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Multiparametric MRI-based
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for differentiating uterine serous
carcinoma from endometrioid
carcinoma: a multicenter
retrospective study
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Background: Uterine serous carcinoma (USC) and endometrioid endometrial
carcinoma (EEC) are distinct subtypes of endometrial cancer with markedly
different prognoses and management strategies. Accurate preoperative
differentiation between USC and EEC is of great significance for tailoring
surgical planning and adjuvant therapy.

Purpose: To develop and validate a multiparametric MRI-based radiomics and
deep learning (DL) model for preoperative distinguishing USC from EEC.
Methods: A total of 210 patients (68 USCs and 142 EECs) from four hospitals who
underwent preoperative MRI were enrolled in this retrospective study. Features
from radiomics and deep learning were extracted using T2-weighted imaging
(T2WI), diffusion-weighted imaging (DWI), and contrast enhanced MRI (CE-MRI).
The least absolute shrinkage and selection operator (LASSO) analysis was
employed to identify the most valuable features. Clinical-radiological
characteristics, radiomics and DL features were constructed using a support
vector machine (SVM) algorithm. The models were evaluated using receiver
operating characteristic (ROC) and decision curve analysis (DCA).

Results: The all-combined model of clinical-radiological characteristics,
radiomics and DL features showed better discrimination ability than either
alone. The all-combined model demonstrated superior classification
performance, achieving an AUC of 0.957 (95% CI: 0.904-1.000) on the
internal-testing set and an AUC of 0.880 (95% CI: 0.800-0.961) on the
external-testing set. The DLR model demonstrated superior predictive
performance compared to the clinical-radiological model, although the
differences were not statistically significant in both the internal-testing set
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(AUC = 0.908 vs. 0.861, p = 0.504) and the external-testing set (AUC = 0.767 vs.
0.700, p = 0.499). The DCA revealed that the all-combined model illustrated the
best overall net benefit in clinical application.

Conclusion: The integrated model, combining multiparametric MRI-based
radiomics, deep learning features, and clinical-radiological characteristics, may
be utilized for the preoperative differentiation of USC from EEC.

magnetic resonance imaging, radiomics, deep learning, uterine serous carcinoma,

endometrial cancer

Introduction

In 2020, endometrial cancer (EC) ranked as the sixth most
prevalent cancer among women worldwide, with 417,000 new cases
diagnosed (1). Endometrioid carcinoma (EEC) represents the
predominant histological subtype of EC, comprising 85-90% of
cases. EEC is linked to a reduced risk of progression and a favorable
prognosis, especially in low-grade cases (2). Uterine serous
carcinoma (USC), the second most prevalent type of EC,
constitutes only 5% to 10% of EC cases but accounts for 40% of
deaths related to EC (3-6). Patients with USC often exhibit lymph
vascular space invasion, nodal involvement, and microscopic
peritoneal spread, even in early-stage disease with limited
myometrial invasion (3, 7). This leads to a 2.5-fold higher risk of
being diagnosed with stage III or IV disease compared to those with
EEC (46% in USC vs. 20% in EEC) (7). Surgery is crucial for treating
EC, with USC requiring more extensive resection than EEC. Pelvic
and paraaortic lymphadenectomy, peritoneal biopsies are
recommended for early-stage USC (8).

Currently, the preoperative distinction between USC and EEC
relies heavily on invasive procedures such as endometrial biopsy or
dilation and curettage (D&C). However, these invasive techniques
are susceptible to sampling error in the presence of tumor
heterogeneity, not infrequently leading to discordance between
preoperative and final postoperative histology (9, 10). For
instance, in a large series, nearly one-third of tumors initially
diagnosed as low-grade endometrioid carcinoma were upgraded
or reclassified as high-grade carcinoma upon examination of the
hysterectomy specimen (10). This diagnostic inaccuracy can lead to
suboptimal surgical planning. Therefore, a non-invasive method

Abbreviations: AUC, Area Under the Curve; CE-MRI, Contrast-Enhanced
Magnetic Resonance Imaging; CNN, Convolutional Neural Network; DCE,
Dynamic Contrast-Enhanced; DL, Deep Learning; DWI, Diffusion-Weighted
Imaging; EC, Endometrial Cancer; EEC, Endometrioid Endometrial Carcinoma;
FIGO, International Federation of Gynecology and Obstetrics; LASSO, Least
Absolute Shrinkage and Selection Operator; MRI, Magnetic Resonance Imaging;

USC, Uterine Serous Carcinoma.
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capable of providing a holistic assessment of the entire tumor is
highly desirable to complement biopsy findings.

Magnetic resonance imaging (MRI) has been widely used in the
diagnosis and differential diagnosis of EC (11-16). A recent study
has highlighted the unique MRI characteristics associated with
USC, notably heterogeneous signal intensity suggestive of
peritoneal dissemination and the presence of abnormal ascites,
serving as distinguishing features from EEC (11). Furthermore,
imaging parameters derived from diffusion-weighted imaging
(DWI), dynamic contrast-enhanced (DCE) MRI, and amide
proton transfer (APT) imaging have improved diagnostic
accuracy and facilitated the differentiation of endometrial
carcinoma subtypes (13-16). However, due to the rarity of USC
and consequent limited sample sizes, its preoperative radiological
characteristics are not well-defined, and the diagnostic performance
of conventional MRI interpretation remains variable and
suboptimal, with area under the curve (AUC) values ranging
from 0.62 to 0.826 (13, 16).

Radiomics extracts high-throughput features from traditional
images and capturing intratumoral heterogeneity that is easily
missed by blind biopsies (17). Meanwhile, deep learning (DL) has
demonstrated superior performance in image analysis tasks by
automatically learning intricate patterns from data (18, 19). These
techniques have been increasingly applied in EC for preoperative
prediction of high-grade tumors, lymph node metastasis,
lymphvascular space invasion, cervical stromal invasion, and deep
myometrial invasion (20-27). However, two critical gaps persist in the
literatures. First, while previous studies have focused on predicting
tumor grade (20, 26) or broadly differentiating type II from type I EC
(25), the specific discrimination between USC and EEC—a distinction
with significant therapeutic implications—has not been systematically
explored using an integrated radiomics and DL approach
complemented by clinical-radiological data. Second, most of these
previous existing models are derived from single-center cohorts and
lack robust external validation, limiting their generalizability.

