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Background: Predicting the intracranial efficacy of programmed death-1/

programmed death-ligand 1 (PD-1/PD-L1) inhibitors in non-small cell lung

cancer (NSCLC) patients with brain metastasis (BM) remains challenging. The

objective of this study was to construct a habitat-peritumoral radiomics

framework for immunotherapy response prediction, concurrently identifying

the optimal peritumoral extent.

Methods: This retrospective multicenter study analyzed 378 NSCLC-BM patients

receiving PD-1/PD-L1 inhibitors. Participants were stratified into training (n=146),

internal validation (n=63), and two external test cohorts (test 1: n=57; test 2:

n=112). Logistic regression was conducted to determine significant clinical

predictors. Habitat subregion segmentation was performed using K-means

clustering with peritumoral extensions at incremental distances (1, 2, and

3 mm). Predictive models were developed using radiomic features extracted

from intratumoral cores, habitat subregions, and peritumoral zones through

machine learning approaches. A combined model integrated habitat signatures,

peritumoral features, and clinical predictors. Model performance assessment

employed the area under the curves (AUCs), calibration curves, and decision

curve analyses (DCA).
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Results: The habitat-based XGBoost model demonstrated superior predictive

performance across all cohorts compared to alternative models, achieving AUCs

of 0.900 (training), 0.886 (internal validation), 0.820 (test 1), and 0.804 (test 2). For

peritumoral analysis, the peri-1 mm RandomForest model exceeded other

regional configurations. Integrating peri-1 mm features and clinical factors

yielded a marginal performance enhancement in the combined model, with

corresponding AUCs of 0.898, 0.894, 0.837, and 0.814. The combined model

demonstrated optimal calibration and significant clinical utility, as evidenced by

calibration curves and DCA.

Conclusion: The validated habitat-peritumoral radiomics framework, optimized

at a 1-mm peritumoral extent, demonstrates robust predictive accuracy for

intracranial immunotherapy response in NSCLC-BM patients and offers

significant clinical utility.
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1 Introduction

Non-small cell lung cancer (NSCLC) maintains its status among

the foremost causes of worldwide cancer mortality (1). Brain

metastasis (BM) develops frequently as a complication in

advanced disease cohorts, affecting up to 40% of patients (2).

These intracranial lesions significantly compromise neurological

function and survival outcomes, underscoring the urgent need for

effective intracranial disease control (3). Programmed death-1/

programmed death-ligand 1 (PD-1/PD-L1) inhibitors have

emerged as pivotal therapeutic options for NSCLC. However,

their intracranial efficacy exhibits marked heterogeneity (4, 5). In

a phase II clinical trial, pembrolizumab yielded a 29.7% intracranial

objective response rate among 40 untreated brain-metastatic

NSCLC patients (6). Spatial heterogeneity across tumor sites and

procedural challenges in tissue sampling diminish the reliability of

traditional predictive biomarkers such as PD-L1 and tumor

mutational burden (TMB) for BM assessment (7). Consequently,

developing non-invasive techniques to predict PD-1/PD-L1

inhibitors efficacy among NSCLC-BM patients represents an

imperative neurooncological priority (8, 9).

Magnetic resonance imaging (MRI) serves a pivotal role in BM

diagnosis and therapeutic monitoring (10, 11). As non-invasive

predictive tools, MRI radiomics have shown clinical utility in

predicting intracranial immunotherapy responses among brain-

metastatic lung cancer patients in earlier investigations (12).

However, these studies typically extracted features from either the

entire tumor volume or its combination with peritumoral regions.

This approach fundamentally assumes feature homogeneity within

such volumes of interest, overlooking regional phenotypic

variability within BM (13). Consequently, it inevitably fails to
02
capture the spatial heterogeneity between distinct intratumoral

subregions, thereby discarding potentially valuable information

for predicting immunotherapy efficacy (14).

Habitat imaging, a radiomics methodology that leverages tumor

microenvironments, partitions lesions into discrete subregions

(habitats) with distinct phenotypic characteristics reflecting

histopathologic variations (15, 16). Distinct tumor habitats may

exhibit unique growth and invasion patterns, along with potentially

differential therapeutic responses (17). Moreover, the peritumoral

microenvironment significantly influences tumor development

and advancement. Combining intratumoral and peritumoral

data enables a multidimensional assessment of intracranial

treatment efficacy.

Through multicenter analysis, voxel-wise clustering enabled

habitat subregion development that mapped intratumoral

heterogeneity, concurrently revealing the superior peritumoral

boundary for predictive capability improvement. Based on this

framework, we constructed a multimodal integrated model that

incorporates habitat features, peritumoral characteristics, and

clinical factors. This model delivers a non-invasive clinical

decision aid to identify NSCLC-BM patients deriving maximal

therapeutic benefit from PD-1/PD-L1 inhibitors. The overall

research process of our study is as shown in Figure 1.
2 Methods

Due to the retrospective nature of this study, the ethics

committee granted a waiver for informed consent, and the study

was conducted in strict accordance with the principles outlined in

the Declaration of Helsinki.
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2.1 Patient selection and data collection

This retrospective cohort comprised 1,156 lung cancer patients

with BMs receiving PD-1/PD-L1 inhibitors across four institutions

from January 2017 to September 2024: Second Affiliated Hospital of

Dalian Medical University (n=199), Liaoning Cancer Hospital

(n=454), First Affiliated Hospital of Dalian Medical University

(n=110), and Beijing Chest Hospital (n=393).

