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Background: Predicting the intracranial efficacy of programmed death-1/
programmed death-ligand 1 (PD-1/PD-L1) inhibitors in non-small cell lung
cancer (NSCLC) patients with brain metastasis (BM) remains challenging. The
objective of this study was to construct a habitat-peritumoral radiomics
framework for immunotherapy response prediction, concurrently identifying
the optimal peritumoral extent.

Methods: This retrospective multicenter study analyzed 378 NSCLC-BM patients
receiving PD-1/PD-L1 inhibitors. Participants were stratified into training (n=146),
internal validation (n=63), and two external test cohorts (test 1: n=57; test 2:
n=112). Logistic regression was conducted to determine significant clinical
predictors. Habitat subregion segmentation was performed using K-means
clustering with peritumoral extensions at incremental distances (1, 2, and
3 mm). Predictive models were developed using radiomic features extracted
from intratumoral cores, habitat subregions, and peritumoral zones through
machine learning approaches. A combined model integrated habitat signatures,
peritumoral features, and clinical predictors. Model performance assessment
employed the area under the curves (AUCs), calibration curves, and decision
curve analyses (DCA).
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Results: The habitat-based XGBoost model demonstrated superior predictive
performance across all cohorts compared to alternative models, achieving AUCs
of 0.900 (training), 0.886 (internal validation), 0.820 (test 1), and 0.804 (test 2). For
peritumoral analysis, the peri-1 mm RandomForest model exceeded other
regional configurations. Integrating peri-1 mm features and clinical factors
yielded a marginal performance enhancement in the combined model, with
corresponding AUCs of 0.898, 0.894, 0.837, and 0.814. The combined model
demonstrated optimal calibration and significant clinical utility, as evidenced by
calibration curves and DCA.

Conclusion: The validated habitat-peritumoral radiomics framework, optimized
at a 1-mm peritumoral extent, demonstrates robust predictive accuracy for
intracranial immunotherapy response in NSCLC-BM patients and offers

significant clinical utility.

radiomics, habitat imaging, PD-1/PD-L1 inhibitors, lung cancer, brain metastasis

1 Introduction

Non-small cell lung cancer (NSCLC) maintains its status among
the foremost causes of worldwide cancer mortality (1). Brain
metastasis (BM) develops frequently as a complication in
advanced disease cohorts, affecting up to 40% of patients (2).
These intracranial lesions significantly compromise neurological
function and survival outcomes, underscoring the urgent need for
effective intracranial disease control (3). Programmed death-1/
programmed death-ligand 1 (PD-1/PD-L1) inhibitors have
emerged as pivotal therapeutic options for NSCLC. However,
their intracranial efficacy exhibits marked heterogeneity (4, 5). In
a phase II clinical trial, pembrolizumab yielded a 29.7% intracranial
objective response rate among 40 untreated brain-metastatic
NSCLC patients (6). Spatial heterogeneity across tumor sites and
procedural challenges in tissue sampling diminish the reliability of
traditional predictive biomarkers such as PD-L1 and tumor
mutational burden (TMB) for BM assessment (7). Consequently,
developing non-invasive techniques to predict PD-1/PD-L1
inhibitors efficacy among NSCLC-BM patients represents an
imperative neurooncological priority (8, 9).

Magnetic resonance imaging (MRI) serves a pivotal role in BM
diagnosis and therapeutic monitoring (10, 11). As non-invasive
predictive tools, MRI radiomics have shown clinical utility in
predicting intracranial immunotherapy responses among brain-
metastatic lung cancer patients in earlier investigations (12).
However, these studies typically extracted features from either the
entire tumor volume or its combination with peritumoral regions.
This approach fundamentally assumes feature homogeneity within
such volumes of interest, overlooking regional phenotypic
variability within BM (13). Consequently, it inevitably fails to
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capture the spatial heterogeneity between distinct intratumoral
subregions, thereby discarding potentially valuable information
for predicting immunotherapy efficacy (14).

Habitat imaging, a radiomics methodology that leverages tumor
microenvironments, partitions lesions into discrete subregions
(habitats) with distinct phenotypic characteristics reflecting
histopathologic variations (15, 16). Distinct tumor habitats may
exhibit unique growth and invasion patterns, along with potentially
differential therapeutic responses (17). Moreover, the peritumoral
microenvironment significantly influences tumor development
and advancement. Combining intratumoral and peritumoral
data enables a multidimensional assessment of intracranial
treatment efficacy.

Through multicenter analysis, voxel-wise clustering enabled
habitat subregion development that mapped intratumoral
heterogeneity, concurrently revealing the superior peritumoral
boundary for predictive capability improvement. Based on this
framework, we constructed a multimodal integrated model that
incorporates habitat features, peritumoral characteristics, and
clinical factors. This model delivers a non-invasive clinical
decision aid to identify NSCLC-BM patients deriving maximal
therapeutic benefit from PD-1/PD-L1 inhibitors. The overall
research process of our study is as shown in Figure 1.

2 Methods

Due to the retrospective nature of this study, the ethics
committee granted a waiver for informed consent, and the study
was conducted in strict accordance with the principles outlined in
the Declaration of Helsinki.
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2.1 Patient selection and data collection

This retrospective cohort comprised 1,156 lung cancer patients
with BMs receiving PD-1/PD-L1 inhibitors across four institutions
from January 2017 to September 2024: Second Affiliated Hospital of
Dalian Medical University (n=199), Liaoning Cancer Hospital
(n=454), First Affiliated Hospital of Dalian Medical University
(n=110), and Beijing Chest Hospital (n=393).

