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Development and validation
of a deep learning model
using MR imaging for
predicting brain metastases:
an accuracy-focused study
Dan Shi1†, Meng Yang2†, Min Dong3†, Ning Xuan4, Yinsu Zhu1,
Xiaoqiong Lv1, Chao Xie1, Fei Xia1, Lingchun Xu1*,
Qinglei Zhang2* and Na Yin1*

1Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical
University, Nanjing, China, 2Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, China, 3The People’s Hospital of DanYang Oncology,
Zhenjiang, China, 4Independent Researcher, Los Angeles, CA, United States
Background: Brain metastases (BM), originating from extracranial malignancies,

significantly threaten patient health. Accurate BM identification is crucial but

labor-intensive manually. This study developed and validated a system for BM

diagnosis, assessing its performance and stability.

Methods: 470 patients diagnosed with BM were divided into an 80% training set

(n=379) and a 20% internal test set (n=91) using systematic sampling. An additional

172 patients were retrospectively enrolled for external validation. A comprehensive

preprocessing pipeline was implemented. We developed a 3D U-Net model with a

ResNet-34 backbone for BM prediction. MRI scans were resampled to 0.833 mm³

isotropic voxels, underwent skull stripping using SynthStrip, and were intensity-

normalized via Z-score normalization. The model was trained on MRI scans paired

with segmentation masks, utilizing ImageNet-pretrained encoder weights and a

patch-based strategy (128×128×128 voxels).

Results: The model maintained perfect specificity and AUCs across gender and

age groups, with no significant differences in other metrics, confirming false

positive exclusion unaffected by demographics. By cancer type: Internal testing

showed significant difference of AUC (p<0.001) between lung cancer (n=74) and

other cancers (n=17). The differences of other performance metrics were not

statistically significant (p>0.13), though other cancers showed higher median F1/

IoU/MCC. External validation showed other cancers (n=79) had significantly

higher precision than lung cancer (n=93) (p<0.05). Lung cancer AUC (0.82)

was significantly lower than other cancers (0.89) (p<0.001), suggesting need for

sensitivity optimization; both maintained specificity=1.0000. Model time was
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significantly shorter than manual annotation (internal: 69s vs 113s; external: 66s

vs 96s; both p<0.001), with high agreement.

Conclusion: The model demonstrated strong robustness and perfect specificity

across demographics. While showing cancer type dependency (requiring

improved lung cancer sensitivity), its high efficiency (40%-50% time reduction)

and generalization provide a solid foundation for clinical translation.
KEYWORDS

brain metastases, deep learning, artificial intelligence, diagnostic accuracy, magnetic
resonance imaging
1 Introduction

Brain metastases (BM) are malignant tumors originating from

extracranial primary tumors that metastasize to the brain parenchyma.

Representing the most common type of intracranial tumor in adults,

BM occur in approximately 10% to 40% of patients with solid tumors

(1, 2). These lesions are predominantly located at the corticomedullary

junction, characterized by insidious onset, rapid progression, and later

manifestations including intracranial hypertension, neurological

dysfunction, and epilepsy (3, 4). BM typically indicate advanced

disease stage, and their incidence rises with prolonged patient

survival. Consequently, early and precise detection is crucial for

improving prognosis.

Current BM diagnosis relies heavily on neuroimaging, with

magnetic resonance imaging (MRI) serving as the preferred

modality due to its lack of ionizing radiation, superior soft-tissue

resolution, and multi-sequence capabilities. Compared to computed

tomography (CT), MRI demonstrates greater sensitivity for

detecting posterior fossa lesions, multiple punctate metastases,

and leptomeningeal disease. The typical MRI presentation is a

ring-enhancing lesion on contrast-enhanced T1-weighted imaging

(CE-T1WI) accompanied by significant peritumoral edema.

However, traditional manual identification of multiple (especially

small) metastatic foci is time-consuming and carries a high risk of

missed diagnosis. Achieving efficient and accurate BM identification

therefore remains a significant clinical challenge.

