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Prostate-specific membrane antigen (PSMA) is a protein primarily overexpressed

on the surface of prostate cancer (PCa) cells, making it a key target for PSMA-

based theranostics, which combine diagnostic imaging and therapy. PSMA-

based molecular probes, conjugated tracers and isotopes, and multifunctional

imaging technologies have significantly advanced the landscape of high-risk PCa

management, particularly during initial diagnosis and treatment planning. This

tool is especially crucial as the ratio of mortality to incidence of PCa in Asian

populations is higher, and the overall prognosis is significantly worse compared

to Western countries. Furthermore, prostate-specific antigen (PSA) screening

using multiparametric magnetic resonance imaging (MRI) and pathological

examination shows that only a small percentage of men (below 30%) with PSA

levels between 4–10 ng/ml in China, considered low risk, actually test positive for

PCa when biopsied. Therefore, PSMA ligand-based positron emission

tomography (PET) has been increasingly utilized for the accurate diagnosis,

clinical staging, dynamic monitoring, treatment guidance, and prognosis

evaluation of PCa. Moreover, PSMA-targeted radioligand therapy (RLT),

antibody-drug conjugate (ADC) therapy, cellular immunotherapy,

photodynamic therapy (PDT), and photothermal therapy (PTT), along with

PSMA radioguided surgery (PSMA-RGS) intervention, have shown substantial

advantages and promising potential. The field of PSMA ligands in PCa

management has seen remarkable advancements in recent years, impacting

both diagnostic and therapeutic approaches. This review discusses and

summarizes the recent research progress and application prospects of PSMA-

based theranostics in the clinical management of PCa in Asian populations.
KEYWORDS
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1 Introduction

Recent years have shown a continuous increase in the incidence

of prostate cancer (PCa), especially in Europe, North America, and

Oceania (1). An analysis of global trends in PCa indicates worsening

health disparities between more developed [higher Social

Development Index (SDI)] and less developed nations, with PCa

burden showing a substantial increase in the Slope Index of

Inequality (SII) from 329.90 in 1990 to 544.03 in 2021 (2).

Although the Concentration Index (CI) shows a reduction in the

concentration of PCa burden in SDI countries (from 0.44 in 1990 to

0.31 in 2021), the burden of PCa is more concentrated in these

countries compared to low SDI countries. This can be attributed to

healthcare access and screening facilities, and education about PCa.

Furthermore, age-standardized rates (ASR) for PCa increased

significantly worldwide, and the incidence rate is expected to

increase notably in China between 2022 and 2046. With the

population aged ≥65 years expected to reach 1.6 billion, age may

become a primary determinant of PCa incidence in the future (3).

These findings align with the rapidly aging population in Asia,

which is expected to contribute to a continued rise in incidence and

prevalence of PCa among Asian men (4). Historically, the incidence

rate of PCa in Asianmen has been observed to be lower compared to

Western countries; a study by Siegel et al. (5) showed that Black men

had a PCa incidence 1.3 times that of white men, and Asian men had

a PCa incidence 0.7 times that of White men. Moreover, Down et al.

(6) also came to a similar conclusion, and found that Black men had

the highest PCa incidence at 24.7% (95% CI 23.3%, 26.2%); Asian

men had the lowest at 13.4% (95% CI 12.2%, 14.7%); and the

incidence for White men was 19.8% (95% CI 19.4%, 20.2%).

However, the mortality-to-incidence ratio (MR/IR) of Asian men

is higher, the 5-year survival rate is lower, and patients present with

advanced-stage and metastatic disease (7). In 2011, a study showed

that the MR/IR in Asia ranged from 0.3 to 0.6, whereas it was 0.12 in

North America and 0.20 in Europe (8). The MR/IR (0.44) was

significantly higher in Asian countries than in other places, except

for Africa, suggesting that PCa poses a particularly significant health

threat to the Asian population. In a study conducted by Zhang et al.

(9), they discovered that PCa in Chinese and US populations

exhibits notable differences in clinicopathologic features. Chinese

patients tend to be older and harbor a higher proportion of poorly

differentiated tumors with more advanced grade groups (Groups 4

and 5 were observed in 25% of Chinese patients compared to

17.11% of the USA cohort). In many Asian countries, PCa is

frequently diagnosed at later stages, often after it has metastasized.

