radiology, Affiliated Hospital of Binzhou Medical
University, Binzhou, Shandong, China
Objectives: To develop a CT-based habitat radiomics model for preoperative

differentiation of adenocarcinoma in situ/minimally invasive adenocarcinoma

(AIS/MIA) from invasive adenocarcinoma (IAC) manifesting as ground-glass

nodules (GGNs), and to construct a combined model integrating clinical risk

factors for optimizing individualized treatment decisions.

Methods: We retrospectively collected imaging and clinical data from 630

patients with pathologically confirmed ground-glass nodules (GGNs) who

underwent surgical resection at two medical centers between January 2020

and December 2024. Patients from Center 1 were randomly divided into training

and internal validation sets at a 7:3 ratio, while patients from Center 2 served as

the external validation set. Tumor habitats were generated using K-means

clustering, and radiomics features were extracted from intratumoral,

peritumoral 1mm, peritumoral 2mm, and habitat regions. Feature selection was

performed using Least Absolute Shrinkage and Selection Operator (LASSO)

regression, and predictive models were constructed using multiple machine

learning algorithms. A combined nomogram was developed by integrating the

Habitat model, Intratumoral model, and Clinic model. Model performance was

evaluated using receiver operating characteristic (ROC) curves, calibration

curves, and decision curve analysis (DCA).

Results: In the training set, the Combined model demonstrated optimal

performance (AUC = 0.928), followed by the Habitat model (AUC = 0.924),

both significantly outperforming the Intratumoral model (AUC = 0.879),

Peritumoral 1mm model (AUC = 0.874), Peritumoral 2mm model (AUC =

0.868), and Clinic model (AUC = 0.807) (P<0.05). In the external validation set,

the Combined model maintained superior performance (AUC = 0.897),

significantly exceeding all other models (P<0.05). The Habitat model showed
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the second-best performance in external validation (AUC = 0.840). Hosmer-

Lemeshow test and calibration curves demonstrated good calibration for both

the Combined and Habitat models across all cohorts. DCA indicated high net

benefit for both models in clinical applications.

Conclusion: CT-based habitat radiomics effectively quantifies intratumoral

heterogeneity, significantly improving the differentiation between AIS/MIA and

IAC. The combined nomogram integrating habitat features, intratumoral

features, and clinical factors demonstrates excellent diagnostic performance

and generalizability, providing a reliable preoperative assessment tool for

individualized treatment decision-making in ground-glass nodular

lung adenocarcinoma.
KEYWORDS

computed tomography, habitat, lung adenocarcinoma, radiomics, ground-
glass nodules
1 Introduction

Lung cancer remains the most prevalent cancer type globally and

the leading cause of cancer-related mortality (1). Lung

adenocarcinoma represents the most common histological subtype

of lung cancer (2). With the widespread implementation of low-dose

computed tomography (CT) in lung cancer screening, the detection

rate of ground-glass nodules (GGNs) has increased substantially (3),

with GGNs being a common manifestation of lung adenocarcinoma

(4). The 2021 World Health Organization Classification of Thoracic

Tumors categorizes lung adenocarcinoma into precursor glandular

lesions (including atypical adenomatous hyperplasia and

adenocarcinoma in situ [AIS]), minimally invasive adenocarcinoma

(MIA), and invasive adenocarcinoma (IAC) (5). AIS/MIA

demonstrates excellent prognosis with a 5-year disease-free survival

(DFS) rate of 100% after surgery (6), whereas IAC shows poorer

outcomes with 5-year DFS rates ranging from 38% to 86% (7, 8).

Surgical approaches also differ significantly: lobectomy remains the

standard treatment for IAC, while sublobar resection is preferred for

AIS/MIA (9). Therefore, accurate preoperative differentiation

between AIS/MIA and IAC is crucial for developing individualized

treatment strategies and avoiding overtreatment or undertreatment.

Conventional imaging examinations have limitations in

differentiating the invasiveness of GGNs. Although nodule size,

morphological features, and density correlate with invasiveness,

these qualitative or semi-quantitative assessment methods are

subjective and demonstrate limited accuracy in distinguishing

AIS/MIA from IAC (10, 11). Radiomics, an emerging artificial

intelligence-based imaging analysis approach, efficiently extracts

high-throughput feature information from massive medical images,

encompassing shape, texture, signal intensity, and numerous other

aspects. These rich and detailed features have been widely applied in
02
disease diagnosis, prognosis assessment, and treatment response

monitoring, demonstrating significant clinical value and

development potential (12–14). Recent years have witnessed

substantial progress in CT radiomics-based differentiation of AIS/

MIA from IAC. These studies provide important evidence for early

diagnosis and treatment decision-making of IAC by extracting and

analyzing high-dimensional features from CT images (8, 15–17).

Despite their innovation and promising predictive performance,

these studies treat the entire tumor as a single region of interest

(ROI) for feature extraction, overlooking the significant

heterogeneity characteristic of ground-glass nodular lung

adenocarcinoma (18).

The tumor microenvironment plays a pivotal role in shaping

tumor heterogeneity. The diversity of stromal cell types and

functional heterogeneity directly sculpts the complex environmental

landscape within tumors (19). Stromal components including cancer-

associated fibroblasts, tumor-associated macrophages, and vascular

endothelial cells create spatially heterogeneous microenvironmental

gradients through secretion of different growth factors and cytokines.