The advancement of artificial intelligence (AI) and radiomics in

brain imaging critically depends on voxel-level image segmentation

technology (5, 6). This technique partitions image regions based on

features like intensity, shape, and texture to integrate targets, forming a

fundamental prerequisite for computer-aided image analysis. The U-

Net model, introduced by Ronneberger et al. (7), represents a major

advancement. It efficiently utilizes limited annotated data, balances

localization accuracy with contextual information, and offers

advantages such as rapid segmentation, capacity for large image

processing, and strong generalization. However, U-Net exhibits
02
limitations, including an output size smaller than the input,

dependence on specific tile sizes, constrained applicability of data

augmentation techniques, and the requirement for manual loss

function parameter tuning. To overcome the constraints of 2D

processing, Cicek et al. (8) developed 3D U-Net. This architecture

directly learns from sparsely annotated volumetric data to achieve

dense 3D segmentation, supporting both semi-automatic and

fully automatic workflows. By incorporating batch normalization and

weighted loss functions, 3D U-Net significantly enhances performance

while retaining the advantages of handling large datasets and

robust generalization.

Previous research has developed various computer-aided

diagnosis (CAD) systems for BM detection on MRI using diverse

algorithms and sequences (9–13). Cho SJ et al. (10) conducted a

comparative analysis of 12 recent studies, concluding that deep

learning (DL) achieves BM detection rates comparable to classical

machine learning approaches, with a lower per-case false positive

rate. Despite ongoing CAD development, widespread clinical

adoption faces hurdles. Most prior studies on BM detection rates

are single-center retrospective analyses (9, 14–18), with the

exception of a multicenter retrospective study by Xu J et al. (13).

This reliance limits comprehensive evaluation of algorithmic

stability and introduces potential selection bias. Furthermore,

while previous models predict BM using MRI data (10, 16, 19),

their robustness requires more thorough assessment.

This study aims to develop a 3D U-Net deep learning model

based on the ResNet-34 backbone network. Through a systematic

preprocessing pipeline and a multi-dimensional validation strategy,

the model will achieve robust automatic segmentation of BM.

Utilizing both internal and external datasets, stratified validation

(by gender/age/cancer subtype subgroups) and model robustness

testing will be conducted. Concurrently, the lesion detection

performance between radiologists and the novel deep learning

model for BM will be evaluated. The ultimate goal is to build an

AI clinical decision-support tool to enhance both the precision and

efficiency of brain tumor imaging diagnosis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1657604
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2025.1657604
3 Manuscript formatting

4 Materials and methods

4.1 Study design and participants

This retrospective study was approved by the medical ethics

committee and the patients’ informed consent was waived. A total

of 470 patients diagnosed with BM in Jiangsu Cancer Hospital

(Nanjing, China) from April 2022 to December 2024 included in

our study were divided into 80% training set (379 cases) and 20%

internal validation set (91 cases) using random sampling. In

addition,172 patients diagnosed with BM at the Affiliated Drum

Tower Hospital of Nanjing University Medical School (Nanjing,

China) from February 2022 to September 2022 were used for

external validation.
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Participants who met following criteria were included in this

study: (1) Patients were confirmed by clinical examinations to have

brain metastases and had completed enhanced MRI scans of the

brain. (2) Patients were aged 18 years or older and had complete

clinical data. (3) The obtained MR images of patients were free of

artifacts and distortion and had relatively high resolution.

