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Objective: The tumor microenvironment (TME), composed of non-tumor

elements such as stromal matrix and immune cells, plays a critical role in

tumor progression, metastasis, and treatment response. This study aimed to

investigate the association between MRI-based intratumoral and peritumoral

radiomic features and the TME components, including extracellular matrix (ECM)

and immune cells, in patients with invasive breast cancer.

Methods: In this prospective study, 121 women with histologically confirmed

invasive breast cancer underwent pre-treatment multiparametric 3T breast MRI,

including T2-weighted, diffusion-weighted imaging (DWI), and dynamic

contrast-enhanced T1-weighted sequences (NCT06095414, registered at

ClinicalTrials.gov). The dataset was randomly divided into training and testing

cohorts in a 7:3 ratio. A total of 16180 radiomic features were extracted from both

intratumoral and peritumoral regions. Three-dimensional volume histology with

quantitative immunohistochemical staining of ECM and immune cells served as

the reference standard for TME assessment. Predictive models were developed

using least absolute shrinkage and selection operator regression and evaluated

using area under the receiver-operating characteristic curve (AUC). Model

performance was compared between intratumoral-only and combined

intratumoral–peritumoral features across five MRI sequences.

Results: Models incorporating both intratumoral and peritumoral features

significantly outperformed those using intratumoral features alone in

predicting TME components (P < 0.01). Among the five sequences, initial and

delayed postcontrast T1-weighted images yielded the highest AUCs. For ECM

abundance, the AUCs (95% CI) were 0.82 (0.78–0.87) and 0.82 (0.78–0.88) on
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initial and delayed imaging, respectively. For immune cell abundance, the AUCs

were 0.82 (0.77–0.87) and 0.83 (0.78–0.88). Most of the top predictive features

were first-order and texture features associated with tissue heterogeneity.

Comb ined mode l s more accu r a t e l y cap tu r ed ECM- r i ch and

immunosuppressive TME profiles, characterized by elevated regulatory T cells

and reduced cytotoxic T cells, which were associated with poor prognosis.

Conclusion: MRI-based radiomic features from both intratumoral and

peritumoral regions are significantly associated with TME components in

invasive breast cancer. Contrast-enhanced T1-weighted sequences provided

the most robust performance. These findings highlight the potential of MRI-

based radiomics as a powerful noninvasive biomarker for characterizing the TME

and informing personalized therapeutic strategies, including immunotherapy and

ECM-targeted treatments.
KEYWORDS

radiomics, magnetic resonance imaging (MRI), tumor microenvironment (TME), breast
cancer, peritumoral region, artificial intelligence, extracellular matrix (ECM),
immune infiltration
1 Introduction

Breast cancer is a heterogeneous disease with various biological

phenotypes associated with different clinical courses and prognoses

(1). The TNM staging system and molecular subtyping are the most

important factors in treatment decisions for breast cancer (2, 3).

However, large variations in treatment response and outcomes

occur even among cases with identical stages or subtypes. The

tumor microenvironment (TME) represents one of the key features

contributing to tumor behavior and response to treatment. It is

composed of various non-tumor cells, including immune cells and

the extracellular matrix (ECM) (4, 5). Thus, assessing the status of

the TME is crucial for precision medicine in breast cancer, possibly

leading to improved treatment outcomes.

Among the components of the TME, an abundant, stiffened,

and disorganized ECM mainly composed of collagen, laminin, and

nidogen acts as a barrier to drug penetration, reducing therapeutic

efficacy and resulting in cancer progression and metastasis (6–10).

The presence of regulatory T-cell could be associated with poor

survival outcomes (11, 12). Conversely, the enrichment of cytotoxic

T cells is associated with prolonged breast cancer survival (13, 14).

Biopsy and histopathology remain the gold standard for TME

assessment. However, targeted evaluation of individual TME

components often requires invasive tissue sampling and

component-specific immunohistochemistry, which can limit serial

assessment and may not capture whole-tumor heterogeneity. In this

context, noninvasive MRI-based radiomic signatures are intended

to complement—but not replace—pathology by enabling

repeatable, whole-tumor assessment of TME features.

Radiomics refers to the process of extracting high-dimensional

data from medical images and objectively describing image
02
characteristics to enable more precise analysis and predictions

with carefully designed algorithms (15). Radiomics using

magnetic resonance imaging (MRI) data for breast cancer has

shown promising results for prognostication, treatment response

predicting, and disease characterization (16–18). While most

radiomic studies focus on intratumoral regions, recent

retrospective studies using peritumoral features have shown utility

in breast cancer, such as predicting response to neoadjuvant

chemotherapy, human epidermal growth factor receptor 2

(HER2) status, or immune cell infiltration in the TME (18–24).

To test the hypothesis that MRI-based radiomics can

noninvasively characterize the TME status of breast cancer, we

prospectively evaluated the radiomic characteristics from

intratumoral and peritumoral regions on multiparametric MRI—

diffusion-weighted imaging (DWI), T2-weighted imaging (T2), and

dynamic contrast-enhanced T1-weighted imaging (T1) (25). Our

study extends prior work in three ways. First, it is prospective and

image biomarker standardization initiative (IBSI)-compliant, with

prespecified analyses and adherence to radiomics quality

recommendations (25–27). Second, we anchor imaging findings

to histology using three-dimensional (3D) volume histology as the

reference standard; compared with conventional 2D slides, 3D

histology samples have 20–100× thicker tissue volumes and yields

more accurate, less biased visualization of TME architecture,

including in breast core-needle specimens (28, 29). Third, we

assess both principal arms of the TME—ECM and immune cells

—and perform head-to-head comparisons across MRI sequences

(DWI, T2, dynamic contrast-enhanced T1) and anatomic regions

(intratumoral vs. combined intra–peritumoral).

In practice, an ECM-oriented radiomics signature is intended as

a complementary adjunct to pathology: It can flag collagen-rich
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stroma for ECM-modifying approaches or trial referral, suggest

immunotherapy stratification, and support serial, noninvasive

monitoring during treatment. Model probabilitis are mapped to

low/intermediate/high categories using prespecified thresholds and

incorporated into a structured report for multidisciplinary review;

final diagnostic and therapeutic decisions remain anchored

in pathology.

Accordingly, we aimed to determine whether MRI-based

radiomics from intratumoral and peritumoral regions can predict

ECM and immune components of the TME in invasive breast

cancer using DWI, T2, and dynamic contrast-enhanced T1,

referenced to 3D histology.
2 Methods

2.1 Patients

This study was approved by our institutional review board and

written informed consent was obtained from all participants

(Approval Nos. 2020AS0113 and 2021AS0318). This prospective

study was registered at clinicaltrials.gov (NCT06095414). Sample

size estimation was described in the Supplementary Information.