Therefore, this study aimed to develop and validate, for the first
time, a multicenter-integrated model utilizing multiparametric
MRI-based clinical, radiomics, and deep learning features for the
preoperative differentiation of USC from EEC.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1655384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shen et al.

Materials and methods

Patients

This retrospective study was approved by the Ethics
Committees of the respective institutions, with informed consent
waived due to its retrospective nature. Prior to analysis, all patient
data was deidentified to ensure the confidentiality and anonymity of
personal information.

We identified a cohort of 311 patients from four medical centers
who underwent gynecological surgery, including 111 with USC and
200 with EEC. The participating centers were as follows: Shantou
Central Hospital (Institution I), Sun Yat-Sen Memorial Hospital
(Institution II), Sun Yat-Sen University Cancer Center (Institution
III), and Cancer Hospital of Shantou University Medical College

Patients with histopathologically
confirmed USCs (ny=111)

10.3389/fonc.2025.1655384

(Institution IV). The specific data collection timelines for each
institution and histological subtype are detailed in Supplementary
Table 1. The inclusion criteria required (a) USC and EEC confirmed
surgically and pathologically; (b) a pelvic MRI conducted within 14
days before gynecological surgery. The exclusion criteria
encompassed: (a) maximum tumor diameter under 1 cm; (b)
incomplete MRI examination; (c) incomplete pathology report;
(d) presence of mixed cellular components and (e) history of
neoadjuvant therapy. Ultimately, a total of 210 patients were
included in the study, comprising 68 with USCs and 142 with
EECs. Patients from Institution I and IT were randomly assigned to
a training cohort (100 patients) and an internal test cohort (44
patients) in a 7:3 ratio. A total of 66 patients were included as an
external test cohort by Institutions III and IV. Figure I illustrates
the flowchart of the patient recruitment process.

Patients with histopathologically
confirmed EECs (1,=200)

|

v
Excluded for the following reasons (n;=43, n,=58):

Maximum tumor diameter < 1 ecm (n,=7, n,=28)
» Severe artifacts (n,=5. n,=8)
« Absence of DWI or DCE (n;=13. n,=10)

« Incomplete pathology report (n,=6, n,=4)
« Presence of mixed cellular components (n,=10, n,=7)
o Neoadjuvant therapy before surgey (n;=2.n,=1)

v

A total of 210 patients enrolled in the study
(USCs=68, EECs =142)

I
v , , v

66 patients from Institution III and IV
(Including 20 USCs and 46 EECs)

144 patients from Institution I and II
(Including 48 USCs and 96 EECs)

Y
Randomly split data
Train : Test=7:3

|
v ! , !

Training set (n=100) Internal-testing set (n=44) External-testing set (n=66)
USCs=28: EECs=72 USCs=20; EECs=24 USCs=20; EECs=46

FIGURE 1
Flowchart of patient recruitment.
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MRI acquisition

MRI was performed using either a 3.0-T or 1.5-T scanner with a
pelvic phased-array surface coil. Institutions I and II utilized Siemens
Magnetom Verio (3.0-T) and Siemens Magnetom Area (1.5-T)
scanners, while institutions III and IV employed Siemens
Magnetom Avanto (1.5-T) and GE Medical System Discovery
HD750 (3.0-T) scanners. The sequences obtained included axial
and sagittal T2-weighted imaging(T2WTI), diffusion-weighted
imaging (DWI) with a b-value of 800 or 1000 s/mm’, and axial and
sagittal contrast-enhanced MRI (CE-MRI). CE-MRI was conducted
following the administration of gadolinium chelate (Gadovist, Bayer)
at a dosage of 0.2 mmol/kg body weight. The detailed MRI acquisition
protocols are summarized in Supplementary Table 2.

Clinical and conventional MR evaluation

Clinical data were collected from medical records,
encompassing age, body mass index (BMI), menopausal status,
obstetric history, family history of malignancy, diabetes history,
International Federation of Gynecology and Obstetrics (FIGO)
stage (2023), tumor markers (CA-125, CA-199, CEA, HE4), and
details of myometrial and cervical stromal invasion, adnexal
involvement, parametrial invasion, lymph node metastasis, and
presence of abnormal ascites. For subsequent modeling, tumor
grade was categorized as follows: (a) low grade, comprising FIGO
grades 1 and 2 endometrioid carcinoma, and (b) high grade,
consisting of FIGO grade 3 endometrioid carcinoma or uterine
serous carcinoma (8). Additionally, in accordance with European
Society for Medical Oncology guidelines, FIGO stage was
categorized into early (IA) and advanced (IB or higher) stages for
risk stratification (28). For the purpose of baseline characterization
and analysis in this study, FIGO stage and histopathologic grade
were determined based on the preoperative endometrial biopsy or
D&C results, reflecting the diagnostic information available at the
time of initial clinical decision-making.

Two experienced radiologists, LP.L. (Reader 1) with 5 years of
experience and Y.S. (Reader 2) with 8 years of experience in
gynecologic imaging, independently assessed the multiparametric
MR images without access to medical records or pathological data.
They assessed lesion characteristics including location, borders,
growth patterns, diffuse distribution, presence of necrosis and
hemorrhage, tumor largest diameter, tumor volume (calculated as
d1xd2xd3xm/6, where d1 and d2 are measured along and
perpendicular to the uterine long axis in the sagittal plane, and d3
is the largest lateral diameter in the axial plane). Additionally, they
assessed signal intensity ratios (SIR) of the tumor and gluteus
maximus on T2WI, DWI, and CE-T1WI, enhancement patterns
on CE-T1WI, homogeneity, and the ratios of endometrial thickness
(ET) to the largest longitudinal and anteroposterior (AP)
dimensions of the uterus on T2WI sagittal images (12, 29, 30)
(Supplementary Figure 1). Features were evaluated independently
by two radiologists, and any discrepancies were resolved by
consensus. The inter-observer agreement for the qualitative
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clinical-radiological features was assessed using Cohen’s kappa
(x) statistic, and for continuous variables, the intraclass
correlation coefficient (ICC) was used (Supplementary Table 3).

