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Background: Uterine serous carcinoma (USC) and endometrioid endometrial

carcinoma (EEC) are distinct subtypes of endometrial cancer with markedly

different prognoses and management strategies. Accurate preoperative

differentiation between USC and EEC is of great significance for tailoring

surgical planning and adjuvant therapy.

Purpose: To develop and validate a multiparametric MRI-based radiomics and

deep learning (DL) model for preoperative distinguishing USC from EEC.

Methods: A total of 210 patients (68 USCs and 142 EECs) from four hospitals who

underwent preoperative MRI were enrolled in this retrospective study. Features

from radiomics and deep learning were extracted using T2-weighted imaging

(T2WI), diffusion-weighted imaging (DWI), and contrast enhanced MRI (CE-MRI).

The least absolute shrinkage and selection operator (LASSO) analysis was

employed to identify the most valuable features. Clinical-radiological

characteristics, radiomics and DL features were constructed using a support

vector machine (SVM) algorithm. The models were evaluated using receiver

operating characteristic (ROC) and decision curve analysis (DCA).

Results: The all-combined model of clinical-radiological characteristics,

radiomics and DL features showed better discrimination ability than either

alone. The all-combined model demonstrated superior classification

performance, achieving an AUC of 0.957 (95% CI: 0.904–1.000) on the

internal-testing set and an AUC of 0.880 (95% CI: 0.800–0.961) on the

external-testing set. The DLR model demonstrated superior predictive

performance compared to the clinical-radiological model, although the

differences were not statistically significant in both the internal-testing set
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1655384/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1655384&domain=pdf&date_stamp=2025-10-08
mailto:duanxh5@mail.sysu.edu.cn
mailto:lindaiying917@163.com
https://doi.org/10.3389/fonc.2025.1655384
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1655384
https://www.frontiersin.org/journals/oncology


Abbreviations: AUC, Area Under the Curve; CE-MR

Magnetic Resonance Imaging; CNN, Convolutional N

Dynamic Contrast-Enhanced; DL, Deep Learning; DW

Imaging; EC, Endometrial Cancer; EEC, Endometrioid E

FIGO, International Federation of Gynecology and Ob

Absolute Shrinkage and Selection Operator; MRI, Magne

USC, Uterine Serous Carcinoma.

Shen et al. 10.3389/fonc.2025.1655384

Frontiers in Oncology
(AUC = 0.908 vs. 0.861, p = 0.504) and the external-testing set (AUC = 0.767 vs.

0.700, p = 0.499). The DCA revealed that the all-combined model illustrated the

best overall net benefit in clinical application.

Conclusion: The integrated model, combining multiparametric MRI-based

radiomics, deep learning features, and clinical-radiological characteristics, may

be utilized for the preoperative differentiation of USC from EEC.
KEYWORDS

magnetic resonance imaging, radiomics, deep learning, uterine serous carcinoma,
endometrial cancer
Introduction

In 2020, endometrial cancer (EC) ranked as the sixth most

prevalent cancer among women worldwide, with 417,000 new cases

diagnosed (1). Endometrioid carcinoma (EEC) represents the

predominant histological subtype of EC, comprising 85-90% of

cases. EEC is linked to a reduced risk of progression and a favorable

prognosis, especially in low-grade cases (2). Uterine serous

carcinoma (USC), the second most prevalent type of EC,

constitutes only 5% to 10% of EC cases but accounts for 40% of

deaths related to EC (3–6). Patients with USC often exhibit lymph

vascular space invasion, nodal involvement, and microscopic

peritoneal spread, even in early-stage disease with limited

myometrial invasion (3, 7). This leads to a 2.5-fold higher risk of

being diagnosed with stage III or IV disease compared to those with

EEC (46% in USC vs. 20% in EEC) (7). Surgery is crucial for treating

EC, with USC requiring more extensive resection than EEC. Pelvic

and paraaortic lymphadenectomy, peritoneal biopsies are

recommended for early-stage USC (8).

Currently, the preoperative distinction between USC and EEC

relies heavily on invasive procedures such as endometrial biopsy or

dilation and curettage (D&C). However, these invasive techniques

are susceptible to sampling error in the presence of tumor

heterogeneity, not infrequently leading to discordance between

preoperative and final postoperative histology (9, 10). For

instance, in a large series, nearly one-third of tumors initially

diagnosed as low-grade endometrioid carcinoma were upgraded

or reclassified as high-grade carcinoma upon examination of the

hysterectomy specimen (10). This diagnostic inaccuracy can lead to

suboptimal surgical planning. Therefore, a non-invasive method
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capable of providing a holistic assessment of the entire tumor is

highly desirable to complement biopsy findings.

Magnetic resonance imaging (MRI) has been widely used in the

diagnosis and differential diagnosis of EC (11–16). A recent study

has highlighted the unique MRI characteristics associated with

USC, notably heterogeneous signal intensity suggestive of

peritoneal dissemination and the presence of abnormal ascites,

serving as distinguishing features from EEC (11). Furthermore,

imaging parameters derived from diffusion-weighted imaging

(DWI), dynamic contrast-enhanced (DCE) MRI, and amide

proton transfer (APT) imaging have improved diagnostic

accuracy and facilitated the differentiation of endometrial

carcinoma subtypes (13–16). However, due to the rarity of USC

and consequent limited sample sizes, its preoperative radiological

characteristics are not well-defined, and the diagnostic performance

of conventional MRI interpretation remains variable and

suboptimal, with area under the curve (AUC) values ranging

from 0.62 to 0.826 (13, 16).

Radiomics extracts high-throughput features from traditional

images and capturing intratumoral heterogeneity that is easily

missed by blind biopsies (17). Meanwhile, deep learning (DL) has

demonstrated superior performance in image analysis tasks by

automatically learning intricate patterns from data (18, 19). These

techniques have been increasingly applied in EC for preoperative

prediction of high-grade tumors, lymph node metastasis,

lymphvascular space invasion, cervical stromal invasion, and deep

myometrial invasion (20–27). However, two critical gaps persist in the

literatures. First, while previous studies have focused on predicting

tumor grade (20, 26) or broadly differentiating type II from type I EC

(25), the specific discrimination between USC and EEC—a distinction

with significant therapeutic implications—has not been systematically

explored using an integrated radiomics and DL approach

complemented by clinical-radiological data. Second, most of these

previous existing models are derived from single-center cohorts and

lack robust external validation, limiting their generalizability.