This stands in stark contrast to countries like the United States,

where a majority of PCa cases are diagnosed at an early, localized

stage. Studies from China, for instance, reveal that over 60% of PCa

patients are diagnosed at advanced stages, compared to the US,

where 70% are diagnosed early (7). Additionally, the age-

standardized 5-year overall survival rate for Chinese PCa patients

(69.2%) is significantly lower than that observed in the United States

(97.4%). These issues may be a result of late-stage diagnosis, limited

access to prostate-specific antigen (PSA) screening, and less

sensitive tests for Asian men (4, 10).
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Furthermore, the PCa composition and characteristics in Asian

men are different from other regions. Findings from a tumor marker

analysis have identified distinct genetic variants and different

frequencies of risk alleles for PCa in Asian men compared to

Western populations, with a higher proportion of high-risk cases

and different clinical and genomic characteristics (11). Studies

suggest that specific gene mutations and variations linked to PCa

are observed at different frequencies across racial groups (12). For

example, studies have indicated that PTEN loss and TMPRSS2-ERG

fusion are more prevalent in White and Black men than in Asian

men. TMPRSS2-ERG fusion was discovered to have a prevalence of

50% in White men, but lower frequencies were reported in Asian

populations (8-21%) (13). PTEN inactivation was reported in 70% of

White men, and only 34% in Chinese patients. Again, current clinical

tests cannot detect PCa patients with highly metastatic prostate

cancer (mPCa), which accounts for about 30% of all newly diagnosed

PCa in Central Asia (14). Consequently, advancements in diagnostic

and therapeutic technologies and continued research into novel

biomarkers are needed to offer promising avenues for improved

detection and management of PCa.

PSA screening is a widely used PCa diagnosis biomarker

currently recommended by international guidelines. Despite its

wide application, PSA has limitations, particularly in the gray zone

(4–10 ng/ml), with biopsy rates of 25% in China and 40% in

America. Even with PSA levels over 20 ng/ml, the positive biopsy

rate was reported as only 70% (10). Furthermore, in a landmark

randomized controlled trial that recruited 61,000 men,

approximately 76% of the biopsies performed for an elevated PSA

level were false positives, illustrating PSA screening’s low specificity

(15). This limitation can lead to increased prostate biopsies, which

carry potential risks of infection ranging from 0.5% to 10.1% (16, 17).

These findings show that PSA is an organ-specific marker but not

disease-specific, and its elevation can be caused by factors other than

PCa, such as non-cancerous inflammation and benign prostatic

hyperplasia (4). This is an issue particularly in Asian men, as there

is a higher rate of false positives in Asian populations compared to

Western populations (6). Furthermore, some studies suggest that

Asian men may have lower PSA levels overall, which could affect the

accuracy of standard PSA cutoffs (4). Asian men in the UK were

reported to have lower PSA levels at diagnosis compared to white

men (18). Liu et al. (19) also found that serum PSA values in Chinese

men older than 50 years were lower than those in other races,

making the optimal PSA cutoff for PCa detection in the Chinese

population unclear. Therefore, in PSA testing, it is necessary to fully

consider racial differences and develop targeted screening and

diagnostic strategies to improve outcomes and reduce overdiagnosis.

Prostate-specific membrane antigen (PSMA) is a type II

transmembrane glycoprotein (20) (Figure 1) commonly found to

be highly expressed in prostate tumor cells, and its levels are about

100–1000 times higher than in normal prostate tissues and other

tissues (21, 22). As the tumor cells proliferate, they utilize a greater

quantity of folate to sustain their growth. This is facilitated by the

folate hydrolase activity of PSMA (23). While PSMA can be found

on non-cancerous prostate tissue and other tissues, its high

expression and high specificity for PCa cells make it a valuable
frontiersin.org
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biomarker for diagnosis, therapy, and monitoring treatment

response (24). PSMA can be targeted with radioactive tracers for

positron emission tomography/computed tomography (PET/CT)

imaging, as well as targeted therapy with radioactive isotopes. This

approach is known as theranostics, a tool that utilizes

radiopharmaceuticals to both image and treat cancer by targeting

PSMA (25). PSMA PET/CT demonstrates superior detection rates

for recurrences and small metastases even in patients with low levels

of PSA, such as Asian men (26). Given the unique molecular

genotypes of PCa in Asian men, PSMA theranostics could offer a

new direction for precise diagnosis and treatment. However, there is

currently a lack of clinical reporting on the Asian population, and

related explorations are urgently needed.
2 Mechanism of PSMA as a diagnostic
and therapeutic target

PSMA exhibits higher expression levels in PCa cells, and these

levels tend to increase with stage and grade of the tumor. This is

particularly prominent in advanced PCa, metastatic disease, and

when biochemical recurrence develops (BCR). This highly specific

membrane surface expression feature makes it an extremely valuable

diagnostic and therapeutic target (27). The structural distribution of

the PSMA membrane provides surface accessibility for the molecules

designed to interact with it, particularly the large extracellular

domains and defined binding. This feature also allows for the

development of diverse ligands, and high-affinity and specificity (28).

