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Development and validation
of a deep learning model
using MR imaging for
predicting brain metastases:
an accuracy-focused study

Dan Shi*!, Meng Yang?', Min Dong*', Ning Xuan?, Yinsu Zhu*,
Xiaogiong Lv*, Chao Xie, Fei Xia*, Lingchun Xu®™,
Qinglei Zhang* and Na Yin™

‘Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical
University, Nanjing, China, 2Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, China, *The People’s Hospital of DanYang Oncology,
Zhenjiang, China, “Independent Researcher, Los Angeles, CA, United States

Background: Brain metastases (BM), originating from extracranial malignancies,
significantly threaten patient health. Accurate BM identification is crucial but
labor-intensive manually. This study developed and validated a system for BM
diagnosis, assessing its performance and stability.

Methods: 470 patients diagnosed with BM were divided into an 80% training set
(n=379) and a 20% internal test set (n=91) using systematic sampling. An additional
172 patients were retrospectively enrolled for external validation. A comprehensive
preprocessing pipeline was implemented. We developed a 3D U-Net model with a
ResNet-34 backbone for BM prediction. MRI scans were resampled to 0.833 mm?®
isotropic voxels, underwent skull stripping using SynthStrip, and were intensity-
normalized via Z-score normalization. The model was trained on MRI scans paired
with segmentation masks, utilizing ImageNet-pretrained encoder weights and a
patch-based strategy (128x128x128 voxels).

Results: The model maintained perfect specificity and AUCs across gender and
age groups, with no significant differences in other metrics, confirming false
positive exclusion unaffected by demographics. By cancer type: Internal testing
showed significant difference of AUC (p<0.001) between lung cancer (n=74) and
other cancers (n=17). The differences of other performance metrics were not
statistically significant (p>0.13), though other cancers showed higher median F1/
loU/MCC. External validation showed other cancers (n=79) had significantly
higher precision than lung cancer (n=93) (p<0.05). Lung cancer AUC (0.82)
was significantly lower than other cancers (0.89) (p<0.001), suggesting need for
sensitivity optimization; both maintained specificity=1.0000. Model time was
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significantly shorter than manual annotation (internal: 69s vs 113s; external: 66s
vs 96s; both p<0.001), with high agreement.

Conclusion: The model demonstrated strong robustness and perfect specificity
across demographics. While showing cancer type dependency (requiring
improved lung cancer sensitivity), its high efficiency (40%-50% time reduction)
and generalization provide a solid foundation for clinical translation.

brain metastases, deep learning, artificial intelligence, diagnostic accuracy, magnetic

resonance imaging

1 Introduction

Brain metastases (BM) are malignant tumors originating from
extracranial primary tumors that metastasize to the brain parenchyma.
Representing the most common type of intracranial tumor in adults,
BM occur in approximately 10% to 40% of patients with solid tumors
(1, 2). These lesions are predominantly located at the corticomedullary
junction, characterized by insidious onset, rapid progression, and later
manifestations including intracranial hypertension, neurological
dysfunction, and epilepsy (3, 4). BM typically indicate advanced
disease stage, and their incidence rises with prolonged patient
survival. Consequently, early and precise detection is crucial for
improving prognosis.

Current BM diagnosis relies heavily on neuroimaging, with
magnetic resonance imaging (MRI) serving as the preferred
modality due to its lack of ionizing radiation, superior soft-tissue
resolution, and multi-sequence capabilities. Compared to computed
tomography (CT), MRI demonstrates greater sensitivity for
detecting posterior fossa lesions, multiple punctate metastases,
and leptomeningeal disease. The typical MRI presentation is a
ring-enhancing lesion on contrast-enhanced T1-weighted imaging
(CE-T1WI) accompanied by significant peritumoral edema.
However, traditional manual identification of multiple (especially
small) metastatic foci is time-consuming and carries a high risk of
missed diagnosis. Achieving efficient and accurate BM identification
therefore remains a significant clinical challenge.