Between June 2020 and April 2022, we enrolled 215 consecutive

women who were scheduled to undergo ultrasound-guided tissue

biopsy for suspicious breast masses assessed as category 4C or 5

according to the Breast Imaging-Reporting and Data System (30). If

a patient had multiple suspicious masses, the most suspicious mass

was selected as the representative lesion before biopsy. Ultrasound-

guided 14-gauge core-needle biopsy (Bard, Tempe, Arizona, USA)

was performed, including the boundary of the tumor. The eligibility

criteria were as follows: (a) histologically confirmed invasive breast

cancer, (b) participant consent, and (c) MRI performed before

treatment. We excluded 94 women for the following reasons:

benign histopathology results (n = 38), ductal carcinoma in situ
Frontiers in Oncology 03
(n = 19), invasive tumor size < 10 mm (n = 8), infiltrative nonmass

lesion on MRI (n = 7), refusal to participate (n = 10), no MRI before

treatment (n = 4), inadequate volume histological imaging (n = 3),

and MRI with a different protocol at an external hospital (n = 5).

Ultimately, 121 women were included in this study (Figure 1).
2.2 Histological evaluation of the TME

We performed FxClear volume histology, which is an

acrylamide-free electrophoretic tissue-clearing protocol with a fast

reaction time and high immunoreactivity (31). Volume imaging

preserves the structural integrity and allows visualization of the

biological architecture in thick tissues and organoids (32, 33). The

immunohistochemical reactivity of TME components of each

cancer was quantified. Primary antibodies were used to assess the

following TME components: collagen type 1 (1:4500, AB34710,

Abcam), laminin (1:4500, L9393, Sigma), nidogen-1 (1:9000, NBP1-

97701, Novus), FOXP3 (1:600, AB20034, Abcam), and CD8 (1:25,

AB75129, Abcam). FOXP3 antibody was used to evaluate

regulatory T cells, and CD8 was used to evaluate cytotoxic T cells.

The expression of ECM components, including collagen, laminin,

and nidogen, was measured as the amount of immunoreactivity.

The expression of regulatory and cytotoxic T cells was assessed by

counting the number of cells (Figure 2). Details of the histological

evaluation of the TME are provided in the Supplementary

Information. We also reviewed the histological reports to evaluate

prognostic factors and subtypes. The histological factors were

dichotomized by respective median value unless specified:

hormone receptor status including estrogen or progesterone

(positive vs. negative), HER2 (positive vs. negative), and Ki67

(high [> 20%] vs. low [≤ 20%]). The molecular subtype was

classified into four types according to the St Gallen classification

criteria: luminal A, luminal B, HER2-enriched, or triple-

negative (34).
FIGURE 1

Flowchart of the study participants. 121 participants with invasive breast cancer were included. BI-RADS = Breast Imaging-Reporting and Data
System.
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FIGURE 2

MRI and volume histological images from a 51-year-old woman with triple-negative invasive ductal carcinoma. (A) Initial T1-weighted MRI after
contrast injection shows an irregularly shaped, heterogeneously enhanced mass (arrow) in the left breast. (B) Three-dimensional segmentation of the
tumor is performed on the axial image. The intratumoral region is marked in red and the peritumoral region is marked green. The peritumoral region
is generated by extending the intratumoral regions with 4 mm thickness in three dimensions and then subtracting the intratumoral region.
(C, D) Volume histology was performed to evaluate extracellular matrix (C) and immune cells (D) of tumor microenvironment. To assess the
abundance of tumor microenvironmental components, the immunoreactivity of each antibody was quantified by fluorescence imaging. Microscopy
images have two channels: blue (channel 1) represents stained cell nuclei and green (channel 2) represents the color for each antibody of tumor
microenvironment components. To assess the expression of extracellular matrix components such as collagen (C), the amount of immunopositivity
was measured. To assess the abundance of immune cells such as regulatory T cells (D), the number of stained cells is evaluated.
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2.3 MRI acquisition and feature extraction

MRI was performed with the patient in the prone position using

a 3T magnet (MAGNETOM Vida; Siemens Healthineers, Erlangen,

Germany) with a dedicated 18-channel breast coil. 3D T2, 3D

dynamic contrast-enhanced T1, and DWI were obtained in each

patient. Table 1 demonstrates acquisition parameters for MRI. All

images were obtained with bilateral axial views and fat saturation.

For dynamic contrast-enhanced T1, five postcontrast phases were

acquired at 60, 120, 180, 240, and 300 seconds after intravenous

contrast administration. DWI was performed using the intravoxel

incoherent motion technique.

For radiomics, we analyzed five MRI inputs: T2, DWI (b = 800

s/mm²), precontrast T1, initial-phase postcontrast T1 (60 s), and

delayed-phase postcontrast T1 (300 s). In this manuscript, ‘phase’

denotes the two time points (initial and delayed) of the same

dynamic contrast-enhanced T1 sequence. Although five DCE

time points were acquired (60, 120, 180, 240, 300 s), we pre-

specified 60 s and 300 s as the representative phases for radiomics

because they correspond to the Breast Imaging-Reporting and Data

System (BI-RADS) MRI lexicon windows (initial enhancement vs.

delayed persistent/plateau/washout) (35). The initial-phase

emphasizes perfusion/permeability, whereas the delayed-phase

reflects delayed contrast retention. Intermediate phases (120–

240 s) were used only to derive BI-RADS kinetic labels for

descriptive reporting and were not included as radiomic inputs to

avoid multicollinearity and unnecessary dimensional inflation.

For 3D segmentation of tumors, regions of interest (ROIs) along

the entire enhancing tumor margin of cross-sectional area were

drawn at axial views of initial-phase contrast-enhanced T1 from top

to bottom of each tumor. On precontrast and delayed-phase

contrast-enhanced T1, ROIs were drawn on the lesion

corresponding to initial-phase contrast-enhanced T1. Because the

slice thickness differed for DWI (4 mm) and T2 (3 mm) relative to

T1 (1 mm), ROIs for DWI and T2 were drawn separately.