Participants were included based on: 1) > 18 years old; 2)
pathologically established NSCLC; 3) baseline MRI scans performed
within 4 weeks prior to PD-1/PD-LI inhibitors therapy; 4)
measurable BMs > 0.5 cm; 5) at least two post-treatment MRI
scans to assess treatment response. Exclusion criteria included: 1) a

pathological diagnosis of small-cell lung cancer (n=149); 2)
previous treatment with PD-1/PD-L1 inhibitors before the
diagnosis of BM (n=59); 3) incomplete baseline data or absence
of follow-up, clinical, or outcome data (n=39); 4) absence of brain
MRI images obtained before or after immunotherapy precluded the
assessment of immunotherapy efficacy (n=444); and 5) MRI
examinations were excluded due to BMs < 0.5 cm or technically
suboptimal image quality that precluded accurate segmentation
(n=87). Figure 2 shows a flowchart of the patient enrolment process.

Clinically relevant variables, including age, gender, smoking
status, PD-1/PD-L1 inhibitors regimen, Eastern Cooperative
Oncology Group (ECOG) performance status, histologic type of
lung cancer, PD-L1 expression in lung cancer tissue, number of

199 lung cancer patients with
BM treated with PD-1/PD-L1
inhibitors from 2*¢ Hospital of
DMU between January 2017
and March 2024

454 lung cancer patients with
BM treated with PD-1/PD-L1
inhibitors from Liaoning Cancer
Hospital between January 2017
and September 2024

110 lung cancer patients with
BM treated with PD-1/PD-L1
inhibitors from 1** Hospital of
DMU between January 2017

393 lung cancer patients with

BM treated with PD-1/PD-L1

inhibitors from Beijing Chest
Hospital between January 2017

and July 2024 and July 2024

Exclusions (n=61)

+ Small cell lung cancer (n=44)

* Prior ICI treatment before
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+ Incomplete clinical data (n=8)
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* Prior ICI treatment before
BM (n=32)
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+ Small cell lung cancer (n=62)

* Prior ICI treatment before
BM (n=14)

+ Incomplete clinical data (n=8)

| Exclusions (n=15)
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* Prior ICI treatment before
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Exclusions (n=197)
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FIGURE 2
Inclusion and exclusion flowchart for patients.
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metastatic lesions, clinical stage, and laboratory parameters
(including routine analysis of blood and tumor markers), were
retrieved from the Electronic Medical Record System of each
patient within 4 weeks prior to initiation of PD-1/PD-L1
inhibitors therapy. Additionally, commonly used inflammatory
and nutritional indices, namely the Prognostic Nutritional Index
(PNI) and Systemic Inflammation Response Index (SIRI), were
calculated as follows: PNI = serum albumin level (g/L) + 5 x
absolute lymphocyte count (x10°/L); SIRI = absolute neutrophil
count x absolute monocyte count/absolute lymphocyte count.

2.2 MRI image processing and treatment
response assessment

A comprehensive list of MRI machine parameters from all four
participating centers is provided in Supplementary Material 1. All
MRI images underwent N4 bias field correction using the
SimpleITK library to reduce intensity inhomogeneity resulting
from scanner-related variations. All volumetric datasets were
spatially normalized via 1x1x1 mm isovoxel interpolation to
ensure consistent resolution. This preprocessing enhances
uniformity in image intensity distribution, supports more reliable
feature extraction, and strengthens the robustness of subsequent
analyses. The region of interest (ROI) was delineated by two
experienced radiologists (NL and XQ) with ITK-SNAP (version
3.8.0) independently. Discrepancies underwent arbitration by a
senior neuroradiologist with twenty years’ expertise, guaranteeing
ROI selection accuracy and consistency. Intraclass correlation
coefficient analysis quantified intra- and inter-observer agreement,
considering values > 0.75 indicative of excellent reliability. For
multi-lesion cases, analysis prioritized the dominant lesion per
established radiological guidelines (12, 13). Independent
quantification of target intracranial lesions and comprehensive
response assessment to PD-1/PD-L1 inhibitors were performed
by respiratory medicine specialists (MD and QW) following the
Response Assessment in Neuro-Oncology Brain Metastases criteria.

Image

Peri2mm

Perilmm

FIGURE 3

Habitat

Peri3mm

10.3389/fonc.2025.1657290

2.3 Habitat generation

A 5x5x5 moving window was used to extract local features from
each voxel in the dataset, generating 19 feature vectors per voxel.
This window size was chosen to balance the need for capturing
adequate spatial context to ensure robust radiomic feature
calculation, while preserving anatomical relevance within
peritumoral regions (18). Tumor partitioning into phenotypically
distinct subregions utilized K-means clustering, where Calinski-
Harabasz, Davies-Bouldin, and Silhouette scores determined
optimal cluster configuration. To ensure the robustness of habitat
definitions against the stochastic nature of K-means initialization,
the algorithm was repeated 10 times with different random seeds for
each value of k. The cluster assignment with the best overall
validation metrics was selected. Detailed methods for habitat
generation are provided in Supplementary Material 2.

2.4 Peritumoral region dilation

Radial dilation of tumor margins (Imm/2mm/3mm) was
implemented to quantify peritumoral impact on model efficacy.
The radial dilation distances of 1 mm, 2 mm, and 3 mm were
selected based on established practices in neuro-oncologic
radiomics, where narrow peritumoral margins are often employed
to capture the invasive front and immune microenvironment while
minimizing the inclusion of distal edema or normal tissue (19, 20).
We determined the optimal peritumoral extent through systematic
comparison of model performance across different dilation sizes.
The habitat and peritumoral regions generated through this process
are illustrated in Figure 3.