Therefore, this study aimed to develop and validate, for the first

time, a multicenter-integrated model utilizing multiparametric

MRI-based clinical, radiomics, and deep learning features for the

preoperative differentiation of USC from EEC.
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Materials and methods

Patients

This retrospective study was approved by the Ethics

Committees of the respective institutions, with informed consent

waived due to its retrospective nature. Prior to analysis, all patient

data was deidentified to ensure the confidentiality and anonymity of

personal information.

We identified a cohort of 311 patients from four medical centers

who underwent gynecological surgery, including 111 with USC and

200 with EEC. The participating centers were as follows: Shantou

Central Hospital (Institution I), Sun Yat-Sen Memorial Hospital

(Institution II), Sun Yat-Sen University Cancer Center (Institution

III), and Cancer Hospital of Shantou University Medical College
Frontiers in Oncology 03
(Institution IV). The specific data collection timelines for each

institution and histological subtype are detailed in Supplementary

Table 1. The inclusion criteria required (a) USC and EEC confirmed

surgically and pathologically; (b) a pelvic MRI conducted within 14

days before gynecological surgery. The exclusion criteria

encompassed: (a) maximum tumor diameter under 1 cm; (b)

incomplete MRI examination; (c) incomplete pathology report;

(d) presence of mixed cellular components and (e) history of

neoadjuvant therapy. Ultimately, a total of 210 patients were

included in the study, comprising 68 with USCs and 142 with

EECs. Patients from Institution I and II were randomly assigned to

a training cohort (100 patients) and an internal test cohort (44

patients) in a 7:3 ratio. A total of 66 patients were included as an

external test cohort by Institutions III and IV. Figure 1 illustrates

the flowchart of the patient recruitment process.
FIGURE 1

Flowchart of patient recruitment.
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MRI acquisition

MRI was performed using either a 3.0-T or 1.5-T scanner with a

pelvic phased-array surface coil. Institutions I and II utilized Siemens

Magnetom Verio (3.0-T) and Siemens Magnetom Area (1.5-T)

scanners, while institutions III and IV employed Siemens

Magnetom Avanto (1.5-T) and GE Medical System Discovery

HD750 (3.0-T) scanners. The sequences obtained included axial

and sagittal T2-weighted imaging(T2WI), diffusion-weighted

imaging (DWI) with a b-value of 800 or 1000 s/mm², and axial and

sagittal contrast-enhanced MRI (CE-MRI). CE-MRI was conducted

following the administration of gadolinium chelate (Gadovist, Bayer)

at a dosage of 0.2 mmol/kg body weight. The detailedMRI acquisition

protocols are summarized in Supplementary Table 2.
Clinical and conventional MR evaluation

Clinical data were collected from medical records,

encompassing age, body mass index (BMI), menopausal status,

obstetric history, family history of malignancy, diabetes history,

International Federation of Gynecology and Obstetrics (FIGO)

stage (2023), tumor markers (CA-125, CA-199, CEA, HE4), and

details of myometrial and cervical stromal invasion, adnexal

involvement, parametrial invasion, lymph node metastasis, and

presence of abnormal ascites. For subsequent modeling, tumor

grade was categorized as follows: (a) low grade, comprising FIGO

grades 1 and 2 endometrioid carcinoma, and (b) high grade,

consisting of FIGO grade 3 endometrioid carcinoma or uterine

serous carcinoma (8). Additionally, in accordance with European

Society for Medical Oncology guidelines, FIGO stage was

categorized into early (IA) and advanced (IB or higher) stages for

risk stratification (28). For the purpose of baseline characterization

and analysis in this study, FIGO stage and histopathologic grade

were determined based on the preoperative endometrial biopsy or

D&C results, reflecting the diagnostic information available at the

time of initial clinical decision-making.

Two experienced radiologists, LP.L. (Reader 1) with 5 years of

experience and Y.S. (Reader 2) with 8 years of experience in

gynecologic imaging, independently assessed the multiparametric

MR images without access to medical records or pathological data.

They assessed lesion characteristics including location, borders,

growth patterns, diffuse distribution, presence of necrosis and

hemorrhage, tumor largest diameter, tumor volume (calculated as

d1×d2×d3×p/6, where d1 and d2 are measured along and

perpendicular to the uterine long axis in the sagittal plane, and d3

is the largest lateral diameter in the axial plane). Additionally, they

assessed signal intensity ratios (SIR) of the tumor and gluteus

maximus on T2WI, DWI, and CE-T1WI, enhancement patterns

on CE-T1WI, homogeneity, and the ratios of endometrial thickness

(ET) to the largest longitudinal and anteroposterior (AP)

dimensions of the uterus on T2WI sagittal images (12, 29, 30)

(Supplementary Figure 1). Features were evaluated independently

by two radiologists, and any discrepancies were resolved by

consensus. The inter-observer agreement for the qualitative
Frontiers in Oncology 04
clinical-radiological features was assessed using Cohen’s kappa

(k) statistic, and for continuous variables, the intraclass

correlation coefficient (ICC) was used (Supplementary Table 3).
Image segmentation and feature extraction

Figure 2 provides an overview of the study’s pipeline. The

region of interest (ROI) was manually delineated along the

lesion’s edge using ITK-SNAP software on T2WI, DWI, and CE-

T1WI at the delayed phase, ensuring minimal inclusion of normal

tissue to acquire comprehensive tumor data. Each tumor’s

volumetric region of interest (VOI) was segmented. All ROIs

drawing were performed by two experienced radiologists (Reader

1 and Reader 2) blinded to the patients’ histopathology. With 3-

month intervals, 30 patients were randomly selected for Reader 2 to

repeat the tumor ROI drawing. The inter-/intra-observer variability

of the extracted features was assessed by ICC test. ICC > 0.75

indicated satisfactory agreement.