This spatial microenvironmental heterogeneity further promotes

adaptive evolution of tumor cells under selective pressure, leading to

the emergence of tumor cell subpopulations with different phenotypic

and functional characteristics, ultimately forming complex patterns of

intratumoral heterogeneity (20). Given this inherent spatial complexity

within tumors, traditional radiomics approaches that analyze tumors as

single homogeneous entities may inadequately capture the full

spectrum of biological diversity present in these heterogeneous

tissues (21, 22). To address this limitation and better reflect the

spatial complexity of tumor biology, habitat radiomics quantifies

intratumoral heterogeneity by segmenting complex tumors into

distinct subregions (called habitats) (23). This approach overcomes

the limitation of traditional radiomics that treats tumors as
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homogeneous entities, enabling deeper analysis of biological differences

between tumor regions and providing more reliable imaging evidence

for personalized treatment strategies (24). Multiple studies have

demonstrated the promising application value of habitat radiomics in

predicting glioma molecular markers, Human Epidermal Growth

Factor Receptor 2 expression status in breast cancer, and

lymphovascular space invasion in cervical cancer (25–27). The

peritumoral region, as an integral component of the tumor

microenvironment, contains information related to tumor molecular

subtypes, invasiveness, and lymph node metastasis, holding significant

value in tumor molecular subtyping, prognosis assessment, and

metastasis prediction (28–30).

This study aims to develop a CT-based habitat radiomics model

for differentiating AIS/MIA from IAC manifesting as GGNs.

Furthermore, we integrate the habitat model with intratumoral

(or peritumoral) features and clinical risk factors to construct a

combined nomogram model, providing clinicians with more

comprehensive and accurate diagnostic evidence to optimize

individualized treatment decision-making.
Frontiers in Oncology 03
2 Materials and methods

2.1 Patients

This multicenter study was approved by the ethics committees

of Yantaishan Hospital and Affiliated Hospital of Binzhou Medical

University. Given the retrospective nature of this study, the

requirement for informed consent was waived. Figure 1 illustrates

the specific workflow of this study.

We retrospectively collected imaging and clinical data from

patients with GGNs who underwent surgical resection at Center 1

(Yantaishan Hospital) and Center 2 (Affiliated Hospital of Binzhou

Medical University) between January 2020 and December 2024.

Inclusion criteria were as follows (1): pathologically confirmed AIS,

MIA, or IAC after surgery (2); nodule long diameter <3 cm

measured on lung window (window width: 1200 Hounsfield

Units [HU]; window level: -600 HU) (3); thin-slice chest CT

examination within two weeks before surgical resection, with slice

thickness less than 2 mm. Exclusion criteria were (1): poor CT
FIGURE 1

The overall workflow of this study. CAL, calibration; CH, Calinski-Harabasz; DCA, decision curve analysis; Lasso, least absolute shrinkage and
selection operator; LR, Logistic Regression; RF, Random Forest; ROC, receiver operating characteristic; SVM, Support Vector Machine.
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image quality (severe respiratory artifacts, metal artifacts, etc.) (2);

previous radiotherapy, chemotherapy, or other antitumor treatment

(3); concomitant other malignancies (4); multiple GGNs in the

same lobe. Ultimately, 630 GGNs from 630 eligible patients were

included in this study. The 522 GGNs from Center 1 were randomly

divided into training and internal validation sets at a 7:3 ratio, while

the 108 GGNs from Center 2 served as the external validation

set (Figure 2).
2.2 Image acquisition and preprocessing

This study employed a multicenter imaging acquisition protocol.

Both centers were equipped with CT scanners from Philips Medical

Systems (Cleveland, USA), including Brilliance 64, Brilliance 128, and
Frontiers in Oncology 04
Incisive 64. All patients received standardized breathing training

before scanning and were positioned supine (head first, arms raised

and placed beside the head). Scanning was performed at maximum

inspiratory breath-hold. For the pulmonary nodule region, a targeted

scanning protocol was used to obtain non-contrast high-resolution

images with the following parameters: tube voltage 120 kV, tube

current 300 mA, pitch 0.6, collimation 0.625 mm × 64, matrix size

1024 × 1024, field of view 200 mm, reconstruction slice thickness

0.670 mm, reconstruction slice interval 0.340 mm, and sharp

reconstruction algorithm. To reduce inter-equipment variability

and improve the comparability and reproducibility of radiomics

features, thereby enhancing model robustness and generalizability,

voxel spacing was first resampled to 1 mm × 1 mm × 1 mm using

nearest neighbor interpolation, followed by histogram

standardization of intensity values.
FIGURE 2

Flowchart of inclusion and exclusion criteria.
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2.3 ROI segmentation and peritumoral
region generation