2.5 Feature extraction and selection

PyRadiomics 3.0.1 implemented feature extraction compliant
with Imaging Biomarker Standardization Initiative (IBSI)

Local Features

ROI segmentation of brain metastasis, habitat generation, peritumoral region expansion, and local feature display. ROI, region of interest.
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guidelines. For intratumoral habitat regions, we performed feature
extraction followed by early fusion before modeling. Feature
extraction was performed separately for distinct peritumoral
margins, followed by construction of individual models. The
feature extraction process was consistent across intratumoral,
peritumoral, and habitat-based analyses. Radiomic features were
systematically categorized into geometric, intensity, and texture
domains. Geometric parameters quantified tumor morphology,
intensity metrics assessed voxel signal distributions, while textural
attributes captured spatial patterns through gray-level concurrence
matrix (GLCM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM), and neighborhood gray-tone difference
matrix (NGTDM).

To enhance the generalizability of the model and minimize
overfitting, a multi-stage feature selection strategy was adopted.
Initially, feature stability and relevance were assessed through
statistical methods: independent sample t-tests and Mann-
Whitney U tests were applied to identify features with significant
differences (p < 0.05) and non-significant associations (p = 0.05),
respectively. Subsequently, Pearson correlation coefficients were
computed to exclude redundant variables, implementing a 0.9
threshold to mitigate multicollinearity concerns. Further
refinement was achieved using a recursive elimination approach
to iteratively remove less contributory features. To optimize the
feature subset by balancing discriminability and independence, the
Minimum Redundancy Maximum Relevance (mRMR) algorithm
was employed. The final feature set was refined via Least Absolute
Shrinkage and Selection Operator (LASSO) regression, which
performed coefficient shrinkage to suppress less informative
predictors. Hyperparameter tuning of A was performed using 10-
fold cross-validation, retaining maximally discriminatory features.
Learning curves illustrating model performance throughout the
selection process are provided in Supplementary Material 3.

2.6 Model construction

For distinct regions, we developed four radiomic signatures:
intratumoral (radiomics), peritumoral 1 mm (Peri-lmm),
peritumoral 2 mm (Peri-2mm), and peritumoral 3 mm (Peri-
3mm), as well as a habitat subregion (Habitat) model generated
through clustering to determine the optimal number of subregions.
Clinical risk factors were identified via univariate and multivariate
analyses to construct a clinical model. A combined model was
subsequently developed by combining clinical factors with
intratumoral, optimal peritumoral, and habitat features. Detailed
technical descriptions of the model construction process are
provided in Supplementary Material 4.

2.7 Statistical analysis and model
performance evaluation

Clinical feature normality was assessed using the Shapiro-Wilk
test. Continuous variables were analyzed with parametric (t-test) or
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nonparametric (Mann-Whitney U test) tests, while categorical
variables were evaluated using Chi-square () tests. Statistical
analyses were performed using Statsmodels version 0.13.2,
radiomic feature extraction was conducted with PyRadiomics
version 3.0.1, and predictive modeling was implemented using
Scikit-learn version 1.0.2. Model performance was assessed using
the area under the receiver operating characteristic curve (AUC)
and its 95% confidence interval (CI), with comparisons made using
Delong test. In addition to AUC, other diagnostic metrics, including
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy, were calculated to evaluate
predictive ability across cohorts. Calibration was assessed using
calibration curves and Hosmer-Lemeshow (HL) analysis. Clinical
net benefit was quantified through decision curve analysis (DCA).
The SHapley Additive explanation (SHAP) algorithm was used to
interpret the contribution of features, improving model
transparency and explaining its impact on predicting intracranial
immunotherapy response in NSCLC-BM patients.

3 Results
3.1 Patients characteristics

Following application of the inclusion criteria, 378 patients were
allocated into four cohorts. A combined cohort of 209 patients from
the Second Affiliated Hospital of Dalian Medical University (n=55)
and Liaoning Cancer Hospital (n=154) was randomly divided in a
7:3 ratio, yielding a training cohort (n=146) and an internal
validation cohort (n=63). The performance and fitness of the
model were evaluated using the test 1 cohort (n=57) and test 2
cohort (n=112) from the First Affiliated Hospital of Dalian Medical
University and Beijing Chest Hospital. All cohort baseline
characteristics are comprehensively presented in Table 1. Table 2
presents a comprehensive univariate and multivariate analyses of all
clinical features, evaluating their association with response using
odds ratios (OR) and the corresponding p-values. It is worth noting
that the statistically significant feature, gender, was retained due to
its strong predictive ability. Supplementary Materials 5 compares
the performances of various clinical models.

3.2 Habitat clustering and feature selection

We determined the optimal number of clustering centers by
systematically evaluating cluster counts ranging from 3 to 10. Based
on Calinski-Harabasz, Davies-Bouldin, and Silhouette scores, the
optimal number of clusters was determined to be three (Figure 4).
Robustness analysis conducted through multiple random
initializations showed that the voxel assignment consistency
exceeded 90% for the k = 3 solution, indicating high
algorithmic stability.

For each segmented region, a total of 1,834 handcrafted radiomic
features were extracted, covering shape, first-order intensity, and
textural characteristics. These included 360 features from first-order
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TABLE 1 Baseline characteristic of cohorts.