Radiomics analysis was conducted using PyRadiomics version

3.0.1, employing VOIs from T2WI, DWI, and delayed phase CE-

T1WI. Prior to feature extraction, each image sequence was

normalized by centering the gray values at the mean and scaling

them according to the standard deviation, which effectively

minimized variations caused by different scanners, scanning

parameters, and protocols. A total of 535 radiomics features were

extracted from various MRI images (T2WI, DWI, CE-T1WI),

comprising 70 shape features, 90 first-order histogram features,

and texture features including 120 grey level cooccurrence matrix

(GLCM), 80 grey level run length matrix (GLRLM), 80 grey level

size zone matrix (GLSZM), 25 neighboring grey tone difference

matrix (NGTDM), and 70 grey level dependence matrix (GLDM).

The study design adhered to the reporting guidelines of the Image

Biomarker Standardization Initiative (IBSI) (31).

DL features were extracted utilizing a pre-trained Resnet50

convolutional neural network (CNN) model. Before extracting DL

features, the data undergoes processing through these steps: (1)

select the mask with the largest ROI in the labeled MRI; (2) crop

MRI images using minimal bounding rectangles; (3) resize the

tumor patch to 224 × 224 pixels. The Resnet50 network was initially

pre-trained on the ImageNet dataset, followed by transfer learning

on the training set. Upon completing Resnet50 training, we

extracted 2048 deep learning features from each patch using the

penultimate average pooling layer of the model. The features were

then compressed to a set of 64 features using principal component

analysis (PCA). Eventually, a total of 320 DL features was extracted

from all series. Gradient-weighted class activation mapping (Grad-

CAM) was employed to enhance model transparency and explore

interpretability through visualization.
Feature selection

We applied z-score normalization to all features and removed

those with constant values. Radiomics signatures with an ICC
frontiersin.org

https://doi.org/10.3389/fonc.2025.1655384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1655384
greater than 0.75 were initially screened using the Spearman

correlation test. We retained one feature for further analysis when

the Spearman correlation coefficient between two features exceeded

0.9. These features were further screened using the least absolute

shrinkage and selection operator (LASSO). The regularization

parameter (l) was tuned using the one-standard error of the

minimum criteria (1-SE criteria) alongside tenfold cross-

validation-based feature selection (see Supplementary Figure 2).

Following feature selection, the synthetic minority oversampling

technique (SMOTE) algorithm was employed on the training set,

but using only the features selected by LASSO, to balance the

minority class samples for the subsequent model training step.
Model construction and validation

A SVM (support vector machine) algorithm was employed to

construct seven models including a clinical-radiological model

utilizing clinical and radiological data, a radiomics model using

radiomics features, a DL model leveraging deep learning features, a

CR model combining clinical-radiological and radiomics features, a

DLR model integrating radiomics and deep learning features, a

CDL model combining clinical-radiological and deep learning

features, and a comprehensive all-combined model incorporating

all selected features. All feature integrations were performed
Frontiers in Oncology 05
through direct concatenation (feature-level fusion) to maximize

information utilization.

The models were developed in the training set and validated

with both internal and external test sets. Model predictive

performance was evaluated via a receiver operating characteristic

(ROC) curve, with results presented as the area under the curve

(AUC) and corresponding 95% confidence interval (CI). The

accuracy (ACC), sensitivity (SEN), specificity (SPEC), and F1

score were determined using the cut-off value that maximizes the

Youden index from the ROC curve analysis.
Statistical analysis

Characteristics were compared using the independent t-test or

Mann–Whitney U test for continuous variables, and Fisher’ s exact

test or c (2) test for categorical variables, with p-values adjusted via

the Benjamini-Hochberg correction. The DeLong test was employed

to compare the AUCs. Decision curve analysis (DCA) evaluated the

models’ clinical utility by analyzing net benefit across various

threshold probabilities in the testing sets. Statistical analyses were

conducted using Python (version 3.9; https://www.python.org/),

R (version 4.1.2; https://www.r-project.org/) and SPSS (version

26.0; https://www.ibm.com/). Statistical significance was defined

as a two-sided p-value < 0.05. The Benjamini-Hochberg procedure
FIGURE 2

Workflow of model development. CA125, carbohydrate antigen 125; HE4, Human Epididymis Protein 4; ET/AP ratio, ratios of endometrial thickness
to the largest longitudinal and anteroposterior dimensions; LASSO, least absolute shrinkage and selection operator.
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was used to adjust for multiple testing. To assess the adequacy of the

achieved sample size, a post hoc power analysis was conducted using

G*Power software (version 3.1.9.7).
Results

Patient characteristics

This study enrolled 210 patients: divided into a training set of

100, an internal-testing set of 44, and an external-testing set of 66.

The post-hoc power analysis demonstrated a statistical power of

87%, confirming that our sample size is sufficiently. A comparison

between preoperative biopsy and final surgical pathology revealed

discordance in 7 of 210 cases (3.3%), wherein the final diagnosis was

of a higher grade or more aggressive histologic subtype than initially

determined by biopsy. Table 1 details patient characteristics within

the USC and EEC groups across different cohorts. The age and

proportion of postmenopausal patients were higher in the USC

group compared to the EEC group (p < 0.05), patients with USC

usually presented with higher HE4 level, FIGO staging and

histopathologic grade (p < 0.05). Significant disparities were also

observed between USC and EEC groups in terms of ET/AP ratio,

tumor border, infiltrative growth pattern, diffuse distribution,

presence of necrosis, inhomogeneity, heterogenous enhancement,

deep myometrial invasion, cervical stromal invasion, adnexal

involvement and pelvic lymph node metastasis (all p < 0.05).
Development and validation of clinical-
radiological, radiomics, DL and combined
models

Among the 17 clinical-radiological characteristics ,

histopathologic grade, FIGO staging, ET/AP ratio and diffuse

distribution were identified as significant features using the

LASSO algorithm (Supplementary Figure 3A). The mean inter-

and intra-observer reliabilities were 0.821 (95% CI 0.726–0.896) and

0.859 (95% CI 0.773–0.912), indicating excellent consistency in

radiomics features. A total of 194 radiomics features and 160 DL

features of the tumor, each with Spearman correlation coefficients >

0.9, were retained for further selection. Using LASSO algorithms, 30

radiomics features and 14 DL features were selected to construct the

radiomics, DL, and combined models. Supplementary Figure 3

provides additional information on the features chosen by the

LASSO algorithm.