The core mechanism (Figure 2) of diagnosis and treatment

based on PSMA lies in the utilization of the specific binding ability

of the designed molecules that target PSMA (29). At the diagnostic

level, these designed molecules are conjugated with radioactive

tracers (such as a Ga-68, positron emitter), which attach to the

cancer cells, marking them for precise localization through PSMA
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PET imaging, thus achieving visual tracking of the primary lesion

and metastatic lesions (30, 31). At the therapeutic level, the

molecules are labeled with radioactive molecules, which could

include Lu-177 (a b-particle emitter) or Ac-255 (a a-particle
emitter). Once attached to PSMA, these radioactive molecules

decay and deliver radiation directly to the cancer cells [(PSMA-

targeted radioligand therapy (RLT)] (32). This action induces DNA

double-strand breaks, which trigger cancer cell death while

minimizing damage to surrounding healthy tissues (33).

The currently developedmolecules that target PSMA include small

molecules (PSMA-617 and PSMA-I&T), monoclonal antibodies (J591

antibody and antibody-drug conjugates), and RNA aptamers (34, 35).

Through design optimization, these molecules can be specifically

designed to bind to the intracellular or extracellular domains of

PSMA (36). Table 1 provides a summary of the common clinical

applications of PSMA-targeted ligands and radioactive molecules.

With the advancements in clinical research, the development of

PSMA-based theranostics has seen a shift from targeting the

intracellular domain to targeting the extracellular domain, enabling

internalization into viable cancer cells. This targets the limitations of

earlier approaches that primarily targeted dying or necrotizing cells for

the intracellular domain (56). PSMA-based theranostics has

constructed a new diagnosis and treatment system integrating

precise diagnosis and targeted therapy, providing a new solution for

precise medical treatment of PCa, especially in the Asian population.
3 Application and value of PSMA
imaging for diagnosing PCa

Elevated PSA levels can be caused by conditions other than PCa,

such as benign prostatic hyperplasia (BPH) or prostatitis. This means a

high PSA doesn’t always indicate cancer, thus causing a challenge to

early and accurate diagnosis of PCa. Due to this low specificity, PSA
FIGURE 1

Schematic illustration of the PSMA structure.
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testing can lead to unnecessary biopsies and treatments with potential

side effects (57). Furthermore, PSA is not a structural or morphological

feature, which means it cannot be directly used for PCa imaging (58).

Therefore, the imaging typically relies on techniques such as CT,

magnetic resonance imaging (MRI), and bone scans (BS), which can

also have limitations when identifying subtle lesions. As a membrane-

bound protein, PSMA can be targeted using radiolabeled molecules to

visualize PCa cells. This means that PSMA imaging can often detect

PCa that other imaging tests miss, particularly when PSA levels are low,

thus providing more precise information (59). PSMA-based imaging

tool, PSMA PET scan, utilizes a radioactive tracer that attaches to

PSMA, allowing the scan to pinpoint the anatomic locations of the cells

(60). It can also detect PCametastasis to other parts of the body, as well

as detect if the cancer treatment was effective. The effectiveness of the

PSMA PET examination as a tool for the precise localization of tumor

cells has been confirmed by studies showing a significant correlation

between the level of PSMA uptake in the PSMA PET scan and the level

of PSMA express ion observed in the corresponding

pathological sections.

Based on the above background, PSMA-targeted molecular

imaging, particularly PSMA PET/CT, is reshaping the diagnostic

pattern of PCa with superb advantages. PSMA PET/CT is more

accurate and sensitive at identifying local, regional, and distant

metastatic disease (Figures 3, 4), and this advantage is particularly

significant in the diagnosis of BCR (61). Its enhanced sensitivity and

specificity, particularly at PSA levels below 1 ng/ml, allow for early

detection of recurrence and better guidance of treatment options (62).

It is worth noting that PSMA PET/CT imaging uses two common

types of PSMA tracers, namely Ga-68 and F-18. Between them, F-18
Frontiers in Oncology 04
has a longer half-life than Ga-68, enabling it to offer slightly better

spatial resolution (49). PSMA-based imaging can help in determining

the extent of PCa, including lymph node involvement and distant

metastases (63, 64). It is also highly sensitive in detecting BCR after

treatment. These advantages can lead to more informed treatment

decisions. Furthermore, and more importantly, it is less likely to

produce inconclusive results compared to conventional imaging, and

in some cases, may result in lower radiation exposure than the

combination of CT and BS (65).

Following imaging, location, and staging of PCa facilitated by

PSMA-based imaging, radioactive isotopes attached to a PSMA-

targeted molecule are then delivered to the cancer cells, where they

damage their DNA and lead to cell death. The PSMA-targeted

molecules ensure that the radiation is delivered directly to the

cancer cells, minimizing damage to the surrounding healthy tissues.