Training Internal validation Test 1 Test 2
Characteristics cohort cohort cohort cohort
Age (years) 64.45 + 7.67 62.12 + 7.84 65.81 + 7.96 64.75 £ 9.45 0.047
Gender (%) 0.584
Male 97 (66.44) 45 (71.43) 44 (77.19) 75 (66.96)
Female 49 (33.56) 18 (28.57) 13 (22.81) 37 (33.04)
Smoking status (%) 0.16
Never 64 (43.84) 35 (55.56) 36 (63.16) 48 (42.86)
Current/former 82 (56.16) 28 (44.44) 21 (36.84) 64 (57.14)
Lines of ICIs therapy (%) 1
1-2 110 (75.34) 48 (76.19) 48 (84.21) 77 (68.75)
>2 36 (24.66) 15 (23.81) 9 (15.79) 35 (31.25)
Type of ICI (%) 0.567
Anti-PD-1 139 (95.21) 58 (92.06) 45 (78.95) 99 (88.39)
Anti-PD-L1 7 (4.79) 5(7.94) 12 (21.05) 13 (11.61)
Immunotherapy combined with chemotherapy 0.295
(%)
No 18 (12.33) 4 (6.35) 8 (14.04) 12 (10.71)
Yes 128 (87.67) 59 (93.65) 49 (85.96) 100 (89.29)
ECOG PS (%) 0.895
0-1 68 (46.58) 28 (44.44) 31 (54.39) 93 (83.04)
>2 78 (53.42) 35 (55.56) 26 (45.61) 19 (16.96)
Pathology (%) 0.994
Adenocarcinoma 108 (73.97) 47 (74.60) 39 (68.42) 79 (70.54)
Squamous 24 (16.44) 10 (15.87) 13 (22.81) 23 (20.54)
Other 14 (9.59) 6 (9.52) 5(8.77) 10 (8.93)
PD-LI expression in lung cancer tissue (%) 1
<50 129 (88.36) 55 (87.30) 55 (96.49) 75 (66.96)
>50 17 (11.64) 8 (12.70) 2 (3.51) 37 (33.04)
Number of metastatic sites 1.73 £ 1.31 1.62 + 1.35 1.51 £1.28 2.96 £ 191 0.509
Number of BM (%) 0.898
Solitary 99 (67.81) 44 (69.84) 36 (63.16) 56 (50.00)
Multiple 47 (32.19) 19 (30.16) 21 (36.84) 56 (50.00)
Clinical T stage (%) 0.758
0-2 53 (36.30) 25 (39.68) 12 (21.05) 28 (25.00)
3-4 93 (63.70) 38 (60.32) 45 (78.95) 84 (75.00)
Clinical N stage (%) 0.703
0-2 94 (64.38) 43 (68.25) 53 (92.98) 67 (59.82)
34 52 (35.62) 20 (31.75) 4(7.02) 45 (40.18)
Clinical M stage (%) 0.878
(Continued)
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TABLE 1 Continued

Training Internal validation

Characteristics cohort cohort

0-2 19 (13.01) 7 (11.11) 3 (5.26) 8 (7.14)

3-4 127 (86.99) 56 (88.89) 54 (94.74) 104 (92.86)
RBC (10'%/L) 429 +0.57 4.45 + 0.59 4.19 + 0.67 4.18 + 0.61 0.07
WBC (10°/L) 6.83 + 2.83 6.94 +2.42 7.21 +4.77 7.62 + 4.63 0.436
Blood platelet (10°/L) 244.83 + 94.33 246.10 + 106.53 229.00 + 93.81 257.75 + 94.04 0.697
LDH (U/L) 246.26 + 188.10 241.47 + 74.12 220.15 + 67.23 234.15 + 145.42 0.067
CEA (ng/ml) 53.11 + 165.98 51.50 + 122.42 7.20 + 8.69 39.24 + 95.81 0.202
CA125 (U/ml) 102.71 + 607.56 3791 + 54.37 29.48 + 21.55 4958 + 93.02 0.577
CA19-9 (U/ml) 29.52 + 54.86 2471 + 4059 15.43 + 8.66 29.01 + 58.03 0.710
PNI 48.87 + 5.80 49.79 + 7.49 48.71 + 328 46.06 + 5.97 0.325
SIRI 1.93 + 2.02 1.75 + 1.66 3.03 + 6.13 2.47 + 3.81 0.710

ICI, immune checkpoint inhibitor; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; ECOG PS, eastern cooperative oncology group performance status; BM, brain
metastasis; RBC, red blood cell; WBC, white blood cell; LDH, lactate dehydrogenase; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9; PNI,
prognostic nutritional index; SIRI, systemic inflammation response index. The bold values denote statistical significance.

TABLE 2 Univariable and multivariable analysis of clinical features.

Univariable analysis Multivarigble
Feature name analysis
95% ClI OR  95% CI

Age 1.003 0.996 - 1.011 0.468

Gender 0.85 0.753 - 0.959 <0.05 0.85 0.753-0.959 <0.05
Smoking status 1.131 1.009 - 1.267 0.075

Lines of ICIs therapy 0.858 0.751 - 0.979 0.057

Type of ICI 0.866 0.677 - 1.107 0.335

Immunotherapy combined with chemotherapy 1.125 0.933 - 1.355 0.298

ECOG PS 1.08 0.964 - 1.212 0.266

Pathology 1.05 0.962 - 1.147 0.36

PD-LI expression in lung cancer tissue 0.925 0.775 - 1.103 0.464

Number of metastatic sites 0.982 0.941 - 1.026 0.5

Number of BM 1.024 0.905 - 1.158 0.755

Clinical T stage 1.121 0.996 - 1.261 0.111

Clinical N stage 0.943 0.836 - 1.064 0.423

Clinical M stage 1.101 0.926 - 1.310 0.36

RBC 1.098 0.994 - 1.212 0.121

WBC 1.018 0.996 - 1.040 0.175

Blood platelet 1.000 1.000 - 1.001 0.292

LDH 1.000 1.000 - 1.000 0.774

CEA (ng/ml) 1.000 1.000 - 1.001 0.439

(Continued)
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TABLE 2 Continued