The SVM model was optimized using the training set and

subsequently evaluated on both internal and external test sets.

Figures 3A–C displays the predicted scores for patients,

demonstrating the models’ strong classification capability. Table 2

presents the performance metrics of various models on both the

training and testing datasets. The clinical-radiological model

achieved AUCs of 0.861 (95% CI: 0.747-0.975) and 0.700 (95%

CI: 0.552-0.848) in the internal and external testing set, respectively.

The AUCs of the radiomics model were 0.934 (95% CI: 0.862-0.999)
Frontiers in Oncology 06
and 0.750 (95% CI: 0.632-0.868) in the internal and external testing

set, respectively. The AUCs of the DL model were 0.869 (95% CI:

0.757-0.980) in the internal-testing set, and 0.704 (95% CI:0.572-

0.835) in the external-testing set. The all-combined model showed

excellent predictive performance. The all-combined model

demonstrated superior classification performance in the internal-

testing set with an AUC of 0.957 (95% CI: 0.904-1.000), accuracy of

0.886, sensitivity of 0.923, specificity of 0.833, and F1 score of 0.906,

while in the external-testing set, these values were 0.880 (95% CI:

0.800-0.961), 0.742, 0.636, 0.955, and 0.767, respectively.
Comparison of the clinical-radiological,
radiomics, DL and combined models

DeLong’s test indicated that the all-combined model

demonstrated significantly superior discriminatory ability

compared to both the clinical-radiological model (AUC = 0.880

vs. 0.700, p < 0.05) and DL model (AUC = 0.880 vs. 0.704, p < 0.05)

in the external-testing set (Figure 3E; Supplementary Figure 4).

The all-combined model demonstrated significantly superior

discriminatory power compared to the CR model (AUC = 0.880 vs.

0.810, p < 0.05) and CDL model in the external-testing set

(AUC = 0.880 vs. 0.688, p < 0.05) (refer to Table 2;

Supplementary Figure 4). The DLR model demonstrated superior

predictive performance compared to the clinical-radiological

model, although the differences were not statistically significant in

both the internal-testing set (AUC = 0.908 vs. 0.861, p = 0.504), and

the external-testing set (AUC = 0.767 vs. 0.700, p = 0.499)

(Figures 3D, E; Supplementary Figure 4). Accuracy, sensitivity

and specificity values varied across models, with the best

performance in combined models such as DLR model (accuracy

of 0.980, sensitivity of 0.972 and specificity of 1.000 in training) and

all-combined model (accuracy of 0.742, sensitivity of 0.923 and

specificity of 0.833 in the external test set). These models

consistently outperformed individual models like R model

(sensitivity of 0.652 in the external test set) and C model

(specificity of 0.647 in the external test set). The all-combined

model and DLR achieved the highest F1 scores, with the all-

combined model attaining 0.979 during training and 0.906 in the

internal test set. The decision curves (Figures 3F, G) demonstrated

that the combined model provided a superior overall net benefit

across most reasonable threshold probabilities in both the internal

and external testing sets. Figure 4 illustrates the activation maps

highlighting image regions that significantly contribute to the

feature output recognized by the deep CNN. Overall, the use of a

multiparametric model based on radiomics and DL had better

predictive value in the preoperative differential diagnosis between

USC and EEC.
Discussion

In contrast to EEC, USC is characterized by a high propensity

for metastasis and recurrence, even in its early stages (6). Thus, the
frontiersin.org
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TABLE 1 Baseline characteristics of study sets. (revised version).

Training set, N = 100 Internal-testing set, N = 44 External-testing set, N = 66 Summation, N = 210

*p-
value3
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*p-
value2

33%)1 N = 140 (67%)1 N = 70 (33%)1

1) <0.05 55.09 (9.35) 62.34 (10.08) <0.05

.24, 26.37] 0.100 24.43 [22.74, 26.54] 24.08 [21.40, 26.31] 0.191

0.039 <0.05

52 (37.14%) 8 (11.43%)

0%) 88 (62.86%) 62 (88.57%)

>0.999 0.837

8 (5.71%) 2 (2.86%)

0%) 132 (94.29%) 68 (97.14%)

>0.999 0.343
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<0.05 <0.05
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Variable EEC USC
*p-
value2

EEC USC
*p-
value3

EEC USC

N = 72 (72%)1 N = 28 (28%)1 N = 24 (55%)1 N = 20 (45%)1 N = 44 (67%)1 N = 22 (

Age 53.17 (9.51) 60.04 (12.03) 0.014 53.21 (6.69) 61.05 (9.83) <0.05 59.27 (9.11) 66.45 (5.8

BMI 24.72 [22.58, 27.30] 23.97 [21.92,25.31] 0.182 24.29 [22.72, 25.54] 25.08 [23.82, 26.84] 0.187 24.39 [23.26, 26.33] 22.61 [21

Menopausal
status

0.057 0.045

Premenopausal 32 (44.44%) 6 (21.43%) 10 (41.67%) 2 (10.00%) 10 (22.73%) 0 (0.00%)

postmenopausal 40 (55.56%) 22 (78.57%) 14 (58.33%) 18 (90.00%) 34 (77.27%) 22 (100.0

Reproductive
History

>0.999 0.837

Absent 4 (5.56%) 1 (3.57%) 3 (12.50%) 1 (5.00%) 1 (2.27%) 0 (0.00%)

Present 68 (94.44%) 27 (96.43%) 21 (87.50%) 19 (95.00%) 43 (97.73%) 22 (100.0

Other
carcinoma

>0.999 0.837

Absent 67 (93.06%) 27 (96.43%) 22 (91.67%) 20 (100.00%) 42 (95.45%) 21 (95.45

Present 5 (6.94%) 1 (3.57%) 2 (8.33%) 0 (0.00%) 2 (4.55%) 1 (4.55%)

Diabetes 0.723 0.738

Absent 55 (76.39%) 23 (82.14%) 21 (87.50%) 19 (95.00%) 35 (79.55%) 13 (59.09

Present 17 (23.61%) 5 (17.86%) 3 (12.50%) 1 (5.00%) 9 (20.45%) 9 (40.91%

Histopathologic
grade

<0.05 <0.05

Low (grade 1
or 2)