The most commonly studied and used radionuclide to date is Lu-

177. This radionuclide emits beta radiation, has a longer tissue

range, and is used to treat smaller tumors and metastases, such as

metastatic castration-resistant prostate cancer (mCRPC) (66). Ac-

225 is also commonly used. It is an alpha-emitter; this radionuclide

is more potent and has a higher therapeutic efficacy than Lu-177

due to its high linear energy transfer of the emitted alpha particles

(67). This means that it induces double-stranded DNA breaks that

are more difficult to repair. Both Lu-177 and Ac-225 hold

significant promise for treating PCa in Asian men, particularly in

advanced stages. In a prospective single-arm clinical trial, the

application of 177Lu-PSMA-I&T RLT showed favorable responses

in East Asian patients with mCRPC (52). The patients tolerated the

treatment well and experienced tumor remission with significant
FIGURE 2

The diagnostic and therapeutic mechanisms of PCa using PSMA.
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2018
2020

German
(41)
(42)
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2023 China (44)
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2025 German
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2020
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German

(49)
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2021 China (51)
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2022 China (53)
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PSMA-617

68Ga

FDA approval, high accumulation in the urinary
tract, high renal uptake, good pharmacokinetics,
high targeted uptake efficiency

Diagnosis of primary lesions and lymph node
metastases in PCa.

177Lu Treatment of mCRPC.

225Ac
A complementary agent to 177Lu-PSMA-617 or
as part of its tandem therapeutic approaches.

111In
Detecting lymph node invasion during lymph
node dissection in radical prostatectomy.

PSMA-11 68Ga
FDA approval, high accumulation in the
urinary tract

Detecting clinical recurrence after BCR followin
radical prostatectomy, and making adjunctive
treatment decisions.

Evaluating the therapeutic effect of ADT in PCa
bone metastasis patients and detecting the stage
and recurrence of PCa.

Identification of atypical metastasis of PCa (suc
as isolated parietal peritoneal metastasis).

Piflufolastat (DCFPyL) 18F
FDA approval, low hepatic uptake, high
accumulation in the urinary tract

Diagnosis of primary lesions and lymph node
metastases in PCa, particularly in patients
experiencing their first BCR.

Flotufolastat
(rhPSMA-7.3)

18F FDA approval, good pharmacokinetics
Diagnosis of PCa, particularly for detecting
recurrent PCa and monitoring salvage therapy.

rhPSMA-7 18F
Low accumulation in the urinary tract, low
targeted uptake efficiency

Diagnosis of both primary and mPCa, less
prevalent compared to 18F-DCFPyL and 68Ga-
PSMA-11.

PSMA-1007 18F
Low accumulation in the urinary tract, high
hepatic uptake

Diagnosis of PCa, including the detection of the
primary lesion and the metastatic lesions.

PSMA-I&T

177Lu

High accumulation in the urinary tract, high
renal uptake, high targeted uptake efficiency

Treatment of mCRPC.

68Ga
Assessing tumor load in primary lesions of
newly diagnosed prostate cancer, assisting in ris
stratification, and predicting metastasis.

PSMA-I&S 99mTc
SPECT probe, the detection level is higher than
PSMA-I&T and lower than PSMA-11

Preoperative SPECT/CT imaging and being
adopted for PSMA-RGS in robot-assisted
minimally invasive procedures.

ADT, androgen deprivation therapy; BCR, biochemical recurrence; PSMA, prostate-specific membrane antigen; FDA, Food and Drug Administration; PCa, prostate can
metastatic CRPC; RLT, radioligand therapy; SPECT, single-photon emission computed tomography; PSMA-RGS, prostate-specific membrane antigen radioguided surgery
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PSA decline. Furthermore, the development of PSMA-based

theranostics that specifically target bone metastases is also vital, as

Asian men can be diagnosed with late-stage PCa that may involve

metastasis (4). Ra-223 is a relatively new drug that functions as a

bone-seeking calcium mimetic. Its structure is similar to calcium,

allowing it to be taken up and incorporated into the bone matrix,

particularly in areas of high bone turnover, as present in bone

metastases. Ra-223 is an alpha emitter, which means it delivers

potent and localized alpha radiation that effectively kills cancer cells

while minimizing damage to healthy surrounding tissues (68).

Of course, in clinical applications, attention should also be paid to

the heterogeneity of PSMA imaging results. The performance and

application effects of different PSMA PET markers vary among

patients at different stages and classifications, and it is necessary to

optimize the selection in combination with individual characteristics

(69). However, PSMA imaging technology is evolving into an

essential core instrument for the diagnosis and management of

PCa, offering the dual benefits of accurate visualization and tailored

diagnosis, particularly providing a groundbreaking approach to the

diagnosis of advanced PCa in Asian men.

4 PSMA-targeted therapeutic
strategies and future perspectives of
PCa

During the progression of PCa, most cases will ultimately

advance to CRPC or mCRPC. As the final phase of PCa
Frontiers in Oncology 06
development, mCRPC is a significant contributor to mortality.