Meanwhile, to ensure the quality of the study, patients who meet

any of following criteria would be excluded: (1) Patients with critical

conditions and unstable vital signs. (2) Patients who were unable to

tolerate MRI examinations and had only completed plain MRI

scans without being able to undergo enhanced scans. (3) Patients

with other serious cardiovascular and cerebrovascular diseases. (4)

Patients with contraindications for MRI examinations, such as

those with implanted cardiac pacemakers. (5) Patients whose

imaging data have problems such as severe artifacts, noise, or

motion blur (Figure 1).
FIGURE 1

Study design workflow. Our study comprised three sequential phases: (1) Model Training: A 3D U-Net model with a ResNet-34 backbone was
trained on the training dataset. (2) Inference: The model’s performance was evaluated using an internally curated testing set from the same hospital
and an external validation set from another hospital. (3) Model Evaluation: Eight metrics were calculated to assess model performance, and a
comparative analysis between model-based and manual delineations was conducted.
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4.2 MRI contrast-enhanced scan

The 3.0T superconducting MRI machine produced by Philips is

selected. Instruct the patient to take the supine position and keep the

head stable. A 32-channel head quadrature coil is used to collect data.

The contrast injection method is to inject gadopentetate dimeglumine

(Gd - DTPA) through the cubital vein at an injection flow rate of 1

mL/s and a dose of 0.25 mL/kg. Scanning and collecting data were

performed after a delay of 3 minutes. The sequence settings for the

contrast-enhanced 3D - T1WI scan were as follows: the sequence was

3D - FFE, the matrix was 256×256, the slice spacing/slice thickness

was 1 mm/0 mm, the TR/TE (ms) was 6.6/3.0, the FOV was 240×240,

and the voxel size was 1 mm * 1 mm * 1 mm.
4.3 Image selection and delineation

Three magnetic resonance physicians with more than 8 years of

work experience reviewed the films independently, evaluated all the

metrics of participants, and selected the magnetic resonance images

that met the MRI imaging characteristics of brain metastases. They

then manually outlined the enhanced metastatic lesions using software.

The enhancement patterns could be divided into standardized uniform

nodular enhancement, ring-shaped enhancement, and irregular

enhancement. Standardized uniform nodular enhancement described

that during the contrast-enhanced scan, both the interior and the edge

of the nodular lesion shown uniform and significant enhancement.

Ring-shaped enhancement meant that the lesion appeared nodular.

During the contrast-enhanced scan, the central part of the lesion was

not enhanced, and the enhancement of the edge was incomplete,

forming a ring shape. Irregular enhancement was manifested as

follows: although the lesion had nodular features, the enhancement

effect was not uniform, or the shape of the lesion itself was irregular,

and the enhancement patterns were diverse, which might be partially

uniform and partially non-uniform.
Frontiers in Oncology 04
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5.1 Implementation

To ensure robust and high-quality processing for model

training and evaluation, we implemented a comprehensive

preprocessing pipeline and developed a 3D U-Net model with a

ResNet-34 backbone tailored for volumetric medical image

segmentation. The preprocessing steps focused on standardizing

the spatial resolution of MRI scans, normalizing intensity

distributions, and implementing quality control measures. The 3D

U-Net model utilized a pretrained encoder for efficient feature

extraction, a patch-based training strategy to handle large MRI

volumes, and data augmentation techniques to enhance model

robustness and generalizability (20) (Figure 2).
5.2 Training data

The training data consisted of MRI scans paired with

segmentation masks to enable supervised learning for the

segmentation task. Preprocessing began with resampling the MRI

scans to a uniform voxel size of 0.833 mm³. This standardization

minimized variability caused by differences in scanner resolution

and acquisition parameters. An automated verification step was

employed to ensure alignment between the MRI scans and their

corresponding segmentation masks, flagging mismatched pairs for

manual review. Brain extraction was performed using SynthStrip

(17), which removed non-brain tissues and reduced computational

overhead by focusing on relevant brain regions. Intensity

normalization followed, employing Z-score normalization to

standardize voxel intensities, mitigating inter-subject variability

due to scanner settings or patient-specific factors. Quality control

was conducted by visualizing intensity histograms using matplotlib,

ensuring consistency and reliability in the preprocessing pipeline.
FIGURE 2

Inference workflow. A sliding window (stride=64) divides the input MRI volume into overlapping sub-volumes. Each is processed by the trained model
for prediction. Overlapping region outputs are averaged to reconstruct the final binary tumor segmentation mask, ensuring smooth transitions.
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5.3 Inference data for generating
segmentation masks