A junior radiologist A (5 years of experience in chest imaging

diagnosis) used ITK-SNAP software (version 3.8.0; http://

www.itksnap.org) to manually delineate ROI along nodule edges

layer by layer under lung window settings (window width: 1200

HU; window level: -600 HU) until the entire nodule was covered,

obtaining three-dimensional volume of interest (VOI). Large vessels

and bronchi within nodules were carefully excluded during

delineation. Subsequently, a senior radiologist B (20 years of

experience in chest imaging diagnosis) reviewed the delineation

results. Disagreements between the two radiologists were resolved

through consensus. Both radiologists were blinded to pathological

results throughout the process to ensure objectivity. Finally, using

the VOI outer surface as a reference, morphological dilation

algorithms were applied to generate peritumoral regions

extending 1 mm and 2 mm outward. Non-lung tissues such as

chest wall, ribs, and heart covered during the dilation process were

manually excluded.
2.4 Habitat generation

To generate tumor habitats, 12 local features were extracted

from each voxel within the three-dimensional VOI (Figure 3 shows

feature visualization), followed by K-means clustering to delineate
Frontiers in Oncology 05
habitat regions. Cluster numbers from 2 to 9 were evaluated, with

the optimal number selected based on Calinski-Harabasz scores

(31). Specific details regarding habitat generation are provided in

the Supplementary Materials.
2.5 Feature extraction and selection

Multi-regional radiomics feature extraction was performed

using the PyRadiomics platform (version 3.0.1), including (1):

intratumoral region (2); peritumoral 1mm region (3); peritumoral

2mm region (4); tumor habitat regions. Feature extraction strictly

followed the Imaging Biomarker Standardization Initiative

guidelines (32), encompassing three major categories (1): first-

order statistics features, characterizing signal intensity distribution

(2); shape features, quantifying spatial geometric attributes of

lesions (3); higher-order texture features, analyzing inter-pixel

correlation patterns through Gray Level Co-occurrence Matrix,

Gray Level Dependence Matrix, Gray Level Run Length Matrix,

Gray Level Size Zone Matrix, and Neighboring Gray Tone

Difference Matrix to characterize microscopic heterogeneity.

To assess feature extraction consistency and reproducibility, 30

GGNs were randomly selected for independent ROI segmentation

by radiologists A and B, with interclass correlation coefficients

calculated; 2 weeks later, radiologist A repeated segmentation of

the same nodules to calculate intraclass correlation coefficients.

Features with both intraclass and interclass correlation coefficients
FIGURE 3

Visualization of local features of voxels within the VOI.
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greater than 0.75 were retained for subsequent analysis. Due to the

unsupervised nature of clustering, this process was omitted for

habitat model feature selection. Feature values were standardized

using Z-score normalization based on the mean and standard

deviation of the training cohort to eliminate scale effects. Features

with p<0.05 by t-test were retained. Pearson correlation coefficients

were calculated to identify highly correlated features, with a

threshold of 0.9. The minimum Redundancy Maximum

Relevance algorithm was used to select the top 30 features most

relevant to outcomes with low mutual redundancy. To further

improve model generalizability, the Least Absolute Shrinkage and

Selection Operator (LASSO) regression model was constructed on

the training set, with the optimal regularization parameter l
determined through 10-fold cross-validation. Features with non-

zero coefficients based on the optimal l value were selected for final

predictive model construction.
2.6 Model construction

In this study, we constructed the following four radiomics

models based on different regions (1): Intratumoral (Intra) model

(2); Peritumoral 1mm (Peri 1mm) model (3); Peritumoral 2mm

(Peri 2mm) model (4); Habitat model. For Clinic model

construction, we first performed univariate logistic regression

analysis on all clinical and imaging variables, selecting variables

with p<0.05, followed by multivariate logistic regression analysis to

identify independent risk factors for IAC for modeling. For

radiomics and clinic model construction, we employed various

advanced machine learning algorithms, including Logistic

Regression, Support Vector Machine, Random Forest, eXtreme

Gradient Boosting, and Light Gradient Boosting Machine. To

ensure model performance and stability, we used five-fold cross-

validation and grid search algorithms to determine optimal

hyperparameters for each algorithm. To construct the combined

model, we performed a comprehensive evaluation of model

performance, complementarity, and clinical applicability. The

Habitat model demonstrated superior performance with strong

generalizability (external validation AUC = 0.840), while the Intra

model provided comprehensive tumor characterization (external

validation AUC = 0.756). Although the peritumoral models showed

predictive ability, their relatively lower performance (Peri 1mm

external validation AUC = 0.747; Peri 2mm external validation

AUC = 0.730) led to their exclusion from the final combined model.

Additionally, including too many radiomics models could increase

model complexity and risk of overfitting. Finally, the Intra model,

Habitat model, and Clinic model were integrated to construct a

combined model, visualized in nomogram form.
2.7 Model evaluation

Model performance was evaluated using receiver operating

characteristic (ROC) curve metrics, specifically including area
Frontiers in Oncology 06
under the curve (AUC), accuracy, sensitivity, specificity, positive

predictive value, and negative predictive value. Through

comparison and analysis of different machine learning algorithms,

the algorithm with the maximum AUC in the internal validation set

was selected as the basis for constructing corresponding radiomics

and Clinic models. To validate differences in predictive

performance between models, pairwise comparisons were

performed using the DeLong test. For model calibration

assessment, calibration curves were used to visually present the

consistency between predicted probabilities and actual occurrence

probabilities, with the Hosmer-Lemeshow test providing

quantitative assessment of calibration ability. Decision curve

analysis (DCA) was employed to evaluate the clinical net benefit

of models at different risk thresholds.
2.8 Statistical analysis

Statistical analysis was performed using SPSS (version 26.0) and

Python (version 3.9.7). Continuous variables were expressed as mean

± standard deviation, with between-group comparisons using

independent sample t-tests. Categorical variables were expressed as

frequencies and percentages, with between-group differences

compared using chi-square tests or Fisher’s exact test. All statistical

tests were two-sided, with p<0.05 considered statistically significant.
3 Results