Once the disease progresses to this phase, patients often have to

rely on cytotoxic chemotherapy to prolong survival, but the prognosis

is extremely poor. According to statistics, the 5-year overall survival

rate of PCa patients in China (69.2%) is significantly lower than that

in the United States (97.4%) (13). In addition to lifestyle, weak

awareness of disease cognition, accessibility of screening programs

and genomic differences, the proportion of advanced and new-onset

metastases at diagnosis in Asian patients was significantly higher than

that in the Western populations, making it difficult for traditional

treatment strategies to meet the clinical needs of Asian PCa patients

(7). Consequently, there is an urgent need for more effective new

therapies to overcome these drawbacks.

Although the PSMA-targeted RLT has opened up new avenues

for accurately targeting tumors by specifically recognizing the

highly expressed PSMA on the surface of PCa cells, it does face

certain limitations in clinical application. For example, the

physiological overexpression of PSMA in salivary gland tissues

leads to dose-limiting salivary gland injury during RLT (such as
177Lu-PSMA-617 and 225Ac-PSMA-617), which severely limits the

intensity of treatment (70, 71). RLT has dose-limiting toxicity (such

as myelosuppression), and some patients are unable to complete the

entire course of treatment due to hematological toxicity (72, 73).

Moreover, the absorption efficiency of radioactive drugs by tumors

varies greatly, potentially resulting in inconsistent therapeutic

outcomes (74). In light of this, a systematic organization of

innovative treatment strategies targeting PSMA, along with a

prospective exploration of future developmental directions, can
FIGURE 3

A 51-year-old male patient diagnosed with prostatic acinar adenocarcinoma (Gleason 4+4=8) by biopsy received an intravenous injection of 18F-
PSMA. (A) PET/CT scan was performed 50 minutes later. (B, C) Multiple nodular and mass-like abnormal radioactive concentration shadows were
observed in both lobes of the prostate (SUVmax 13.0). (D, E) The bilateral seminal vesicles were enlarged, especially the left side (SUVmax 3.0). They
showed increased radioactive uptake. Additionally, the posterior wall of the bladder exhibited thickening with an indistinct boundary with the
prostate, suggesting invasion. The patient subsequently underwent transurethral resection of bladder lesions, and the postoperative pathology was
consistent with the results of the prostate biopsy.
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assist in generating new concepts for enhancing the current targeted

treatment approaches for Asian PCa patients.
4.1 Antibody-drug conjugate therapy

ADC therapy is a cutting-edge technology in tumor-targeted

therapy. Similar to PSMA-targeted RLT, they both take advantage

of the high expression characteristic of PSMA on PCa cells (75), but

there are significant differences between the two. ADC utilizes

monoclonal antibodies as targeted vectors, while RLT utilizes

small-molecule ligands (76). Additionally, ADC utilizes cytotoxic

chemotherapy drugs, which usually have a strong killing effect,

while RLT exerts therapeutic effects by releasing radiation with

radioactive isotopes (77). The monoclonal antibodies in ADC can

precisely recognize and bind to PSMA. Once bound to PSMA, the

ADC is internalized into the cancer cells through endocytosis.

Inside the cell, ADC undergoes a series of intracellular processing,

and their linkers break under the enzymatic cleavage or other

mechanisms, releasing cytotoxic drugs (75). These drugs can
Frontiers in Oncology 07
disrupt key cellular processes, such as hindering microtubule

polymerization, causing cell cycle arrest, and ultimately leading to

the death of cancer cells. Clinical research data strongly confirm the

anti-tumor activity of ADCs targeting PSMA. In the Phase II

clinical trial of PSMA-MMAE, mCRPC patients treated with

abiraterone/enzalutamide (abi/enz) showed positive changes in

PSA levels, CTC status, and radiologic assessments (78). Among

the patient group that did not receive chemotherapy, PSMA-

MMAE also showed good potential (75). Up to 21% of the cases

had a reduction in PSM of ≥50%, and 53% of the cases had CTC

conversion. However, its overall response rate is still at a medium

level. The main reason lies in the heterogeneity of PSMA expression

on the surface of tumor cells, which makes it difficult for tumor cells

to effectively take up ADC drugs. Furthermore, safety issues (such

as neurotoxicity) (79) and treatment-related adverse events (80) are

also key factors hindering the wide application of targeted ADCs

for PSMA.