Participants were included based on: 1) ≥ 18 years old; 2)

pathologically established NSCLC; 3) baseline MRI scans performed

within 4 weeks prior to PD-1/PD-L1 inhibitors therapy; 4)

measurable BMs ≥ 0.5 cm; 5) at least two post-treatment MRI

scans to assess treatment response. Exclusion criteria included: 1) a
Frontiers in Oncology 03
pathological diagnosis of small-cell lung cancer (n=149); 2)

previous treatment with PD-1/PD-L1 inhibitors before the

diagnosis of BM (n=59); 3) incomplete baseline data or absence

of follow-up, clinical, or outcome data (n=39); 4) absence of brain

MRI images obtained before or after immunotherapy precluded the

assessment of immunotherapy efficacy (n=444); and 5) MRI

examinations were excluded due to BMs < 0.5 cm or technically

suboptimal image quality that precluded accurate segmentation

(n=87). Figure 2 shows a flowchart of the patient enrolment process.

Clinically relevant variables, including age, gender, smoking

status, PD-1/PD-L1 inhibitors regimen, Eastern Cooperative

Oncology Group (ECOG) performance status, histologic type of

lung cancer, PD-L1 expression in lung cancer tissue, number of
FIGURE 1

Overall workflow of this study. ROI, region of interest; LASSO, least absolute shrinkage and selection operator; MSE, mean squared error; DCA,
decision curve analysis.
FIGURE 2

Inclusion and exclusion flowchart for patients.
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metastatic lesions, clinical stage, and laboratory parameters

(including routine analysis of blood and tumor markers), were

retrieved from the Electronic Medical Record System of each

patient within 4 weeks prior to initiation of PD-1/PD-L1

inhibitors therapy. Additionally, commonly used inflammatory

and nutritional indices, namely the Prognostic Nutritional Index

(PNI) and Systemic Inflammation Response Index (SIRI), were

calculated as follows: PNI = serum albumin level (g/L) + 5 ×

absolute lymphocyte count (×109/L); SIRI = absolute neutrophil

count × absolute monocyte count/absolute lymphocyte count.
2.2 MRI image processing and treatment
response assessment

A comprehensive list of MRI machine parameters from all four

participating centers is provided in Supplementary Material 1. All

MRI images underwent N4 bias field correction using the

SimpleITK library to reduce intensity inhomogeneity resulting

from scanner-related variations. All volumetric datasets were

spatially normalized via 1×1×1 mm isovoxel interpolation to

ensure consistent resolution. This preprocessing enhances

uniformity in image intensity distribution, supports more reliable

feature extraction, and strengthens the robustness of subsequent

analyses. The region of interest (ROI) was delineated by two

experienced radiologists (NL and XQ) with ITK-SNAP (version

3.8.0) independently. Discrepancies underwent arbitration by a

senior neuroradiologist with twenty years’ expertise, guaranteeing

ROI selection accuracy and consistency. Intraclass correlation

coefficient analysis quantified intra- and inter-observer agreement,

considering values ≥ 0.75 indicative of excellent reliability. For

multi-lesion cases, analysis prioritized the dominant lesion per

established radiological guidelines (12, 13). Independent

quantification of target intracranial lesions and comprehensive

response assessment to PD-1/PD-L1 inhibitors were performed

by respiratory medicine specialists (MD and QW) following the

Response Assessment in Neuro-Oncology Brain Metastases criteria.
Frontiers in Oncology 04
2.3 Habitat generation

A 5×5×5 moving window was used to extract local features from

each voxel in the dataset, generating 19 feature vectors per voxel.

This window size was chosen to balance the need for capturing

adequate spatial context to ensure robust radiomic feature

calculation, while preserving anatomical relevance within

peritumoral regions (18). Tumor partitioning into phenotypically

distinct subregions utilized K-means clustering, where Calinski-

Harabasz, Davies-Bouldin, and Silhouette scores determined

optimal cluster configuration. To ensure the robustness of habitat

definitions against the stochastic nature of K-means initialization,

the algorithm was repeated 10 times with different random seeds for

each value of k. The cluster assignment with the best overall

validation metrics was selected. Detailed methods for habitat

generation are provided in Supplementary Material 2.
2.4 Peritumoral region dilation

Radial dilation of tumor margins (1mm/2mm/3mm) was

implemented to quantify peritumoral impact on model efficacy.

The radial dilation distances of 1 mm, 2 mm, and 3 mm were

selected based on established practices in neuro-oncologic

radiomics, where narrow peritumoral margins are often employed

to capture the invasive front and immune microenvironment while

minimizing the inclusion of distal edema or normal tissue (19, 20).

We determined the optimal peritumoral extent through systematic

comparison of model performance across different dilation sizes.

The habitat and peritumoral regions generated through this process

are illustrated in Figure 3.
2.5 Feature extraction and selection

PyRadiomics 3.0.1 implemented feature extraction compliant

with Imaging Biomarker Standardization Initiative (IBSI)
FIGURE 3

ROI segmentation of brain metastasis, habitat generation, peritumoral region expansion, and local feature display. ROI, region of interest.
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guidelines. For intratumoral habitat regions, we performed feature

extraction followed by early fusion before modeling. Feature

extraction was performed separately for distinct peritumoral

margins, followed by construction of individual models. The

feature extraction process was consistent across intratumoral,

peritumoral, and habitat-based analyses. Radiomic features were

systematically categorized into geometric, intensity, and texture

domains. Geometric parameters quantified tumor morphology,

intensity metrics assessed voxel signal distributions, while textural

attributes captured spatial patterns through gray-level concurrence

matrix (GLCM), gray-level run length matrix (GLRLM), gray-level

size zone matrix (GLSZM), and neighborhood gray-tone difference

matrix (NGTDM).