53 (73.61%) 0 (0.00%) 15 (62.50%) 0 (0.00%) 38 (86.36%) 0 (0.00%)

High (grade 3
and USCs)

19 (26.39%) 28 (100.00%) 9 (37.50%) 20 (100.00%) 6 (13.64%) 22 (100.0

FIGO staging
(2023)

<0.05 <0.05

Ia 44 (61.11%) 0 (0.00%) 16 (66.67%) 0 (0.00%) 30 (68.18%) 0 (0.00%)

Ib or higher 28 (38.89%) 28 (100.00%) 8 (33.33%) 20 (100.00%) 14 (31.82%) 22 (100.0

CA125 23.50 [14.75, 37.65] 18.80 [15.14,39.52] 0.893 17.30 [12.38, 29.33] 18.38 [13.90, 25.06] 0.906 20.45 [11.61, 28.61] 53.99 [17

CA199 14.80 [8.38, 30.03] 14.79 [10.24,20.49] 0.721 12.55 [7.43, 18.30] 14.08 [6.85, 23.09] 0.588 19.76 [12.61, 39.07] 20.53 [12

CEA 1.55 [1.18, 2.23] 1.85 [1.31, 2.40] 0.365 1.45 [1.18, 2.13] 1.67 [1.10, 2.33] 0.953 1.50 [1.18, 2.13] 1.74 [1.28
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TABLE 1 Continued

Training set, N = 100 Internal-testing set, N = 44 External-testing set, N = 66 Summation, N = 210

*p-
value3

EEC USC
*p-
value2

2 (33%)1 N = 140 (67%)1 N = 70 (33%)1

[126.10,
]

<0.05 77.90 [59.18, 116.36] 107.40 [70.85, 197.98] <0.05

.13, 5.46] 0.240 3.29 [2.22, 4.75] 3.51 [2.47, 4.92] 0.837

4.78, 35.38] 0.048 7.36 [1.95, 18.19] 10.82 [3.71, 26.43] 0.121

.52, 0.79] 0.044 0.38 [0.28, 0.51] 0.56 [0.36, 0.70] <0.05

.64, 1.63] 0.062 1.40 [1.23, 1.60] 1.59 [1.10, 1.95] 0.121

.32, 2.42] 0.033 2.04 [1.65, 2.42] 1.77 [1.35, 2.44] 0.106

.86, 4.71] 0.984 4.67 [3.74, 5.63] 4.74 [3.57, 7.19] 0.651

0.347 0.143

%) 15 (10.71%) 4 (5.71%)

7%) 30 (21.43%) 8 (11.43%)

.18%) 95 (67.86%) 58 (82.86%)

0.305 <0.05

8%) 66 (47.14%) 11 (15.71%)

.82%) 74 (52.86%) 59 (84.29%)

0.198 <0.05

%) 49 (35.00%) 8 (11.43%)

.91%) 91 (65.00%) 62 (88.57%)

0.929 <0.05

6%) 84 (60.00%) 19 (27.14%)

.64%) 56 (40.00%) 51 (72.86%)

0.108 0.037

.09%) 113 (80.71%) 45 (64.29%)

1%) 27 (19.29%) 25 (35.71%)

(Continued)
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Variable EEC USC
*p-
value2

EEC USC
*p-
value3

EEC USC

N = 72 (72%)1 N = 28 (28%)1 N = 24 (55%)1 N = 20 (45%)1 N = 44 (67%)1 N = 2

HE4 78.06 [56.33,107.4] 99.90 [69.75,146.3] 0.24 77.04 [62.98,122.25] 77.50 [60.16,100.30] 0.939 79.38 [61.49,127.31]
178.2
286.1

Tumor size 3.32 [2.53, 4.86] 3.38 [2.55, 4.58] 0.939 3.13 [1.93, 4.60] 3.19 [2.14, 4.38] 0.939 3.21 [2.02, 4.31] 3.96 [

Tumor
Volume

7.83 [2.28, 18.19] 9.06 [4.53, 26.26] 0.501 9.02 [1.71, 26.15] 6.86 [2.64, 15.38] 0.972 6.24 [1.17, 15.93] 13.86

ET/AP ratio 0.36 [0.27, 0.44] 0.52 [0.36, 0.70] <0.05 0.35 [0.26, 0.49] 0.53 [0.33, 0.67] 0.048 0.46 [0.33, 0.59] 0.66 [

SIR-CE-T1WI 1.36 [1.22, 1.55] 1.69 [1.45, 1.95] 0.006 1.43 [1.33, 1.66] 1.66 [1.41, 1.98] 0.244 1.39 [1.20, 1.58] 0.97 [

SIR-T2WI 2.06 [1.59, 2.36] 1.75 [1.29, 2.13] 0.188 1.94 [1.66, 2.26] 1.85 [1.52, 3.01] 0.888 2.10 [1.74, 2.55] 1.65 [

SIR-DWI 5.07 [4.21, 6.20] 6.08 [4.28, 7.37] 0.274 4.98 [4.16, 7.39] 5.07 [3.86, 6.48] 0.502 3.95 [3.09, 4.44] 3.67 [

location 0.007 0.347

Cornua uteri 6 (8.33%) 1 (3.57%) 4 (16.67%) 2 (10.00%) 5 (11.36%) 1 (4.5

Fundus of
uterus

18 (25.00%) 0 (0.00%) 6 (25.00%) 2 (10.00%) 6 (13.64%) 6 (27.

Corpus uteri 48 (66.67%) 27 (96.43%) 14 (58.33%) 16 (80.00%) 33 (75.00%) 15 (68

Border 0.007 0.079

Well-defined 38 (52.78%) 4 (14.29%) 12 (50.00%) 3 (15.00%) 16 (36.36%) 4 (18.