3.1 Patient characteristics

This study included 630 patients from two centers, comprising 365

patients in the training set (mean age 56.46 ± 11.59 years), 157 patients

in the internal validation set (mean age 55.79 ± 11.43 years), and 108

patients in the external validation set (mean age 53.75 ± 10.75 years).

Age, long diameter, short diameter, CT value, lobulation, spiculation,

vessel changes, shape, and type showed statistically significant

differences between AIS/MIA and IAC groups across all three

cohorts. Specifically, in all cohorts, the IAC group had higher age of

onset than the AIS/MIA group, with larger long and short diameters

and higher CT values. Additionally, the incidence of lobulation,

spiculation, vessel changes, round nodules, and mixed ground-glass

nodules was significantly higher in the IAC group than in the AIS/MIA

group. Detailed data are presented in Table 1.
3.2 Habitat generation

When generating habitat subregions, we evaluated subregion

numbers from 2 to 9. As shown in Supplementary Figure S1, the

Calinski-Harabasz score increased when the number of subregions

increased from 2 to 3, then gradually decreased, indicating the

optimal number of subregions was 3. The different subregions were

named Habitat 1, Habitat 2, and Habitat 3.
frontiersin.org
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TABLE 1 Comparison of clinical and imaging characteristics between the AIS/MIA group and the IAC group in the three cohorts.

Features

Training cohort
(n=365)

P

Internal validation
cohort
(n=157) P

External validation
cohort
(n=108) P

AIS/MIA
(n=195)

IAC
(n=170)

AIS/MIA
(n=85)

IAC
(n=72)

AIS/MIA
(n=70)

IAC
(n=38)

Age (years) 52.76 ± 12.24 60.69 ± 9.14 <0.001 52.35 ± 11.77 59.85 ± 9.60 <0.001 51.03 ± 10.21 58.76 ± 10.01 <0.001

CEA (ng/ml) 1.74 ± 1.22 2.08 ± 1.17 <0.001 1.83 ± 1.46 3.22 ± 11.17 0.189 1.73 ± 0.81 2.20 ± 1.67 0.256

NSE (ng/ml) 15.53 ± 5.56 15.59 ± 4.58 0.496 14.05 ± 4.15 16.30 ± 6.48 0.040 12.79 ± 3.37 13.05 ± 3.74 0.731

Long diameter (mm) 9.12 ± 2.66 15.64 ± 5.79 <0.001 9.67 ± 3.55 15.20 ± 5.57 <0.001 8.86 ± 4.50 15.40 ± 5.57 <0.001

Short diameter (mm) 7.07 ± 2.07 11.06 ± 4.25 <0.001 7.46 ± 2.74 10.63 ± 3.87 <0.001 7.07 ± 2.15 11.76 ± 4.10 <0.001

CT value (HU) 476.56 ± 175.74
333.11 ±
181.83

<0.001 466.15 ± 180.94
329.00 ±
180.22

<0.001 484.31 ± 184.17
334.37 ±
220.86

<0.001

Gender [n (%)] 0.072 0.457 0.026

Male 71(36.41) 46(27.06) 26(30.59) 27(37.50) 14(20.00) 16(42.11)

Female 124(63.59) 124(72.94) 59(69.41) 45(62.50) 56(80.00) 22(57.89)

Smoking [n (%)] 0.770 0.025 0.087

No 175(89.74) 150(88.24) 78(91.76) 56(77.78) 62(88.57) 28(73.68)

Yes 20(10.26) 20(11.76) 7(8.24) 16(22.22) 8(11.43) 10(26.32)

Location [n (%)] 0.932 0.436 0.705

RUL 61(31.28) 53(31.18) 29(34.12) 21(29.17) 24(34.29) 14(36.84)

RML 12(6.15) 12(7.06) 4(4.71) 7(9.72) 4(5.71) 1(2.63)

RLL 29(14.87) 30(17.65) 16(18.82) 15(20.83) 11(15.71) 9(23.68)

LUL 58(29.74) 48(28.24) 27(31.76) 17(23.61) 21(30.00) 8(21.05)

LLL 35(17.95) 27(15.88) 9(10.59) 12(16.67) 10(14.29) 6(15.79)

Lobulation [n (%)] <0.001 <0.001 <0.001

No 71(36.41) 11(6.47) 33(38.82) 3(4.17) 36(51.43) 2(5.26)

Yes 124(63.59) 159(93.53) 52(61.18) 69(95.83) 34(48.57) 36(94.74)

Spiculation [n (%)] <0.001 0.003 <0.001

No 156(80.00) 81(47.65) 60(70.59) 33(45.83) 59(84.29) 15(39.47)

