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Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of
Stomatology, Wuhan University, Wuhan, China, 2Department of Oral & Maxillofacial - Head Neck
Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China

Background: Odontogenic keratocyst (OKC) is an aggressive jaw lesion
characterized by high recurrence rates. Disruption of the basement membrane
(BM) may contribute to its pathogenesis, through the underlying molecular
mechanisms remain incompletely understood.

Methods: Transcriptomic data from 12 non-syndromic OKC and 4 normal oral
mucosa (NOM) samples (GSE38494) were analyzed to identify differentially
expressed BM-related genes (BM DEGs). Bioinformatics approaches included
differential expression analysis, functional enrichment (Gene Ontology, Kyoto
Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis), protein-
protein interaction (PPI) network construction, immune infiltration assessment,
and validation via single-cell RNA-seq (scRNA-seq; GSE176351). Key findings
were confirmed immunohistochemistry and by immunofluorescence in
clinical specimens.

Results: A total of 65 BM DEGs were identified, with secreted protein acidic and
cysteine rich (SPARC) being the most significantly upregulated gene (P < 0.01). PPI
and correlation analyses established SPARC as a hub gene, showing significant
correlation with recognized OKC markers (PTCH1, GLI1, GLI2, KRT19; P < 0.05).
ScRNA-seq localized elevated SPARC expression predominantly to stromal
fibroblasts. Immunohistochemistry and immunofluorescence confirmed
significantly higher stromal SPARC expression in OKC versus NOM (P = 0.001).
SPARC levels correlated with altered immune infiltration profiles, showing positive
association with effector memory CD4+ T cells and negative association with
memory B cells. Transcription factor and microRNA regulatory networks for SPARC
were delineated.
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Conclusions: This study establishes dysregulation f BMGs—particularly stromal
fibroblast-specific SPARC overexpression—as a contributor to OKC
pathogenesis. SPARC interacts with key OKC pathways (Hedgehog, NOTCH)
and modulates the immune microenvironment. These findings provide
foundational insights into OKC aggressiveness and propose SPARC as a
potential therapeutic target.

odontogenic keratocyst, basement membrane, SPARC, RNA sequencing, single-cell

RNA sequencing

1 Introduction

Odontogenic keratocyst (OKC) is locally aggressive jaw lesions
characterized by a high recurrence rate (1). Previously classified as
keratocystic odontogenic tumors (KCOTs), OKCs were re-designated
by the World Health Organization in 2017 (2). OKCs can be divided
into syndromic OKC (S-OKCs), which are associated with genetic
disorders such as Gorlin-Goltz syndrome (nevoid basal cell carcinoma
syndrome, NBCCS), and non-syndromic OKCs (NS-OKCs), which
occur sporadically without systemic manifestations. Compared to other
odontogenic cysts—such as dentigerous cysts (DCs) and radicular cysts
(RCs)—OKCs exhibit more aggressive behavior and a higher risk of
recurrence (3, 4).

Histologically, OKCs are characterized by a parakeratinized
stratified squamous epithelium that is thin and fragile, making it
prone to fragmentation during surgical removal. This fragility
increases the likelihood of residual epithelial remnants, which,
together with the satellite (daughter) cysts—whose exact origin
remains unclear—contribute to the high recurrence rate of OKCs.
These features pose significant challenges for complete surgical
excision (5, 6). The Hedgehog signaling pathway and mutations in
PTCHI are widely recognized as major contributors to OKC
pathogenesis (7). Recent studies have also investigated the role of
immune cell infiltration and oxidative stress-related genes in OKCs
(8, 9). In addition, network pharmacology approaches have been
applied to identify potential therapeutic targets (10).