Segmentation was performed on axial images by a radiologist

(E.S.K. with 5 years of experience in breast MRI) using a semi-

automated method with MRIcro software (version 1.40, https://

www.nitrc.org/projects/mricro/) under the supervision of a senior

radiologist (B.K.S. with 23 years of experience in breast MRI), while

blinded to the clinicohistological data except for information about

the diagnosis of breast cancer (Figure 2). The peritumoral regions

were generated by extending the intratumoral regions with 4 mm

thickness in 3D. A distance of 4 mm from the tumor was chosen to

evaluate the peritumoral area based on previous breast peritumoral
Frontiers in Oncology 05
radiomics studies (22, 23). In addition, we performed a margin-

sensitivity analysis using an 8-mm annulus on the best-performing

input from the main analyses to assess robustness.

To assess intra-reader segmentation reproducibility, we

performed a stratified random sampling of 50 cases according to

tumor-size distribution; each case was re-segmented by the same

reader using the identical semi-automated protocol and compared

with the original segmentation. Agreement between the two

segmentations by the same reader was quantified using the Dice

similarity coefficient (DSC) and the Jaccard similarity coefficient

(JSC) for volumetric overlap (36).

For feature robustness, isotropic resampling was performed

prior to feature extraction. For each of the five MRI inputs, 1618

features were extracted from the intratumoral region and combined

intratumoral and peritumoral regions. Thus, a total of 16180

radiomic features were extracted for each cancer. The 1618

features were categorized into four groups: (a) histogram-based

first-order statistical features (n = 17), (b) shape and volume

features (n = 7), (c) textural features using the gray-level co-

occurrence matrix (GLCM) and gray-level run-length matrix

(GLRLM) (n = 162), and (d) wavelet-transformed features (n =

1432) (26). We extracted MRI radiomic features in compliance with

IBSI (27, 37) using MATLAB R2023b (MathWorks) and the

Pyradiomics 3 .1 .0 l ibrary (https : / /www.radiomics . io/

pyradiomics.html) in Python 3.8. The radiomics quality score was

25 out of 36 (69%) (Supplementary Table 1) (25). By context, prior

oncology radiomics studies have reported a mean radiomics quality

score of 9/36 (26%). Details of feature extraction are provided in the

Supplementary Information.
2.4 Feature selection and predictive model
construction

After z-score normalization of all features, the dataset was

randomly divided into training and testing cohorts in a 7:3 ratio.

For each MRI input independently, feature selection was performed

using the least absolute shrinkage and selection operator (LASSO)

method with fivefold cross-validation to determine the optimal

lambda (0.05). The LASSO tool is a statistical method used to select

the most relevant features from complex data sets. The LASSO

process was iterated 25 times, and features that were selected 20

times during each iteration were considered significant radiomic

features. After the process iterations, we identified two sets of five

top features from intratumoral features alone and from both
TABLE 1 Summary of MRI parameters.

Modality Sequence TR (ms) TE (ms) FOV (mm) Resolution (mm) FA (°) b value (s/mm²)

T1 3D GRASP-VIBE 3.80 1.69 355 × 355 1.01 × 1.01 × 1.00 12 NA

T2 3D SPACE 1000 133 340 × 340 0.33 × 0.33 × 1.00 125 NA

DWI IVIM 3000 56 340 × 340 1.21 × 1.21 × 4.00 NA 0, 20, 50, 80, 100, 150, 200, 500, 800, 1000, 1500
TR, repetition time, TE , echo time, FOV , field of view, FA , flip angle, T1 , T1-weighted imaging, 3D GRASP-VIBE , 3D golden-angle radial sparse parallel volumetric interpolated breath-hold
examination, NA , not applicable, T2, T2-weighted imaging, 3D SPACE , 3D sampling perfection with application-optimized contrasts using different flip angle evolutions, DWI , diffusion-
weighted imaging, IVIM , intravoxel incoherent motion.
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intratumoral and peritumoral features and then used these radiomic

signatures as predictors in a linear regression analysis (38, 39).

Beyond the primary 7:3 split, we performed fivefold cross-

validation to assess internally stability and robustness of the

predictive models. We report the mean area under the receiver-

operating characteristic curve (AUC) and 95% confidence intervals

(CI) across folds as the cross-validated performance. Ultimately, we

constructed two predictive models: intratumoral-only model based

on intratumoral radiomic signatures and a combined intratumoral–

peritumoral model combing both intratumoral and peritumoral

signatures. To aid interpretability, we visualized the relative

contributions of the top 10 selected features as bar plots of

standardized coefficients with bootstrap 95% CIs, and assessed

r edundanc y o r c omp l emen t a r i t y u s i n g a P e a r s on

correlation heatmap.
2.5 Statistical analysis

To assess potential imbalance between the training and testing

cohorts, we compared baseline clinicopathological characteristics:

age, tumor size, hormone receptor status, HER2 status, Ki67, and

molecular subtype. For continuous variables, normality was

assessed with the Shapiro–Wilk test, and between-group

differences were evaluated using Welch’s t test or the Mann–

Whitney U test, as appropriate. For categorical variables, chi-

square or Fisher’s exact tests were applied. We also calculated

effect sizes (Cohen’s d for continuous variables; absolute

differences in proportions for categorical variables), interpreting

0.2, 0.5, and 0.8 as small, medium, and large effects,

respectively (40).

In addition, we examined the associations between MRI

radiomic features and histological TME components. Model

performance was assessed using AUC, accuracy, sensitivity,

specificity, positive predictive value, and negative predictive value.

To assess the model’s discriminative performance, the AUC was

calculated with its 95% CI determined using the bootstrap method,

focusing on the 2.5% and 97.5% percentiles of the distribution. The

DeLong test was conducted to compare the performance of models

using only intratumoral radiomic signatures with models that

combine intratumoral and peritumoral radiomic signatures.

Additionally, test compared predictive performance across five

MRI sequences. A P value < 0.01 (0.05/5), 0.0125 (0.05/4), or

0.025 (0.05/2) from the DeLong test was considered significant,

applying Bonferroni correction for multiple comparisons. All

reported performance metrics were derived from confusion

matrices of our cross-validated predictions.

We evaluated clinical utility using decision-curve analysis. For

each model, net benefit was computed across prespecified threshold

probabilities (Pt = 0.10–0.40) and compared with treat-none and

treat-all strategies. We compared intratumoral-only and combined

intratumoral- peritumoral models for two representative endpoints:

collagen (ECM) and regulatory T cells (immune cells), using the

best performing sequence.
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Furthermore, we performed subtype-stratified analyses using

the MRI sequence that showed the best overall predictive

performance in the main analyses. Within each subtype,

intratumoral-only and combined models were evaluated, and

pairwise AUC comparisons were conducted using DeLong’s test

with Bonferroni correction. To compare performance between

subtypes, we used bootstrap resampling (1,000 iterations) to

estimate P values and CIs, accounting for unequal and relatively

small sample sizes.