In the future, the development of PSMA-targeted ADCs

necessitates further comprehensive investigation focus on

improving therapeutic efficacy, reducing toxicity, and optimizing
FIGURE 4

A 65-year-old male patient diagnosed with prostatic acinar adenocarcinoma (Gleason 4+4=8) by biopsy received an intravenous injection of 18F-
PSMA. (A) PET/CT scan was performed 50 minutes later. (B, C) Multiple lymph nodes of varying sizes were observed in the left neck with increased
radioactive uptake to different degrees (SUVmax 3.3). (D, E) Enlarged lymph nodes with increased radioactive uptake were seen around the bilateral
iliac vessels (SUVmax 10.2). (F, G) Multiple vertebral bodies and some appendages of the spine, as well as the bones of the pelvis, showed significant
bone destruction with increased radioactive uptake (SUVmax 6.7). It can be seen that the 18F-PSMA PET/CT scan comprehensively reflects the
multiple metastatic burdens throughout the body of this PCa patient, providing a strong basis for clinical decision-making.
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targeting mechanism (75). This goal can be achieved by optimizing

dosages to minimize toxicity, refining the targeting mechanisms to

enhance targeting precision (81, 82), as well as integrating

technologies such as single-cell RNA sequencing (scRNA-seq) to

screen patient subsets with high PSMA expression and therapeutic

sensitivity, thereby facilitating the adoption of personalized

therapy (83).
4.2 Cellular immunotherapy

Cellular immunotherapy, especially CAR-T cell therapy, is a

rapidly evolving and significant area in PCa tumor treatment. This

approach is gaining recognition due to its unique mechanism of

action, where chimeric antigen receptors (CARs) (engineered

protein receptors) enable T cells to specifically target and

recognize tumor antigens like PSMA (84). Once CAR successfully

binds to the antigen, T cells are immediately activated, thereby

inducing apoptosis of cancer cells. Among numerous targets, PSMA

is regarded as one of the most reliable targets for CAR-T cell

immunotherapy. The results of relevant basic experiments and

Phase I clinical trials show that CAR-T cell immunotherapy has

demonstrated certain therapeutic effects on PCa (85–90). However,

the current research is still in the preclinical phase, and further in-

depth exploration is needed before it can be widely applied in

clinical practice (91–93). While CAR-T immunotherapy shows

impressive applicability, it may present with toxic side effects such

as cytokine release syndrome (94). Bispecific T-cell engager (BiTE)

immunotherapy is another breakthrough in the field of cellular

immunotherapy. It has been approved for the treatment of certain

cancers. BiTE is essentially a special ligand composed of two

different antibodies with single-chain variable fragment domains.

Its mechanism of action involves combining CD3molecules and the

surface antigens of tumor cells to activate the T cells of patients,

enabling them to precisely eliminate tumor cells. This process

circumvents the co-stimulation model or major histocompatibility

complex mechanisms, thereby leading to enhanced efficacy (95, 96).

Compared to RLT, cell immunotherapy focuses on activating or

modifying the patient’s immune cells to recognize and attack cancer

cells. Its key advantage is the potential for long-lasting immunity

and a durable response by training the immune system to

remember and target cancer cells. Future research should be

dedicated to optimizing CAR design and enhancing the

recognition and killing ability of T cells against tumors. For

instance, the Echo-Back-CAR-T cells developed by Liu et al. (97)

integrate a heat-sensitive promoter with the CAR signaling circuit

aimed at targeting PSMA, resulting in prolonged tumor suppression

with reduced side effects. This paves the way for CAR-T cell

immunotherapy in the realm of solid tumors like PCa.

Additionally, the combination of this treatment with immune

checkpoint inhibitors (such as anti-PD-1 antibodies) could be

employed to enhance anti-tumor immune responses through

PSMA-mediated immune cell recruitment (83, 98). This approach

may recruit immune cells to the tumor site, potentially reversing the

tumor’s ability to evade the immune system.
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4.3 Other PSMA-targeted therapies

Photodynamic therapy (PDT) and photothermal therapy (PTT)

are minimally invasive treatment methods for PCa cells that utilize

PSMA as the molecular target and achieve precise intervention in

tumor cells through molecular targeting strategies. DT delivers

photosensitizers to tumor cells by relying on the specific binding of

PSMA-targeted ligands to PSMA receptors on the surface of cancer

cells. In tumor cells expressing PSMA, photosensitizers are effectively

enriched through specific binding (99). When exposed to a specific

wavelength, the excited photosensitizers transfer energy to the

surrounding oxygen molecules, generating highly reactive oxygen

species (ROS), thereby leading to apoptosis or necrosis of cells. PTT

exerts its function by taking advantage of the photothermal conversion

characteristics of photothermal agents (PTAs). After coupling the

PSMA-targeted agent with photothermal materials, the resulting

PSMA-targeted photothermal agent can be specifically enriched in

tumor tissues (100). When near-infrared (NIR) light is used to

irradiate the tumor site, the photothermal agent can efficiently

absorb the NIR light energy and convert it into thermal energy. The

localized heat generation increases the temperature within tumor cells,

leading to protein denaturation and cell membrane destruction. It is

worth noting that, compared with PDT, which relies on oxygen to

function, PTT has more advantages in the treatment of hypoxic

tumors because its mechanism of action does not depend on

oxygen participation and can effectively overcome the limitations of

the hypoxic microenvironment of tumor tissues on therapeutic effects.