The inference data comprised both internal and external

datasets. The internal test set included 91 cases drawn from the

same distribution as the training data, providing a baseline for

performance assessment under known conditions. The external

validation set consisted of 95 cases from an independent dataset,

offering a robust evaluation of the model’s generalizability. Ground-

truth segmentation masks were provided for both datasets, enabling

a direct comparison of predicted and actual segmentations. This

multi-faceted evaluation ensured that the model’s performance was

rigorously assessed across diverse scenarios.
6 Experiment

6.1 Training

The 3D U-Net model with a ResNet-34 backbone was

optimized for volumetric segmentation. The encoder, initialized

with pretrained ImageNet weights, accelerated convergence and

enhanced feature extraction efficiency. A patch-based training

strategy was employed, dividing MRI scans into patches of size

128×128×128 voxels to accommodate the memory constraints

posed by the large data volumes. Data augmentation was applied

using volumentations, incorporating techniques such as left-right

flipping, elastic deformations, and gamma adjustments. These

augmentations simulated anatomical and imaging variability,

boosting the model’s robustness to unseen data. The hybrid loss

function, which combined Dice loss and binary cross-entropy with

equal weighting, was chosen to balance pixel-wise accuracy with

overlap-based evaluation metrics. Optimization was carried out

using the Adam optimizer with a learning rate of 0.0001 and

parameters b1 = 0.9, b2 = 0.999, ∈=1×10−7b1=0.9, b2=0.999,
∈=1×10−7. To prevent overfitting, a dropout rate of 0.5 was

applied in the decoder layers. A batch size of 4 was used,

constrained by the memory limitations of the NVIDIA RTX 4090

GPU with 64 GB of system RAM. The training process was

implemented in TensorFlow and Keras.
6.2 Inference: generating segmentation
masks

The trained 3D U-Net model was applied to both internal and

external datasets to generate segmentation masks. MRI scans were

preprocessed to align with the model’s input requirements,

including brain extraction and normalization. A patch-based

inference method was adopted, employing overlapping patches

with a 50% overlap (stride = 64 voxels). Predictions from

overlapping patches were averaged to minimize boundary

artifacts and produce smoother segmentation results. Binary

segmentation masks were generated by thresholding the model’s

outputs at 0.5. Performance metrics, including Area Under the
Frontiers in Oncology 05
Curve (AUC), Dice coefficient, F1-score, Intersection over Union

(IoU), Matthew’s correlation coefficient (MCC), precision, recall,

and specificity were calculated using scikit-learn. These metrics

were aggregated and analyzed using pandas for statistical analysis.
6.3 Statistical analysis

For the descriptive analysis, continuous variables with normal

distribution were presented as mean and standard deviation (SD),

and those with a non-normal distribution were presented as median

and interquartile range (IQR). Categorical variables were

summarized as counts (n) with corresponding percentages (%).

Continuous variables were assessed for statistical differences using

two-sample t test or Mann–Whitney U tests. Categorical variables

were evaluated for differences using the c2 test. Subgroup analyses

were conducted to identify the population in which this model is

most suitable for delineating lesions between each subgroup. The

internal testing set and the external validation set were both

stratified by age (< 60 years and >= 60 years), gender, and

primary cancer type (lung cancer and other cancer). For metrics

(precision, recall, F1 score, IoU, dice coefficient, specificity, and

MCC), differences between each subgroup were assessed by

employing Mann–Whitney U tests, with corresponding 95%

confidence intervals (CIs) estimated. The comparison of AUC

between subgroups was performed by using DeLong test.