Ill-defined 34 (47.22%) 24 (85.71%) 12 (50.00%) 17 (85.00%) 28 (63.64%) 18 (81

Infiltrative
Growth pattern

0.037 0.367

Absent 28 (38.89%) 3 (10.71%) 8 (33.33%) 3 (15.00%) 13 (29.55%) 2 (9.0

Present 44 (61.11%) 25 (89.29%) 16 (66.67%) 17 (85.00%) 31 (70.45%) 20 (90

Diffuse
distribution

<0.05 0.010

Absent 49 (68.06%) 7 (25.00%) 17 (70.83%) 4 (20.00%) 18 (40.91%) 8 (36.

Present 23 (31.94%) 21 (75.00%) 7 (29.17%) 16 (80.00%) 26 (59.09%) 14 (63

Presence of
necrosis

0.367 0.771

Absent 58 (80.56%) 19 (67.86%) 18 (75.00%) 13 (65.00%) 37 (84.09%) 13 (59

Present 14 (19.44%) 9 (32.14%) 6 (25.00%) 7 (35.00%) 7 (15.91%) 9 (40.
0
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TABLE 1 Continued

Training set, N = 100 Internal-testing set, N = 44 External-testing set, N = 66 Summation, N = 210

*p-
value3

EEC USC
*p-
value2

)1 N = 140 (67%)1 N = 70 (33%)1

0.005 0.11

125 (89.29%) 55 (78.57%)

15 (10.71%) 15 (21.43%)

0.421 0.005

88 (62.86%) 27 (38.57%)

52 (37.14%) 43 (61.43%)

0.110 0.018

83 (59.29%) 27 (38.57%)

57 (40.71%) 43 (61.43%)

0.179 0.032

94 (67.14%) 33 (47.14%)

46 (32.86%) 37 (52.86%)

0.170 0.024

132 (94.29%) 56 (80.00%)

8 (5.71%) 14 (20.00%)

0.457 0.662

138 (98.57%) 68 (97.14%)

2 (1.43%) 2 (2.86%)

0.039 <0.05

135 (96.43%) 54 (77.14%)

5 (3.57%) 16 (22.86%)

<0.05 <0.05

128 (91.43%) 49 (70.00%)

(Continued)
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Variable EEC USC
*p-
value2

EEC USC
*p-
value3

EEC USC

N = 72 (72%)1 N = 28 (28%)1 N = 24 (55%)1 N = 20 (45%)1 N = 44 (67%)1 N = 22 (33%

Presence of
hemorrhage

>0.999 >0.999

Absent 62 (86.11%) 24 (85.71%) 19 (79.17%) 15 (75.00%) 44 (100.00%) 16 (72.73%)

Present 10 (13.89%) 4 (14.29%) 5 (20.83%) 5 (25.00%) 0 (0.00%) 6 (27.27%)

Inhomogeneity
on T2WI

0.013 0.435

Absent 50 (69.44%) 10 (35.71%) 15 (62.50%) 9 (45.00%) 23 (52.27%) 8 (36.36%)

Present 22 (30.56%) 18 (64.29%) 9 (37.50%) 11 (55.00%) 21 (47.73%) 14 (63.64%)

Heterogenous
enhancement

0.171 0.563

Absent 45 (62.50%) 12 (42.86%) 14 (58.33%) 9 (45.00%) 24 (54.55%) 6 (27.27%)

Present 27 (37.50%) 16 (57.14%) 10 (41.67%) 11 (55.00%) 20 (45.45%) 16 (72.73%)

Myometrial
Invasion

0.179 0.301

<50% 47 (65.28%) 13 (46.43%) 17 (70.83%) 10 (50.00%) 30 (68.18%) 10 (45.45%)

≥47. 25 (34.72%) 15 (53.57%) 7 (29.17%) 10 (50.00%) 14 (31.82%) 12 (54.55%)

Cervical
Stromal invasion

0.170 0.495

Absent 67 (93.06%) 22 (78.57%) 22 (91.67%) 16 (80.00%) 43 (97.73%) 18 (81.82%)

Present 5 (6.94%) 6 (21.43%) 2 (8.33%) 4 (20.00%) 1 (2.27%) 4 (18.18%)

Parametrial
extension

>0.999 0.556

Absent 70 (97.22%) 28 (100.00%) 24 (100.00%) 19 (95.00%) 44 (100.00%) 21 (95.45%)

Present 2 (2.78%) 0(0.00%) 0 (0.00%) 1 (5.00%) 0 (0.00%) 1 (4.55%)

Adnexal
involvement

0.016 0.432

Absent 69 (95.83%) 21 (75.00%) 22 (91.67%) 15 (75.00%) 44 (100.00%) 18 (81.82%)

Present 3 (4.17%) 7 (25.00%) 2 (8.33%) 5 (25.00%) 0 (0.00%) 4 (18.18%)

Pelvic lymph
node metastasis

0.040 0.974

Absent 66 (91.67%) 20 (71.43%) 18 (75.00%) 16 (80.00%) 44 (100.00%) 13 (59.09%)

https://doi.org/10.3389/fonc.2025.1655384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2025.1655384

Frontiers in Oncology 10
accurate and noninvasive classification of USC and EEC is vital in

clinical practice. Our retrospective multicenter study revealed that

combining the radiomics and DL features extracted from

multiparametric MRI with clinical-radiological features could

enhance the preoperative differential diagnosis accuracy between

USC and EEC.

In this study, we observed that USC was more prevalent in

postmenopausal women and associated with elevated HE4 levels,

advanced FIGO staging, and higher histopathological grades. These

findings underscore the aggressive nature of USC and align with

results from other studies (7, 32, 33). Previous studies have reported

notably higher median levels of CA125 and HE4 in endometrial

cancer patients compared to healthy controls (34, 35). Our study

found that serum HE4 levels were significantly higher in USC

patients compared to EEC patients (p < 0.001) while no significant

difference was observed in CA125 levels. This indicates that HE4

could be a more effective tumor marker for differential diagnosis in

EC, complementing existing diagnostic approaches that combine

ultrasonographic and inflammatory markers (34, 36, 37).