Image segmentation and feature extraction

Figure 2 provides an overview of the study’s pipeline. The
region of interest (ROI) was manually delineated along the
lesion’s edge using ITK-SNAP software on T2WI, DWI, and CE-
TIWI at the delayed phase, ensuring minimal inclusion of normal
tissue to acquire comprehensive tumor data. Each tumor’s
volumetric region of interest (VOI) was segmented. All ROIs
drawing were performed by two experienced radiologists (Reader
1 and Reader 2) blinded to the patients” histopathology. With 3-
month intervals, 30 patients were randomly selected for Reader 2 to
repeat the tumor ROI drawing. The inter-/intra-observer variability
of the extracted features was assessed by ICC test. ICC > 0.75
indicated satisfactory agreement.

Radiomics analysis was conducted using PyRadiomics version
3.0.1, employing VOIs from T2WI, DWI, and delayed phase CE-
T1WI. Prior to feature extraction, each image sequence was
normalized by centering the gray values at the mean and scaling
them according to the standard deviation, which effectively
minimized variations caused by different scanners, scanning
parameters, and protocols. A total of 535 radiomics features were
extracted from various MRI images (T2WI, DWI, CE-T1WI),
comprising 70 shape features, 90 first-order histogram features,
and texture features including 120 grey level cooccurrence matrix
(GLCM), 80 grey level run length matrix (GLRLM), 80 grey level
size zone matrix (GLSZM), 25 neighboring grey tone difference
matrix (NGTDM), and 70 grey level dependence matrix (GLDM).
The study design adhered to the reporting guidelines of the Image
Biomarker Standardization Initiative (IBSI) (31).

DL features were extracted utilizing a pre-trained Resnet50
convolutional neural network (CNN) model. Before extracting DL
features, the data undergoes processing through these steps: (1)
select the mask with the largest ROI in the labeled MRI; (2) crop
MRI images using minimal bounding rectangles; (3) resize the
tumor patch to 224 x 224 pixels. The Resnet50 network was initially
pre-trained on the ImageNet dataset, followed by transfer learning
on the training set. Upon completing Resnet50 training, we
extracted 2048 deep learning features from each patch using the
penultimate average pooling layer of the model. The features were
then compressed to a set of 64 features using principal component
analysis (PCA). Eventually, a total of 320 DL features was extracted
from all series. Gradient-weighted class activation mapping (Grad-
CAM) was employed to enhance model transparency and explore
interpretability through visualization.

Feature selection

We applied z-score normalization to all features and removed
those with constant values. Radiomics signatures with an ICC
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Workflow of model development. CA125, carbohydrate antigen 125; HE4, Human Epididymis Protein 4; ET/AP ratio, ratios of endometrial thickness
to the largest longitudinal and anteroposterior dimensions; LASSO, least absolute shrinkage and selection operator.

greater than 0.75 were initially screened using the Spearman
correlation test. We retained one feature for further analysis when
the Spearman correlation coefficient between two features exceeded
0.9. These features were further screened using the least absolute
shrinkage and selection operator (LASSO). The regularization
parameter (A) was tuned using the one-standard error of the
minimum criteria (1-SE criteria) alongside tenfold cross-
validation-based feature selection (see Supplementary Figure 2).
Following feature selection, the synthetic minority oversampling
technique (SMOTE) algorithm was employed on the training set,
but using only the features selected by LASSO, to balance the
minority class samples for the subsequent model training step.

Model construction and validation

A SVM (support vector machine) algorithm was employed to
construct seven models including a clinical-radiological model
utilizing clinical and radiological data, a radiomics model using
radiomics features, a DL model leveraging deep learning features, a
CR model combining clinical-radiological and radiomics features, a
DLR model integrating radiomics and deep learning features, a
CDL model combining clinical-radiological and deep learning
features, and a comprehensive all-combined model incorporating
all selected features. All feature integrations were performed

Frontiers in Oncology

through direct concatenation (feature-level fusion) to maximize
information utilization.

The models were developed in the training set and validated
with both internal and external test sets. Model predictive
performance was evaluated via a receiver operating characteristic
(ROC) curve, with results presented as the area under the curve
(AUC) and corresponding 95% confidence interval (CI). The
accuracy (ACC), sensitivity (SEN), specificity (SPEC), and F1
score were determined using the cut-off value that maximizes the
Youden index from the ROC curve analysis.

Statistical analysis

Characteristics were compared using the independent t-test or
Mann-Whitney U test for continuous variables, and Fisher’ s exact
test or y (2) test for categorical variables, with p-values adjusted via
the Benjamini-Hochberg correction. The DeLong test was employed
to compare the AUCs. Decision curve analysis (DCA) evaluated the
models’ clinical utility by analyzing net benefit across various
threshold probabilities in the testing sets. Statistical analyses were
conducted using Python (version 3.9; https://www.python.org/),
R (version 4.1.2; https://www.r-project.org/) and SPSS (version
26.0; https://www.ibm.com/). Statistical significance was defined
as a two-sided p-value < 0.05. The Benjamini-Hochberg procedure
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was used to adjust for multiple testing. To assess the adequacy of the
achieved sample size, a post hoc power analysis was conducted using
G*Power software (version 3.1.9.7).

Results
Patient characteristics

This study enrolled 210 patients: divided into a training set of
100, an internal-testing set of 44, and an external-testing set of 66.
The post-hoc power analysis demonstrated a statistical power of
87%, confirming that our sample size is sufficiently. A comparison
between preoperative biopsy and final surgical pathology revealed
discordance in 7 of 210 cases (3.3%), wherein the final diagnosis was
of a higher grade or more aggressive histologic subtype than initially
determined by biopsy. Table 1 details patient characteristics within
the USC and EEC groups across different cohorts. The age and
proportion of postmenopausal patients were higher in the USC
group compared to the EEC group (p < 0.05), patients with USC
usually presented with higher HE4 level, FIGO staging and
histopathologic grade (p < 0.05). Significant disparities were also
observed between USC and EEC groups in terms of ET/AP ratio,
tumor border, infiltrative growth pattern, diffuse distribution,
presence of necrosis, inhomogeneity, heterogenous enhancement,
deep myometrial invasion, cervical stromal invasion, adnexal
involvement and pelvic lymph node metastasis (all p < 0.05).