To enhance the generalizability of the model and minimize

overfitting, a multi-stage feature selection strategy was adopted.

Initially, feature stability and relevance were assessed through

statistical methods: independent sample t-tests and Mann-

Whitney U tests were applied to identify features with significant

differences (p < 0.05) and non-significant associations (p ≥ 0.05),

respectively. Subsequently, Pearson correlation coefficients were

computed to exclude redundant variables, implementing a 0.9

threshold to mitigate multicollinearity concerns. Further

refinement was achieved using a recursive elimination approach

to iteratively remove less contributory features. To optimize the

feature subset by balancing discriminability and independence, the

Minimum Redundancy Maximum Relevance (mRMR) algorithm

was employed. The final feature set was refined via Least Absolute

Shrinkage and Selection Operator (LASSO) regression, which

performed coefficient shrinkage to suppress less informative

predictors. Hyperparameter tuning of l was performed using 10-

fold cross-validation, retaining maximally discriminatory features.

Learning curves illustrating model performance throughout the

selection process are provided in Supplementary Material 3.
2.6 Model construction

For distinct regions, we developed four radiomic signatures:

intratumoral (radiomics), peritumoral 1 mm (Peri-1mm),

peritumoral 2 mm (Peri-2mm), and peritumoral 3 mm (Peri-

3mm), as well as a habitat subregion (Habitat) model generated

through clustering to determine the optimal number of subregions.

Clinical risk factors were identified via univariate and multivariate

analyses to construct a clinical model. A combined model was

subsequently developed by combining clinical factors with

intratumoral, optimal peritumoral, and habitat features. Detailed

technical descriptions of the model construction process are

provided in Supplementary Material 4.
2.7 Statistical analysis and model
performance evaluation

Clinical feature normality was assessed using the Shapiro-Wilk

test. Continuous variables were analyzed with parametric (t-test) or
Frontiers in Oncology 05
nonparametric (Mann-Whitney U test) tests, while categorical

variables were evaluated using Chi-square (c²) tests. Statistical

analyses were performed using Statsmodels version 0.13.2,

radiomic feature extraction was conducted with PyRadiomics

version 3.0.1, and predictive modeling was implemented using

Scikit-learn version 1.0.2. Model performance was assessed using

the area under the receiver operating characteristic curve (AUC)

and its 95% confidence interval (CI), with comparisons made using

Delong test. In addition to AUC, other diagnostic metrics, including

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and accuracy, were calculated to evaluate

predictive ability across cohorts. Calibration was assessed using

calibration curves and Hosmer-Lemeshow (HL) analysis. Clinical

net benefit was quantified through decision curve analysis (DCA).

The SHapley Additive explanation (SHAP) algorithm was used to

interpret the contribution of features, improving model

transparency and explaining its impact on predicting intracranial

immunotherapy response in NSCLC-BM patients.
3 Results

3.1 Patients characteristics

Following application of the inclusion criteria, 378 patients were

allocated into four cohorts. A combined cohort of 209 patients from

the Second Affiliated Hospital of Dalian Medical University (n=55)

and Liaoning Cancer Hospital (n=154) was randomly divided in a

7:3 ratio, yielding a training cohort (n=146) and an internal

validation cohort (n=63). The performance and fitness of the

model were evaluated using the test 1 cohort (n=57) and test 2

cohort (n=112) from the First Affiliated Hospital of Dalian Medical

University and Beijing Chest Hospital. All cohort baseline

characteristics are comprehensively presented in Table 1. Table 2

presents a comprehensive univariate and multivariate analyses of all

clinical features, evaluating their association with response using

odds ratios (OR) and the corresponding p-values. It is worth noting

that the statistically significant feature, gender, was retained due to

its strong predictive ability. Supplementary Materials 5 compares

the performances of various clinical models.
3.2 Habitat clustering and feature selection

We determined the optimal number of clustering centers by

systematically evaluating cluster counts ranging from 3 to 10. Based

on Calinski-Harabasz, Davies-Bouldin, and Silhouette scores, the

optimal number of clusters was determined to be three (Figure 4).

Robustness analysis conducted through multiple random

initializations showed that the voxel assignment consistency

exceeded 90% for the k = 3 solution, indicating high

algorithmic stability.

For each segmented region, a total of 1,834 handcrafted radiomic

features were extracted, covering shape, first-order intensity, and

textural characteristics. These included 360 features from first-order
frontiersin.org
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TABLE 1 Baseline characteristic of cohorts.

Characteristics
Training
cohort

Internal validation
cohort

Test 1
cohort

Test 2
cohort

p
value

Age (years) 64.45 ± 7.67 62.12 ± 7.84 65.81 ± 7.96 64.75 ± 9.45 0.047

Gender (%) 0.584

Male 97 (66.44) 45 (71.43) 44 (77.19) 75 (66.96)

Female 49 (33.56) 18 (28.57) 13 (22.81) 37 (33.04)

Smoking status (%) 0.16

Never 64 (43.84) 35 (55.56) 36 (63.16) 48 (42.86)

Current/former 82 (56.16) 28 (44.44) 21 (36.84) 64 (57.14)

Lines of ICIs therapy (%) 1

1-2 110 (75.34) 48 (76.19) 48 (84.21) 77 (68.75)

>2 36 (24.66) 15 (23.81) 9 (15.79) 35 (31.25)

Type of ICI (%) 0.567

Anti-PD-1 139 (95.21) 58 (92.06) 45 (78.95) 99 (88.39)

Anti-PD-L1 7 (4.79) 5 (7.94) 12 (21.05) 13 (11.61)