Compared with RLT, PDT and PTT do not require the use of

radioactive substances, significantly reducing the risk of radiation-

related adverse reactions, which is of great significance in improving

the safety of treatment. However, at present, these two treatment

methods are still in the preclinical research and clinical trial stage.

There is still considerable room for development in aspects such as the

optimal design of photosensitizers/photothermal agents, the

improvement of targeted delivery efficiency, the precise regulation of

treatment parameters, and the exploration of combined treatment

strategies. In the future, with continuous technological breakthroughs,

PDT and PTT are expected to become important means in the field of

precise treatment for PCa, bringing new treatment options and

survival hope to patients.

PSMA radioguided therapy can also include surgery. This

procedure, known as PSMA radioguided surgery (PSMA-RGS), is

a surgical technique that utilizes gamma probe imaging guided by

PSMA ligands to facilitate intraoperative tumor resection,

particularly PCa (101, 102). PSMA-RGS allows the precise

pinpointing and removal of PSMA-positive cancerous tissue. The

radioactive isotopes (like Lu-177 and Ac-225) accumulate at the

sites with high PSMA. During surgery, a gamma probe hand held by

a surgeon, detects the gamma radiation. This is used to measure the

amount of radiation emitted from the surgical site, allowing the

surgeon to differentiate between the tumor site (areas with high

PSMA expression) and surrounding healthy tissue (103). This

method is especially vital in cases of BCR after initial treatment

or in primary prostatectomy to improve lymph node dissection and

reduce the risk of positive surgical margins (104). In 2015, the
frontiersin.org

https://doi.org/10.3389/fonc.2025.1655082
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1655082
Technical University of Munich carried out the first successful

utilization of 111In-PSMA-I&T RGS (111In-PSMA-RGS) in patient

treatment, thereby showing its high value for intra-operative

detection of even small metastatic lesions in patients with PCa

(105). In a study conducted in 2015 by Maurer et al. (106), the

effectiveness of PSMA radio-guided surgery for detecting metastatic

lymph nodes was confirmed using 68Ga-labeled PSMA. Metastatic

lymph nodes smaller than 1 cm were noted, and additional lesions

adjacent to the known tumor lesion that had not been visualized on

preoperative 68Ga-PSMA-HBED-CC PET imaging were identified

during PSMA-RGS in two patients. Comparable to medical targeted

therapies, PSMA-RGS allows for the precise identification of

PSMA-expressing cells during surgery. In a retrospective study

conducted by Rauscher et al. (107), 31 patients with localized

recurrent PCa who underwent salvage surgery were included.

PSMA-RGS was performed using an 111In-labelled PSMA ligand.

The study results demonstrated that the sensitivity, specificity, and

accuracy of 111In-PSMA-RGS were 92.3%, 93.5%, and 93.1%,

respectively. Schilham et al. (108) conducted a prospective study

involving 20 patients with newly diagnosed PCa to evaluate the

safety and effectiveness of 111In-PSMA RGS. The results showed a

successful removal rate of 88% (43 out of 49) for lesions identified

by 18F-PSMA PET. The utilization of 111In-PSMA RGS enabled the

identification and resection of 59% (29 out of 49) of the targeted

lesions, with lymph node metastases detected in 97% (28 out of 29)

of cases. However, there were an additional 29% (14 out of 49) of

resected lymph nodes that were not detected using the same

technique, two of which contained metastases. Overall, it was

found that the procedure of 111In-PSMA RGS was a safe and

feasible clinical procedure. It should be noted that with its

incredible success, the radioactive exposure from the radioactive

drugs used in RGS is concerning for the medical staff.

Consequently, safer approaches have been underway. Radiation-

free PSMA-targeted fluorescence-guided surgery (PSMA-FGS) is a

safer option in development; in fact, it has advanced from

preclinical studies to clinical trials. Professor Hamdy from the

University of Oxford developed and synthesized the PSMA-

targeted fluorescent probe IR800-IAB2M in 2024. It was tested on

23 patients in a human study of RARP (ISCRCTN10046036). The

overall sensitivity and specificity for detecting non-lymph-node

extra-prostatic cancer tissue were 100% and 65%, respectively.

Furthermore, the sensitivity and specificity for detecting positive

lymph nodes were both 64%, indicating that the use of

intraoperative imaging with IR800-IAB2M for PCa tissue is

feasible and safe (109).
5 Conclusions and prospects

In the past decade, PSMA has emerged as a focal point in PCa

research. As PSMA ligand technology continues to advance and

mature, an increasing number of PSMA ligands are being utilized in

clinical trials. Extensive research has demonstrated that PSMA

imaging technology is capable of detecting lymph node

metastases, bone metastases, and distant metastatic lesions that
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are challenging to identify using conventional imaging methods.