Development and validation of clinical-
radiological, radiomics, DL and combined
models

Among the 17 clinical-radiological characteristics,
histopathologic grade, FIGO staging, ET/AP ratio and diffuse
distribution were identified as significant features using the
LASSO algorithm (Supplementary Figure 3A). The mean inter-
and intra-observer reliabilities were 0.821 (95% CI 0.726-0.896) and
0.859 (95% CI 0.773-0.912), indicating excellent consistency in
radiomics features. A total of 194 radiomics features and 160 DL
features of the tumor, each with Spearman correlation coefficients >
0.9, were retained for further selection. Using LASSO algorithms, 30
radiomics features and 14 DL features were selected to construct the
radiomics, DL, and combined models. Supplementary Figure 3
provides additional information on the features chosen by the
LASSO algorithm.

The SVM model was optimized using the training set and
subsequently evaluated on both internal and external test sets.
Figures 3A-C displays the predicted scores for patients,
demonstrating the models’ strong classification capability. Table 2
presents the performance metrics of various models on both the
training and testing datasets. The clinical-radiological model
achieved AUCs of 0.861 (95% CI: 0.747-0.975) and 0.700 (95%
CI: 0.552-0.848) in the internal and external testing set, respectively.
The AUC:s of the radiomics model were 0.934 (95% CI: 0.862-0.999)
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and 0.750 (95% CI: 0.632-0.868) in the internal and external testing
set, respectively. The AUCs of the DL model were 0.869 (95% CI:
0.757-0.980) in the internal-testing set, and 0.704 (95% CI:0.572-
0.835) in the external-testing set. The all-combined model showed
excellent predictive performance. The all-combined model
demonstrated superior classification performance in the internal-
testing set with an AUC of 0.957 (95% CI: 0.904-1.000), accuracy of
0.886, sensitivity of 0.923, specificity of 0.833, and F1 score of 0.906,
while in the external-testing set, these values were 0.880 (95% CI:
0.800-0.961), 0.742, 0.636, 0.955, and 0.767, respectively.

Comparison of the clinical-radiological,
radiomics, DL and combined models

DeLong’s test indicated that the all-combined model
demonstrated significantly superior discriminatory ability
compared to both the clinical-radiological model (AUC = 0.880
vs. 0.700, p < 0.05) and DL model (AUC = 0.880 vs. 0.704, p < 0.05)
in the external-testing set (Figure 3E; Supplementary Figure 4).

The all-combined model demonstrated significantly superior
discriminatory power compared to the CR model (AUC = 0.880 vs.
0.810, p < 0.05) and CDL model in the external-testing set
(AUC = 0.880 vs. 0.688, p < 0.05) (refer to Table 2;
Supplementary Figure 4). The DLR model demonstrated superior
predictive performance compared to the clinical-radiological
model, although the differences were not statistically significant in
both the internal-testing set (AUC = 0.908 vs. 0.861, p = 0.504), and
the external-testing set (AUC = 0.767 vs. 0.700, p = 0.499)
(Figures 3D, E; Supplementary Figure 4). Accuracy, sensitivity
and specificity values varied across models, with the best
performance in combined models such as DLR model (accuracy
of 0.980, sensitivity of 0.972 and specificity of 1.000 in training) and
all-combined model (accuracy of 0.742, sensitivity of 0.923 and
specificity of 0.833 in the external test set). These models
consistently outperformed individual models like R model
(sensitivity of 0.652 in the external test set) and C model
(specificity of 0.647 in the external test set). The all-combined
model and DLR achieved the highest F1 scores, with the all-
combined model attaining 0.979 during training and 0.906 in the
internal test set. The decision curves (Figures 3F, G) demonstrated
that the combined model provided a superior overall net benefit
across most reasonable threshold probabilities in both the internal
and external testing sets. Figure 4 illustrates the activation maps
highlighting image regions that significantly contribute to the
feature output recognized by the deep CNN. Overall, the use of a
multiparametric model based on radiomics and DL had better
predictive value in the preoperative differential diagnosis between
USC and EEC.

Discussion

In contrast to EEC, USC is characterized by a high propensity
for metastasis and recurrence, even in its early stages (6). Thus, the
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TABLE 1 Baseline characteristics of study sets. (revised version).

Variable

Training set, N = 100

EEC

N = 72 (72%)*

usc

N = 28 (28%)*

Internal-testing set, N = 44

EEC

N = 24 (55%)*

usc

N = 20 (45%)

External-testing set, N = 66

EEC

N = 44 (67%)*

usc

N = 22 (33%)*

Summation, N = 210
EEC

N = 140 (67%)*

usc

N = 70 (33%)

Age 53.17 (9.51) 60.04 (12.03) 0014 5321 (669) 61.05 (9.83) <005 | 5927 (9.11) 66.45 (5.81) €005 | 5509 (9.35) 62.34 (10.08) <0.05
BMI 2472 [22.58,2730] | 23.97 [21.92,25.31] 0182 2429[2272,2554] | 2508 [23.82,2684]  0.187 | 2439 [23.26,2633] 2261 [21.24,2637] | 0.100 2443 [22.74,26.54] | 24.08 [2140,2631] | 0.191
Menopausal 0.057 0.045 0.039 <0.05
status
Premenopausal | 32 (44.44%) 6 (21.43%) 10 (41.67%) 2 (10.00%) 10 (22.73%) 0 (0.00%) 52 (37.14%) 8 (11.43%)
postmenopausal | 40 (55.56%) 22 (78.57%) 14 (58.33%) 18 (90.00%) 34 (77.27%) 22 (100.00%) 88 (62.86%) 62 (88.57%)
N )

eproductive 50.999 0.837 50.999 0837
History
Absent 4 (5.56%) 1(3.57%) 3 (12.50%) 1(5.00%) 1 (227%) 0 (0.00%) 8 (5.71%) 2 (2.86%)
Present 68 (94.44%) 27 (96.43%) 21 (87.50%) 19 (95.00%) 43 (97.73%) 22 (100.00%) 132 (94.29%) 68 (97.14%)
Other 50.999 0.837 0.999 0343
carcinoma
Absent 67 (93.06%) 27 (96.43%) 22 (91.67%) 20 (100.00%) 42 (95.45%) 21 (95.45%) 131 (93.57%) 68 (97.14%)
Present 5 (6.94%) 1(3.57%) 2 (8.33%) 0 (0.00%) 2 (4.55%) 1 (4.55%) 9 (6.43%) 2 (2.86%)
Diabetes 0.723 0.738 0.143 50.999
Absent 55 (76.39%) 23 (82.14%) 21 (87.50%) 19 (95.00%) 35 (79.55%) 13 (59.09%) 111 (79.29%) 55 (78.57%)
Present 17 (23.61%) 5 (17.86%) 3 (12.50%) 1 (5.00%) 9 (20.45%) 9 (40.91%) 29 (20.71%) 15 (21.43%)
Histopathologic <0.05 <0.05 <0.05 <0.05
grade
L de 1
OSZ)(gm ¢ 53 (73.61%) 0 (0.00%) 15 (62.50%) 0 (0.00%) 38 (86.36%) 0 (0.00%) 106 (75.71%) 0 (0.00%)
High (grade 3
and USCy) 19 (26.39%) 28 (100.00%) 9 (37.50%) 20 (100.00%) 6 (13.64%) 22 (100.00%) 34 (24.29%) 70 (100.00%)
FIGO staging