Additionally, elevated serum HE4 levels may correlate with age,

deeper myometrial invasion, extrauterine disease, and poorer

prognosis (34, 36, 38), reinforcing its clinical utility in risk

stratification. To date, only one research has primarily focused on

conventional MRI signs to differentiate between USC and EEC (11),

with findings indicating that USC often presents a heterogeneous

signal, peritoneal dissemination, and abnormal ascites, aligning

with our observations. Expanding upon these findings, our study

identified the imaging characteristics of USC as exhibiting

aggressive biological behaviors, including a higher ET/AP ratio,

ill-defined tumor borders, infiltrative growth patterns, diffuse

distribution, deep myometrial invasion, cervical stromal invasion,

adnexal involvement, pelvic lymph node metastasis, and peritoneal

dissemination. Additionally, USC displayed heterogeneous imaging

features characterized by necrosis, inhomogeneity, and

heterogeneous enhancement. By integrating histopathologic grade,

FIGO staging, ET/AP ratio, and diffuse distribution identified

through the LASSO algorithm, our clinical-radiological model

demonstrated strong diagnostic performance in differentiating

USC from EEC, with an AUC of 0.861 in the internal test set and

0.700 in the external test set. This multimodal approach echoes the

emerging trend in endometrial cancer diagnostics that combines

imaging parameters with laboratory biomarkers to improve

diagnostic accuracy (37–39).

In our study, we utilized whole-volume multiparametric MRI

radiomics features extracted from multicenter data to enhance

diagnostic accuracy and provide comprehensive insights into

tumor heterogeneity (17, 18). The radiomics model, which

included 15 features from CE-T1WI, 10 from T2WI images, and

5 from DWI, demonstrated moderate performance, achieving AUC

values of 0.934 and 0.750 in the internal and external testing sets,

respectively. The high number of features derived from CE-T1WI

underscores its advantages over other imaging modalities, as it

offers better tissue differentiation and contrast resolution, allowing

for more precise characterization of the tumor’s morphological and

vascular features. This results in a greater ability to capture relevant
T
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radiomic features indicative of tumor biology and behavior.

Moreover, our findings suggest that the T2WI sequence may play

a crucial role in non-enhanced MRI protocols for diagnosing

endometrial diseases, providing excellent contrast and spatial

resolution that facilitate detailed visualization of anatomical

features which is crucial for accurate diagnosis and evaluation,

consistent with previous reports (39, 40). Additionally, the largest

subset of features in our radiomics model was extracted from the

gray-level co-occurrence matrix (GLCM) and related analyses,

providing crit ica l insights into the histopathological

characterist ics of endometrial cancer, faci l i tating the

differentiation of tumor grades and aggressiveness. By evaluating
Frontiers in Oncology 11
features such as inverse variance, cluster shade, and zone

percentage, clinicians can better understand the tumor’s structural

complexity and its potential impact on prognosis and

treatment decisions.

Recent advances in DL have demonstrated its considerable

potential in gynecologic oncologic imaging, with studies showing

its ability to detect intricate patterns in medical images and achieve

diagnostic accuracy comparable to or even surpassing human

experts (22, 41–43). In our study, both radiomics and DL features

were extracted from the same manually segmented volumes of

interest. However, they represent fundamentally different

paradigms of image analysis. Handcrafted radiomics relies on
FIGURE 3

Patient predict scores output by the combined model in the training and testing sets (A–C). Receiver operation characteristic (ROC) curves of
different models in the internal-testing set and external-testing set (D, E). The all-combined model had the best discriminating ability among seven
models, with an area under the curve (AUC) of 0.957 in the internal-testing set and 0.880 in the external-testing set. Decision curve analysis (DCA)
of the different models in the internal-testing set and external-testing set (F, G). The x-axis means the high-risk threshold, and the y-axis means
clinic net benefit.
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pre-defined mathematical descriptors (e.g., texture, shape, first-

order statistics) to quantify explicit tumor characteristics, offering

high interpretability. In contrast, the deep learning approach

processes raw image data through multiple convolutional and

nonlinear layers, autonomously learning hierarchical, spatially

contextual, and often abstract features that are not captured by

conventional radiomics frameworks (18). The model integrating

both feature types (DLR) demonstrated superior performance

compared to models using either alone on the external-testing set

(AUC = 0.767 vs. 0.750 for radiomics and 0.704 for DL), suggesting

their features are complementary. This complementarity was

further supported by the observation that the radiomics model

achieved higher specificity (0.909 vs. 0.818) while the DL model

showed higher sensitivity (0.545 vs. 0.523) in the external-testing

set. We posit that while radiomics effectively quantifies known

morphological patterns, DL may capture more subtle and complex

spatial hierarchies within the tumor, contributing unique

discriminatory information for differentiating USC from EEC.

Notably, in our cohort, the model based solely on traditional

radiomics features outperformed the DL model. This observation

contrasts with some previous studies that have reported the
Frontiers in Oncology 12
superiority of DL over radiomics (30, 44, 45). We hypothesize

that this discrepancy may be attributed to the data-hungry nature of

deep learning; convolutional neural networks typically require

large-scale datasets to effectively learn complex and robust spatial

features (46). Our limited sample size, particularly for the minority

USC class, may have constrained the DL model’s performance and

increased its susceptibility to overfitting (47). This finding

underscores the importance of dataset size and characteristics

when selecting and developing AI methodologies for medical

imaging tasks.

The proposed all-combined model exhibited superior

performance, with an AUC of 0.957 in the internal-testing set

and 0.880 in the external-testing set. It effectively characterizes

intratumoral heterogeneity from medical images across various

levels in a noninvasive and robust manner, thereby providing

valuable insights into cancer (45, 48, 49). The integration of high-

dimensional features enhances sensitivity in disease diagnosis and

prediction, offering detailed information for clinicians (20). The

sensitivity of our model necessitates that it be applied as a decision-

support tool within a multidisciplinary framework. A negative

output should not preclude comprehensive staging surgery when
TABLE 2 Performances of the predictive models in the training and test sets. (revised version).