All statistical metrics were computed using scikit-learn in

Python 3.8 (41). The overall design of the study is presented in

Figure 3. Analysis code is available at [ https://github.com/KUAH-

rad/Radiomics-analysis].
3 Results

3.1 Patient characteristics

We evaluated samples from 121 women (mean age, 54 ± 11

years; age range, 30–83 years) with invasive breast cancer. Of the

121 cancers, 114 were invasive ductal carcinoma (Figure 2), five

invasive lobular carcinoma, one medullary carcinoma, and one

metaplast ic carcinoma. Table 2 summarizes basel ine

characteristics, and Supplementary Figure 1 compares the training

and testing cohorts. No significant differences were observed for

age, tumor size, estrogen receptor, progesterone receptor, hormone

receptor, HER2, Ki67, or molecular subtype (all P > 0.05). Effect-

size analyses indicated negligible-to-small differences across all

variables, with the largest for age (Cohen’s d = 0.188) and Ki-67

(d = 0.176). Additionally, standardized mean differences for the top

10 radiomic features in the best-performing models—predicting

collagen (ECM representative) and regulatory T cells (immune

representative)—showed no material imbalances between the

training and testing cohorts. (Supplementary Figure 2).
3.2 Comparison of TME Prediction
Performance between Models using
Intratumoral Regions Alone and Models
Combining Intratumoral and Peritumoral
Regions

Tables 3, 4 demonstrate the performance of models using

intratumoral radiomics signatures and combing intratumoral and

peritumoral radiomic signatures from each MRI sequence. Because

model performance ultimately depends on reliable ROI definition,

we evaluated intra-reader segmentation reproducibility in 50

randomly selected cases; volumetric overlap was excellent (mean

DSC = 0.97 ± 0.01, mean JSC = 0.95 ± 0.02). The radiomic

signatures of intratumoral regions included 60 first-order and 65

texture features (62 GLCM features and three GLRLM features),

and those of combined regions included 59 first-order, 53 texture

features (52 GLCM features and one GLRLM feature), and 13 shape
frontiersin.org
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and volume features (Supplementary Tables 2, Supplementary

Tables 3). Among these signatures, the most frequently selected

feature for intratumoral regions was the first-order standard

deviation and in the combined regions, it was the first-order

energy. These two features were found to increase in cancers

associated with higher ECM and regulatory T cells, and lower

cytotoxic T cells. These conditions, when the TME components

were dichotomized based on the median, correlated with a poor

prognosis (P < 0.05) (Supplementary Table 4).

Table 5 shows the comparison of AUCs between two models

using intratumoral radiomic signatures alone and combined

intratumoral and peritumoral radiomic signatures to predict

TME. Models using combined radiomic signatures showed
Frontiers in Oncology 07
significant improvements in predicting laminin on delayed

postcontrast T1 (AUC [95% CI] for combined model vs.

intratumoral model, 0.83 [0.78, 0.88] vs. 0.80 [0.76, 0.85]),

nidogen on DWI (0.73 [0.68, 0.78] vs. 0.68 [0.64, 0.72]),

regulatory T cells on DWI (0.69 [0.64, 0.74] vs. 0.66 [0.63, 0.69]),

regulatory T cells on T2 (0.82 [0.77, 0.87] vs. 0.77 [0.72, 0.81]), and

cytotoxic T cells on precontrast T1 (0.82 [0.76, 0.87] vs. 0.79 [0.74,

0.83]) (P < 0.01).

The bar plot of standardized coefficients highlighted a subset of

top features with the greatest contributions (Supplementary

Figure 3). The Pearson correlation heatmap demonstrated

clustered groups of highly correlated features and low inter-

feature correlations (Supplementary Figure 4).
FIGURE 3

Illustration of the radiomics workflow. After segmentation of the intratumoral (in red) and peritumoral (in green) regions on MRI, a total of 16180
radiomic features (histogram-based first-order statistical features, volume and shape features, texture features, and wavelet-transformed features)
were extracted from five MRI sequences of each cancer. Radiomic features were selected, and model building was predicted using the least
absolute shrinkage and selection operator (LASSO) and linear regression analysis. The performance of the prediction of each microenvironmental
component was obtained using the area under the receiver-operating characteristic curve. Diffusion = diffusion-weighted imaging, initial
postcontrast T1 = initial T1-weighted imaging after contrast injection, delayed postcontrast T1 = delayed T1-weighted imaging after contrast
injection, T2 = T2-weighted imaging, LASSO = least absolute shrinkage and selector operator.
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3.3 Comparison of TME prediction
performance according to MRI sequences

When comparing performance between five MRI sequences in

models using combined intratumoral and peritumoral radiomic

signatures, delayed postcontrast T1 yielded the highest AUCs (AUC

[95% CI] for collagen 0.82 [0.79, 0.86], laminin 0.83 [0.78, 0.88],

nidogen 0.83 [0.76, 0.89], regulatory T cells 0.83 [0.78, 0.88], and

cytotoxic T cells 0.83 [0.79, 0.89]) (Table 4). The AUCs of delayed
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postcontrast T1 were significantly superior to those of DWI in

predicting all the TME components, precontrast T1 in predicting

collagen, and T2 in predicting nidogen (P < 0.0125) (Table 6).

However, there was no difference in AUCs between delayed

postcontrast T1 and initial postcontrast T1 for all TME

components (P ≥ 0.0125). The combination of initial postcontrast

T1 and delayed postcontrast T1 did not show a significant

improvement over using either initial or delayed postcontrast T1

alone (P ≥ 0.025) (Supplementary Table 5).

Using fivefold cross-validation, the AUCs of the overall

performance in predicting the abundance of ECM and immune

cells using combined features were 0.82 [0.78, 0.87] and 0.82 [0.78,

0.88] on initial postcontrast T1 and 0.82 [0.77, 0.87] (Figure 4) and

0.83 [0.78. 0.88] on delayed postcontrast T1, respectively (Figure 5).

As shown in these figures, the “Actual AUCs” listed in the figure

panels represent the values obtained from each fold of the fivefold

cross-validation. Table 7 shows radiomic signatures for predicting

overall ECM and immune cell abundance on initial or delayed

postcontrast T1. Nineteen (95%) out of 20 radiomic signatures were

first-order and GLCM texture features.