Univariable analysis

Feature name

95% ClI

10.3389/fonc.2025.1657290

Multivariable
analysis

OR 95% Cl pvalue

CA125 (U/ml) 1.000 1.000 - 1.000 0.517
CA19-9 (U/ml) 1.000 0.999 - 1.002 0.515
PNI 1.004 0.995 - 1.013 0.467
SIRI 0.993 0.964 - 1.022 0.679

OR, odds ratio; CI, confidence interval; ICI, immune checkpoint inhibitor; ECOG PS, eastern cooperative oncology group performance status; PD-L1, programmed death ligand 1; BM, brain
metastases; RBC, red blood cell; WBC, white blood cell; LDH, lactate dehydrogenase; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9;
PNI, prognostic nutritional index; SIRI, systemic inflammation response index. The bold values denote statistical significance.

statistics, 14 from shape-based descriptors, and the remaining from
texture-based methods such as GLCM, GLRLM, GLSZM, and
NGTDM. Habitat modeling integrated these features across three
clusters, resulting in 5,502 subregional features. Both intratumoral
and peritumoral regions contributed 1,834 features each. Feature
extraction was performed using Pyradiomics prior to analytical
processing. Categorical distributions and dataset structure are
illustrated in Supplementary Materials 6. Feature selection was
conducted using LASSO logistic regression to identify predictors
with nonzero coefficients relevant to the Rad-score.

3.3 Selection of machine learning
algorithms for model construction

Within traditional radiomics models, the ExtraTrees algorithm
surpassed counterparts with AUC values of 0.744 (95% CI: 0.623-
0.866) in the internal validation cohort, 0.72 (95% CI: 0.554-0.886) in
external test 1 cohort, and 0.703 (95% CI: 0.605-0.801) in external test 2
cohort (Supplementary Materials 7). For peritumoral analysis, the peri-
1 mm RandomForest model exceeded other regional configurations. It
achieved an AUC of 0.836 (95% CI: 0.744-0.927) in the internal
validation cohort, 0.646 (95% CI: 0.481-0.810) in test 1 cohort, and
0.666 (95% CI: 0.567-0.764) in test 2 cohort (Supplementary Materials
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FIGURE 4

Evaluation of clustering performance and visualization of habitat clusters. (A) Cluster validation scores: The Calinski-Harabasz score (black line),
Silhouette score (blue line), and Davies-Bouldin score (orange dashed line) are plotted against the number of clusters. At k = 3, the Silhouette score
reached its maximum value, indicating that data points were most appropriately assigned to their respective clusters with clear separation from
adjacent clusters. The Calinski-Harabasz score also peaked at k = 3, demonstrating an optimal balance between inter-cluster dispersion and intra-
cluster cohesion. Conversely, the Davies-Bouldin score attained its minimum value at k = 3, confirming that under this configuration, the clusters
were most compact and distinctly separated from one another. All three metrics consistently affirmed that k = 3 provides the best balance between
cluster separation and compactness. (B) 3D scatter plot showing the three identified habitat clusters, with each cluster color-coded: Habitat 1 (red),
Habitat 2 (green), and Habitat 3 (blue). The percentage of voxels belonging to each cluster is indicated in the legend.
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8). As for the habitat imaging analysis, in the training cohort, XGBoost
achieved the highest AUC of 0.900 (95% CI: 0.852-0.947),
outperforming other models: LR (AUC = 0.875; 95% CI: 0.820-
0.931), SVM (AUC = 0.867; 95% CI: 0.810-0.924), RandomForest
(AUC = 0.844; 95% CI: 0.782-0.906), ExtraTrees (AUC = 0.817; 95%
CI: 0.749-0.884), and LightGBM (AUC = 0.866; 95% CI: 0.810-0.923).
The superior predictive ability of XGBoost was consistently observed in
the internal validation and test cohorts 1 and 2, with AUC values of
0.886 (95% CI: 0.808-0.964), 0.820 (95% CI: 0.712-0.928), and 0.804
(95% CI: 0.725-0.884), respectively, demonstrating its robustness and
generalizability (Supplementary Materials 9). Based on these results,
XGBoost was selected as the optimal model for subsequent analyses
due to its consistently high AUC performance across validation and
test cohorts.

3.4 SHAP analysis

SHAP analysis identified wavelet_glszm_ZoneEntropy_H1 as
the most influential feature (Figure 5A). Compared to other regions,
the H1 region exhibited greater feature importance, highlighting its
critical role in enhancing both the predictive accuracy and
interpretability of the model (Figure 5B). For instance, one
patient with a SHAP value of 0.35, above the baseline, was

@ Habitat 1 55062(45.55%) voxels
@ Habitat 2 31267(25.86%) vorels
@ Habitat 3 34562(28.59%) voxels
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FIGURE 5

SHAP summary plots (A, B) quantify feature contributions to model predictions. Force plots (C, D) delineate the decision logic distinguishing
responders from non-responders in the habitat imaging model. SHAP, SHapley Additive explanation.

categorized as high-risk. This classification was largely attributable
to wavelet_glszm_ZoneEntropy_H1, which contributed positively
with a score of 0.7724 toward predicting responsiveness, as
indicated by the red arrow in Figure 5C. Conversely, another
patient with a SHAP value of -0.72, below the baseline, was
identified as low-risk. In this case, the feature
exponential_glem_Imc2_H2 exerted a strong negative influence
(-2.0757) on the prediction of response, shown by the blue arrow

in Figure 5D.