The advancement of artificial intelligence (AI) and radiomics in
brain imaging critically depends on voxel-level image segmentation
technology (5, 6). This technique partitions image regions based on
features like intensity, shape, and texture to integrate targets, forming a
fundamental prerequisite for computer-aided image analysis. The U-
Net model, introduced by Ronneberger et al. (7), represents a major
advancement. It efficiently utilizes limited annotated data, balances
localization accuracy with contextual information, and offers
advantages such as rapid segmentation, capacity for large image
processing, and strong generalization. However, U-Net exhibits
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limitations, including an output size smaller than the input,
dependence on specific tile sizes, constrained applicability of data
augmentation techniques, and the requirement for manual loss
function parameter tuning. To overcome the constraints of 2D
processing, Cicek et al. (8) developed 3D U-Net. This architecture
directly learns from sparsely annotated volumetric data to achieve
dense 3D segmentation, supporting both semi-automatic and
fully automatic workflows. By incorporating batch normalization and
weighted loss functions, 3D U-Net significantly enhances performance
while retaining the advantages of handling large datasets and
robust generalization.

Previous research has developed various computer-aided
diagnosis (CAD) systems for BM detection on MRI using diverse
algorithms and sequences (9-13). Cho SJ et al. (10) conducted a
comparative analysis of 12 recent studies, concluding that deep
learning (DL) achieves BM detection rates comparable to classical
machine learning approaches, with a lower per-case false positive
rate. Despite ongoing CAD development, widespread clinical
adoption faces hurdles. Most prior studies on BM detection rates
are single-center retrospective analyses (9, 14-18), with the
exception of a multicenter retrospective study by Xu J et al. (13).
This reliance limits comprehensive evaluation of algorithmic
stability and introduces potential selection bias. Furthermore,
while previous models predict BM using MRI data (10, 16, 19),
their robustness requires more thorough assessment.

This study aims to develop a 3D U-Net deep learning model
based on the ResNet-34 backbone network. Through a systematic
preprocessing pipeline and a multi-dimensional validation strategy,
the model will achieve robust automatic segmentation of BM.
Utilizing both internal and external datasets, stratified validation
(by gender/age/cancer subtype subgroups) and model robustness
testing will be conducted. Concurrently, the lesion detection
performance between radiologists and the novel deep learning
model for BM will be evaluated. The ultimate goal is to build an
AT clinical decision-support tool to enhance both the precision and
efficiency of brain tumor imaging diagnosis.
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3 Manuscript formatting

4 Materials and methods
4.1 Study design and participants

This retrospective study was approved by the medical ethics
committee and the patients” informed consent was waived. A total
of 470 patients diagnosed with BM in Jiangsu Cancer Hospital
(Nanjing, China) from April 2022 to December 2024 included in
our study were divided into 80% training set (379 cases) and 20%
internal validation set (91 cases) using random sampling. In
addition,172 patients diagnosed with BM at the Affiliated Drum
Tower Hospital of Nanjing University Medical School (Nanjing,
China) from February 2022 to September 2022 were used for
external validation.

10.3389/fonc.2025.1657604

Participants who met following criteria were included in this
study: (1) Patients were confirmed by clinical examinations to have
brain metastases and had completed enhanced MRI scans of the
brain. (2) Patients were aged 18 years or older and had complete
clinical data. (3) The obtained MR images of patients were free of
artifacts and distortion and had relatively high resolution.
Meanwhile, to ensure the quality of the study, patients who meet
any of following criteria would be excluded: (1) Patients with critical
conditions and unstable vital signs. (2) Patients who were unable to
tolerate MRI examinations and had only completed plain MRI
scans without being able to undergo enhanced scans. (3) Patients
with other serious cardiovascular and cerebrovascular diseases. (4)
Patients with contraindications for MRI examinations, such as
those with implanted cardiac pacemakers. (5) Patients whose
imaging data have problems such as severe artifacts, noise, or
motion blur (Figure 1).
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FIGURE 1