The basement membrane (BM) is a specialized extracellular matrix
(ECM) that separates epithelial cells from the underlying stroma. It is
composed of structural proteins such as laminins and type IV collagen,
as well as proteoglycans like perlecan, and plays a critical role in
maintaining epithelial architecture, guiding tissue development, and
preserving homeostasis (11, 12). BM disruption has been implicated in
several oral mucosal diseases, including mucous membrane
pemphigoid and epidermolysis bullosa (13). In cancer biology,
alterations in BM stiffness and protein composition are known to
modulate tumor cell invasion and metastasis, with changes in laminin
and type IV collagen correlating with disease progression (14).

In OKCs, aberrant BM patterns may contribute to their
aggressive behavior. Poomsawat et al. reported discontinuous
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expression of type IV collagen and fibronectin in OKC specimens
(11). Additionally, differences in BM component expression, such
as laminin and fibronectin, have been observed between S-OKCs
and NS-OKCs (15). Collagen type I, detected in the BM of OKCs,
has been shown to enhance IL - 1-mediated activation of MMP - 2,
promoting osteoclastic activity and cyst expansion (16), suggesting
a potential role in local invasiveness. However, the molecular
mechanisms by which BM components contribute to OKC
progression remain largely unclear.

Bioinformatics has become an essential tool in OKC research,
enabling large-scale analyses in genomics, transcriptomics, and
proteomics (17). To explore the relationship between BM
components and OKC, we utilized the bmBASE database (https://
bmbase.manchester.ac.uk), which catalogs 160 BM matrix proteins
and 62 cell surface interactor (CSI) genes with conserved BM
localization across species (18). This database integrates structural
domain information, antibody data, and subcellular localization to
support functional and comparative studies of BM-related genes
(BMGs). Transcriptomic data used in our study were obtained from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), encompassing gene expression
profiles from ameloblastoma (AM), OKC, and normal oral
mucosa (NOM) (19).

In this study, we systematically analyzed BMG expression in
OKC and NOM using publicly available transcriptomic datasets. By
identifying differentially expressed BMGs and characterizing key
candidates, we aimed to elucidate their potential roles in OKC
pathogenesis. We further validated the expression and function of a
representative gene—secreted protein acid and rich in cysteine
(SPARC), providing mechanistic insights and a theoretical
foundation for future targeted therapeutic strategies.

2 Materials and methods
2.1 Specimen collection

OKC tissue samples were collected from patients undergoing
cyst curettage at the Department of Oral & Maxillofacial - Head
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Neck Oncology, Hospital of Stomatology, Wuhan University. NOM
tissue was obtained from patients undergoing cleft lip and palate
repair surgeries. All tissues were initially fixed in 4%
paraformaldehyde, embedded in paraffin, and sectioned for
further analysis. The procedures adhered to the guidelines of the
National Institutes of Health for the use of human tissues. Ethical
approval was granted by the Ethics Committee of the Hospital of
Stomatology, Wuhan University (IRB-ID: 2020A95), and informed
consent was obtained from all participants.

2.2 ldentification and functional
enrichment of BM DEGs

RNA-seq datasets were obtained from the GEO, including 12
NS-OKC samples and 4 NOM samples (GSE38494). Based on the
study by Jayadev et al., 222 BMGs were defined (18). The
intersection between differentially expressed genes (DEGs) and
BMGs—differentially expressed BMGs (BM DEGs)—was

«

identified using the R package “ggvenn”. Gene expression was
analyzed using the “limma” package, and genes with |log,FC| > 1
and P < 0.05 were considered statistically significant. Visualizations
included a heatmap generated with “pheatmap”, boxplots and
volcano plots using “ggplot2”, and correlation plots
using “corrplot”.

Functional enrichment analysis was conducted using Gene
Ontology (GO, http://www.geneontology.org) and Kyoto
Encyclopedia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg) databases and visualized via “ggplot2”.
Gene Set Enrichment Analysis (GSEA) was performed using the
ranked gene list (ordered by log, fold-change from “limma”
analysis) against the Molecular Signatures Database (MSigDB,
www.gseamsigdb.org) Hallmark gene sets, implemented via the R
package “clusterProfiler”. Significance was defined by thresholds of |
NES| > 1.5, nominal P < 0.05, and FDR < 0.25 (1,000 permutations).