Yes 39(20.00) 89(52.35) 25(29.41) 39(54.17) 11(15.71) 23(60.53)

Margin [n (%)] <0.001 0.100 0.003

Clear 140(71.79) 92(54.12) 58(68.24) 39(54.17) 51(72.86) 16(42.11)

Unclear 55(28.21) 78(45.88) 27(31.76) 33(45.83) 19(27.14) 22(57.89)

Vessel changes [n
(%)]

<0.001 <0.001 <0.001

No 102(52.31) 24(14.12) 44(51.76) 5(6.94) 36(51.43) 5(13.16)

Yes 93(47.69) 146(85.88) 41(48.24) 67(93.06) 34(48.57) 33(86.84)

Bubble lucency [n
(%)]

0.007 0.057 0.018

No 148(75.90) 106(62.35) 71(83.53) 50(69.44) 49(70.00) 17(44.74)

Yes 47(24.10) 64(37.65) 14(16.47) 22(30.56) 21(30.00) 21(55.26)

Pleural retraction [n
(%)]

<0.001 <0.001 0.076

(Continued)
F
rontiers in Oncology
 07
 frontie
rsin.org

https://doi.org/10.3389/fonc.2025.1660071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2025.1660071
3.3 Feature selection and model
construction

From the intratumoral region, peritumoral 1mm region,

peritumoral 2mm region, and each habitat subregion, 1834

features were extracted respectively, including first-order features,

shape features, and texture features, resulting in a total of 5502

features extracted from the overall tumor habitat regions. Through

LASSO screening, 15 features were retained from the intratumoral

region, 11 features from the peritumoral 1mm region, 16 features

from the peritumoral 2mm region, and 18 features from the habitat

regions for corresponding model construction (Supplementary

Figures S2-S4, Figure 4). In Clinic model construction, univariate

logistic regression showed long diameter, short diameter, CT value,

lobulation, spiculation, margin, vessel changes, pleural retraction,

shape, and type as potential risk factors. Further multivariate

logistic regression identified long diameter and CT value for

subsequent modeling (Table 2). Based on AUC evaluation results

in the internal validation set, the Intra model, Peri 1mmmodel, and

Habitat model all adopted the Logistic Regression algorithm, the

Peri 2mm model adopted the eXtreme Gradient Boosting

algorithm, and the Clinic model adopted the Random Forest

algorithm. Specific performance of each model under different

algorithms is detailed in Supplementary Tables S1-S5 and

Supplementary Figure S5. Finally, the Intra model, Habitat model,

and Clinic model were integrated to construct the combined

nomogram model (Figure 5).
3.4 Model performance and evaluation

ROC curve analysis showed that in the training cohort, the

combined model exhibited optimal diagnostic performance with an

AUC of 0.928 (95% CI: 0.901-0.956) and accuracy of 0.874, ranking

first among all models in both AUC and accuracy. The habitat
Frontiers in Oncology 08
model closely followed with an AUC of 0.924 (95% CI: 0.896-0.953)

and accuracy of 0.871. The Intra model, Peri 1mm model, and Peri

2mm model showed similar diagnostic performance (AUC range:

0.868-0.879), all significantly lower than the Combined and Habitat

models. The Clinic model achieved only an AUC of 0.807,

indicating limited clinical diagnostic value. DeLong test further

confirmed that the Combined and Habitat models significantly

outperformed the Intra model, Peri 1mm model, Perit 2mm model,

and Clinic model (p<0.05). In the internal validation cohort, models

performance generally decreased, but the Combined model (AUC:

0.871, 95% CI: 0.815-0.926) and Habitat model (AUC: 0.859, 95%

CI: 0.799-0.919) continued to maintain leading advantages. In the

external validation cohort, the Combined model demonstrated the

most excellent generalization ability, with its AUC (0.897, 95% CI:

0.836-0.957) significantly superior to all other single models (Intra

AUC: 0.756, Peri 1mm AUC: 0.747, Peri 2mm AUC: 0.730, Clinic

AUC: 0.712, Habitat AUC: 0.840), with DeLong test showing p-

values all less than 0.05. Meanwhile, the Habitat model also showed

good robustness, being the second-best performing model in

external validation. Details are shown in Table 3 and Figure 6.

DCA indicated that both the Combined and Habitat models

demonstrated high net benefit across all three cohorts, particularly

at lower threshold probabilities, suggesting their potential value in

early diagnosis. In contrast, while other models showed some

clinical benefit within specific threshold probability ranges, their

overall performance was notably inferior to the Combined and

Habitat models (Figure 6).