Study design workflow. Our study comprised three sequential phases: (1) Model Training: A 3D U-Net model with a ResNet-34 backbone was
trained on the training dataset. (2) Inference: The model's performance was evaluated using an internally curated testing set from the same hospital
and an external validation set from another hospital. (3) Model Evaluation: Eight metrics were calculated to assess model performance, and a
comparative analysis between model-based and manual delineations was conducted
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4.2 MRI contrast-enhanced scan

The 3.0T superconducting MRI machine produced by Philips is
selected. Instruct the patient to take the supine position and keep the
head stable. A 32-channel head quadrature coil is used to collect data.
The contrast injection method is to inject gadopentetate dimeglumine
(Gd - DTPA) through the cubital vein at an injection flow rate of 1
mL/s and a dose of 0.25 mL/kg. Scanning and collecting data were
performed after a delay of 3 minutes. The sequence settings for the
contrast-enhanced 3D - TIWI scan were as follows: the sequence was
3D - FFE, the matrix was 256x256, the slice spacing/slice thickness
was 1 mm/0 mm, the TR/TE (ms) was 6.6/3.0, the FOV was 240x240,
and the voxel size was 1 mm * 1 mm * 1 mm.

4.3 Image selection and delineation

Three magnetic resonance physicians with more than 8 years of
work experience reviewed the films independently, evaluated all the
metrics of participants, and selected the magnetic resonance images
that met the MRI imaging characteristics of brain metastases. They
then manually outlined the enhanced metastatic lesions using software.
The enhancement patterns could be divided into standardized uniform
nodular enhancement, ring-shaped enhancement, and irregular
enhancement. Standardized uniform nodular enhancement described
that during the contrast-enhanced scan, both the interior and the edge
of the nodular lesion shown uniform and significant enhancement.
Ring-shaped enhancement meant that the lesion appeared nodular.
During the contrast-enhanced scan, the central part of the lesion was
not enhanced, and the enhancement of the edge was incomplete,
forming a ring shape. Irregular enhancement was manifested as
follows: although the lesion had nodular features, the enhancement
effect was not uniform, or the shape of the lesion itself was irregular,
and the enhancement patterns were diverse, which might be partially
uniform and partially non-uniform.

Input (MRI)

10.3389/fonc.2025.1657604

5 Method
5.1 Implementation

To ensure robust and high-quality processing for model
training and evaluation, we implemented a comprehensive
preprocessing pipeline and developed a 3D U-Net model with a
ResNet-34 backbone tailored for volumetric medical image
segmentation. The preprocessing steps focused on standardizing
the spatial resolution of MRI scans, normalizing intensity
distributions, and implementing quality control measures. The 3D
U-Net model utilized a pretrained encoder for efficient feature
extraction, a patch-based training strategy to handle large MRI
volumes, and data augmentation techniques to enhance model
robustness and generalizability (20) (Figure 2).

5.2 Training data

The training data consisted of MRI scans paired with
segmentation masks to enable supervised learning for the
segmentation task. Preprocessing began with resampling the MRI
scans to a uniform voxel size of 0.833 mm?®. This standardization
minimized variability caused by differences in scanner resolution
and acquisition parameters. An automated verification step was
employed to ensure alignment between the MRI scans and their
corresponding segmentation masks, flagging mismatched pairs for
manual review. Brain extraction was performed using SynthStrip
(17), which removed non-brain tissues and reduced computational
overhead by focusing on relevant brain regions. Intensity
normalization followed, employing Z-score normalization to
standardize voxel intensities, mitigating inter-subject variability
due to scanner settings or patient-specific factors. Quality control
was conducted by visualizing intensity histograms using matplotlib,
ensuring consistency and reliability in the preprocessing pipeline.