<0.05 <0.05 <0.05 <0.05
(2023)
Ia 44 (61.11%) 0 (0.00%) 16 (66.67%) 0 (0.00%) 30 (68.18%) 0 (0.00%) 90 (64.29%) 0 (0.00%)
Ib or higher 28 (38.89%) 28 (100.00%) 8 (33.33%) 20 (100.00%) 14 (31.82%) 22 (100.00%) 50 (35.71%) 70 (100.00%)
CA125 2350 [14.75,37.65] | 18.80 [15.14,39.52] 0893 17.30 [12.38, 29.33] 1838 [13.90,2506] 0906 | 2045 [11.61,28.61] 5399 [17.23,130.68] = 0005  21.60 [13.70,32.93] 2061 [14.85 5421]  0.167
CA199 14.80 [8.38, 30.03] 14.79 [10.24,20.49] 0721 1255 [7.43, 18.30] 14.08 [6.85, 23.09] 0588 | 1976 [12.61,39.07] | 20.53 [12.89,32.14] | 0698 | 1540 [9.18, 30.03] 15.75 [9.83, 24.40] 0.734
CEA 155 [1.18, 2.23] 1.85 [1.31, 2.40] 0365 145 (118, 2.13] 167 [1.10, 2.33] 0953 150 [L.18, 2.13] 1.74 [1.28, 2.90] 0139 150 [1.18, 2.20] 1.75 [1.20, 2.70] 0.176
(Continued)
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TABLE 1 Continued

Variable

Training set, N = 100

EE®

N = 72 (72%)*

usc

N = 28 (28%)*

Internal-testing set, N = 44

EE@®

N = 24 (55%)

usc

N = 20 (45%)

External-testing set, N = 66

EEC

N = 44 (67%)*

usc

N = 22 (33%)*

Summation,

EE@

N = 140 (67%)*

usc

N = 70 (33%)

HEA4 78.06 [56.33,107.4] 99.90 [69.75,146.3] 024 77.04 [62.98,122.25] | 77.50 [60.16,10030] | 0939  79.38 [61.49,127.31] gzjg][lzs.lo, <005 | 77.90 [59.18, 11636] | 107.40 [70.85, 197.98] = <0.05
Tumor size 3.32 [2.53, 4.86] 3.38 [2.55, 4.58] 0939 3.3 [1.93, 4.60] 3.19 [2.14, 4.38] 0939 321 (202, 431] 3.96 [3.13, 5.46] 0240 329 [2.22,475] 3.51 [2.47, 4.92] 0.837
Tumor
Vol 7.83 [2.28, 18.19] 9.06 [4.53, 26.26] 0501 9.02 [1.71,26.15] 6.86 [2.64, 15.38] 0972 | 624 [1.17, 15.93] 13.86 [4.78, 35.38] 0048 736 [1.95, 18.19] 10.82 [3.71, 26.43] 0121
ET/AP ratio 0.36 [0.27, 0.44] 0.52 [0.36, 0.70] <005 035 [0.26,0.49] 0.53 [033, 0.67] 0048 046 [0.33, 0.59] 0.66 [0.52, 0.79] 0044 038 1[0.28,0.51] 0.56 [0.36, 0.70] <0.05
SIR-CE-TIWI 136 [1.22, 1.5 1.69 [1.45, 1.95] 0006 143 [1.33, 1.66] 1.6 [1.41, 1.98] 0244 139 [1.20, 1.58] 0.97 [0.64, 1.63] 0062 140 [1.23, 1.60] 159 [1.10, 1.95] 0.121
SIR-T2WI 2,06 [1.59, 2.36] 175 [1.29, 2.13] 0188 1.94 [1.66, 2.26] 185 [1.52, 3.01] 0888 2.10 [1.74, 2.55] 165 [1.32, 2.42] 0033 2.04 [1.65, 2.42] 177 [1.35, 2.44] 0.106
SIR-DWI 5.07 [4.21, 6.20] 6.08 [4.28, 7.37] 0274 498 [4.16,7.39] 5.07 [3.86, 6.48] 0502 3.95[3.09, 4.44] 3.67 [2.86, 4.71] 0984  4.67 [3.74, 5.63] 474 [3.57,7.19] 0.651
location 0.007 0.347 0.347 0.143
Cornua uteri 6 (8.33%) 1(3.57%) 4 (16.67%) 2 (10.00%) 5 (11.36%) 1 (4.55%) 15 (10.71%) 4(5.71%)
Fundus of
o 18 (25.00%) 0 (0.00%) 6 (25.00%) 2 (10.00%) 6 (13.64%) 6 (27.27%) 30 (21.43%) 8 (11.43%)
Corpus uteri 48 (66.67%) 27 (96.43%) 14 (58.33%) 16 (80.00%) 33 (75.00%) 15 (68.18%) 95 (67.86%) 58 (82.86%)
Border 0.007 0079 0305 <0.05
Well-defined 38 (52.78%) 4 (14.29%) 12 (50.00%) 3 (15.00%) 16 (36.36%) 4 (18.18%) 66 (47.14%) 11 (15.71%)
TIl-defined 34 (47.22%) 24 (85.71%) 12 (50.00%) 17 (85.00%) 28 (63.64%) 18 (81.82%) 74 (52.86%) 59 (84.29%)
IG"E:;?‘;“M 0.037 0367 0.198 <0.05
Absent 28 (38.89%) 3 (10.71%) 8 (33.33%) 3 (15.00%) 13 (29.55%) 2 (9.09%) 49 (35.00%) 8 (11.43%)
Present 44 (61.11%) 25 (89.29%) 16 (66.67%) 17 (85.00%) 31 (70.45%) 20 (90.91%) 91 (65.00%) 62 (88.57%)
Diffuse
distribation <0.05 0010 0929 <0.05
Absent 49 (68.06%) 7 (25.00%) 17 (70.83%) 4 (20.00%) 18 (40.91%) 8 (36.36%) 84 (60.00%) 19 (27.14%)
Present 23 (31.94%) 21 (75.00%) 7 (29.17%) 16 (80.00%) 26 (59.09%) 14 (63.64%) 56 (40.00%) 51 (72.86%)
:Zi:f: of 0367 0771 0.108 0037
Absent 58 (80.56%) 19 (67.86%) 18 (75.00%) 13 (65.00%) 37 (84.09%) 13 (59.09%) 113 (80.71%) 45 (64.29%)
Present 14 (19.44%) 9 (32.14%) 6 (25.00%) 7 (35.00%) 7 (15.91%) 9 (40.91%) 27 (19.29%) 25 (35.71%)
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TABLE 1 Continued