Immunotherapy combined with chemotherapy
(%)

0.295

No 18 (12.33) 4 (6.35) 8 (14.04) 12 (10.71)

Yes 128 (87.67) 59 (93.65) 49 (85.96) 100 (89.29)

ECOG PS (%) 0.895

0-1 68 (46.58) 28 (44.44) 31 (54.39) 93 (83.04)

≥2 78 (53.42) 35 (55.56) 26 (45.61) 19 (16.96)

Pathology (%) 0.994

Adenocarcinoma 108 (73.97) 47 (74.60) 39 (68.42) 79 (70.54)

Squamous 24 (16.44) 10 (15.87) 13 (22.81) 23 (20.54)

Other 14 (9.59) 6 (9.52) 5 (8.77) 10 (8.93)

PD-L1 expression in lung cancer tissue (%) 1

≤50 129 (88.36) 55 (87.30) 55 (96.49) 75 (66.96)

>50 17 (11.64) 8 (12.70) 2 (3.51) 37 (33.04)

Number of metastatic sites 1.73 ± 1.31 1.62 ± 1.35 1.51 ± 1.28 2.96 ± 1.91 0.509

Number of BM (%) 0.898

Solitary 99 (67.81) 44 (69.84) 36 (63.16) 56 (50.00)

Multiple 47 (32.19) 19 (30.16) 21 (36.84) 56 (50.00)

Clinical T stage (%) 0.758

0-2 53 (36.30) 25 (39.68) 12 (21.05) 28 (25.00)

3-4 93 (63.70) 38 (60.32) 45 (78.95) 84 (75.00)

Clinical N stage (%) 0.703

0-2 94 (64.38) 43 (68.25) 53 (92.98) 67 (59.82)

3-4 52 (35.62) 20 (31.75) 4 (7.02) 45 (40.18)

Clinical M stage (%) 0.878

(Continued)
F
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TABLE 1 Continued

Characteristics
Training
cohort

Internal validation
cohort

Test 1
cohort

Test 2
cohort

p
value

0-2 19 (13.01) 7 (11.11) 3 (5.26) 8 (7.14)

3-4 127 (86.99) 56 (88.89) 54 (94.74) 104 (92.86)

RBC (1012/L) 4.29 ± 0.57 4.45 ± 0.59 4.19 ± 0.67 4.18 ± 0.61 0.07

WBC (109/L) 6.83 ± 2.83 6.94 ± 2.42 7.21 ± 4.77 7.62 ± 4.63 0.436

Blood platelet (109/L) 244.83 ± 94.33 246.10 ± 106.53 229.00 ± 93.81 257.75 ± 94.04 0.697

LDH (U/L) 246.26 ± 188.10 241.47 ± 74.12 220.15 ± 67.23 234.15 ± 145.42 0.067

CEA (ng/ml) 53.11 ± 165.98 51.50 ± 122.42 7.20 ± 8.69 39.24 ± 95.81 0.202

CA125 (U/ml) 102.71 ± 607.56 37.91 ± 54.37 29.48 ± 21.55 49.58 ± 93.02 0.577

CA19-9 (U/ml) 29.52 ± 54.86 24.71 ± 40.59 15.43 ± 8.66 29.01 ± 58.03 0.710

PNI 48.87 ± 5.80 49.79 ± 7.49 48.71 ± 3.28 46.06 ± 5.97 0.325

SIRI 1.93 ± 2.02 1.75 ± 1.66 3.03 ± 6.13 2.47 ± 3.81 0.710
F
rontiers in Oncology
 07
 fro
ICI, immune checkpoint inhibitor; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; ECOG PS, eastern cooperative oncology group performance status; BM, brain
metastasis; RBC, red blood cell; WBC, white blood cell; LDH, lactate dehydrogenase; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9; PNI,
prognostic nutritional index; SIRI, systemic inflammation response index. The bold values denote statistical significance.
TABLE 2 Univariable and multivariable analysis of clinical features.

Feature name
Univariable analysis

Multivariable
analysis

OR 95% CI p value OR 95% CI p value

Age 1.003 0.996 - 1.011 0.468

Gender 0.85 0.753 - 0.959 <0.05 0.85 0.753-0.959 <0.05

Smoking status 1.131 1.009 - 1.267 0.075

Lines of ICIs therapy 0.858 0.751 - 0.979 0.057

Type of ICI 0.866 0.677 - 1.107 0.335

Immunotherapy combined with chemotherapy 1.125 0.933 - 1.355 0.298

ECOG PS 1.08 0.964 - 1.212 0.266

Pathology 1.05 0.962 - 1.147 0.36

PD-L1 expression in lung cancer tissue 0.925 0.775 - 1.103 0.464

Number of metastatic sites 0.982 0.941 - 1.026 0.5

Number of BM 1.024 0.905 - 1.158 0.755

Clinical T stage 1.121 0.996 - 1.261 0.111

Clinical N stage 0.943 0.836 - 1.064 0.423

Clinical M stage 1.101 0.926 - 1.310 0.36

RBC 1.098 0.994 - 1.212 0.121

WBC 1.018 0.996 - 1.040 0.175

Blood platelet 1.000 1.000 - 1.001 0.292

LDH 1.000 1.000 - 1.000 0.774

CEA (ng/ml) 1.000 1.000 - 1.001 0.439

(Continued)
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statistics, 14 from shape-based descriptors, and the remaining from

texture-based methods such as GLCM, GLRLM, GLSZM, and

NGTDM. Habitat modeling integrated these features across three

clusters, resulting in 5,502 subregional features. Both intratumoral

and peritumoral regions contributed 1,834 features each. Feature

extraction was performed using Pyradiomics prior to analytical

processing. Categorical distributions and dataset structure are

illustrated in Supplementary Materials 6. Feature selection was

conducted using LASSO logistic regression to identify predictors

with nonzero coefficients relevant to the Rad-score.
3.3 Selection of machine learning
algorithms for model construction