Predicted Binary Mask

Model

Divide overlapping sub-volumes

FIGURE 2

Combine overlapping regions

Inference workflow. A sliding window (stride=64) divides the input MRI volume into overlapping sub-volumes. Each is processed by the trained model
for prediction. Overlapping region outputs are averaged to reconstruct the final binary tumor segmentation mask, ensuring smooth transitions.
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5.3 Inference data for generating
segmentation masks

The inference data comprised both internal and external
datasets. The internal test set included 91 cases drawn from the
same distribution as the training data, providing a baseline for
performance assessment under known conditions. The external
validation set consisted of 95 cases from an independent dataset,
offering a robust evaluation of the model’s generalizability. Ground-
truth segmentation masks were provided for both datasets, enabling
a direct comparison of predicted and actual segmentations. This
multi-faceted evaluation ensured that the model’s performance was
rigorously assessed across diverse scenarios.

6 Experiment
6.1 Training

The 3D U-Net model with a ResNet-34 backbone was
optimized for volumetric segmentation. The encoder, initialized
with pretrained ImageNet weights, accelerated convergence and
enhanced feature extraction efficiency. A patch-based training
strategy was employed, dividing MRI scans into patches of size
128x128x128 voxels to accommodate the memory constraints
posed by the large data volumes. Data augmentation was applied
using volumentations, incorporating techniques such as left-right
flipping, elastic deformations, and gamma adjustments. These
augmentations simulated anatomical and imaging variability,
boosting the model’s robustness to unseen data. The hybrid loss
function, which combined Dice loss and binary cross-entropy with
equal weighting, was chosen to balance pixel-wise accuracy with
overlap-based evaluation metrics. Optimization was carried out
using the Adam optimizer with a learning rate of 0.0001 and
parameters B1 = 0.9, B2 = 0.999, €=1x10-7B1=0.9, $2=0.999,
€=1x10-7. To prevent overfitting, a dropout rate of 0.5 was
applied in the decoder layers. A batch size of 4 was used,
constrained by the memory limitations of the NVIDIA RTX 4090
GPU with 64 GB of system RAM. The training process was
implemented in TensorFlow and Keras.

6.2 Inference: generating segmentation
masks

The trained 3D U-Net model was applied to both internal and
external datasets to generate segmentation masks. MRI scans were
preprocessed to align with the model’s input requirements,
including brain extraction and normalization. A patch-based
inference method was adopted, employing overlapping patches
with a 50% overlap (stride = 64 voxels). Predictions from
overlapping patches were averaged to minimize boundary
artifacts and produce smoother segmentation results. Binary
segmentation masks were generated by thresholding the model’s
outputs at 0.5. Performance metrics, including Area Under the
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Curve (AUC), Dice coefficient, F1-score, Intersection over Union
(IoU), Matthew’s correlation coefficient (MCC), precision, recall,
and specificity were calculated using scikit-learn. These metrics
were aggregated and analyzed using pandas for statistical analysis.

6.3 Statistical analysis

For the descriptive analysis, continuous variables with normal
distribution were presented as mean and standard deviation (SD),
and those with a non-normal distribution were presented as median
and interquartile range (IQR). Categorical variables were
summarized as counts (n) with corresponding percentages (%).
Continuous variables were assessed for statistical differences using
two-sample t test or Mann-Whitney U tests. Categorical variables
were evaluated for differences using the %2 test. Subgroup analyses
were conducted to identify the population in which this model is
most suitable for delineating lesions between each subgroup. The
internal testing set and the external validation set were both
stratified by age (< 60 years and >= 60 years), gender, and
primary cancer type (lung cancer and other cancer). For metrics
(precision, recall, F1 score, IoU, dice coefficient, specificity, and
MCC), differences between each subgroup were assessed by
employing Mann-Whitney U tests, with corresponding 95%
confidence intervals (Cls) estimated. The comparison of AUC
between subgroups was performed by using DeLong test.
Additionally, the differences of time cost between model-based
delineation and manual annotation were also compared by using
Mann-Whitney U tests in both internal testing set and external
validation set. All statistical analyses were performed using R
version 4.4.1. A P-value of less than 0.05 was considered
statistically significant.