Decision-curve analysis demonstrated that the combined

intratumoral-peritumoral models provided consistently greater net

benefit than intratumoral-only models across the clinically relevant

threshold range (Pt = 0.10-0.40) (Supplementary Figure 5). For

collagen, the combined model outperformed the intratumoral-only

model across all threshold, and both exceeded the treat-all and treat-

none strategies. Similarly, for regulatory T cells, the combined model

consistently yielded higher net benefit than the intratumoral-only

model within the same threshold range. In the combined models on

delayed-phase postcontrast T1, we performed correlation analyses

between the top radiomic features and quantitative histology metrics,

collagen (ECM) and regulatory T cells (immune cells). GLCM

contrast was significantly correlated with collagen proportion, and

first-order standard deviation was correlated with regulatory T-cell

density (both P < 0.001) (Supplementary Figure 6).

In subtype-stratified analyses using the delayed postcontrast

T1-weighted sequence, luminal A cancers showed AUCs of 0.59-

0.61 for intratumoral-only models and 0.64-0.67 for combined

intratumoral–peritumoral models (Supplementary Tables 6,

Supplementary Tables 7). Luminal B cancers showed AUCs of

0.59-0.60 for intratumoral-only models and 0.62-0.65 for combined

models. Triple-negative breast cancer showed AUCs of 0.56-0.59

for intratumoral-only models and 0.58–0.64 for combined models.

Across subtypes, combined models tended to outperform

intratumoral-only models for TME prediction, but differences did

not reach statistical significance after correction for multiple

comparisons (P > 0.016) (Supplementary Table 8). In the

combined models, ECM prediction for luminal A cancers was

higher than for triple-negative cancers (collagen P = 0.031;

nidogen P = 0.28); however, these pairwise differences did not

meet the Bonferroni-corrected significance threshold (P = 0.025 for
TABLE 2 Study participant characteristics.

Characteristics Value

Age (years) 54 ± 11 (30–83)

Tumor size (mm) 28 ± 18 (10–115)

> 20 64 (53)

≤ 20 57 (47)

Histologic type

Invasive ductal carcinoma 114 (94)

Invasive lobular carcinoma 5 (4)

Medullary carcinoma 1 (1)

Metaplastic carcinoma 1 (1)

Estrogen receptor

Positive 102 (84)

Negative 19 (16)

Progesterone receptor

Positive 99 (82)

Negative 22 (18)

HER2

Positive 31 (26)

Negative 90 (74)

Ki67

Positive 52 (43)

Negative 69 (57)

Subtype

Luminal A 57 (47)

Luminal B 49 (40)

HER2-enriched 4 (3)

Triple-negative 11 (9)
Unless otherwise indicated, data are the number of cancers with percentages in parentheses.
Age and tumor size are presented with mean value ± standard deviation and data in
parentheses are range. All participants (n = 121) were women. HER2 = human epidermal
growth factor receptor 2.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1654508
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kim et al. 10.3389/fonc.2025.1654508
two comparisons, 0.05/2) (Supplementary Table 9). HER2-enriched

tumors (n = 4) were excluded from statistical testing because such a

limited cohort renders receiver-operating characteristic curve

estimation unstable and prevents reliable inference.
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Additionally, we performed a peritumoral margin-sensitivity

analysis (4 mm vs. 8 mm) on delayed postcontrast T1. the 8 mm

annulus yielded lower AUCs, supporting 4 mm as the primary

peritumoral margin (Supplementary Table 10).
TABLE 3 Performance of predictive models for tumor microenvironment using intratumoral radiomic signatures.

MRI sequence Performance

Tumor microenvironmental components

Extracellular matrix Immune cells

Collagen Laminin Nidogen
Regulatory T

Cell
Cytotoxic T Cell

DWI Accuracy (%) 69 (64, 74) 67 (62, 73) 69 (65, 74) 70 (65, 75) 69 (64, 74)

Sensitivity (%) 70 (65, 75) 68(62, 74) 70 (65, 75) 70 (66, 75) 72 (67, 76)

Specificity (%) 70 (63, 76) 63(57, 68) 66 (59, 72) 70 (63, 77) 63 (57, 70)

PPV (%) 78 (69, 77) 70 (63, 74) 71 (65, 76) 72 (66, 76) 72 (67, 78)

NPV (%) 46 (38, 51) 49 (44, 53) 51 (45, 57) 50 (45, 54) 49 (40, 55)

AUC 0.67 (0.63, 0.72) 0.65 (0.60, 0.70) 0.68 (0.64, 0.72) 0.66 (0.63, 0.68) 0.69 (0.66, 0.71)

Precontrast T1 Accuracy (%) 80 (74, 86) 82 (76, 88) 82 (75, 89) 82 (74, 89) 81 (75, 88)

Sensitivity (%) 80 (74, 86) 83 (79, 87) 85 (77, 92) 83 (78, 88) 83 (76, 90)

Specificity (%) 68 (63, 73) 78 (70, 85) 77 (73, 81) 71 (65, 77) 63 (58, 68)

PPV (%) 70 (64, 77) 79 (66, 78) 75 (66, 79) 76 (70, 80) 76 (69, 81)

NPV (%) 44 (38, 53) 47 (40, 52) 48 (40, 53) 54 (48, 61) 48 (40, 54)

AUC 0.73 (0.70, 0.76) 0.80 (0.76, 0.83) 0.81 (0.78, 0.84) 0.81 (0.77, 0.85) 0.79 (0.74, 0.83)

Initial postcontrast T1 Accuracy (%) 81 (75, 88) 82 (76, 88) 83 (78, 88) 81 (76, 86) 83 (78, 89)

Sensitivity (%) 82 (78, 87) 86 (81, 92) 84 (77, 90) 83 (76, 90) 84 (77, 91)

Specificity (%) 72 (65, 79) 70 (64, 76) 70 (64, 77) 70 (64, 76) 72 (65, 79)

PPV (%) 79 (69, 82) 79 (68, 83) 80 (74, 85) 79 (68, 83) 80 (74, 85)

NPV (%) 52 (47, 62) 51 (45, 62) 52 (47, 58) 54 (48, 59) 54 (47, 58)

AUC 0.80 (0.76, 0.84) 0.81 (0.79, 0.83) 0.81 (0.78, 0.85) 0.80 (0.76, 0.84) 0.82 (0.78, 0.85)