Additionally, the differences of time cost between model-based

delineation and manual annotation were also compared by using

Mann–Whitney U tests in both internal testing set and external

validation set. All statistical analyses were performed using R

version 4.4.1. A P-value of less than 0.05 was considered

statistically significant.
7 Result

7.1 Patient characteristics

This retrospective study included 91 patients in the test set and

172 patients in the validation set. The median baseline ages in the

test and validation sets were 59.4 ± 10.2 and 57.4 ± 12.6 years,

respectively. Demographic and clinical characteristics, including

age and gender, were comparable between the two cohorts, with no

statistically significant differences observed. Selection bias was

present regarding cancer type, showing a statistically significant

difference. The clinical characteristics of the patients are

summarized in Table 1.
7.2 Model performance evaluation

Table 2 describes the case characteristics in the internal test set

and external validation set. In our study, model performance on

both the internal test set and external validation set was evaluated

by calculating Precision, Recall, F1 Score, Intersection over Union
frontiersin.org
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(IoU), Dice Coefficient, Specificity, Matthews Correlation

Coefficient (MCC), and the Area Under the Receiver Operating

Characteristic Curve (AUC). Results were summarized using

median and interquartile range (IQR) (Table 2). The results

showed that the model achieved an AUC of 0.89 (IQR 0.79–0.93)

on the internal test set and 0.82 (IQR 0.67–0.90) on the validation

set, indicating good overall diagnostic capability. Furthermore,

Precision was >0.93 in both the internal test set and external

validation set, suggesting strong discriminative ability, with the

external validation set showing higher precision than the test set.

Recall decreased from 0.78 (IQR 0.57–0.86) in the test set to 0.64

(IQR 0.34–0.81) in the validation set, accompanied by a

synchronous decline in F1 Score (0.82 vs. 0.75), indicating

moderate model robustness. Specificity reached 1.000 (IQR

1.000–1.000) in both the test and validation sets, signifying

theoretically optimal ability to exclude negative samples. MCC

decreased to 0.77 (IQR 0.55–0.86) in the validation set, indicating

good classification reliability; the Dice Coefficient also decreased

synchronously to 0.75 (IQR 0.49–0.85).

As shown in Figure 3a comparison between clinicians and the

model in identifying brain metastatic lesions was conducted, both

for the test set and the validation set. The clinical validation data
Frontiers in Oncology 06
indicated that compared with the manual interpretation by

clinicians, the number of lesions detected by this model was

significantly higher, effectively reducing the rate of missed

detections, highlighting its potential value in improving the

accuracy of clinical diagnosis.
7.3 Model performance comparative
analysis

To comprehensively evaluate model robustness, this study

conducted stratified validation across three dimensions (gender,

age, and primary cancer type). Additionally, stability assessments

were performed on both datasets (internal test set and external

independent validation set).

Figure 4 systematically presents the multi-dimensional

evaluation results of the model in the internal test set and the

external validation cohort.

In the internal test set (n = 91): Our model demonstrated superior

predictive performance in males, patients < 60 years old, and patients

with other cancer compared with the other groups. The AUC was

0.89 for males, 0.91 for patients younger than 60 years old, and 0.91

for patients with other cancer type. DeLong tests indicated that these

between-group differences were statistically significant (all p < 0.001).

Subgroup analysis by cancer type (lung cancer n = 74, other cancers n

= 17) revealed: There was no significant difference of other metrics

between groups (p > 0.05), and its high specificity (1.0000) and stable

AUC (> 0.88) supported generalization ability. The median of other

cancer group comprehensive indicators (F1/IoU/MCC) was higher,

suggesting that the model may have better discrimination ability for

non-lung cancer malignancies. Subgroup analysis by gender (male n

= 54, female n = 37) showed that apart from the AUC, the differences

of other performance metrics between subgroups were not

statistically significant (p > 0.10), and the model performance was

highly consistent; Specificity reached 1.0000, indicating that the

model’s ability to exclude false positives was extremely strong. Age

subgroup analysis (< 60 years old n = 49, ≥ 60 years old n = 42)

indicated: The age factor did not significantly change the model

performance metrics (p > 0.20); The lower limit of the recall rate

distribution in the ≥ 60 years old group (Q1 = 0.5540) suggested that

the sensitivity needed to be optimized to reduce the risk of missed

diagnosis in the elderly.