7 Result
7.1 Patient characteristics

This retrospective study included 91 patients in the test set and
172 patients in the validation set. The median baseline ages in the
test and validation sets were 59.4 + 10.2 and 57.4 + 12.6 years,
respectively. Demographic and clinical characteristics, including
age and gender, were comparable between the two cohorts, with no
statistically significant differences observed. Selection bias was
present regarding cancer type, showing a statistically significant
difference. The clinical characteristics of the patients are
summarized in Table 1.

7.2 Model performance evaluation

Table 2 describes the case characteristics in the internal test set
and external validation set. In our study, model performance on
both the internal test set and external validation set was evaluated
by calculating Precision, Recall, F1 Score, Intersection over Union
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TABLE 1 Characteristics of patients in testing set and validation set.

Characteristics Testin set Validation set
(N=91) (N=95
Age 59.4 +10.2 574 +12.6 0.173
<60 49 82 0.411
=60 42 90
Gender 0.136
Male 5 84
Female 37 88
Cancer type <0.001
Lung cancer 74 93
Other type 17 79

(IoU), Dice Coefficient, Specificity, Matthews Correlation
Coefficient (MCC), and the Area Under the Receiver Operating
Characteristic Curve (AUC). Results were summarized using
median and interquartile range (IQR) (Table 2). The results
showed that the model achieved an AUC of 0.89 (IQR 0.79-0.93)
on the internal test set and 0.82 (IQR 0.67-0.90) on the validation
set, indicating good overall diagnostic capability. Furthermore,
Precision was >0.93 in both the internal test set and external
validation set, suggesting strong discriminative ability, with the
external validation set showing higher precision than the test set.
Recall decreased from 0.78 (IQR 0.57-0.86) in the test set to 0.64
(IQR 0.34-0.81) in the validation set, accompanied by a
synchronous decline in F1 Score (0.82 vs. 0.75), indicating
moderate model robustness. Specificity reached 1.000 (IQR
1.000-1.000) in both the test and validation sets, signifying
theoretically optimal ability to exclude negative samples. MCC
decreased to 0.77 (IQR 0.55-0.86) in the validation set, indicating
good classification reliability; the Dice Coefficient also decreased
synchronously to 0.75 (IQR 0.49-0.85).

As shown in Figure 3a comparison between clinicians and the
model in identifying brain metastatic lesions was conducted, both
for the test set and the validation set. The clinical validation data

TABLE 2 Summary descriptive table by groups of datasets.

Metrics Testing set (N =91) Validation set (N = 172)
Precision 0.926(0.831,0.966) 0.935(0.858,0.967)

Recall 0.782(0.567,0.861) 0.638(0.342,0.806)

F1 Score 0.821(0.674,0.882) 0.750(0.495,0.852)

ToU 0.697(0.508,0.789) 0.600(0.329,0.743)

Dice

Cofficient 0.821(0.674,0.882) 0.750(0.495,0.852)

Specificity 1.000(1.000,1.000) 1.000(1.000,1.000)

MCC 0.832(0.698,0.883) 0.768(0.549,0.857)

AUC 0.891(0.793,0.930) 0.819(0.671,0.903)
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indicated that compared with the manual interpretation by
clinicians, the number of lesions detected by this model was
significantly higher, effectively reducing the rate of missed
detections, highlighting its potential value in improving the
accuracy of clinical diagnosis.

7.3 Model performance comparative
analysis

To comprehensively evaluate model robustness, this study
conducted stratified validation across three dimensions (gender,
age, and primary cancer type). Additionally, stability assessments
were performed on both datasets (internal test set and external
independent validation set).

Figure 4 systematically presents the multi-dimensional
evaluation results of the model in the internal test set and the
external validation cohort.