To evaluate model calibration performance, this study

employed Hosmer-Lemeshow test and calibration curves for

analysis. Hosmer-Lemeshow test results indicated that only the

Combined and Habitat models consistently maintained good

calibration ability across training, internal validation, and external

validation sets (p>0.05) (Table 4). Calibration curves further

visualized the predictive accuracy of each model. In the

calibration curves, both Habitat and Combined model curves
TABLE 1 Continued

Features

Training cohort
(n=365)

P

Internal validation
cohort
(n=157) P

External validation
cohort
(n=108) P

AIS/MIA
(n=195)

IAC
(n=170)

AIS/MIA
(n=85)

IAC
(n=72)

AIS/MIA
(n=70)

IAC
(n=38)

No 152(77.95) 65(38.24) 59(69.41) 29(40.28) 55(78.57) 23(60.53)

Yes 43(22.05) 105(61.76) 26(30.59) 43(59.72) 15(21.43) 15(39.47)

Shape [n (%)] <0.001 <0.001 <0.001

Round 106(54.36) 29(17.06) 42(49.41) 11(15.28) 58(82.86) 13(34.21)

Irregular 89(45.64) 141(82.94) 43(50.59) 61(84.72) 12(17.14) 25(65.79)

Type [n (%)] <0.001 <0.001 0.013

pGGN 135(69.23) 48(28.24) 53(62.35) 15(20.83) 16(22.86) 1(2.63)

mGGN 60(30.77) 122(71.76) 32(37.65) 57(79.17) 54(77.14) 37(97.37)
frontie
AIS, adenocarcinoma in situ; CEA, carcinoembryonic antigen; CT, computed tomography; HU, Hounsfield units; IAC, invasive adenocarcinoma; LLL, left lower lobe; LUL, left upper lobe;
mGGN, mixed round-glass nodules; MIA, minimally invasive adenocarcinoma; NSE, neuron specific enolase; pGGN, pure ground-glass nodules; RLL, right lower lobe; RML, right middle lobe;
RUL, right upper lobe.
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remained close to the ideal calibration line (dashed line) across all

three cohorts, indicating high concordance between predicted

probabilities and actual observations (Figure 6).
4 Discussion

This study developed and validated a CT-based habitat

radiomics model for differentiating AIS/MIA from IAC

manifesting as GGNs. The results demonstrate that the habitat

radiomics model possesses unique advantages in capturing

intratumoral heterogeneity, with diagnostic performance

significantly superior to traditional intratumoral and peritumoral

radiomics models. The combined nomogram model integrating

habitat features, intratumoral features, and clinical risk factors

exhibited optimal diagnostic performance, achieving an AUC of

0.897 in the external validation set, providing a reliable quantitative

tool for clinical precision diagnosis and treatment.

Accurate preoperative pathological grading of lung

adenocarcinoma is crucial for developing individualized treatment

strategies. Previous studies have shown that AIS/MIA patients can

achieve a 5-year DFS rate of 100% after surgery, while IAC patients
Frontiers in Oncology 09
have significantly poorer prognosis (7, 33). Therefore, accurate

preoperative differentiation between these two lesion types is

essential for avoiding overtreatment or undertreatment. This

study found that CT value and long diameter were independent

risk factors for IAC, consistent with previous research (4, 34). Lung

adenocarcinoma generally progresses through four stages: AAH,

AIS, MIA, and IAC. During this gradual evolution, increased

nodule size often reflects enhanced tumor cell proliferative

activity and invasiveness (18). Larger nodules are more likely to

contain solid components, typically indicating invasive growth

patterns (35). During invasive adenocarcinoma development,

tumor cells grow along alveolar walls, initially maintaining

alveolar structural integrity with only slight density increases (36).

As invasion deepens, tumor cell density increases, fibrous tissue

proliferates, and angiogenesis increases, leading to further CT value

elevation (37). However, models based solely on clinical factors

demonstrated insufficient diagnostic performance (external test set

AUC: 0.712), indicating that traditional imaging features alone

cannot meet the needs for clinical precision diagnosis.

In recent years, some studies have explored the application value

of radiomics in differentiating lung adenocarcinoma pathological

subtypes. Zheng et al. (38) constructed a model based on 11
FIGURE 4

LASSO regression screening of radiomic features in the Habitat model. (A) LASSO coefficient path plot. This plot illustrates the trajectories of feature
coefficients as the regularization parameter (Lambda) varies. As Lambda increases, the coefficients shrink toward zero, identifying key features at the
optimal Lambda value (dashed line). (B) LASSO regression MSE curve plot. The dashed line marks the optimal Lambda value where MSE is minimized,
determining the final feature subset. (C) LASSO-screened feature coefficient distribution plot. This shows the coefficients of features selected by
LASSO regression. MSE, mean squared error.
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TABLE 2 Univariate and multivariate logistic regression analysis of clinical and imaging variables.

Features

Univariate logistic
regression P

Multivariate logistic
regression P

OR (95% CI) OR (95% CI)

Age 1.000 (0.997-1.003) 0.979

CEA 1.015 (0.940-1.096) 0.747

NSE 0.992 (0.982-1.003) 0.228

Long diameter 1.028 (1.014-1.042) 0.001 1.237 (1.116-1.372) 0.001

Short diameter 1.030(1.011-1.049) 0.007 1.063 (0.932-1.213) 0.442

CT value 1.001 (1.001-1.001) 0 1.007 (1.006-1.009) 0

Gender 1.000 (0.811-1.232) 1.000

Smoking 1.000 (0.595-1.682) 1.000

Location 0.947 (0.882-1.016) 0.202

Lobulation 1.282 (1.053-1.562) 0.038 0.785 (0.409-1.504) 0.540

Spiculation 2.282 (1.664-3.130) 0 1.104 (0.650-1.878) 0.759

Margin 1.418 (1.062-1.895) 0.047 0.760 (0.448-1.289) 0.392

Vessel changes 1.570 (1.262-1.952) 0.001 0.732 (0.433-1.239) 0.330

Bubble lucency 1.362 (0.993-1.868) 0.108

Pleural retraction 2.442 (1.813-3.290) 0 1.671 (0.999-2.795) 0.101

Shape 1.584 (1.267-1.980) 0.001 1.737 (0.962-3.139) 0.124

Type 2.033 (1.568-2.635) 0 0.700 (0.418-1.172) 0.256
F
rontiers in Oncology
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CEA, carcinoembryonic antigen; CI, confidence interval; CT, computed tomography; NSE, neuron specific enolase; OR, odds ratio.
FIGURE 5

The integrated nomogram model. CT, computed tomography.
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radiomics features achieving an AUC of 0.820 in the training set.