In the external validation set (n = 172), the prediction model

achieved better comprehensive performance in the male subgroup

(AUC = 0.86), the subgroup aged ≥60 years (AUC = 0.90), and the

subgroup with other cancers (AUC = 0.89). DeLong tests indicated

that the differences of AUC between subgroups were statistically

significant (p < 0.001). The subgroup analysis by cancer type (lung

cancer n = 93, other cancers n = 79) showed that the precision of the

other cancer group was significantly higher (p < 0.001), indicating

that the model has a discriminative advantage in identifying non-

lung cancer malignancies. Both subgroups maintained a perfect

specificity (1.0000), verifying the model’s generalization ability in

controlling false positives; the differences in the remaining

indicators between the lung cancer group and the non-lung
TABLE 1 Characteristics of patients in testing set and validation set.

Characteristics
Testin set
(N = 91)

Validation set
(N = 95)

p-value

Age 59.4 ± 10.2 57.4 ± 12.6 0.173

<60 49 82 0.411

≥60 42 90

Gender 0.136

Male 5 84

Female 37 88

Cancer type <0.001

Lung cancer 74 93

Other type 17 79
TABLE 2 Summary descriptive table by groups of datasets.

Metrics Testing set (N = 91) Validation set (N = 172)

Precision 0.926(0.831,0.966) 0.935(0.858,0.967)

Recall 0.782(0.567,0.861) 0.638(0.342,0.806)

F1 Score 0.821(0.674,0.882) 0.750(0.495,0.852)

IoU 0.697(0.508,0.789) 0.600(0.329,0.743)

Dice
Cofficient

0.821(0.674,0.882) 0.750(0.495,0.852)

Specificity 1.000(1.000,1.000) 1.000(1.000,1.000)

MCC 0.832(0.698,0.883) 0.768(0.549,0.857)

AUC 0.891(0.793,0.930) 0.819(0.671,0.903)
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cancer group were not statistically significant (all p > 0.26),

suggesting that the model performance is cancer type-dependent.

The comprehensive performance of the lung cancer group (AUC =

0.82) was significantly lower than that of the other cancer group,

indicating that the model needs to be further optimized for its

sensitivity to lung cancer. The statistical analysis grouped by gender

(male n = 84; female n = 88) showed that except for AUC, the

differences in evaluation indicators between the male group and the

female group were not statistically significant (all p > 0.52),

indicating that the model performance is stable across the gender

dimension. The high specificity (1.0000) and stable AUC value (>

0.84) remained consistent in the cross-center validation, reflecting

the model’s good robustness. In the age subgroup analysis (< 60

years old n = 82, ≥ 60 years old n = 90), apart from AUC, the

differences in other indicators between the two age groups were not

statistically significant (p > 0.05), indicating that the model

performance was highly consistent across different age groups; the

perfect specificity (1.0000) and stable AUC value (> 0.82) further

confirmed the reliability of the model in excluding false positives.

To further demonstrate the clinical practicability of this model,

we conducted a comparative analysis of the time spent on model-

based depiction and manual lesion annotation. The results showed

that, in both datasets, the time required for model-based depiction

was significantly less than that of manual annotation (both P < 0.001)

(Table 3), and it maintained a comparable consistency with manual
Frontiers in Oncology 07
depiction (Figure 3). In the internal test set, the median time of the

model was 69s (IQR 68 - 69), while the median time of manual

annotation was 113 seconds (IQR 90 - 151). In the external validation

set, the median time of the model was 66s (IQR 65 - 68), while the

median time of manual annotation was 96s (IQR 78 - 113).
8 Discussion

In this multicenter study, we developed a 3D U-Net deep learning

model based on the ResNet-34 backbone network for the detection of

brain metastases (BM) in 3D CET1WI MRI images of a large number

of patients. Additionally, we conducted a multi-reader evaluation

aimed at quantifying the impact of the BM-assisted system on

reading time and lesion detection efficacy. Through multi-

dimensional stratified validation, this study systematically evaluated

the robustness of the model on the internal test set and the external

independent validation set. The results showed that the model

demonstrated perfect specificity (Specificity = 1.0000) for both male

and female patients, strongly confirming its ability to exclude false

positive results regardless of gender factors. Similarly, in the age

stratification analysis (<60 years vs. ≥60 years), the core efficacy

indicators (such as AUC, specificity) were highly consistent between

the two age groups, supporting its universality in patients of different

ages. In the cancer type dimension, the model performed comparably
FIGURE 3

Manual identification and model identification of the lesion legend.
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in the internal test set for lung cancer and other malignant tumors