2.3 Generation of PPl network

The STRING database (https://string-db.org/) was used to
construct a protein-protein interaction (PPI) network of BM
DEGs, with the minimum confidence score set at 0.7 (high
confidence). Cytoscape software was used to modify and visualize
the final PPI network.

2.4 Acquisition and processing of OKC-
related genes and validation datasets

Twenty-three genes most closely associated with OKC (ranked
by correlation score) were obtained from the GeneCards database
(www.genecards.org) for subsequent correlation and expression
analysis. Additionally, two datasets, GSE228393 and GSE186489,
were retrieved from GEO. Three OKC samples were selected from
GSE186489 and three NOM samples from GSE228393. The
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expression matrices of these datasets were merged, and batch
effects were corrected using the “sva” package to construct a
validation dataset. Receiver operating characteristic (ROC) curves
were plotted using the “pROC” package.

2.5 GSVA

Gene set variation analysis (GSVA) is an unsupervised, non-
parametric method used to estimate variation of gene set
enrichment across samples in microarray and RNA-seq data. GO
sets were downloaded from the MSigDB. Samples were grouped
into high and low SPARC expression groups based on the median
expression value. Differential pathway analysis was performed using
the “limma” package and visualized accordingly.

2.6 ScCRNA-seq analysis

The GSE176351 dataset, containing single-cell RNA-seq
(scRNA-seq) data from two primary and one recurrent OKC
sample, was downloaded from GEO. Quality control was
performed, and the datasets were integrated using the “harmony”
package. Cell clustering and visualization were performed using the
“seurat” package.

2.7 Construction of SPARC TF-miRNA
regulatory network

The transcription factor (TF)-microRNA (miRNA) regulatory
network for SPARC was constructed using the NetworkAnalyst
(www.networkanalyst.ca). TF data were sourced from the ChIP-X
database (20), and miRNA data were obtained from miRTarBase
v8.0 (21). The predicted results were modified and visualized using
Cytoscape software.

2.8 Immunoinfiltration analysis of SPARC

A gene set of 782 genes was used to assess the abundance of 28
tumor-infiltrating immune cell (TIIC) types in OKC tissue samples,
based on MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp). Datasets GSE38494, GSE180706, and GSE186489 were
merged, and batch effects were removed using the “sva” package.
Boxplots of TIIC abundance were generated, and the correlation
between SPARC expression and TIICs was analyzed and visualized.

2.9 Immunohistochemistry

Tissues were embedded in paraffin and sectioned at 4 um
thickness. Sections we baked at 60°C, followed by xylene (#1330-
20-7, Komio) dewaxing and graded ethanol hydration. After
phosphate-buftered saline (PBS) washing, antigen retrieval was
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performed using a sodium citrate buffer (#CR2202096, Servicebio)
and microwave heating. Following cooling, endogenous peroxidase
was blocked, and serum blocking solution (rabbit, #KIT-9707,
Fuzhou Maixin) was applied for 20 minutes at 37°C. Sections
were incubated overnight at 4°C with SPARC antibody (1:100,
rabbit, #A14494, ABclonal), followed by secondary antibody
(biotin-labeled anti-rabbit IgG polymer) and streptavidin-
peroxidase complex (#KIT-9707, Fuzhou Maixin), each incubated
at 37°C for 20 minutes. 3,3’-Diaminobenzidine (DAB)
(#2210270031L, Fuzhou Maixin) and hematoxylin (#CR2109027,
Servicebio) were used for color development. Slides were
dehydrated, cleared, sealed with neutral mounting medium
(#96949-21-2, Shanghai Test), and scanned using the Aperio
ScanScope CS system (Sausalito, CA, USA).