Within traditional radiomics models, the ExtraTrees algorithm

surpassed counterparts with AUC values of 0.744 (95% CI: 0.623-

0.866) in the internal validation cohort, 0.72 (95% CI: 0.554-0.886) in

external test 1 cohort, and 0.703 (95%CI: 0.605-0.801) in external test 2

cohort (Supplementary Materials 7). For peritumoral analysis, the peri-

1 mm RandomForest model exceeded other regional configurations. It

achieved an AUC of 0.836 (95% CI: 0.744-0.927) in the internal

validation cohort, 0.646 (95% CI: 0.481-0.810) in test 1 cohort, and

0.666 (95% CI: 0.567-0.764) in test 2 cohort (Supplementary Materials
Frontiers in Oncology 08
8). As for the habitat imaging analysis, in the training cohort, XGBoost

achieved the highest AUC of 0.900 (95% CI: 0.852-0.947),

outperforming other models: LR (AUC = 0.875; 95% CI: 0.820-

0.931), SVM (AUC = 0.867; 95% CI: 0.810-0.924), RandomForest

(AUC = 0.844; 95% CI: 0.782-0.906), ExtraTrees (AUC = 0.817; 95%

CI: 0.749-0.884), and LightGBM (AUC = 0.866; 95% CI: 0.810-0.923).

The superior predictive ability of XGBoost was consistently observed in

the internal validation and test cohorts 1 and 2, with AUC values of

0.886 (95% CI: 0.808-0.964), 0.820 (95% CI: 0.712-0.928), and 0.804

(95% CI: 0.725-0.884), respectively, demonstrating its robustness and

generalizability (Supplementary Materials 9). Based on these results,

XGBoost was selected as the optimal model for subsequent analyses

due to its consistently high AUC performance across validation and

test cohorts.
3.4 SHAP analysis

SHAP analysis identified wavelet_glszm_ZoneEntropy_H1 as

the most influential feature (Figure 5A). Compared to other regions,

the H1 region exhibited greater feature importance, highlighting its

critical role in enhancing both the predictive accuracy and

interpretability of the model (Figure 5B). For instance, one

patient with a SHAP value of 0.35, above the baseline, was
TABLE 2 Continued

Feature name
Univariable analysis

Multivariable
analysis

OR 95% CI p value OR 95% CI p value

CA125 (U/ml) 1.000 1.000 - 1.000 0.517

CA19-9 (U/ml) 1.000 0.999 - 1.002 0.515

PNI 1.004 0.995 - 1.013 0.467

SIRI 0.993 0.964 - 1.022 0.679
fro
OR, odds ratio; CI, confidence interval; ICI, immune checkpoint inhibitor; ECOG PS, eastern cooperative oncology group performance status; PD-L1, programmed death ligand 1; BM, brain
metastases; RBC, red blood cell; WBC, white blood cell; LDH, lactate dehydrogenase; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9;
PNI, prognostic nutritional index; SIRI, systemic inflammation response index. The bold values denote statistical significance.
FIGURE 4

Evaluation of clustering performance and visualization of habitat clusters. (A) Cluster validation scores: The Calinski-Harabasz score (black line),
Silhouette score (blue line), and Davies-Bouldin score (orange dashed line) are plotted against the number of clusters. At k = 3, the Silhouette score
reached its maximum value, indicating that data points were most appropriately assigned to their respective clusters with clear separation from
adjacent clusters. The Calinski-Harabasz score also peaked at k = 3, demonstrating an optimal balance between inter-cluster dispersion and intra-
cluster cohesion. Conversely, the Davies-Bouldin score attained its minimum value at k = 3, confirming that under this configuration, the clusters
were most compact and distinctly separated from one another. All three metrics consistently affirmed that k = 3 provides the best balance between
cluster separation and compactness. (B) 3D scatter plot showing the three identified habitat clusters, with each cluster color-coded: Habitat 1 (red),
Habitat 2 (green), and Habitat 3 (blue). The percentage of voxels belonging to each cluster is indicated in the legend.
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categorized as high-risk. This classification was largely attributable

to wavelet_glszm_ZoneEntropy_H1, which contributed positively

with a score of 0.7724 toward predicting responsiveness, as

indicated by the red arrow in Figure 5C. Conversely, another

patient with a SHAP value of -0.72, below the baseline, was

i d e n t ifi e d a s l ow - r i s k . I n t h i s c a s e , t h e f e a t u r e

exponential_glcm_Imc2_H2 exerted a strong negative influence

(-2.0757) on the prediction of response, shown by the blue arrow

in Figure 5D.
3.5 Model comparison and evaluation

Model predictive performances are comparatively illustrated in

Figure 6 and Table 3. Among all the models, the habitat imaging

model demonstrated the highest AUC across the internal validation

and external test cohorts. In the validation cohort, the habitat model

yielded an AUC of 0.886 (95% CI: 0.808-0.964), with sensitivity of

0.613, specificity of 0.969, PPV of 0.950, and NPV of 0.721,

outperforming peri-1 mm (AUC = 0.836, 95% CI: 0.744-0.927),

peri-2 mm (AUC = 0.794, 95% CI: 0.684-0.903), and peri-3 mm

(AUC = 0.815, 95% CI: 0.710-0.919). The combined model, which

incorporated habitat features, peri-1 mm, and key clinical variables,

attained a slightly higher AUC of 0.894 (95% CI: 0.819-0.970),

together with sensitivity of 0.613, specificity of 1.0, PPV of 1.0, and

NPV of 0.727, demonstrating the incremental value of multimodal

integration. The habitat imaging methodology consistently
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surpassed comparative models during external testing. Within the