Meng et al. (4) selected 8 key features through LASSO regression to

establish a Rad-score for differentiating AIS/MIA from IAC,

achieving a training set AUC of 0.892. Our Intra model achieved a

training set AUC of 0.879, comparable to previous studies but still

inferior to the Habitat model’s predictive performance. This study

systematically evaluated the diagnostic performance of Peri 1mm and

Peri 2mm models (training set AUCs of 0.874 and 0.868,

respectively), which, while superior to the Clinic model, were

significantly inferior to the Habitat model. These results indicate

that although the peritumoral region contains important information

related to tumor invasiveness, both intratumoral and peritumoral

models analyze these regions as wholes, failing to fully explore their

internal heterogeneity information. Additionally, we found that Peri

models performed worse than the Intra model, differing from some

previous studies (39, 40). Possible reasons for this discrepancy

include: first, this study included only GGNs, whose peritumoral

microenvironmental changes may be less pronounced than solid

nodules; second, the relatively small peritumoral extension distances

(1-2mm) selected in this study may not have adequately captured key

biological information in the peritumoral region, suggesting that

future research should explore larger peritumoral ranges (such as 3-
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5mm or even broader regions) to comprehensively assess the tumor

microenvironment and potentially identify more valuable

predictive features.

Traditional radiomics treats tumors as single homogeneous

entit ies for feature extract ion, ignoring intratumoral

heterogeneity. However, increasing evidence indicates that tumors

are highly heterogeneous ecosystems containing cell subpopulations

with different phenotypic and functional characteristics (41). Spatial

variations in the tumor microenvironment, including oxygen

concentration gradients, nutrient distribution, and interstitial

pressure differences, drive adaptive evolution of tumor cells,

leading to coexistence of cell subpopulations with different

proliferative capacities, invasiveness, and treatment sensitivities

(19). This heterogeneity is particularly evident in ground-glass

nodular lung adenocarcinoma: the tumor center may have already

undergone invasion while peripheral regions maintain in situ or

minimally invasive growth characteristics (42). This study

employed K-means clustering based on 12 local features to divide

GGNs into 3 habitat subregions, thereby more precisely capturing

spatial heterogeneity information within tumors. Results showed

that the Habitat model’s predictive performance significantly

exceeded other single models (internal validation set AUC: 0.924
TABLE 3 Comparison of prediction performance of different models.

Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort

Intra 0.879 (0.840 - 0.918) 0.827 0.800 0.851 0.824 0.830

Peri 1mm 0.874 (0.835 - 0.914) 0.827 0.712 0.928 0.896 0.787

Peri 2mm 0.868 (0.828 - 0.908) 0.822 0.741 0.892 0.857 0.798

Clinic 0.807 (0.758 - 0.856) 0.797 0.747 0.841 0.804 0.792

Habitat 0.924 (0.896 - 0.953) 0.871 0.794 0.938 0.918 0.839

Combined 0.928 (0.901 - 0.956) 0.874 0.771 0.964 0.949 0.828

Internal validation cohort

Intra 0.855 (0.795 - 0.916) 0.809 0.639 0.953 0.920 0.757

Peri 1mm 0.850 (0.791 - 0.909) 0.758 0.917 0.624 0.673 0.898

Peri 2mm 0.823 (0.758 - 0.888) 0.752 0.764 0.741 0.714 0.787

Clinic 0.731 (0.650 - 0.812) 0.752 0.792 0.718 0.704 0.803

Habitat 0.859 (0.799 - 0.919) 0.803 0.778 0.824 0.789 0.814

Combined 0.871 (0.815 - 0.926) 0.809 0.667 0.929 0.889 0.767

External validation cohort

Intra 0.756 (0.649 - 0.862) 0.750 0.842 0.700 0.604 0.891

Peri 1mm 0.747 (0.637 - 0.857) 0.769 0.737 0.786 0.651 0.846

Peri 2mm 0.730 (0.626 - 0.834) 0.750 0.553 0.857 0.677 0.779

Clinic 0.712 (0.602 - 0.822) 0.731 0.711 0.743 0.600 0.825

Habitat 0.840 (0.759 - 0.922) 0.806 0.789 0.814 0.698 0.877

Combined 0.897 (0.836 - 0.957) 0.843 0.921 0.800 0.714 0.949
AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1660071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dong et al. 10.3389/fonc.2025.1660071
vs 0.879, 0.874, 0.868, 0.807, all p<0.05), consistent with previous

research conclusions. Wu et al. (43) reported that the Habitat model

improved AUC by 6.5% compared to traditional radiomics models

when predicting epidermal growth factor receptor mutation status

in stage I non-small cell lung cancer. Bi et al. (44) reported similar

results in predicting drug resistance in ovarian cancer patients.