Variable

Training set, N = 100

EE®

N = 72 (72%)*

usc

N = 28 (28%)*

Internal-testing set, N = 44

EE@®

N = 24 (55%)

usc

N = 20 (45%)

External-testing set, N = 66

EEC

N = 44 (67%)*

usc

N = 22 (33%)*

Summation,

EE@

N = 140 (67%)*

usc

N = 70 (33%)

E:S;'r‘:}ela‘;i 50.999 0.999 0.005 0.11
Absent 62 (86.11%) 24 (85.71%) 19 (79.17%) 15 (75.00%) 44 (100.00%) 16 (72.73%) 125 (89.29%) 55 (78.57%)
Present 10 (13.89%) 4(1429%) 5 (20.83%) 5 (25.00%) 0 (0.00%) 6 (27.27%) 15 (10.71%) 15 (21.43%)
i't’lh?;v‘ﬁene“y 0013 0435 0.421 0.005
Absent 50 (69.44%) 10 (35.71%) 15 (62.50%) 9 (45.00%) 23 (52.27%) 8 (36.36%) 88 (62.86%) 27 (38.57%)
Present 22 (30.56%) 18 (64.29%) 9 (37.50%) 11 (55.00%) 21 (47.73%) 14 (63.64%) 52 (37.14%) 43 (61.43%)
:ﬁ:s:’cge:;f 0171 0.563 0.110 0018
Absent 45 (62.50%) 12 (42.86%) 14 (58.33%) 9 (45.00%) 24 (54.55%) 6 (27.27%) 83 (59.29%) 27 (38.57%)
Present 27 (37.50%) 16 (57.14%) 10 (41.67%) 11 (55.00%) 20 (45.45%) 16 (72.73%) 57 (40.71%) 43 (61.43%)
x::g;:m 0179 0.301 0179 0.032
<50% 47 (65.28%) 13 (46.43%) 17 (70.83%) 10 (50.00%) 30 (68.18%) 10 (45.45%) 94 (67.14%) 33 (47.14%)
>47. 25 (34.72%) 15 (53.57%) 7 (29.17%) 10 (50.00%) 14 (31.82%) 12 (54.55%) 46 (32.86%) 37 (52.86%)
;Z‘rr:aall invasion 0.170 0.495 0.170 0.024
Absent 67 (93.06%) 22 (78.57%) 22 (91.67%) 16 (80.00%) 143 (97.73%) 18 (81.82%) 132 (94.29%) 56 (80.00%)
Present 5 (6.94%) 6 (21.43%) 2 (8.33%) 4(20.00%) 1 (227%) 4 (18.18%) 8 (5.71%) 14 (20.00%)
::::I'::;ial 50.999 0.556 0457 0.662
Absent 70 (97.22%) 28 (100.00%) 24 (100.00%) 19 (95.00%) 44 (100.00%) 21 (95.45%) 138 (98.57%) 68 (97.14%)
Present 2 (2.78%) 0(0.00%) 0 (0.00%) 1 (5.00%) 0 (0.00%) 1 (4.55%) 2 (1.43%) 2 (2.86%)
gi‘;f::;em 0.016 0432 0.039 <0.05
Absent 69 (95.83%) 21 (75.00%) 22 (91.67%) 15 (75.00%) 44 (100.00%) 18 (81.82%) 135 (96.43%) 54 (77.14%)
Present 3 (4.17%) 7 (25.00%) 2 (8.33%) 5 (25.00%) 0 (0.00%) 4 (18.18%) 5 (3.57%) 16 (22.86%)
Ezldveicnlf::;ls’t};m 0.040 0974 <0.05 <0.05
Absent 66 (91.67%) 20 (71.43%) 18 (75.00%) 16 (80.00%) 44 (100.00%) 13 (59.09%) 128 (91.43%) 49 (70.00%)
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'Mean (SD); Median [IQR]; n (%).

2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

3Wilcoxon rank sum test; Wilcoxon rank sum exact test; Pearson’s Chi-squared test; Fisher’s exact test

*The Benjamini-Hochberg procedure was used to adjust for multiple testing.

10.3389/fonc.2025.1655384

accurate and noninvasive classification of USC and EEC is vital in
clinical practice. Our retrospective multicenter study revealed that
combining the radiomics and DL features extracted from
multiparametric MRI with clinical-radiological features could
enhance the preoperative differential diagnosis accuracy between
USC and EEC.