Model name AUC (95%CI)
Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

F1 score
(95%CI)

Clinical-radiological Training 0.910 (0.852-0.968) 0.85 (0.772-0.928) 0.886 (0.815-0.957) 0.767 (0.657-0.877) 0.892 (0.828-0.956)

Internal-test 0.861 (0.747-0.975) 0.818 (0.704-0.932) 0.692 (0.519-0.865) 0.999 (0.993-1.000) 0.818 (0.704-0.932)

External-test 0.700 (0.552-0.848) 0.773 (0.669-0.877) 0.555 (0.401-0.709) 0.647 (0.492-0.802) 0.845 (0.756-0.934)

Radiomics Training 0.977 (0.955-0.999) 0.920 (0.865-0.975) 0.903 (0.836-0.970) 0.964 (0.917-1.000) 0.942 (0.897-0.987)

Internal-test 0.934 (0.862-0.999) 0.886 (0.800-0.972) 0.833 (0.698-0.968) 0.889 (0.784-0.994) 0.906 (0.826-0.986)

External-test 0.750 (0.632-0.868) 0.652 (0.534-0.770) 0.523 (0.372-0.674) 0.909 (0.818-1.000) 0.667 (0.543-0.791)

DL Training 0.976 (0.950-0.999) 0.930 (0.882-0.978) 0.900 (0.831-0.969) 1.000 (1.000-1.000) 0.947 (0.905-0.989)

Internal-test 0.869 (0.757-0.980) 0.818 (0.704-0.932) 0.769 (0.614-0.924) 0.889 (0.784-0.994) 0.833 (0.723-0.943)

External-test 0.704 (0.572-0.835) 0.636 (0.518-0.754) 0.545 (0.394-0.696) 0.818 (0.691-0.945) 0.667 (0.543-0.791)

Clinical-radiological +
radiomics

Training 0.984 (0.950-0.999) 0.910 (0.852-0.968) 0.889 (0.821-0.957) 0.964 (0.917-1.000) 0.934 (0.885-0.983)

Internal-test 0.944 (0.881-0.999) 0.841 (0.731-0.951) 0.846 (0.715-0.977) 0.833 (0.698-0.968) 0.863 (0.769-0.957)

External-test 0.810 (0.698-0.922) 0.742 (0.638-0.846) 0.727 (0.589-0.865) 0.773 (0.639-0.907) 0.790 (0.683-0.897)

Clinical-radiological + DL Training 0.918 (0.858-0.978) 0.860 (0.789-0.931) 0.833 (0.747-0.919) 0.929 (0.863-0.995) 0.896 (0.833-0.959)

Internal-test 0.904 (0.819-0.988) 0.795 (0.673-0.917) 0.692 (0.519-0.865) 0.944 (0.857-1.000) 0.800 (0.674-0.926)

External-test 0.688 (0.551-0.825) 0.652 (0.534-0.770) 0.614 (0.466-0.762) 0.727 (0.591-0.863) 0.701 (0.579-0.823)

DL + radiomics Training 0.999 (0.995-1.000) 0.980 (0.957-1.000) 0.972 (0.937-1.000) 1.000 (1.000-1.000) 0.986 (0.970-1.000)

Internal-test 0.908 (0.824-0.991) 0.818 (0.704-0.932) 0.808 (0.667-0.949) 0.833 (0.698-0.968) 0.840 (0.733-0.947)

External-test 0.767 (0.648-0.885) 0.773 (0.669-0.877) 0.795 (0.667-0.923) 0.727 (0.591-0.863) 0.824 (0.725-0.923)

Clinical-radiological +
radiomics + DL

Training 0.994 (0.984-1.000) 0.970 (0.937-1.000) 0.986 (0.963-1.000) 0.929 (0.863-0.995) 0.979 (0.959-0.999)

Internal-test 0.957 (0.904-1.000) 0.886 (0.800-0.972) 0.923 (0.829-1.000) 0.833 (0.698-0.968) 0.906 (0.826-0.986)

External-test 0.880 (0.800-0.961) 0.742 (0.638-0.846) 0.636 (0.486-0.786) 0.955 (0.887-1.000) 0.767 (0.659-0.875)
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clinical suspicion, biopsy results, or conventional imaging features

suggest an aggressive tumor. Its primary value lies in its high

specificity, which can provide robust supporting evidence for

managing cases with ambiguous preoperative findings. To the

best of our knowledge, this study is the first to apply the DL

features and traditional radiomic features for differentiating USC

from EEC. Our study is distinguished by utilizing the largest sample

size to date and employing an independent external-testing set for

model validation, achieving satisfactory prediction efficiency. By

providing clinicians with a reliable tool for personalized treatment

stratification, our model complements existing AI systems for

endometrial cancer detection and risk assessment (43, 50),

ultimately contributing to a more comprehensive AI-powered

diagnostic ecosystem for endometrial cancer management.

Our study has several limitations. First, its retrospective design

carries an inherent risk of selection bias, as only patients undergoing

surgical resection were included, thereby excluding those with

inoperable advanced disease or conservative management—

potentially limiting generalizability. Second, despite protocol

harmonization, inter-scanner variability across institutions may

introduce information bias and residual batch effects, which
Frontiers in Oncology 13
although mitigated through normalization and feature stability

analysis, remains a concern. Third, the manual ROI delineation is

inherently subjective; we minimized inter-observer variability by using

only features with high agreement (ICC > 0.75), but fully automated

segmentation is needed in the future. Fourth, while we adjusted for

key confounders in our model, residual confounding from

unmeasured factors remains possible. Fifth, additional sensitivity

analyses, such as employing alternative feature selection methods or

machine learning algorithms, could further reinforce robustness.

Finally, the potential for overfitting remains a limitation due to the

high dimensionality of radiomics and deep learning features relative to

our sample size, particularly for the rare USC subtype. Further

prospective validation in larger, multi-centric cohorts is essential to

confirm the ultimate generalizability of our model.
Conclusion

In conclusion, based on our dataset, this study demonstrates

that this predictive model, which integrates multiparametric-MRI

radiomics, deep learning features and clinical-radiological features,
FIGURE 4

Visualization of the attention regions by the deep convolutional neural network of a 55-year-old patient who was confirmed EEC (A, B) and a 67-
year-old patient who was confirmed USC (C, D). The red and yellow regions represent the areas with higher activation, whereas the blue and green
regions represent the areas with lower activation.
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can effectively distinguish between USCs and EECs. The findings

from this study could significantly inform clinical decision-making,

ultimately leading to more personalized treatment strategies and

improved patient outcomes for EC.
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