Among the 18 features selected through LASSO for the Habitat

model, the top two features—wavelet_HLL_glcm_Idn_h2 and
Frontiers in Oncology 12
original_glcm_ClusterTendency_h2—are both texture features

derived from gray-level co-occurrence matrix (GLCM) analysis.

The Inverse Difference Normalized (Idn) feature quantifies local

homogeneity in image texture, with higher values indicating more

homogeneous regions, which may reflect areas of uniform cellular

density characteristic of less invasive tumor components (45).

Cluster Tendency measures the grouping of pixels with similar

gray-level values, capturing the spatial organization patterns that
FIGURE 6

Performance evaluation of different models in the training, internal validation, and external validation cohorts. (A-C), ROC curves of different models
in the training, internal validation and external validation cohorts; (D-F), DCA curves of different models in the training, internal validation and
external validation cohorts; (G-I), calibration curves of different models in the training, internal validation and external validation cohorts; (J-L),
Delong test of different models in the training, internal validation and external validation cohorts.
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distinguish between the lepidic growth pattern of AIS/MIA and the

more disorganized invasive growth pattern of IAC (46). The

prominence of these texture features in our model aligns with

pathological observations that IAC exhibits greater architectural

complexity and cellular heterogeneity compared to AIS/MIA,

manifesting as more heterogeneous texture patterns on CT

imaging (47). Notably, the Habitat model demonstrated stable

diagnostic performance across all cohorts, particularly in external

validation, where performance decline (training set AUC 0.924 vs

external validation set AUC 0.840) was smaller than other single

models. This suggests that habitat features possess stronger

generalizability and robustness. The reasons may include: first,

habitat features reflect tumor microenvironmental heterogeneity,

capturing complex spatial distribution patterns within tumors, with

this heterogeneity information remaining relatively stable across

different patient populations (48); second, habitat analysis segments

tumors into subregions with similar phenotypic characteristics

through clustering methods, and this quantification of spatial

heterogeneity more accurately reflects tumor biological properties,

providing better transferability between different centers (49).

The combined nomogram model integrating habitat features,

intratumoral features, and clinical risk factors demonstrated optimal

diagnostic performance across all cohorts. The advantages of this

multi-dimensional information fusion strategy include: first, different

types of features provide complementary diagnostic information, with

habitat features capturing intratumoral spatial heterogeneity,

intratumoral features reflecting overall attributes, and clinical features

providing macroscopic morphological information (50); second, the

nomogram format is intuitive and user-friendly, enabling clinicians to

quickly assess individual patient IAC risk probability and provide

quantitative evidence for clinical decision-making; third, the model

maintained good performance in external validation (AUC = 0.897),

demonstrating feasibility for cross-center application. DCA showed

that the Combined model generated clinical net benefit across a wide

range of threshold probabilities, particularly excelling in low threshold

intervals. This holds significant importance for GGN management, as

early identification of IAC can guide timely surgical intervention and

prevent disease progression. Simultaneously, accurate identification of

AIS/MIA can avoid overtreatment, reduce unnecessary lobectomies,

and preserve more lung function.

This study has certain limitations. First, selection bias inherent to

retrospective studies may affect result reliability. To further validate

the clinical application value of the constructed models, future large-

sample, multicenter prospective studies are necessary, employing

rigorous study design and standardized data collection processes to

improve evidence level and clinical credibility. Second, the sample

size used for inter- and intra-observer consistency assessment (n=30)
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was relatively limited, which may not fully capture the variability in

feature extraction reproducibility across a broader range of cases.

Future studies should employ larger sample sizes for consistency

evaluation to enhance the robustness of reproducibility assessment.

Third, this study analyzed only non-contrast CT images, failing to

fully utilize rich information provided by multimodal functional

imaging such as contrast-enhanced CT and Positron Emission

Tomography-CT. These imaging techniques provide important

information about tissue perfusion and metabolic activity, and

integrating multimodal imaging data could significantly improve

model diagnostic accuracy and clinical utility (51). Last, current

habitat generation relies primarily on unsupervised clustering

algorithms. While capable of identifying subregions with different

imaging characteristics, it lacks direct validation against pathological

gold standards. Although these habitat subregions theoretically may

reflect different microenvironments within tumors, the accuracy of

these correspondences requires validation through systematic

imaging-pathology correlation studies to provide a more solid

biological theoretical foundation for clinical translation of habitat

radiomics technology.

This study successfully constructed a CT-based habitat

radiomics diagnostic model achieving precise assessment of

ground-glass nodular lung adenocarcinoma invasiveness. Habitat

analysis significantly improved diagnostic accuracy by capturing

intratumoral spatial heterogeneity information. The nomogram

model combining clinical risk factors demonstrated excellent

performance and clinical applicability in multicenter validation.

This innovative approach provides a new tool for early precision

diagnosis of lung adenocarcinoma, with potential to improve

patient treatment decisions and clinical outcomes.
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