2.10 Immunofluorescence

Tissue preparation followed the same protocol as for
immunohistochemistry. After dewaxing and antigen retrieval,
endogenous peroxidase and serum blocking were performed as
described. SPARC antibody (1:100, rabbit, #A14494, ABclonal) was
applied overnight at 4 °C. After PBS washing, fluorescent secondary
antibody (AlexaFluor 488-conjugated goat anti-rabbit IgG;
#A23220, Abbkine) was added and incubated at 37 °C for 1 hour
in the dark. Nuclei were stained with 4’,6-diamino-2-phenyllindol
(DAPI) (#ANT165, AntGene), and slides were sealed with antifade
mounting medium (#ANT061, AntGene). Images were captured
using a fluorescence microscope (Olympus IX83, Tokyo, Japan)
with a 20x objective lens. SPARC was visualized in the green
channel, and DAPI was detected in the blue channel.

2.11 Data analysis

All bioinformatics analyses were conducted using R software
(version 4.2.3). Group comparisons were performed using the
Wilcoxon rank-sum test. Spearman correlation was used for
correlation analyses. A P value < 0.05 was considered statistically
significant. GraphPad Prism 7.0 (GraphPad software, San Diego,
CA, USA) was used for additional statistical analyses, including t-
tests for comparing group means.

3 Results

3.1 Differential expression of BMGs in OKC
and NOM tissues

Gene expression data from 12 NS-OKC samples and 4 NOM
samples GSE38494 were obtained from the GEO database and used
as the experimental dataset. An overview of the analysis workflow is
presented in Figure 1. A total of 222 BMGs were retrieved from the
bmBASE database. Using the “limma” package, differential
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expression analysis was conducted, and the results were visualized
via a volcano plot (Figure 2A, Supplementary Table S1). Applying
the thresholds of |log2FC| > 1 and P < 0.05, 1,780 DEGs were
identified. Intersecting these with the BMGs yielded 65 BM DEGs
(Figure 2B, Supplementary Table S2). Heatmaps and boxplots were
generated to visualize the expression differences between groups
(Figures 2C, D, Supplementary Figure S1, Supplementary Table S3).
Among these, SPARC showed the highest expression level in OKC
tissues, with a statistically significant difference (P < 0.01).

3.2 Functional enrichment and correlation
analysis of BM DEGs

GO and KEGG enrichment analyses were conducted to explore
the biological significance of the 65 BM DEGs (Supplementary
Figures S2A, B, Supplementary Tables S4, S5). GO analysis revealed
significant enrichment in biological processes such as “extracellular

» o«

matrix organization”, “extracellular structure organization”, and
“external encapsulating structure organization”; cellular component
including “collagen-containing extracellular matrix” and “basement
membrane”; and molecular functions such as “extracellular matrix
structural constituent” and “extracellular matrix binding”. KEGG
pathway analysis indicated that BM DEGs were significantly enriched
in “ECM-receptor interaction”, “protein digestion and absorption”,
“focal adhesion”, and “PI3K-Akt signaling pathway”. GSEA of all
DEGs identified the top five upregulated (Supplementary Figures
S3A-E) and top five downregulated (Supplementary Figures S3F-])
pathways (Supplementary Table S6).

PPI analysis was performed using the STRING database with a
confidence score threshold of > 0.7, resulting in a PPI network that
highlighted key interactions among BM DEGs (Figure 3A,
Supplementary Table S7). Additionally, correlation analysis based
on gene expression profiles was performed, and the results were
visualized as a correlation plot (Figure 3B, Supplementary Table S8).
Both the PPI and correlation analyses identified SPARC as a central
hub gene with strong associations to multiple other BMGs.