This capability holds significant clinical implications for treatment

planning and follow-up monitoring in patients with advanced PCa

(110, 111). PSMA PET/CT is advancing at an unprecedented pace,

marked by a substantial increase in the number of published studies

and clinical trials. In accordance with the guidelines from the

European Association of Urology (EAU), PSMA PET/CT is

recommended for evaluating the likelihood of PCa recurrence

and distant metastasis in patients with PSA levels exceeding 0.2

ng/ml who are candidates for salvage therapy. PSMA PET/CT is

capable of accurately evaluating the size of the lesion and its

relationship with surrounding tissues, thereby facilitating more

precise tumor-nodes-metastasis (TNM) staging for PCa. This

modality provides critical guidance for targeted biopsies, detection

of BCR and metastasis, supports clinical decision-making processes,

and enables effective evaluation of therapeutic efficacy (112, 113).

However, it is important to highlight that the use of PET/CT in

conjunction with PSMA imaging may not be appropriate for all

patients with PCa. A comprehensive evaluation of the patient’s

clinical stage, prior diagnostic and therapeutic history, as well as

other pertinent factors, is essential. Future research should focus on

thoroughly characterizing the patient population and clearly

delineating the distinct features and requirements associated with

different clinical stages. Moreover, domestic and international

studies have yet to reach a consensus regarding the tangible

benefits of relying solely on PSMA PET/CT for decision-making

in PCa diagnosis and treatment (114, 115). Consequently, there is

an urgent requirement for additional multicenter, randomized,

controlled, and prospective studies to strengthen the scientific

rigor and credibility of the findings.

PSMA-targeted therapy, particularly using RLT like 177Lu-

PSMA-617, has shown significant clinical benefits in reducing

PSA levels and extending survival in patients with PCa.

Nevertheless, clinicians must rigorously assess patient eligibility

before initiating treatment to prevent unnecessary interventions.

This assessment is vital because PSMA-targeted therapy,

particularly PSMA-RLT, delivers radiation directly to PSMA-

expressing cancer cells and therefore requires a high level of

PSMA expression on the tumor to be effective. This necessitates

the development of individualized treatment plans. Molecular

profiling (such as gene mutations, aberrant signaling pathways),

including genomics, transcriptomics, and proteomics, holds

significant promise for refining patient selection and optimizing

treatment efficacy in PSMA-targeted therapies for PCa (98).

Additionally, dynamic treatment adjustments based on real-time

PSMAmolecular imaging (such as modifying dosages or combining

with chemotherapy/immunotherapy based on changes in PSMA

expression) will enable “real-time intervention”. Furthermore,

additional in-depth investigations are required to assess the

potential risk of damage to normal tissues resulting from high-

dose PSMA drugs.

Key directions in mechanistic research related to PSMA’s role

in the tumor microenvironment include investigating its

involvement in angiogenesis and shaping immunosuppressive

niches, which can inform combination therapies with anti-
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angiogenic or immunomodulatory agents (98). By understanding

the diverse mechanisms of resistance including PSMA gene

downregulation or compensatory activation of pathways (like

androgen receptor reactivation) and developing targeted

strategies, particularly by using combination therapies

(integration of androgen receptor antagonists), it is hoped that

long-term outcomes for patients with advanced PCa can be

significantly improved.

PDT and PTT have demonstrated substantial efficacy in

preclinical studies and have been successfully integrated with

chemotherapy and other technologies. Nevertheless, the majority

of these researches remain at the preclinical stage, and there is an

urgent need to accelerate their clinical translation. In addition, the

PSMA-RGS technology can be employed for PSMA ligand-guided

precision surgery. However, the radiation effects on both the

operator and the patient must be comprehensively evaluated. In

this regard, PSMA-FGS serves as an effective and feasible alternative

solution. In recent years, the rapid advancement of near-infrared

fluorescence second window (NIR-II, wavelength range 900–1700

nm) technology has enabled significant progress in NIR-II

fluorescence imaging for PCa marker targets and its guidance

applications in surgical procedures. This approach demonstrates

superior advantages in terms of signal-to-noise ratio, real-time

imaging, multi-modality, and application scope compared to

traditional optical imaging and near-infrared fluorescence first

window (NIR-I) imaging. These enhancements provide a

promising foundation for achieving complete tumor resection

during surgery (109, 116–118). Therefore, PSMA-FGS offers a

novel research avenue for the precision therapy of PCa and

demonstrates significant potential for clinical translation.

In summary, the theranostic strategy targeting PSMA is

anticipated to become one of the standard approaches for the

routine screening and management of PCa in the future

(Figures 3, 4).
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