test 1 cohort, the habitat model achieved excellent discrimination

(AUC = 0.820, 95% CI: 0.712-0.928), with sensitivity of 0.882,

specificity of 0.650, PPV of 0.517, and NPV of 0.929, compared with

peri-1 mm (AUC = 0.646, 95% CI: 0.481-0.810), peri-2 mm

(AUC = 0.656, 95% CI: 0.482-0.830), and peri-3 mm

(AUC = 0.712, 95% CI: 0.563-0.861). The combined model

further improved performance with an AUC of 0.837 (95% CI:

0.732-0.942), accompanied by sensitivity of 0.882, specificity of

0.600, PPV of 0.484, and NPV of 0.923. Similarly, in the test 2

cohort, the habitat model attained an AUC of 0.804 (95% CI: 0.725-

0.884), with specificity of 1.0, PPV of 1.0, sensitivity of 0.431, and

NPV of 0.494, while the combined approach yielded a slightly

higher AUC of 0.814 (95% CI: 0.737-0.892), with sensitivity of

0.625, specificity of 0.850, PPV of 0.882, and NPV of 0.557,

confirming consistent cross-cohort superiority.

The HL test evaluates model calibration by comparing predicted

probabilities with observed outcomes, where lower values indicate

better calibration. Our combined model showed strong calibration,

with HL values of 0.326, 0.069, 0.897, and 0.965 in the training,

internal validation, test 1, and test 2 cohorts, respectively. This

highlights its accuracy and reliability (Figure 7). Figure 8 compares

the significance of improvement among the different signatures

across the datasets. The Delong test demonstrated a statistically

superior predictive performance of the combined model compared

to the comparators (P < 0.05). Figure 9 depicts DCA curves for

training and testing cohorts, revealing significantly enhanced net

clinical benefit from the combined model’s predictions.
FIGURE 5

SHAP summary plots (A, B) quantify feature contributions to model predictions. Force plots (C, D) delineate the decision logic distinguishing
responders from non-responders in the habitat imaging model. SHAP, SHapley Additive explanation.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1657290
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2025.1657290
FIGURE 6

ROC curves of predictive models across different cohorts. The AUC values and their 95% CIs are displayed for each model. The models evaluated
include: Clinical (pink), Radiomics (blue), Peritumoral region at 1mm (cyan), Peritumoral region at 2mm (orange), Peritumoral region at 3mm (azure),
Habitat (dark blue), and the Combined model (navy blue). The combined model demonstrates higher AUC values across all cohorts, indicating its
overall superior performance compared to the individual models. (A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2
cohort. ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.
TABLE 3 Performance of different models in each cohorts.

Cohort Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Training Cohort

Clinical 0.925 0.979 0.961 - 0.997 0.896 0.949 0.937 0.915

Radiomics 0.747 0.776 0.700 - 0.852 0.851 0.658 0.679 0.839

Peri-1mm 0.637 0.763 0.692 - 0.833 0.239 0.975 0.889 0.602

Peri-2mm 0.774 0.837 0.773 - 0.901 0.791 0.759 0.736 0.811

Peri-3mm 0.747 0.843 0.780 - 0.906 0.701 0.785 0.734 0.756

Habitat 0.815 0.900 0.852 - 0.947 0.910 0.734 0.744 0.906

Combined 0.815 0.898 0.851 - 0.946 0.776 0.848 0.812 0.817

Internal validation
Cohort

Clinical 0.635 0.629 0.490 - 0.769 0.903 0.375 0.583 0.800

Radiomics 0.683 0.753 0.630 - 0.875 0.903 0.469 0.622 0.833

Peri-1mm 0.619 0.836 0.744 - 0.927 0.226 1 1 0.571

Peri-2mm 0.746 0.794 0.684 - 0.903 0.742 0.75 0.742 0.750

Peri-3mm 0.746 0.815 0.710 - 0.919 0.871 0.625 0.692 0.833

Habitat 0.794 0.886 0.808 - 0.964 0.613 0.969 0.95 0.721

(Continued)
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Additionally, Figure 10 presents a nomogram visualizing the

combined model’s output.
4 Discussion

Precise prediction of intracranial response to PD-1/PD-L1

inhibitors in NSCLC-BM patients is critical for personalized

immunotherapy and improved survival outcomes. This study

developed a novel approach that integrates habitat imaging and

peritumoral radiomics signatures to comprehensively characterize

imaging information with the aim of accurately predicting

intracranial immunotherapy outcomes in NSCLC-BM cohorts.

The habitat imaging model demonstrated superior intracranial

efficacy prediction relative to comparator radiomic models,

concurrently achieving peak clinical net benefit. The integrated

combined model, incorporating radiomic signatures, habitat

imaging features, peri-1 mm features, and clinical factors,

demonstrated exceptional discriminatory capability and

satisfactory calibration across cohorts.

While recent studies have reported intracranial responses to

PD-1/PD-L1 inhibitors in patients with NSCLC with BMs,

predicting their efficacy against BM remains a significant

challenge (21–23). Following the emergence of MRI-based

radiomics, multiple studies have employed this approach to

predict responses to intracranial immunotherapy in BM cohorts.