3.3 Correlation between SPARC and OKC-
related genes, and GSVA

The top 23 genes associated with OKC were obtained from the
GeneCards database, ranked by correlation scores. A boxplot was
generated to visualize the differential expression of these genes across
OKC and NOM samples (Figure 4A, Supplementary Table S9). SPARC
was selected for further analysis, and pairwise correlation scatterplots
were constructed between SPARC and each of the 23 OKC-related
genes (Figure 4B, Supplementary Table S10). Among them, PTCHI,
GLI1, GLI2, and KRT19 showed significant expression differences and
were positively correlated with SPARC (P < 0.05).

Based on SPARC expression levels, the OKC samples were
stratified into high and low expression groups, and GSVA was
performed (Supplementary Figure S4, Supplementary Table S11).
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FIGURE 1

The flowchart of present study. BM DEGs, differentially expressed basement membrane-related genes; BMGs, basement membrane-related genes;
GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; NOM, normal oral mucosa; OKC, odontogenic keratocyst; RNA-seq, RNA sequencing; scRNA-seq, single-cell

Expression matrix of 12 OKC and 4 NOM tissues
from GEO database (GSE38494)
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3.4 TF and miRNA regulatory network of
SPARC

The TF and miRNA regulatory network for SPARC were
predicted using NetworkAnalyst (Figures 4C, D). The TF network
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FIGURE 2
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showing the expression levels of the top 32 differentially expressed BMGs in NOM and OKC. Blank indicates not significant; *P < 0.05; **P < 0.01. BMGs,
basement membrane-related genes; DEGs, differentially expressed genes; NOM, normal oral mucosa; OKC, odontogenic keratocyst.
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Correlation analysis of BM DEGs at the protein and RNA levels. (A) PPl network depicting interactions among 65 BM DEGs. Node size and
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among 65 BM DEGs. Pie size and color indicate correlation magnitude and direction (warmer color reflect stronger positive correlations; cooler
colors indicate stronger negative correlations). BM DEGs, differentially expressed basement membrane-related genes; PPI, Protein-protein

interaction.
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included 28 nodes and 27 edges, featuring pluripotency factors
(POUSFI, SOX2, NANOG), nuclear receptors (PPARG, AR), and
stress-responsive TFs (STAT5A, HSF1). Key hub nodes such as
EP300 and RUNXI suggested epigenetic and microenvironmental
regulatory roles. The miRNA network included 22 nodes and 27
edges. Notable miRNAs included the miR-29 family (hsa-mir-29a-
5p/3p) and cancer-associated miRNAs (hsa-mir-192-5p, hsa-mir-
26b-3p). miR-29a-5p was identified as the highest-degree node,
consistent with its known role in suppressing SPARC in fibrosis
and metastasis.

3.5 SPARC is highly expressed in OKC
fibroblasts and validated in independent
datasets

ScRNA-seq data from three OKC samples (GSE176351) were
merged and analyzed. UMAP visualization with annotated clusters
is shown in Figure 5A (22). Feature plots (Figure 5B) and violin
plots (Figure 5C) indicated that SPARC expression was highest in
fibroblasts, followed by epithelial cells, and was present to a lesser
extent in other cell types.

Two additional datasets (GSE228393 and GSE186489) were
used to validate SPARC expression. After merging and batch effect
removal using the “sva” package, a validation dataset was generated.
Boxplots showed significantly higher SPARC expression in OKC
compared to NOM (P = 0.026) (Figure 5D, Supplementary Table
S12), confirming the expression pattern observed in the
primary dataset.

3.6 SPARC is enriched in the stromal tissue
of OKC compared to NOM

Immunofluorescence staining revealed strong SPARC
expression in the stromal compartment of OKC tissue
(Figure 6A). To compare SPARC expression between OKC and
OM, immunohistochemical staining was performed on OKC (n =
29) and NOM (n = 6) samples (Figures 6B, C). SPARC was detected
in both epithelium and stroma of OKC tissues, with predominant
stromal expression. In NOM tissue, SPARC expression was
relatively low. Quantitative analysis based on H-score
demonstrated significantly higher SPARC expression in the
stroma of OKC compared to NOM (P = 0.001) (Figure 6D).