Delayed postcontrast
T1

Accuracy (%) 80 (76, 85) 82 (74, 89) 82 (76, 89) 80 (74, 87) 81 (76, 86)

Sensitivity (%) 82 (74, 89) 83 (77, 88) 83 (76, 90) 81 (75, 87) 82 (78, 86)

Specificity (%) 70 (64, 77) 77 (72, 82) 70 (65, 75) 70 (65, 75) 69 (63, 74)

PPV (%) 80 (73, 85) 79 (69, 84) 80 (75, 86) 80 (72, 85) 80 (73, 84)

NPV (%) 54 (47, 59) 54 (46, 60) 55 (49, 59) 53 (49, 58) 54 (48, 58)

AUC 0.80 (0.76, 0.83) 0.80 (0.76, 0.85) 0.81 (0.76, 0.86) 0.81 (0.76, 0.86) 0.80 (0.73, 0.86)

T2 Accuracy (%) 81 (77, 85) 79 (73, 86) 78 (72, 84) 79 (73, 86) 80 (75, 85)

Sensitivity (%) 82 (76, 87) 80 (74, 86) 80 (72, 88) 80 (74, 86) 81 (75, 87)

Specificity (%) 70 (63, 78) 77 (72, 81) 71 (67, 75) 70 (65, 74) 63 (59, 68)

PPV (%) 79 (68, 84) 78 (72, 84) 77 (76, 83) 76 (70, 82) 78 (73, 83)

NPV (%) 50 (44, 56) 52 (48, 55) 54 (46, 58) 53 (48, 58) 51 (48, 56)

AUC 0.79 (0.75, 0.84) 0.77 (0.71, 0.83) 0.75 (0.71, 0.80) 0.77 (0.72, 0.81) 0.80 (0.76, 0.84)
Data in parentheses are 95% confidence intervals. DWI , diffusion-weighted imaging, T1 , T1-weighted imaging, T2 , T2-weighted imaging, AUC , area under the receiver-operating characteristic
curve, PPV , positive predictive value, NPV , negative predictive value.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1654508
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kim et al. 10.3389/fonc.2025.1654508
4 Discussion

This prospective study highlights the potential of MRI-based

radiomics to noninvasively predict TME components, including the
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ECM and immune cells, in invasive breast cancer. Radiomic

features were extracted from both intratumoral and peritumoral

regions across DWI, T2, and dynamic contrast-enhanced T1.

Combined models incorporating both intratumoral and
TABLE 4 Performance of predictive models for tumor microenvironment using intratumoral and peritumoral radiomic signatures.

MRI sequence Performance

Tumor microenvironmental components

Extracellular matrix Immune cells

Collagen Laminin Nidogen
Regulatory T

Cell
Cytotoxic T Cell

DWI Accuracy (%) 66 (61,70) 68 (63,74) 70 (64,76) 70 (65,75) 72 (66,77)

Sensitivity (%) 68 (63,74) 69 (63,75) 73 (66,79) 71 (67,76) 73 (65,77)

Specificity (%) 61 (56,66) 56 (49,61) 68 (62,73) 69 (63,75) 68 (62,73)

PPV (%) 70 (66, 73) 71 (68, 79) 73 (68, 78) 75 (70, 79) 74 (68, 77)

NPV (%) 48 (40, 53) 49 (42, 56) 50 (44, 57) 49 (40, 52) 51 (45, 57)

AUC 0.64 (0.60, 0.68) 0.66 (0.63, 0.70) 0.73 (0.68, 0.78) 0.69 (0.64, 0.74) 0.71 (0.66, 0.75)

Precontrast T1 Accuracy (%) 81 (75,88) 82 (76,87) 81 (76,86) 83 (78,89) 83 (78,87)

Sensitivity (%) 80 (73,85) 83 (79,89) 84 (76,89) 86 (80,90) 84 (78,89)

Specificity (%) 72 (66,79) 78 (72,85) 79 (73,84) 75 (70,79) 79 (74,84)

PPV (%) 77 (73, 84) 79 (74, 85) 73 (65, 79) 78 (72, 85) 79 (72, 84)

NPV (%) 45 (38, 49) 48 (43, 52) 48 (43, 54) 55 (47, 60) 49 (42, 54)

AUC 0.75 (0.71, 0.79) 0.80 (0.75, 0.85) 0.82 (0.77, 0.85) 0.83 (0.79, 0.86) 0.82 (0.76, 0.87)

Initial postcontrast T1 Accuracy (%) 83 (77,86) 83 (76,85) 83 (78,90) 84 (77,90) 84 (81,89)

Sensitivity (%) 81 (74,89) 84 (76,88) 86 (78,91) 86 (82,90) 82 (78,88)

Specificity (%) 77 (73,83) 78 (72,84) 79 (73,85) 76 (71,81) 79 (72,82)

PPV (%) 80 (74, 84) 80 (73, 85) 80 (73, 84) 81 (76, 87) 80 (73, 84)

NPV (%) 56 (50, 63) 53 (49, 58) 54 (48, 59) 55 (49, 58) 55 (47, 60)

AUC 0.82 (0.78, 0.87) 0.82 (0.78, 0.86) 0.83 (0.78, 0.89) 0.83 (0.79, 0.88) 0.82 (0.77, 0.89)

Delayed postcontrast
T1

Accuracy (%) 83 (78,86) 84 (78,89) 84 (79,90) 84 (78,89) 85 (80,89)

Sensitivity (%) 80 (77,89) 85 (77,90) 86 (81,90) 85 (79,91) 87 (76,90)

Specificity (%) 79 (73,85) 71 (67,76) 72 (68,76) 79 (72,86) 76 (68,84)

PPV (%) 82 (76, 85) 81 (72, 87) 82 (76, 86) 81 (75, 87) 82 (75, 87)

NPV (%) 56 (50, 62) 56 (49, 61) 58 (49, 63) 56 (48, 61) 55 (43, 60)

AUC 0.82 (0.79, 0.86) 0.83 (0.78, 0.88) 0.83 (0.76, 0.89) 0.83 (0.78, 0.88) 0.83 (0.79, 0.89)

T2 Accuracy (%) 82 (73,88) 79 (75,84) 80 (75,84) 82 (76,87) 83 (77,88)

Sensitivity (%) 80 (76,86) 81 (75,88) 81 (76,86) 83 (80,86) 85 (79,88)

Specificity (%) 74 (68,80) 76 (70,83) 74 (69,80) 74 (69,79) 72 (68,85)

PPV (%) 79 (72, 85) 77 (70, 84) 79 (72, 84) 76 (70, 82) 75 (68, 80)

NPV (%) 53 (48, 58) 52 (47, 58) 50 (42, 58) 45 (39, 49) 56 (49, 60)

AUC 0.79 (0.77, 0.85) 0.79 (0.74, 0.85) 0.78 (0.72, 0.84) 0.82 (0.77, 0.87) 0.82 (0.78, 0.88)
Data in parentheses are 95% confidence intervals. DWI , diffusion-weighted imaging, T1 , T1-weighted imaging, T2 , T2-weighted imaging, AUC, area under the receiver-operating characteristic
curve, PPV = positive predictive value, NPV , negative predictive value.
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TABLE 5 Comparison of AUCs between two models using intratumoral radiomic signatures and combined intratumoral and peritumoral radiomic
signatures to predict tumor microenvironmental components.