Shi et al. (12) constructed and clinically validated an MRI-derived

radiomic nomogram for 101 small-cell lung cancer patients with

BMs receiving ICIs treatment. Their model, incorporating a

radiomics score and clinical factors, achieved a validation cohort
Frontiers in Oncology 11
AUC of 0.875 (95% CI: 0.754–0.996). Xu et al. (13) established a

clinical-radiomic model using baseline MRI data from 174 ICI-

treated NSCLC-BM patients, achieving validated discrimination

(AUC = 0.833; 95%CI: 0.720–0.946). Nevertheless, these

investigations characteristically treated tumors as homogeneous

entities, focusing exclusively on radiomic feature extraction from

the entire tumor volume. Research has indicated that tumors,

particularly those with BM originating from NSCLC, exhibit a

complex immune microenvironment characterized by significant

spatial heterogeneity, which contains information relevant to tumor

progression and the efficacy of immunotherapy (24–26).

Consequently, the approaches in the aforementioned studies may

have overlooked intratumoral spatial heterogeneity and failed to

capture potentially critical imaging information relevant to

immunotherapy efficacy assessments.

To address these limitations, our study introduces a habitat

imaging model designed to systematically identify, analyze, and

quantify tumor heterogeneity. Recently, Yang et al. (27)

implemented a habitat imaging radiomics framework with

preoperative cranial MRI to predict EGFR exon 19/21 mutations

in patients with NSCLC-BM, which demonstrated excellent

predictive performance. Based on this finding, our model may

also holds potential for predicting intracranial responses to

immunotherapy in patients with NSCLC-BM. In this research,

the model employed unsupervised K-means clustering to

delineate BM subregions and identify three distinct habitats,

which is consistent with studies reporting optimal predictive

reliability from limited subregions (28, 29). Implementation of

habitat-based radiomic extraction markedly improved prognostic

capability, with resultant AUCs reaching 0.886 in internal
TABLE 3 Continued

Cohort Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Combined 0.810 0.894 0.819 - 0.970 0.613 1 1 0.727

Test 1 Cohort

Clinical 0.526 0.537 0.382 - 0.692 0.647 0.475 0.344 0.760

Radiomics 0.684 0.669 0.505 - 0.833 0.118 0.925 0.4 0.712

Peri-1mm 0.702 0.646 0.481 - 0.810 0 1 0 0.702

Peri-2mm 0.684 0.656 0.482 - 0.830 0.588 0.725 0.476 0.806

Peri-3mm 0.596 0.712 0.563 - 0.861 0.588 0.6 0.385 0.774

Habitat 0.719 0.820 0.712 - 0.928 0.882 0.65 0.517 0.929

Combined 0.684 0.837 0.732 - 0.942 0.882 0.6 0.484 0.923

Test 2 Cohort

Clinical 0.545 0.552 0.440 - 0.664 0.472 0.675 0.723 0.415

Radiomics 0.598 0.680 0.580 - 0.780 0.486 0.800 0.814 0.464

Peri-1mm 0.473 0.666 0.568 - 0.765 0.250 0.875 0.783 0.393

Peri-2mm 0.679 0.701 0.600 - 0.802 0.722 0.600 0.765 0.545

Peri-3mm 0.536 0.605 0.494 - 0.716 0.389 0.800 0.778 0.421

Habitat 0.634 0.804 0.725 - 0.884 0.431 1 1 0.494

Combined 0.705 0.814 0.737 - 0.892 0.625 0.850 0.882 0.557
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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validation, 0.82 in test 1 cohort, and 0.804 in test 2 cohort. Due to

the highly invasive nature of tissue sampling for BMs, our radiomic

analysis was conducted on imaging features and was not directly

correlated with histopathological or molecular results (30). Notably,

the implementation of SHAP value analysis enhanced the

interpretability of the model and identified wavelet features based

on textures and H1 subregions as key predictors. The SHAP

analysis highlighted the wavelet-based texture features as major

contributors to the model’s predictive performance. The features

likely reflect underlying pathophysiological processes within the

tumor microenvironment. For instance, a high value of

wavelet_glszm_ZoneEntropy_H1, which captures heterogeneity in

zone size and intensity distribution across multiple scales, may

indicate the presence of necrotic tissue areas or heterogeneous

immune ce l l i nfi l t r a t i on , bo th known to influence

immunotherapy response (31). The dominance of H1-derived

features suggests that this subregion may represent a biologically
Frontiers in Oncology 12
distinct habitat, potentially characterized by high cellular density,

vascular abnormalities, or immune exclusion, which could influence

drug delivery and immune cell trafficking (32, 33). By inferring such

associations between radiomic features and their pathological bases,

our model may offer a non-invasive means to probe tumor

microenvironmental states that may affect response to PD-1/PD-

L1 inhibitors.

The peritumoral interface, representing the transitional zone

between neoplastic tissue and adjacent normal structures,

significantly mediates drug delivery through dynamic remodeling

of immune cell distribution, vascular networks, and extracellular

matrix composition (34). Systematic evaluation of this region

within millimeter-scale radial distances will provide evidence

linking the peritumoral zone to treatment outcomes, consistent

with the current understanding of tumor-stromal interactions (35,

36). In a previous study, Han et al. (37) previously formulated CT-

based predictive frameworks fusing intratumoral and peritumoral
FIGURE 7

Calibration curves of predictive models across different cohorts. Calibration curves comparing the predicted probabilities and the fraction of
positives for various predictive models in different cohorts. The dotted line represents perfect calibration, where predicted probabilities align exactly
with observed frequencies. The models evaluated include: Clinical (blue), Radiomics (orange), Peritumoral region at 1mm (green), Peritumoral region
at 2mm (red), Peritumoral region at 3mm (purple), Habitat (brown), and the Combined model (pink). The calibration curves show how well the
models predict the fraction of positive cases, with better-calibrated models closer to the dotted line. The combined model generally demonstrates
superior calibration across all cohorts. (A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2 cohort.
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characteristics to forecast major pathological responses after

neoadjuvant chemoimmunotherapy in NSCLC patients.