3.7 SPARC expression correlates with
infiltration of multiple immune cell types

Immune infiltration analysis was conducted using gene sets for
28 TIIC types across three datasets (Figure 7A, Supplementary
Table S13). The distribution of TIICs was broadly consistent across
datasets. Correlation analysis between SPARC expression and TIICs
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showed that effector memory CD4" T cells had the strongest
positive correlation (P = 0.001), followed by plasmacytoid
derivative cells (P = 0.020), T follicular helper cells (P = 0.022),
and gamma delta T cells (P = 0.036). In contrast, memory B cells (P
< 0.001) and Th17 cells (P = 0.026) negatively correlated with
SPARC expression (Figure 7B, Supplementary Table S14).

4 Discussion

In this study, we identified 65 BM DEGs between OKC and OM
samples through RNA-seq analysis and GEO database mining.
Among them, SPARC emerged as a key gene and was further
investigated through multiple bioinformatics approaches to clarify
its potential localization and role in OKC progression.

PPI and gene correlation analyses revealed intricate
interrelationships among the 65 BMGs, suggesting a tightly
regulated BMGs network in OKC. GO enrichment analysis
highlighted not only canonical ECM pathways but also biological
processes such as “cell-substrate adhesion” and molecular functions
like “integrin binding”. Previous studies have linked decreased
expression of adhesion molecules, such as E-cadherin and o634
integrin, to increased tumor aggressiveness (23), supporting the
relevance of these pathways in OKC. Consistent with this, KEGG
analysis revealed significant enrichment in the “ECM-receptor
interaction” and “focal adhesion” pathways.

SPARC, the most upregulated BM DEG in OKC, encodes a
secreted matricellular protein—also known as osteonectin—that
modulates ECM-cell interactions, inhibits cell proliferation, and
regulates growth factor signaling. Some studies have demonstrated
that SPARC may function as an extracellular chaperone or as a
collagen chaperone, with the latter affecting the formation of fibrils
in vitro (24). Under physiological conditions, SPARC is primarily
expressed in remodeling tissues such as bone, intestinal mucosa,
and healing wounds (25). Aberrant SPARC expression has been
implicated in cancer and fibrotic diseases. For instance, SPARC
promotes melanoma cell invasion by inducing Snail and repressing
E-cadherin (26) and contributes to pulmonary fibrosis by regulating
ECM turnover (27). In our analysis, SPARC expression positively
correlated with several OKC-related genes, including PTCHI,
NOTCH]I, KRT19, GLI1, and GLI2. PTCH]I, a key gene in OKC,
has been shown to regulate SPARC and influence bone metabolism
(28). NOTCHLI is associated with hypoxia responses in OKC, while
KRT19 may reflect epithelial proliferative activity. GLI1 and GLI2,
core effectors of the Hedgehog pathway, are established markers
that distinguish NS-OKC from S-OKC (29-31).

Understanding the transcriptional and post-transcriptional
regulation of SPARC is crucial to elucidating its role in both
physiological and pathological contexts (32). In OKC, SPARC
may be modulated by key transcription factors involved in
epigenetic remodeling (e.g., EP300), epithelial plasticity (e.g.,
SOX2, NANOG), and ECM regulation (Figures 4C, D).
MicroRNAs, particularly members of the miR-29 family, also
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Validation of SPARC expression using single-cell and bulk RNA sequencing. (A) UMAP-based cell annotation and clustering for dataset GSE176351.
Adapted from Man et al. (22), under CC BY 4.0 license. (B) Feature plot and (C) violin plot illustrating SPARC expression across cell populations.
(D) Box plot validation of SPARC expression in NOM and OKC based on datasets GSE228393 and GSE186489 (P = 0.026). NOM, normal oral

mucosa; OKC, odontogenic keratocyst.

regulate SPARC by suppressing its mRNA translation (33). For
example, inhibition of miR-29a can restore SPARC expression and
enhance ECM production (34), while miR-203 suppresses SPARC-
driven metastasis in head and neck cancers (35). Additionally,
SPARC has been shown to promote the expression of interferon-
stimulated genes via IRF3/7 activation, contributing to the pro-
inflammatory transformation of macrophages in aging tissues (36).