overall; while in the external validation set, it showed a significantly

higher precision rate for non-lung cancer malignant tumors (the “other

cancer” group). Although both groups maintained perfect specificity,

the comprehensive performance indicators of the lung cancer group in

the external validation were relatively lower, suggesting that the model

performance may have some cancer type dependence. The model
Frontiers in Oncology 08
yielded better predictive performance when applied to the subgroups

of males and non-lung cancer patients. Future optimization should

focus on improving the model’s sensitivity for detecting lung cancer

lesions. Overall, this model significantly improved the efficiency in

detecting BM (with much less time than manual annotation), and its

excellent robustness demonstrated a good potential for clinical

translation applications.
FIGURE 4

Training vs. validation set comparisons by subgroup. (A) Cancer type (B) Gender (C) Age.
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BMs are the most common intracranial malignant tumors, with an

incidence of approximately 20%-40% (1, 4, 21). BM often leads to

severe neurological lesions and shortens survival time, and its early

diagnosis is closely related to clinical decisions and patient prognosis

(22). MRI, with its high soft tissue resolution and rich scanning

sequences, has become the main examination method for BM.

Although MRI can provide various imaging features, manual visual

diagnosis often fails to cover all effective features and ignores the

complexity of tissue cells, resulting in difficult improvement of

detection accuracy to the application level. Therefore, developing an

automated brain tumor segmentation technology to achieve high-

precision and repeatable measurement of tumor substructures,

replacing the current manual basic assessment, has become an

urgent need to supplement BM diagnosis. Fajam et al. (9) in a

prospective single-center study included 29 patients and developed a

set of uneven 3D spherical template to detect brain metastases in Gd-

enhanced T1WI imaging, achieving a sensitivity of 93.5% and an

intracranial false positive rate of 0.024. However, the system in their

study was not evaluated clinically. Lu SL et al. (12) demonstrated

through a random multi-reader multi-case study of 10 patients (a total

of 23 tumors) that the automatic detection and segmentation

technology based on deep neural networks (ABS system) can

improve the accuracy and efficiency of tumor contour delineation

and reduce the differences among doctors. However, this study focused

more on tumor segmentation rather than detection, and did not

analyze reading time. Xue J et al. (13) retrospectively included 1625

patients from three centers and constructed a model for detecting and

segmenting brain metastases, although the sensitivity, specificity, and

Dice coefficient of the model were evaluated, the reading time of the

model compared with manual recognition was not assessed. Unlike

previous studies, this research employs a 3D U-Net deep learning

model based on the ResNet-34 backbone to detect brain metastases on

3D enhanced T1-weighted MRI images of a large number of patients.

Through multi-dimensional hierarchical validation on the internal test

set and external validation set, the BM segmentation precision of this

3D U-Net model reaches 92.6% and 93.5% respectively. Meanwhile,

the specificity of our model in the internal test set and external

validation set is also very outstanding. Compared with previous

studies, the model in this research has higher precision and

specificity (1, 23). Amemiya S et al. developed a combined algorithm

based on feature fusion and single detector (24), which has a high

overall sensitivity and specificity for brain metastases without reducing

the positive predictive value, thereby improving the detection rate of

small lesions. Huang et al. (25) proposed a deep learning model based

on volume-level sensitivity and specificity, which also shows high

sensitivity and accuracy for BM detection.
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One of the most commonly used network architectures is the so-

called U-Net (26, 27). Recently, Pfluger I et al. developed a system

based on artificial neural networks (28) using the nnU-Net method to

segment meningiomas from 308 patients (29). Bousabarah K et al.

implemented traditional U-Net and an improved U-Net with multiple

outputs to achieve automatic separation of meningiomas (30).