Integration of tumoral and peritumoral features exceeded solitary

intratumoral analysis in predictive capability, yielding a validated

AUC of 0.831 (0.7255-0.9360). Our findings demonstrate that the

peritumoral zone, particularly within 1 mm of the tumor margin,

plays a significant role in predicting the response to PD-1/PD-L1

inhibitors in patients with NSCLC-BM. This may be due to its

potential as an immunologically active niche enriched with

cytotoxic T cells or tertiary lymphoid structures (38). This

underscores the central role of the tumor microenvironment in

tumor biology and therapeutic outcomes, as immunotherapy

efficacy critically depends on the complex interplay among tumor

cells, stromal components, immune infiltrates, and vasculature (39).

Although PD-L1 expression is an established biomarker of

immunotherapy in NSCLC, its ability to predict intracranial

outcomes in patients with BM remains unclear (40). In our study

cohort, PD-L1 expression did not emerge as a significant predictor

in mult ivariable analysis , underscoring the potentia l

complementary value of non-invasive radiomics biomarkers in
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capturing tumor heterogeneity that may be missed by single-site

biopsies or static blood-based assays. Similarly, although TMB was

not routinely available in our multi-center cohort, future studies

directly integrating radiomics features with TMB and PD-L1 data

may yield a more comprehensive predictive framework. Such a

multimodal approach aligns with the evolving paradigm of

personalized oncology, as illustrated by other predictive models

for brain metastasis risk, such as the algorithm developed by

Armocida et al. for predicting postoperative brain metastasis

development (41).Notably, our combined model integrating

habitat, peri-1 mm, and significant clinical features significantly

improved the performance, highlighting the synergistic value of

multimodal integration. This integration further confirms that

combining imaging features with clinical data can create a more

robust and generalizable model for predicting treatment responses

(42, 43). From a clinical perspective, our combined model

demonstrated robust calibration effects and net benefits,

supporting its potential as a decision-support tool. By

categorizing patients into responders and non-responders, this

model can help tailor personalized immunotherapy regimens for
FIGURE 8

Delong test results comparing model performance across different feature sets and cohorts. Heatmaps showing pairwise p-values from Delong tests
for ROC curves of models based on different feature types: Radiomics, Peritumoral region at 1mm, Peritumoral region at 2mm, Peritumoral region at
3mm, Habitat, and Combined. (A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2 cohort. The color scale represents p-
values, with lower values (red) indicating statistically significant differences between model performances and higher values (blue) indicating non-
significant differences. Diagonal elements correspond to self-comparisons and are set to the maximum p-value for visual consistency. Combined
models generally demonstrate significant improvement over individual feature-based models across cohorts. ROC, receiver operating characteristic.
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FIGURE 9

DCA of predictive models across different cohorts. DCA curves show the net clinical benefit of various predictive models at different threshold
probabilities in different cohorts. The models evaluated include: Clinical (blue), Radiomics (orange), Peritumoral region at 1mm (green), Peritumoral
region at 2mm (red), Peritumoral region at 3mm (purple), Habitat (brown), and the Combined model (pink). These curves represent the net clinical
benefit, with the x-axis showing the threshold probability for treatment, and the y-axis showing the net benefit. The dashed black line represents the
scenario where no treatment is applied, while the solid black line represents the scenario where all patients are treated. The combined model
generally demonstrates a higher net benefit at all threshold probabilities compared to other models, highlighting its clinical value across all cohorts.
(A) Training cohort; (B) Internal validation cohort; (C) Test 1 cohort; (D) Test 2 cohort. DCA, decision curve analysis.
FIGURE 10

Prognostic nomogram integrating clinical variables, peri-1mm imaging characteristics, and habitat signatures for predicting intracranial therapeutic
response.
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patients with NSCLC-BM, thereby reducing ineffective treatments

and ICI-associated toxicities.

Although our habitat-peritumoral radiomics model showed

promising performance, it is important to stress the exploratory

nature of these findings and the limitations of this study. First, the

retrospective approach carries inherent selection bias risks. Second,

our radiomic analysis focused on the dominant lesion in patients

with multiple BMs. While this approach is methodologically

consistent and clinically practical, it inherently cannot capture the

full spectrum of inter-metastatic heterogeneity. Future studies may

consider comprehensive multi-lesion profiling strategies to address

this complexity and better characterize heterogeneity across

metastases. Third, while this study indicated that habitat-based

MRI radiomics analysis can predict the immunotherapy response in

patients with NSCLC and BM, the current findings are based solely

on imaging biomarkers without histopathological confirmation, due

to the challenges in tissue sampling. Thus, future prospective trials

are necessary to evaluate the clinical utility and generalizability of

this approach.
5 Conclusion

From a clinical perspective, our combined model demonstrated

strong calibration and net benefit for predicting intracranial

response to PD-1/PD-L1 inhibitors in NSCLC patients with BMs

in this retrospective analysis, supporting its potential as a decision-

support tool to help clinicians tailor personalized immunotherapy

regimens, thereby reducing ineffective treatments and immune-

related toxicities. As this model was developed in an exploratory

retrospective study, prospective validation remains necessary.
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