3.5 Model comparison and evaluation

Model predictive performances are comparatively illustrated in
Figure 6 and Table 3. Among all the models, the habitat imaging
model demonstrated the highest AUC across the internal validation
and external test cohorts. In the validation cohort, the habitat model
yielded an AUC of 0.886 (95% CI: 0.808-0.964), with sensitivity of
0.613, specificity of 0.969, PPV of 0.950, and NPV of 0.721,
outperforming peri-1 mm (AUC = 0.836, 95% CI: 0.744-0.927),
peri-2 mm (AUC = 0.794, 95% CI: 0.684-0.903), and peri-3 mm
(AUC = 0.815, 95% CI: 0.710-0.919). The combined model, which
incorporated habitat features, peri-1 mm, and key clinical variables,
attained a slightly higher AUC of 0.894 (95% CI: 0.819-0.970),
together with sensitivity of 0.613, specificity of 1.0, PPV of 1.0, and
NPV of 0.727, demonstrating the incremental value of multimodal
integration. The habitat imaging methodology consistently
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surpassed comparative models during external testing. Within the
test 1 cohort, the habitat model achieved excellent discrimination
(AUC = 0.820, 95% CI: 0.712-0.928), with sensitivity of 0.882,
specificity of 0.650, PPV of 0.517, and NPV of 0.929, compared with
peri-1 mm (AUC = 0.646, 95% CI: 0.481-0.810), peri-2 mm
(AUC = 0.656, 95% CI: 0.482-0.830), and peri-3 mm
(AUC = 0.712, 95% CI: 0.563-0.861). The combined model
further improved performance with an AUC of 0.837 (95% CI:
0.732-0.942), accompanied by sensitivity of 0.882, specificity of
0.600, PPV of 0.484, and NPV of 0.923. Similarly, in the test 2
cohort, the habitat model attained an AUC of 0.804 (95% CI: 0.725-
0.884), with specificity of 1.0, PPV of 1.0, sensitivity of 0.431, and
NPV of 0.494, while the combined approach yielded a slightly
higher AUC of 0.814 (95% CI: 0.737-0.892), with sensitivity of
0.625, specificity of 0.850, PPV of 0.882, and NPV of 0.557,
confirming consistent cross-cohort superiority.

The HL test evaluates model calibration by comparing predicted
probabilities with observed outcomes, where lower values indicate
better calibration. Our combined model showed strong calibration,
with HL values of 0.326, 0.069, 0.897, and 0.965 in the training,
internal validation, test 1, and test 2 cohorts, respectively. This
highlights its accuracy and reliability (Figure 7). Figure 8 compares
the significance of improvement among the different signatures
across the datasets. The Delong test demonstrated a statistically
superior predictive performance of the combined model compared
to the comparators (P < 0.05). Figure 9 depicts DCA curves for
training and testing cohorts, revealing significantly enhanced net
clinical benefit from the combined model’s predictions.
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FIGURE 6
ROC curves of predictive models across different cohorts. The AUC values and their 95% Cls are displayed for each model. The models evaluated
include: Clinical (pink), Radiomics (blue), Peritumoral region at 1mm (cyan), Peritumoral region at 2mm (orange), Peritumoral region at 3mm (azure),
Habitat (dark blue), and the Combined model (navy blue). The combined model demonstrates higher AUC values across all cohorts, indicating its
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TABLE 3 Performance of different models in each cohorts.

Signature Accuracy AUC 95% ClI Sensitivity Specificity PPV
Clinical 0.925 0.979 0.961 - 0.997 0.896 0.949 0.937 0915
Radiomics 0.747 0.776 0.700 - 0.852 0.851 0.658 0.679 0.839
Peri-lmm 0.637 0.763 0.692 - 0.833 0.239 0.975 0.889 0.602
Training Cohort Peri-2mm 0.774 0.837 0.773 - 0.901 0.791 0.759 0.736 0.811
Peri-3mm 0.747 0.843 0.780 - 0.906 0.701 0.785 0.734 0.756
Habitat 0.815 0.900 0.852 - 0.947 0910 0.734 0.744 0.906
Combined 0.815 0.898 0.851 - 0.946 0.776 0.848 0.812 0.817
Clinical 0.635 0.629 0.490 - 0.769 0.903 0375 0.583 0.800
Radiomics 0.683 0.753 0.630 - 0.875 0.903 0.469 0.622 0.833
Internal validation | Peri-lmm 0.619 0.836 0.744 - 0.927 0.226 1 1 0571
Cohort Peri-2mm 0.746 0.794 0.684 - 0.903 0.742 0.75 0.742 0.750
Peri-3mm 0.746 0.815 0.710 - 0.919 0.871 0.625 0.692 0.833
Habitat 0.794 0.886 0.808 - 0.964 0.613 0.969 0.95 0.721
(Continued)
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TABLE 3 Continued
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Cohort Signature Accuracy AUC 95% Cl Sensitivity = Specificity PPV NPV
Combined 0.810 0.894 0.819 - 0.970 0.613 1 1 0.727