MRI sequence

Tumor microenvironmental components

Extracellular matrix Immune cells

Collagen Laminin Nidogen Regulatory T cell Cytotoxic T cell

DWI 0.023 0.042 0.008 0.009 0.012

Precontrast T1 0.024 0.057 0.034 0.017 0.009

Initial postcontrast T1 0.016 0.036 0.018 0.013 0.034

Delayed postcontrast T1 0.016 0.009 0.017 0.015 0.012

T2 0.051 0.038 0.016 0.007 0.014
F
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Data are given as P value by DeLong’s test. A P value < 0.01 (0.05/5) is considered significant, applying Bonferroni correction for multiple comparisons. DWI , diffusion-weighted imaging, T1 ,
T1-weighted imaging, T2 , T2-weighted imaging, AUC , area under the receiver-operating characteristic curve.
TABLE 6 Comparison of AUCs between different MRI sequences in models using combined intratumoral and peritumoral regions to predict tumor
microenvironmental components.

MRI sequence

Tumor microenvironmental components

Extracellular matrix Immune cells

Collagen Laminin Nidogen
Regulatory

T cell
Cytotoxic T

cell

Delayed postcontrast T1 vs. DWI 0.002 0.001 0.006 0.003 0.005

Delayed postcontrast T1 vs. precontrast T1 0.011 0.014 0.042 0.059 0.047

Delayed postcontrast T1 vs. initial postcontrast T1 0.047 0.038 0.074 0.075 0.068

Delayed postcontrast T1 vs. T2 0.026 0.017 0.011 0.019 0.039
Data are given as P values by DeLong’s test. A P value < 0.0125 (0.05/4) is considered significant, applying Bonferroni correction for multiple comparisons. DWI , diffusion-weighted imaging, T1 ,
T1-weighted imaging, T2 , T2-weighted imaging, AUC , area under the receiver-operating characteristic curve.
FIGURE 4

Performance in combined models using intratumoral and peritumoral regions on initial postcontrast T1-weighted images. The AUCs (95%
confidence interval) of the overall performance in predicting ECM (A) and immune cell (B) abundance are 0.82 (0.78, 0.87) and 0.82 (0.78, 0.88).
AUC = the area under the receiver-operating characteristic curve, CI = confidence interval.
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peritumoral features outperformed models using intratumoral

features alone, with initial or delayed postcontrast T1 showing the

best predictive performance (AUC 0.82–0.83).

Most previous breast radiomic studies have focused on

intratumoral features and overlooked information in the

peritumoral regions (16, 17). However, a growing body of

evidence indicates that characteristics of the peritumoral regions

can provide information about changes in the TME (24, 42–45).

Braman et al. (45) found that incorporating both intratumoral and

peritumoral MRI radiomic features improved the AUC for

identifying HER2-enriched subtypes (0.89 vs. 0.76) and predicting
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the pathological response to anti-HER2 therapy (0.80 vs. 0.66).

They also reported a significant association between peritumoral

radiomic features and the density of tumor-infiltrating

lymphocytes. Similarly, a recent retrospective study by Qian et al.

(24) demonstrated that a combined model showed higher

performance in predicting the level of immune cell infiltration of

M2 macrophage than an intratumoral model (AUCs of training and

testing cohorts; 0.84 and 0.74 vs. 0.66 and 0.68). They utilized the

arterial phase of postcontrast T1 for radiomic analysis. In our study,

both initial and delayed postcontrast T1 showed superior

performance in predicting the TME, with no significant difference

between two sequences. The improvement in predicting the

immune cell TME with combined models using both intra- and

peritumoral radiomic features, rather than only intratumoral

features, aligned with our study findings.

In the present study, the most frequently selected radiomic

features were first-order (notably standard deviation and energy)

and GLCM textures. Increases in standard deviation and decreases

in energy indicate reduced histogram-based uniformity and GLCM

contrast captures local intensity differences consistent with textural

heterogeneity (46). GLCM contrast was positively correlated with

collagen proportion, and first-order standard deviation was

positively correlated with regulatory T-cell density (both P <

0.05). These feature–histology associations suggest that radiomic

heterogeneity reflects stromal organization (collagen) and the

immune milieu (regulatory T cells), reinforcing the biological

plausibility of the learned signatures.

Among MRI sequences, DWI-based models showed inferior

performance compared to T1- or T2-based models, likely due to

DWI’s lower resolution and fewer segmented pixels per lesion (47).

Enhancing the resolution of DWI or utilizing super-resolution

apparent diffusion coefficient maps extracted from DWI may

improve DWI-based radiomics performance (47, 48). In this

study, delayed postcontrast T1 presented the highest predictive

performance. Mechanistically, dynamic postcontrast imaging
TABLE 7 Radiomic signatures from combined intratumoral and
peritumoral regions to predict overall extracellular matrix and immune
cell abundance on postcontrast T1.