In this study, we observed that USC was more prevalent in
postmenopausal women and associated with elevated HE4 levels,
advanced FIGO staging, and higher histopathological grades. These
findings underscore the aggressive nature of USC and align with
results from other studies (7, 32, 33). Previous studies have reported
notably higher median levels of CA125 and HE4 in endometrial
cancer patients compared to healthy controls (34, 35). Our study
found that serum HE4 levels were significantly higher in USC
patients compared to EEC patients (p < 0.001) while no significant
difference was observed in CA125 levels. This indicates that HE4
could be a more effective tumor marker for differential diagnosis in
EC, complementing existing diagnostic approaches that combine
ultrasonographic and inflammatory markers (34, 36, 37).
Additionally, elevated serum HE4 levels may correlate with age,
deeper myometrial invasion, extrauterine disease, and poorer
prognosis (34, 36, 38), reinforcing its clinical utility in risk
stratification. To date, only one research has primarily focused on
conventional MRI signs to differentiate between USC and EEC (11),
with findings indicating that USC often presents a heterogeneous
signal, peritoneal dissemination, and abnormal ascites, aligning
with our observations. Expanding upon these findings, our study
identified the imaging characteristics of USC as exhibiting
aggressive biological behaviors, including a higher ET/AP ratio,
ill-defined tumor borders, infiltrative growth patterns, diffuse
distribution, deep myometrial invasion, cervical stromal invasion,
adnexal involvement, pelvic lymph node metastasis, and peritoneal
dissemination. Additionally, USC displayed heterogeneous imaging
features characterized by necrosis, inhomogeneity, and
heterogeneous enhancement. By integrating histopathologic grade,
FIGO staging, ET/AP ratio, and diffuse distribution identified
through the LASSO algorithm, our clinical-radiological model
demonstrated strong diagnostic performance in differentiating
USC from EEC, with an AUC of 0.861 in the internal test set and
0.700 in the external test set. This multimodal approach echoes the
emerging trend in endometrial cancer diagnostics that combines
imaging parameters with laboratory biomarkers to improve
diagnostic accuracy (37-39).

In our study, we utilized whole-volume multiparametric MRI
radiomics features extracted from multicenter data to enhance
diagnostic accuracy and provide comprehensive insights into
tumor heterogeneity (17, 18). The radiomics model, which
included 15 features from CE-T1WI, 10 from T2WI images, and
5 from DWI, demonstrated moderate performance, achieving AUC
values of 0.934 and 0.750 in the internal and external testing sets,
respectively. The high number of features derived from CE-T1WI
underscores its advantages over other imaging modalities, as it
offers better tissue differentiation and contrast resolution, allowing
for more precise characterization of the tumor’s morphological and
vascular features. This results in a greater ability to capture relevant
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FIGURE 3

Patient predict scores output by the combined model in the training and testing sets (A—C). Receiver operation characteristic (ROC) curves of
different models in the internal-testing set and external-testing set (D, E). The all-combined model had the best discriminating ability among seven
models, with an area under the curve (AUC) of 0.957 in the internal-testing set and 0.880 in the external-testing set. Decision curve analysis (DCA)
of the different models in the internal-testing set and external-testing set (F, G). The x-axis means the high-risk threshold, and the y-axis means

clinic net benefit.

radiomic features indicative of tumor biology and behavior.
Moreover, our findings suggest that the T2WI sequence may play
a crucial role in non-enhanced MRI protocols for diagnosing
endometrial diseases, providing excellent contrast and spatial
resolution that facilitate detailed visualization of anatomical
features which is crucial for accurate diagnosis and evaluation,
consistent with previous reports (39, 40). Additionally, the largest
subset of features in our radiomics model was extracted from the
gray-level co-occurrence matrix (GLCM) and related analyses,
providing critical insights into the histopathological
characteristics of endometrial cancer, facilitating the
differentiation of tumor grades and aggressiveness. By evaluating
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features such as inverse variance, cluster shade, and zone
percentage, clinicians can better understand the tumor’s structural
complexity and its potential impact on prognosis and
treatment decisions.

Recent advances in DL have demonstrated its considerable
potential in gynecologic oncologic imaging, with studies showing
its ability to detect intricate patterns in medical images and achieve
diagnostic accuracy comparable to or even surpassing human
experts (22, 41-43). In our study, both radiomics and DL features
were extracted from the same manually segmented volumes of
interest. However, they represent fundamentally different
paradigms of image analysis. Handcrafted radiomics relies on
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Model name

AUC (95%Cl)

Accuracy
(95%Cl)

TABLE 2 Performances of the predictive models in the training and test sets. (revised version).

Sensitivity
(95%Cl)

10.3389/fonc.2025.1655384

Specificity
(95%Cl)

F1 score
(95%Cl)

Clinical-radiological

Radiomics

DL

Training
Internal-test
External-test

Training
Internal-test
External-test

Training
Internal-test

External-test

0.910 (0.852-0.968)
0.861 (0.747-0.975)
0.700 (0.552-0.848)
0.977 (0.955-0.999)
0.934 (0.862-0.999)
0.750 (0.632-0.868)
0.976 (0.950-0.999)
0.869 (0.757-0.980)

0.704 (0.572-0.835)

0.85 (0.772-0.928)
0.818 (0.704-0.932)
0.773 (0.669-0.877)
0.920 (0.865-0.975)
0.886 (0.800-0.972)
0.652 (0.534-0.770)
0.930 (0.882-0.978)
0.818 (0.704-0.932)

0.636 (0.518-0.754)

0.886 (0.815-0.957)
0.692 (0.519-0.865)
0.555 (0.401-0.709)
0.903 (0.836-0.970)
0.833 (0.698-0.968)
0.523 (0.372-0.674)
0.900 (0.831-0.969)
0.769 (0.614-0.924)

0.545 (0.394-0.696)

0.767 (0.657-0.877)
0.999 (0.993-1.000)
0.647 (0.492-0.802)
0.964 (0.917-1.000)
0.889 (0.784-0.994)
0.909 (0.818-1.000)
1.000 (1.000-1.000)
0.889 (0.784-0.994)

0.818 (0.691-0.945)

0.892 (0.828-0.956)
0.818 (0.704-0.932)
0.845 (0.756-0.934)
0.942 (0.897-0.987)
0.906 (0.826-0.986)
0.667 (0.543-0.791)
0.947 (0.905-0.989)
0.833 (0.723-0.943)

0.667 (0.543-0.791)

Clinical-radiological +
radiomics

Clinical-radiological + DL

Training

0.984 (0.950-0.999)

0.910 (0.852-0.968)

0.889 (0.821-0.957)

0.964 (0.917-1.000)

0.934 (0.885-0.983)

Internal-test
External-test
Training
Internal-test

External-test

0.944 (0.881-0.999)
0.810 (0.698-0.922)
0.918 (0.858-0.978)
0.904 (0.819-0.988)

0.688 (0.551-0.825)

0.841 (0.731-0.951)
0.742 (0.638-0.846)
0.860 (0.789-0.931)
0.795 (0.673-0.917)

0.652 (0.534-0.770)