Clinical 0526 0537 0382 - 0.692 0.647 0475 0344 0.760

Radiomics 0.684 0.669 0505 - 0.833 0.118 0.925 0.4 0712

Peri-lmm 0.702 0.646 0481 - 0.810 0 1 0 0.702

Test 1 Cohort Peri-2mm 0.684 0.656 0482 - 0.830 0.588 0.725 0476 0.806
Peri-3mm 0.5% 0.712 0.563 - 0.861 0.588 0.6 0.385 0.774

Habitat 0.719 0.820 0.712 - 0.928 0.882 0.65 0517 0.929

Combined 0.684 0.837 0.732 - 0.942 0.882 0.6 0.484 0923

Clinical 0.545 0.552 0.440 - 0.664 0472 0.675 0.723 0415

Radiomics 0.598 0.680 0.580 - 0.780 0.486 0.800 0.814 0.464

Peri-lmm 0473 0.666 0.568 - 0.765 0.250 0.875 0.783 0393

Test 2 Cohort Peri-2mm 0.679 0.701 0.600 - 0.802 0.722 0.600 0.765 0.545
Peri-3mm 0536 0.605 0.494 - 0.716 0.389 0.800 0.778 0421

Habitat 0.634 0.804 0.725 - 0.884 0431 1 1 0.494

Combined 0.705 0.814 0.737 - 0.892 0.625 0.850 0.882 0557

AUG, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

Additionally, Figure 10 presents a nomogram visualizing the
combined model’s output.

4 Discussion

Precise prediction of intracranial response to PD-1/PD-L1
inhibitors in NSCLC-BM patients is critical for personalized
immunotherapy and improved survival outcomes. This study
developed a novel approach that integrates habitat imaging and
peritumoral radiomics signatures to comprehensively characterize
imaging information with the aim of accurately predicting
intracranial immunotherapy outcomes in NSCLC-BM cohorts.
The habitat imaging model demonstrated superior intracranial
efficacy prediction relative to comparator radiomic models,
concurrently achieving peak clinical net benefit. The integrated
combined model, incorporating radiomic signatures, habitat
imaging features, peri-1 mm features, and clinical factors,
demonstrated exceptional discriminatory capability and
satisfactory calibration across cohorts.

While recent studies have reported intracranial responses to
PD-1/PD-L1 inhibitors in patients with NSCLC with BMs,
predicting their efficacy against BM remains a significant
challenge (21-23). Following the emergence of MRI-based
radiomics, multiple studies have employed this approach to
predict responses to intracranial immunotherapy in BM cohorts.
Shi et al. (12) constructed and clinically validated an MRI-derived
radiomic nomogram for 101 small-cell lung cancer patients with
BMs receiving ICIs treatment. Their model, incorporating a
radiomics score and clinical factors, achieved a validation cohort
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AUC of 0.875 (95% CI: 0.754-0.996). Xu et al. (13) established a
clinical-radiomic model using baseline MRI data from 174 ICI-
treated NSCLC-BM patients, achieving validated discrimination
(AUC = 0.833; 95%CI: 0.720-0.946). Nevertheless, these
investigations characteristically treated tumors as homogeneous
entities, focusing exclusively on radiomic feature extraction from
the entire tumor volume. Research has indicated that tumors,
particularly those with BM originating from NSCLC, exhibit a
complex immune microenvironment characterized by significant
spatial heterogeneity, which contains information relevant to tumor
progression and the efficacy of immunotherapy (24-26).
Consequently, the approaches in the aforementioned studies may
have overlooked intratumoral spatial heterogeneity and failed to
capture potentially critical imaging information relevant to
immunotherapy efficacy assessments.

To address these limitations, our study introduces a habitat
imaging model designed to systematically identify, analyze, and
quantify tumor heterogeneity. Recently, Yang et al. (27)
implemented a habitat imaging radiomics framework with
preoperative cranial MRI to predict EGFR exon 19/21 mutations
in patients with NSCLC-BM, which demonstrated excellent
predictive performance. Based on this finding, our model may
also holds potential for predicting intracranial responses to
immunotherapy in patients with NSCLC-BM. In this research,
the model employed unsupervised K-means clustering to
delineate BM subregions and identify three distinct habitats,
which is consistent with studies reporting optimal predictive
reliability from limited subregions (28, 29). Implementation of
habitat-based radiomic extraction markedly improved prognostic
capability, with resultant AUCs reaching 0.886 in internal
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FIGURE 7

Calibration curves of predictive models across different cohorts. Calibration curves comparing the predicted probabilities and the fraction of
positives for various predictive models in different cohorts. The dotted line represents perfect calibration, where predicted probabilities align exactly
with observed frequencies. The models evaluated include: Clinical (blue), Radiomics (orange), Peritumoral region at 1Imm (green), Peritumoral region
at 2mm (red), Peritumoral region at 3mm (purple), Habitat (brown), and the Combined model (pink). The calibration curves show how well the
models predict the fraction of positive cases, with better-calibrated models closer to the dotted line. The combined model generally demonstrates
superior calibration across all cohorts. (A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2 cohort.

validation, 0.82 in test 1 cohort, and 0.804 in test 2 cohort. Due to
the highly invasive nature of tissue sampling for BMs, our radiomic
analysis was conducted on imaging features and was not directly
correlated with histopathological or molecular results (30). Notably,
the implementation of SHAP value analysis enhanced the
interpretability of the model and identified wavelet features based
on textures and H1 subregions as key predictors. The SHAP
analysis highlighted the wavelet-based texture features as major
contributors to the model’s predictive performance. The features
likely reflect underlying pathophysiological processes within the
tumor microenvironment. For instance, a high value of
wavelet_glszm_ZoneEntropy_H1, which captures heterogeneity in
zone size and intensity distribution across multiple scales, may
indicate the presence of necrotic tissue areas or heterogeneous
immune cell infiltration, both known to influence
immunotherapy response (31). The dominance of HI-derived
features suggests that this subregion may represent a biologically

Frontiers in Oncology

12

distinct habitat, potentially characterized by high cellular density,
vascular abnormalities, or immune exclusion, which could influence
drug delivery and immune cell trafficking (32, 33). By inferring such
associations between radiomic features and their pathological bases,
our model may offer a non-invasive means to probe tumor
microenvironmental states that may affect response to PD-1/PD-
L1 inhibitors.