MRI sequence

Tumor microenvironmental
components

Extracellular
matrix

Immune cells

Initial postcontrast T1 First-order_Mean First-order_Skewness

First-order_Kurtosis First-order_Std

First-order_Std GLCM_Entropy_Std

First-order_Range GLCM_Contrast

GLCM_Contrast First-order_Mean

Delayed postcontrast T1 First-order_Sum First-order_Energy

First-order_Energy First-order_Mean

First-order_Median
Shape and
volume_Sphericity

GLCM_Cluster Shade First-order_Energy

First-order_Mean First-order_Kurtosis
The radiomic feature name is described by group_discriptor_statistic. T1 , T1-weighted
imaging, GLCM , gray-level co-occurrence matrix, Std standard deviation.
FIGURE 5

Performance in combined models using intratumoral and peritumoral regions on delayed postcontrast T1-weighted images. The AUCs [95%
confidence interval] of the overall performance in predicting ECM (A) and immune cell (B) abundance are 0.82 (0.77, 0.87) and 0.83 (0.78, 0.88).
AUC = the area under the receiver-operating characteristic curve, CI = confidence interval.
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samples contrast-agent kinetics: the initial-phase reflects

microvascular perfusion/permeability (wash-in), whereas the

delayed-phase captures late contrast retention influenced by

interstitial transport and stromal organization (49, 50). A

collagen-rich, fibrotic ECM can increase interstitial resistance and

prolong late retention, while immunosuppressive/angiogenic

milieus can produce heterogeneous early enhancement; these

vascular–stromal interactions are expressed as peritumoral texture

heterogeneity, plausibly explaining the superior performance of

delayed T1 over static contrasts. The superiority of delayed

postcontrast T1 may reflect the reduced influence of early

angiogenic perfusion/permeability effects, while persistent contrast

retention preserves lesion-to-stroma conspicuity for visualizing

ECM architecture. Reig et al. (51) reported that the usefulness of

delayed postcontrast T1 in identifying residual tumors after

neoadjuvant chemotherapy. Residual lesions may show late

enhancement due to the anti-angiogenic effects of chemotherapy.

Further studies are warranted to validate the performance of various

MRI sequences in predicting each TME component in a larger

number of patients for tailored treatment and predicting response

to different treatment modalities.

Although improvements in discrimination between combined

intratumoral–peritumoral and intratumoral-only models were

modest, decision-curve analysis provided complementary evidence

of clinical utility. For both collagen and regulatory T cells, the

combined models showed consistently higher net benefit across

clinically plausible thresholds, indicating that peritumoral

information enhances risk stratification. These findings underscore

the potential clinical value of incorporating tumor-adjacent radiomic

features beyond the tumor boundary. Our margin-sensitivity

experiment further contextualizes this finding. On delayed

postcontrast T1, expanding the peritumoral annulus from 4 mm to

8 mm reduced performance, consistent with signal dilution from

inclusion of non–tumor-proximal tissue. These results support 4 mm

as an appropriate operating margin for the main analyses.

Strengths of our study include the prospective, histology-anchored

design; adherence to IBSI recommendations; and a comparatively high

radiomics quality score (25/36) relative to prior oncology radiomics

reports (25). In addition, intra-reader segmentation reproducibility was

excellent, with DSC and JSC values exceeding 0.95, reinforcing the

robustness of the semi-automated segmentation process and

supporting the reliability of radiomic feature extraction. For clinical

integration, we specify how the ECM- or immune cell–oriented

radiomics signatures would be implemented as adjuncts to

pathology: standardized pretreatment MRI; tumor segmentation on

early postcontrast T1 with a 4 mm peritumoral annulus and mask

propagation to the delayed-phase; feature extraction and model

inference prioritizing delayed postcontrast T1 with intra- and

peritumoral features; and probabilities mapped as low, intermediate,

or high using decision-curve–informed thresholds and presented in a

structured report addendum for multidisciplinary review. Deployment
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proceeds from silent to assisted mode with ongoing calibration and

drift monitoring; final management decisions remain in conjunction

with pathology. Future work will prioritize multicenter, multi-scanner

external validation with protocol harmonization to ensure

generalizability. Methodologically, we will evaluate delta-radiomics

on dynamic MRI—both phase-based (early to delayed) and

longitudinal changes during therapy—to test sensitivity to TME

remodeling. We will also pursue multi-omics integration (radiomics

with genomic signatures of ECM and immune activity) to improve

biological interpretability and predictive performance. Clinically, we

will study neoadjuvant cohorts with serial TME assessment to support

early response adaptation and treatment guidance. Finally, we will

incorporate automated segmentation, rigorous calibration/decision-

curve analyses, and stepwise prospective deployment (silent to

assisted) to assess clinical utility and workflow impact.

Limitations include the following. First, this was a single-center

study on a single 3T system with a fixed protocol; we did not assess

multi-scanner variability or validate on an external dataset, which may

limit generalizability. Second, although statistically justified, the sample

size is relatively small for high-dimensional radiomic modeling,

increasing the risk of overfitting. These limitations underscore the

need for larger, multicenter cohorts with multi-scanner acquisition and

external validation, which we plan to pursue. Third, we did not perform

automated segmentation. To minimize issue with lesion selection,

semiautomatic segmentation was performed by the breast specialist

under the supervision of the senior breast specialist. In addition, intra-

reader segmentation reproducibility was excellent, with DSC and JSC

values exceeding 0.95, reinforcing the robustness of the semi-

automated segmentation process and supporting the reliability of

radiomic feature extraction. Future studies incorporating fully

automated segmentation pipelines to further improve robustness and

reproducibility are warranted. Fourth, patients with invasive tumors

smaller than 10 mmwere excluded. Because the slice thickness of T2 (3

mm) and DWI (4 mm) was larger than that of T1 (1 mm), partial

volume effects and misregistration across sequences could have

compromised segmentation accuracy and reproducibility in very

small lesions. Moreover, the restricted voxel counts in such tumors

frequently led to unstable or infeasible radiomics feature extraction.

This exclusion criterion may have limited the applicability of our

findings to subcentimeter tumors. Fifth, in subtype-stratified analyses,

discriminative performance was modest across subtypes. Although

combined intra–peritumoral models tended to outperform

intratumoral-only models for TME prediction, the gains were not

significant. This likely reflects limited sensitivity to subtype-specific

biology under the current sample sizes: the HER2-enriched subgroup

was excluded from statistical testing (n = 4), and the remaining

subgroups were small and imbalanced, leading to wide CIs and

reduced power. Larger, balanced, multicenter cohorts with multi-

scanner acquisition and multi-reader assessment are needed to

validate TME prediction at the subtype level and to support

clinical implementation.
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5 Conclusion

MRI-based radiomic models that incorporate both intratumoral

and peritumoral features demonstrated superior performance over

intratumoral-only models in characterizing the TME in invasive

breast cancer. Among the imaging sequences, contrast-enhanced T1

—particularly the delayed-phase—showed the highest predictive

accuracy for ECM and immune cell components. These findings

suggest that radiomics has the potential to serve as a noninvasive

biomarker for assessing TME profiles, including immunosuppressive

and ECM-rich phenotypes associated with poor prognosis. With

further validation in large, multicenter cohorts, this approach may

contribute to personalized treatment planning and response prediction

in breast cancer.
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