In the internal test set (n = 91): Our model demonstrated superior
predictive performance in males, patients < 60 years old, and patients
with other cancer compared with the other groups. The AUC was
0.89 for males, 0.91 for patients younger than 60 years old, and 0.91
for patients with other cancer type. DeLong tests indicated that these
between-group differences were statistically significant (all p < 0.001).
Subgroup analysis by cancer type (lung cancer n = 74, other cancers n
= 17) revealed: There was no significant difference of other metrics
between groups (p > 0.05), and its high specificity (1.0000) and stable
AUC (> 0.88) supported generalization ability. The median of other
cancer group comprehensive indicators (F1/IoU/MCC) was higher,
suggesting that the model may have better discrimination ability for
non-lung cancer malignancies. Subgroup analysis by gender (male n
= 54, female n = 37) showed that apart from the AUC, the differences
of other performance metrics between subgroups were not
statistically significant (p > 0.10), and the model performance was
highly consistent; Specificity reached 1.0000, indicating that the
model’s ability to exclude false positives was extremely strong. Age
subgroup analysis (< 60 years old n = 49, > 60 years old n = 42)
indicated: The age factor did not significantly change the model
performance metrics (p > 0.20); The lower limit of the recall rate
distribution in the > 60 years old group (Q1 = 0.5540) suggested that
the sensitivity needed to be optimized to reduce the risk of missed
diagnosis in the elderly.

In the external validation set (n = 172), the prediction model
achieved better comprehensive performance in the male subgroup
(AUC = 0.86), the subgroup aged 260 years (AUC = 0.90), and the
subgroup with other cancers (AUC = 0.89). DeLong tests indicated
that the differences of AUC between subgroups were statistically
significant (p < 0.001). The subgroup analysis by cancer type (lung
cancer n = 93, other cancers n = 79) showed that the precision of the
other cancer group was significantly higher (p < 0.001), indicating
that the model has a discriminative advantage in identifying non-
lung cancer malignancies. Both subgroups maintained a perfect
specificity (1.0000), verifying the model’s generalization ability in
controlling false positives; the differences in the remaining
indicators between the lung cancer group and the non-lung
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Annotation Mask

FIGURE 3
Manual identification and model identification of the lesion legend.

cancer group were not statistically significant (all p > 0.26),
suggesting that the model performance is cancer type-dependent.
The comprehensive performance of the lung cancer group (AUC =
0.82) was significantly lower than that of the other cancer group,
indicating that the model needs to be further optimized for its
sensitivity to lung cancer. The statistical analysis grouped by gender
(male n = 84; female n = 88) showed that except for AUC, the
differences in evaluation indicators between the male group and the
female group were not statistically significant (all p > 0.52),
indicating that the model performance is stable across the gender
dimension. The high specificity (1.0000) and stable AUC value (>
0.84) remained consistent in the cross-center validation, reflecting
the model’s good robustness. In the age subgroup analysis (< 60
years old n = 82, > 60 years old n = 90), apart from AUC, the
differences in other indicators between the two age groups were not
statistically significant (p > 0.05), indicating that the model
performance was highly consistent across different age groups; the
perfect specificity (1.0000) and stable AUC value (> 0.82) further
confirmed the reliability of the model in excluding false positives.

To further demonstrate the clinical practicability of this model,
we conducted a comparative analysis of the time spent on model-
based depiction and manual lesion annotation. The results showed
that, in both datasets, the time required for model-based depiction
was significantly less than that of manual annotation (both P < 0.001)
(Table 3), and it maintained a comparable consistency with manual

Frontiers in Oncology
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depiction (Figure 3). In the internal test set, the median time of the
model was 69s (IQR 68 - 69), while the median time of manual
annotation was 113 seconds (IQR 90 - 151). In the external validation
set, the median time of the model was 66s (IQR 65 - 68), while the
median time of manual annotation was 96s (IQR 78 - 113).