The peritumoral interface, representing the transitional zone
between neoplastic tissue and adjacent normal structures,
significantly mediates drug delivery through dynamic remodeling
of immune cell distribution, vascular networks, and extracellular
matrix composition (34). Systematic evaluation of this region
within millimeter-scale radial distances will provide evidence
linking the peritumoral zone to treatment outcomes, consistent
with the current understanding of tumor-stromal interactions (35,
36). In a previous study, Han et al. (37) previously formulated CT-
based predictive frameworks fusing intratumoral and peritumoral
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Delong test results comparing model performance across different feature sets and cohorts. Heatmaps showing pairwise p-values from Delong tests
for ROC curves of models based on different feature types: Radiomics, Peritumoral region at 1Imm, Peritumoral region at 2mm, Peritumoral region at
3mm, Habitat, and Combined. (A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2 cohort. The color scale represents p-
values, with lower values (red) indicating statistically significant differences between model performances and higher values (blue) indicating non-
significant differences. Diagonal elements correspond to self-comparisons and are set to the maximum p-value for visual consistency. Combined
models generally demonstrate significant improvement over individual feature-based models across cohorts. ROC, receiver operating characteristic.

characteristics to forecast major pathological responses after
neoadjuvant chemoimmunotherapy in NSCLC patients.
Integration of tumoral and peritumoral features exceeded solitary
intratumoral analysis in predictive capability, yielding a validated
AUC of 0.831 (0.7255-0.9360). Our findings demonstrate that the
peritumoral zone, particularly within 1 mm of the tumor margin,
plays a significant role in predicting the response to PD-1/PD-L1
inhibitors in patients with NSCLC-BM. This may be due to its
potential as an immunologically active niche enriched with
cytotoxic T cells or tertiary lymphoid structures (38). This
underscores the central role of the tumor microenvironment in
tumor biology and therapeutic outcomes, as immunotherapy
efficacy critically depends on the complex interplay among tumor
cells, stromal components, immune infiltrates, and vasculature (39).

Although PD-L1 expression is an established biomarker of
immunotherapy in NSCLC, its ability to predict intracranial
outcomes in patients with BM remains unclear (40). In our study
cohort, PD-L1 expression did not emerge as a significant predictor
in multivariable analysis, underscoring the potential
complementary value of non-invasive radiomics biomarkers in

Frontiers in Oncology

13

capturing tumor heterogeneity that may be missed by single-site
biopsies or static blood-based assays. Similarly, although TMB was
not routinely available in our multi-center cohort, future studies
directly integrating radiomics features with TMB and PD-L1 data
may yield a more comprehensive predictive framework. Such a
multimodal approach aligns with the evolving paradigm of
personalized oncology, as illustrated by other predictive models
for brain metastasis risk, such as the algorithm developed by
Armocida et al. for predicting postoperative brain metastasis
development (41).Notably, our combined model integrating
habitat, peri-1 mm, and significant clinical features significantly
improved the performance, highlighting the synergistic value of
multimodal integration. This integration further confirms that
combining imaging features with clinical data can create a more
robust and generalizable model for predicting treatment responses
(42, 43). From a clinical perspective, our combined model
demonstrated robust calibration effects and net benefits,
supporting its potential as a decision-support tool. By
categorizing patients into responders and non-responders, this
model can help tailor personalized immunotherapy regimens for
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patients with NSCLC-BM, thereby reducing ineffective treatments
and IClI-associated toxicities.

Although our habitat-peritumoral radiomics model showed
promising performance, it is important to stress the exploratory
nature of these findings and the limitations of this study. First, the
retrospective approach carries inherent selection bias risks. Second,
our radiomic analysis focused on the dominant lesion in patients
with multiple BMs. While this approach is methodologically
consistent and clinically practical, it inherently cannot capture the
full spectrum of inter-metastatic heterogeneity. Future studies may
consider comprehensive multi-lesion profiling strategies to address
this complexity and better characterize heterogeneity across
metastases. Third, while this study indicated that habitat-based
MRI radiomics analysis can predict the immunotherapy response in
patients with NSCLC and BM, the current findings are based solely
on imaging biomarkers without histopathological confirmation, due
to the challenges in tissue sampling. Thus, future prospective trials
are necessary to evaluate the clinical utility and generalizability of
this approach.

5 Conclusion

From a clinical perspective, our combined model demonstrated
strong calibration and net benefit for predicting intracranial
response to PD-1/PD-L1 inhibitors in NSCLC patients with BMs
in this retrospective analysis, supporting its potential as a decision-
support tool to help clinicians tailor personalized immunotherapy
regimens, thereby reducing ineffective treatments and immune-
related toxicities. As this model was developed in an exploratory
retrospective study, prospective validation remains necessary.
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