Our findings confirmed that SPARC expression is significantly
elevated in the stromal compartment of OKC compared to NOM
(P =0.001), as evidenced by immunohistochemistry (Figures 5B-D).
This observation is consistent with prior studies by Poomsawat et al.
(37) and Hong et al. (28), who reported stromal SPARC expression in
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both S-OKC and NS-OKC. ScRNA-seq and immunofluorescence
further validated that SPARC is predominantly expressed in OKC
fibroblasts (Figures 4A, 5A). A similar stromal enrichment of SPARC
has been documented in pancreatic cancer, where it is associated with
poor prognosis (38). As primary producers of SPARC, fibroblasts
may contribute to lesion progression by promoting epithelial
proliferation, osteoclastogenesis (39), and angiogenesis via LOXL4
activation (40), thereby enhancing the invasive behavior of OKC.
Our previous mass cytometry (CyTOF) analysis demonstrated
that T cells, macrophages, neutrophils, and B cells dominate the
immune microenvironment in OKC (41). In the current analysis,
SPARC expression was negatively correlated with memory B cells,
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Validation of SPARC expression in OKC and NOM tissues. (A) Immunofluorescence showing SPARC expression in OKC tissue. Immunohistochemical
staining for SPARC in (B) OKC and (C) NOM tissues. (D) Comparative analysis of SPARC expression between OKC and NOM tissues. **P < 0.01. NOM,

normal oral mucosa; OKC, odontogenic keratocyst

which not only participate in anti-tumor immunity through
antibody production and T cell activation (42) but also secrete
RANKL, promoting bone resorption and local inflammation (43).
In SPARC-deficient mice, reductions in B cell numbers and
lipopolysaccharide-induced immune responses have been
observed (44), suggesting a potential regulatory role for SPARC in
B cell development and function.

To further substantiate these findings, future studies could
employ immunofluorescence double-labeling to directly visualize
SPARC expression in specific leukocyte subsets, thereby providing
confirmatory evidence for the scRNA-seq results. Such assays
would help clarify whether stromal SPARC interacts with distinct
immune populations in shaping the OKC microenvironment.

Nevertheless, this study has several limitations. Some are
inherent to the research field rather than to this study itself. For
instance, the limited availability of transcriptomic datasets for OKC
in public repositories may restrict the robustness of bulk and single-
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cell RNA-seq analyses. In addition, technical challenges in isolating
primary cells from OKC tissues and the absence of a reliable animal
model constrain functional validation both in vitro and in vivo. At
the level of the present work, the relatively small sample size and
reliance on public databases may also introduce potential bias.
Despite these limitations, our work provides important preliminary
insights and lays a valuable foundation for future mechanistic
investigations and therapeutic development targeting OKC.

In summary, this study systematically characterized BMG
expression in OKC and identified dysregulation of adhesion-
associated signaling pathways as potential contributors to lesion
progression. Among these, SPARC emerged as a central regulatory
molecule. Through integrated bioinformatics analyses—including
co-expression profiling, transcription factor and miRNA network
prediction, and immune cell infiltration mapping—we constructed
a comprehensive regulatory network centered on SPARC. Our
findings were further validated by scRNA-seq and histological
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assays, confirming elevated SPARC expression in the stromal
compartment of OKC. Given SPARC’s pivotal role in the stromal
microenvironment of OKC, targeting SPARC could potentially

inhibit its involvement in lesion recurrence and stromal
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remodeling. Future clinical applications may focus on developing

SPARC-based therapeutic strategies to prevent OKC progression

and recurrence, offering a novel approach to managing this

challenging disease.
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