8 Discussion

In this multicenter study, we developed a 3D U-Net deep learning
model based on the ResNet-34 backbone network for the detection of
brain metastases (BM) in 3D CET1WI MRI images of a large number
of patients. Additionally, we conducted a multi-reader evaluation
aimed at quantifying the impact of the BM-assisted system on
reading time and lesion detection efficacy. Through multi-
dimensional stratified validation, this study systematically evaluated
the robustness of the model on the internal test set and the external
independent validation set. The results showed that the model
demonstrated perfect specificity (Specificity = 1.0000) for both male
and female patients, strongly confirming its ability to exclude false
positive results regardless of gender factors. Similarly, in the age
stratification analysis (<60 years vs. 260 years), the core efficacy
indicators (such as AUG, specificity) were highly consistent between
the two age groups, supporting its universality in patients of different
ages. In the cancer type dimension, the model performed comparably
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Training vs. validation set comparisons by subgroup. (A) Cancer type (B) Gender (C) Age.

in the internal test set for lung cancer and other malignant tumors
overall; while in the external validation set, it showed a significantly
higher precision rate for non-lung cancer malignant tumors (the “other
cancer” group). Although both groups maintained perfect specificity,
the comprehensive performance indicators of the lung cancer group in
the external validation were relatively lower, suggesting that the model
performance may have some cancer type dependence. The model
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yielded better predictive performance when applied to the subgroups
of males and non-lung cancer patients. Future optimization should
focus on improving the model’s sensitivity for detecting lung cancer
lesions. Overall, this model significantly improved the efficiency in
detecting BM (with much less time than manual annotation), and its
excellent robustness demonstrated a good potential for clinical
translation applications.
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TABLE 3 Comparison of time consuming in model-based and manual
annotation in internal testing set and external validation set.

Time, s

Dataset

Model Annotation

Testing 69 (68,69) 113 (90,151) -11.672 <0.001

Validation 66 (65, 68) 96 (78,113) -14.143 <0.001

BMs are the most common intracranial malignant tumors, with an
incidence of approximately 20%-40% (1, 4, 21). BM often leads to
severe neurological lesions and shortens survival time, and its early
diagnosis is closely related to clinical decisions and patient prognosis
(22). MRI, with its high soft tissue resolution and rich scanning
sequences, has become the main examination method for BM.
Although MRI can provide various imaging features, manual visual
diagnosis often fails to cover all effective features and ignores the
complexity of tissue cells, resulting in difficult improvement of
detection accuracy to the application level. Therefore, developing an
automated brain tumor segmentation technology to achieve high-
precision and repeatable measurement of tumor substructures,
replacing the current manual basic assessment, has become an
urgent need to supplement BM diagnosis. Fajam et al. (9) in a
prospective single-center study included 29 patients and developed a
set of uneven 3D spherical template to detect brain metastases in Gd-
enhanced TIWI imaging, achieving a sensitivity of 93.5% and an
intracranial false positive rate of 0.024. However, the system in their
study was not evaluated clinically. Lu SL et al. (12) demonstrated
through a random multi-reader multi-case study of 10 patients (a total
of 23 tumors) that the automatic detection and segmentation
technology based on deep neural networks (ABS system) can
improve the accuracy and efficiency of tumor contour delineation
and reduce the differences among doctors. However, this study focused
more on tumor segmentation rather than detection, and did not
analyze reading time. Xue ] et al. (13) retrospectively included 1625
patients from three centers and constructed a model for detecting and
segmenting brain metastases, although the sensitivity, specificity, and
Dice coefficient of the model were evaluated, the reading time of the
model compared with manual recognition was not assessed. Unlike
previous studies, this research employs a 3D U-Net deep learning
model based on the ResNet-34 backbone to detect brain metastases on
3D enhanced T1-weighted MRI images of a large number of patients.
Through multi-dimensional hierarchical validation on the internal test
set and external validation set, the BM segmentation precision of this
3D U-Net model reaches 92.6% and 93.5% respectively. Meanwhile,
the specificity of our model in the internal test set and external
validation set is also very outstanding. Compared with previous
studies, the model in this research has higher precision and
specificity (1, 23). Amemiya S et al. developed a combined algorithm
based on feature fusion and single detector (24), which has a high
overall sensitivity and specificity for brain metastases without reducing
the positive predictive value, thereby improving the detection rate of
small lesions. Huang et al. (25) proposed a deep learning model based
on volume-level sensitivity and specificity, which also shows high
sensitivity and accuracy for BM detection.
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One of the most commonly used network architectures is the so-
called U-Net (26, 27). Recently, Pfluger I et al. developed a system
based on artificial neural networks (28) using the nnU-Net method to
segment meningiomas from 308 patients (29). Bousabarah K et al.
implemented traditional U-Net and an improved U-Net with multiple
outputs to achieve automatic separation of meningiomas (30).
Additionally, Gong J et al. proposed an integrated learning model
based on deep learning and image-based radiomics to improve the
prediction ability of the risk of brain metastasis in patients with
advanced non-small cell lung cancer within three years (31). By
applying the deep residual U-Net model, each pulmonary tumor
can be automatically and accurately segmented, combined with CT
image-based radiomics and clinical features. This improves the
performance of predicting the risk of meningiomas. We also found
that the quality of automatic segmentation is very high (0.8=DSC=0.6)
in both the internal test set and external validation set, indicating
that the model can provide more reliable image segmentation for
brain metastases. Zhu Genste et al. trained a deep learning model
for detecting and three-dimensional segmenting brain metastases in
non-small cell lung cancer (32). Compared with manual segmentation,
the DSC consistency coefficient reached 0.72.