0.846 (0.715-0.977)
0.727 (0.589-0.865)
0.833 (0.747-0.919)
0.692 (0.519-0.865)

0.614 (0.466-0.762)

0.833 (0.698-0.968)
0.773 (0.639-0.907)
0.929 (0.863-0.995)
0.944 (0.857-1.000)

0.727 (0.591-0.863)

0.863 (0.769-0.957)
0.790 (0.683-0.897)
0.896 (0.833-0.959)
0.800 (0.674-0.926)

0.701 (0.579-0.823)

DL + radiomics

Clinical-radiological +
radiomics + DL

Training

0.999 (0.995-1.000)

0.980 (0.957-1.000)

0.972 (0.937-1.000)

1.000 (1.000-1.000)

0.986 (0.970-1.000)

Internal-test
External-test
Training
Internal-test

External-test

0.908 (0.824-0.991)
0.767 (0.648-0.885)
0.994 (0.984-1.000)
0.957 (0.904-1.000)

0.880 (0.800-0.961)

0.818 (0.704-0.932)
0.773 (0.669-0.877)
0.970 (0.937-1.000)
0.886 (0.800-0.972)

0.742 (0.638-0.846)

0.808 (0.667-0.949)
0.795 (0.667-0.923)
0.986 (0.963-1.000)
0.923 (0.829-1.000)

0.636 (0.486-0.786)

0.833 (0.698-0.968)
0.727 (0.591-0.863)
0.929 (0.863-0.995)
0.833 (0.698-0.968)

0.955 (0.887-1.000)

0.840 (0.733-0.947)
0.824 (0.725-0.923)
0.979 (0.959-0.999)
0.906 (0.826-0.986)

0.767 (0.659-0.875)

pre-defined mathematical descriptors (e.g., texture, shape, first-
order statistics) to quantify explicit tumor characteristics, offering
high interpretability. In contrast, the deep learning approach
processes raw image data through multiple convolutional and
nonlinear layers, autonomously learning hierarchical, spatially
contextual, and often abstract features that are not captured by
conventional radiomics frameworks (18). The model integrating
both feature types (DLR) demonstrated superior performance
compared to models using either alone on the external-testing set
(AUC = 0.767 vs. 0.750 for radiomics and 0.704 for DL), suggesting
their features are complementary. This complementarity was
further supported by the observation that the radiomics model
achieved higher specificity (0.909 vs. 0.818) while the DL model
showed higher sensitivity (0.545 vs. 0.523) in the external-testing
set. We posit that while radiomics effectively quantifies known
morphological patterns, DL may capture more subtle and complex
spatial hierarchies within the tumor, contributing unique
discriminatory information for differentiating USC from EEC.
Notably, in our cohort, the model based solely on traditional
radiomics features outperformed the DL model. This observation
contrasts with some previous studies that have reported the
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superiority of DL over radiomics (30, 44, 45). We hypothesize
that this discrepancy may be attributed to the data-hungry nature of
deep learning; convolutional neural networks typically require
large-scale datasets to effectively learn complex and robust spatial
features (46). Our limited sample size, particularly for the minority
USC class, may have constrained the DL model’s performance and
increased its susceptibility to overfitting (47). This finding
underscores the importance of dataset size and characteristics
when selecting and developing AI methodologies for medical
imaging tasks.

The proposed all-combined model exhibited superior
performance, with an AUC of 0.957 in the internal-testing set
and 0.880 in the external-testing set. It effectively characterizes
intratumoral heterogeneity from medical images across various
levels in a noninvasive and robust manner, thereby providing
valuable insights into cancer (45, 48, 49). The integration of high-
dimensional features enhances sensitivity in disease diagnosis and
prediction, offering detailed information for clinicians (20). The
sensitivity of our model necessitates that it be applied as a decision-
support tool within a multidisciplinary framework. A negative
output should not preclude comprehensive staging surgery when

frontiersin.org


https://doi.org/10.3389/fonc.2025.1655384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shen et al.

EEC

USC

FIGURE 4
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Visualization of the attention regions by the deep convolutional neural network of a 55-year-old patient who was confirmed EEC (A, B) and a 67-
year-old patient who was confirmed USC (C, D). The red and yellow regions represent the areas with higher activation, whereas the blue and green

regions represent the areas with lower activation

clinical suspicion, biopsy results, or conventional imaging features
suggest an aggressive tumor. Its primary value lies in its high
specificity, which can provide robust supporting evidence for
managing cases with ambiguous preoperative findings. To the
best of our knowledge, this study is the first to apply the DL
features and traditional radiomic features for differentiating USC
from EEC. Our study is distinguished by utilizing the largest sample
size to date and employing an independent external-testing set for
model validation, achieving satisfactory prediction efficiency. By
providing clinicians with a reliable tool for personalized treatment
stratification, our model complements existing Al systems for
endometrial cancer detection and risk assessment (43, 50),
ultimately contributing to a more comprehensive AI-powered
diagnostic ecosystem for endometrial cancer management.

Our study has several limitations. First, its retrospective design
carries an inherent risk of selection bias, as only patients undergoing
surgical resection were included, thereby excluding those with
inoperable advanced disease or conservative management—
potentially limiting generalizability. Second, despite protocol
harmonization, inter-scanner variability across institutions may
introduce information bias and residual batch effects, which
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although mitigated through normalization and feature stability
analysis, remains a concern. Third, the manual ROI delineation is
inherently subjective; we minimized inter-observer variability by using
only features with high agreement (ICC > 0.75), but fully automated
segmentation is needed in the future. Fourth, while we adjusted for
key confounders in our model, residual confounding from
unmeasured factors remains possible. Fifth, additional sensitivity
analyses, such as employing alternative feature selection methods or
machine learning algorithms, could further reinforce robustness.
Finally, the potential for overfitting remains a limitation due to the
high dimensionality of radiomics and deep learning features relative to
our sample size, particularly for the rare USC subtype. Further
prospective validation in larger, multi-centric cohorts is essential to
confirm the ultimate generalizability of our model.

Conclusion

In conclusion, based on our dataset, this study demonstrates
that this predictive model, which integrates multiparametric-MRI
radiomics, deep learning features and clinical-radiological features,
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can effectively distinguish between USCs and EECs. The findings
from this study could significantly inform clinical decision-making,
ultimately leading to more personalized treatment strategies and
improved patient outcomes for EC.
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