Additionally, Gong J et al. proposed an integrated learning model

based on deep learning and image-based radiomics to improve the

prediction ability of the risk of brain metastasis in patients with

advanced non-small cell lung cancer within three years (31). By

applying the deep residual U-Net model, each pulmonary tumor

can be automatically and accurately segmented, combined with CT

image-based radiomics and clinical features. This improves the

performance of predicting the risk of meningiomas. We also found

that the quality of automatic segmentation is very high (0.8≥DSC≥0.6)

in both the internal test set and external validation set, indicating

that the model can provide more reliable image segmentation for

brain metastases. Zhu Genste et al. trained a deep learning model

for detecting and three-dimensional segmenting brain metastases in

non-small cell lung cancer (32). Compared with manual segmentation,

the DSC consistency coefficient reached 0.72.

Most previous studies used classical machine learning or deep

learning and multiple sequences to detect or segment brain metastases

based on the number and size of the lesions (33, 34). Although these

studies mostly evaluated overall sensitivity, accuracy, and per capita

false positive rate, they covered various different primary tumor

subtypes. Although multi-modal modalities have significant

advantages, the additional scanning time and sequence availability

costs may hinder their widespread clinical application. Our method

uses only the CE TIWI sequence and can detect brainmetastases with a

precision of over 80%. Given the trade-off between precision and

specificity, our model may be more suitable for wide clinical

application. Unlike previous studies, this research validates the model

through multi-dimensional hierarchical validation, firmly confirming

that the model is not affected by factors such as gender and age,

supporting its universality in patients of different ages and genders.

Although this model shows certain type-dependent performance in the

cancer type dimension for the identification of lung cancer and other

cancers, its efficiency has significantly improved and the overall

performance is quite good, demonstrating good potential for clinical

translation applications.

Our research indicates that the time required for lesion

identification based on the model is significantly shorter than that

of manual identification, effectively improving the efficiency of

clinical diagnosis. Compared with other technologies (33, 34), this

study has several unique features. Firstly, our research includes

training sets and validation sets to verify our system, which is more

persuasive than previous studies. Secondly, to evaluate the stability of

the model, this study conducts stratified validation from multiple

dimensions (gender, age, and cancer type), and the results show that

the internal and external validation sets of the model exhibit excellent

robustness, showing good universality for patients of different

genders and different age groups. The model has a certain type-

dependent performance for cancer. Moreover, the efficiency of this

model in identifying BM is significantly higher than manual
TABLE 3 Comparison of time consuming in model-based and manual
annotation in internal testing set and external validation set.

Dataset
Time, s

Z P
Model Annotation

Testing 69 (68,69) 113 (90,151) -11.672 <0.001

Validation 66 (65, 68) 96 (78,113) -14.143 <0.001
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annotation. Combined with its excellent robustness, it has good

potential for clinical translation applications.

This study also has potential limitations. Firstly, the limiting

factor for the model to achieve higher maturity is the small number

of samples of BM patients included in the training and validation

sets. Secondly, our model has some false negative results in

identifying BM; BM and blood vessels may appear as nodules or

high-signal spots on CE T1WI, and the latter may be mistakenly

regarded as BM. Finally, it is necessary to validate our model on a

larger dataset and further verify its stability in multiple centers.

Subsequently, a stratified analysis of lesion size will be conducted to

prevent missed diagnoses of lesions.

In summary, our study shows that the 3D U-Net model

demonstrates perfect specificity and robustness across transgender

and age groups, with slight differences in cancer types (the sensitivity

of lung cancer needs to be optimized). Overall, it is highly efficient and

accurate, and has significant clinical translational value. Based on our

multi-center evaluation, this system helps radiologists with different

levels of experience achieve higher detection specificity and precision.
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