Most previous studies used classical machine learning or deep
learning and multiple sequences to detect or segment brain metastases
based on the number and size of the lesions (33, 34). Although these
studies mostly evaluated overall sensitivity, accuracy, and per capita
false positive rate, they covered various different primary tumor
subtypes. Although multi-modal modalities have significant
advantages, the additional scanning time and sequence availability
costs may hinder their widespread clinical application. Our method
uses only the CE TIWT sequence and can detect brain metastases with a
precision of over 80%. Given the trade-off between precision and
specificity, our model may be more suitable for wide clinical
application. Unlike previous studies, this research validates the model
through multi-dimensional hierarchical validation, firmly confirming
that the model is not affected by factors such as gender and age,
supporting its universality in patients of different ages and genders.
Although this model shows certain type-dependent performance in the
cancer type dimension for the identification of lung cancer and other
cancers, its efficiency has significantly improved and the overall
performance is quite good, demonstrating good potential for clinical
translation applications.

Our research indicates that the time required for lesion
identification based on the model is significantly shorter than that
of manual identification, effectively improving the efficiency of
clinical diagnosis. Compared with other technologies (33, 34), this
study has several unique features. Firstly, our research includes
training sets and validation sets to verify our system, which is more
persuasive than previous studies. Secondly, to evaluate the stability of
the model, this study conducts stratified validation from multiple
dimensions (gender, age, and cancer type), and the results show that
the internal and external validation sets of the model exhibit excellent
robustness, showing good universality for patients of different
genders and different age groups. The model has a certain type-
dependent performance for cancer. Moreover, the efficiency of this
model in identifying BM is significantly higher than manual
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annotation. Combined with its excellent robustness, it has good
potential for clinical translation applications.

This study also has potential limitations. Firstly, the limiting
factor for the model to achieve higher maturity is the small number
of samples of BM patients included in the training and validation
sets. Secondly, our model has some false negative results in
identifying BM; BM and blood vessels may appear as nodules or
high-signal spots on CE T1WI, and the latter may be mistakenly
regarded as BM. Finally, it is necessary to validate our model on a
larger dataset and further verify its stability in multiple centers.
Subsequently, a stratified analysis of lesion size will be conducted to
prevent missed diagnoses of lesions.

In summary, our study shows that the 3D U-Net model
demonstrates perfect specificity and robustness across transgender
and age groups, with slight differences in cancer types (the sensitivity
of lung cancer needs to be optimized). Overall, it is highly efficient and
accurate, and has significant clinical translational value. Based on our
multi-center evaluation, this system helps radiologists with different
levels of experience achieve higher detection specificity and precision.
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