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Objective: The tumor microenvironment (TME), composed of non-tumor
elements such as stromal matrix and immune cells, plays a critical role in
tumor progression, metastasis, and treatment response. This study aimed to
investigate the association between MRI-based intratumoral and peritumoral
radiomic features and the TME components, including extracellular matrix (ECM)
and immune cells, in patients with invasive breast cancer.

Methods: In this prospective study, 121 women with histologically confirmed
invasive breast cancer underwent pre-treatment multiparametric 3T breast MRI,
including T2-weighted, diffusion-weighted imaging (DWI), and dynamic
contrast-enhanced T1-weighted sequences (NCT06095414, registered at
ClinicalTrials.gov). The dataset was randomly divided into training and testing
cohortsina7:3ratio. A total of 16180 radiomic features were extracted from both
intratumoral and peritumoral regions. Three-dimensional volume histology with
quantitative immunohistochemical staining of ECM and immune cells served as
the reference standard for TME assessment. Predictive models were developed
using least absolute shrinkage and selection operator regression and evaluated
using area under the receiver-operating characteristic curve (AUC). Model
performance was compared between intratumoral-only and combined
intratumoral—-peritumoral features across five MRI sequences.

Results: Models incorporating both intratumoral and peritumoral features
significantly outperformed those using intratumoral features alone in
predicting TME components (P < 0.01). Among the five sequences, initial and
delayed postcontrast T1-weighted images yielded the highest AUCs. For ECM
abundance, the AUCs (95% CI) were 0.82 (0.78-0.87) and 0.82 (0.78-0.88) on
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initial and delayed imaging, respectively. For immune cell abundance, the AUCs
were 0.82 (0.77-0.87) and 0.83 (0.78-0.88). Most of the top predictive features
were first-order and texture features associated with tissue heterogeneity.
Combined models more accurately captured ECM-rich and
immunosuppressive TME profiles, characterized by elevated regulatory T cells
and reduced cytotoxic T cells, which were associated with poor prognosis.
Conclusion: MRI-based radiomic features from both intratumoral and
peritumoral regions are significantly associated with TME components in
invasive breast cancer. Contrast-enhanced T1-weighted sequences provided
the most robust performance. These findings highlight the potential of MRI-
based radiomics as a powerful noninvasive biomarker for characterizing the TME
and informing personalized therapeutic strategies, including immunotherapy and
ECM-targeted treatments.

radiomics, magnetic resonance imaging (MRI), tumor microenvironment (TME), breast
cancer, peritumoral region, artificial intelligence, extracellular matrix (ECM),
immune infiltration

1 Introduction

Breast cancer is a heterogeneous disease with various biological
phenotypes associated with different clinical courses and prognoses
(1). The TNM staging system and molecular subtyping are the most
important factors in treatment decisions for breast cancer (2, 3).
However, large variations in treatment response and outcomes
occur even among cases with identical stages or subtypes. The
tumor microenvironment (TME) represents one of the key features
contributing to tumor behavior and response to treatment. It is
composed of various non-tumor cells, including immune cells and
the extracellular matrix (ECM) (4, 5). Thus, assessing the status of
the TME is crucial for precision medicine in breast cancer, possibly
leading to improved treatment outcomes.

Among the components of the TME, an abundant, stiffened,
and disorganized ECM mainly composed of collagen, laminin, and
nidogen acts as a barrier to drug penetration, reducing therapeutic
efficacy and resulting in cancer progression and metastasis (6-10).
The presence of regulatory T-cell could be associated with poor
survival outcomes (11, 12). Conversely, the enrichment of cytotoxic
T cells is associated with prolonged breast cancer survival (13, 14).
Biopsy and histopathology remain the gold standard for TME
assessment. However, targeted evaluation of individual TME
components often requires invasive tissue sampling and
component-specific immunohistochemistry, which can limit serial
assessment and may not capture whole-tumor heterogeneity. In this
context, noninvasive MRI-based radiomic signatures are intended
to complement—but not replace—pathology by enabling
repeatable, whole-tumor assessment of TME features.

Radiomics refers to the process of extracting high-dimensional
data from medical images and objectively describing image
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characteristics to enable more precise analysis and predictions
with carefully designed algorithms (15). Radiomics using
magnetic resonance imaging (MRI) data for breast cancer has
shown promising results for prognostication, treatment response
predicting, and disease characterization (16-18). While most
radiomic studies focus on intratumoral regions, recent
retrospective studies using peritumoral features have shown utility
in breast cancer, such as predicting response to neoadjuvant
chemotherapy, human epidermal growth factor receptor 2
(HER?2) status, or immune cell infiltration in the TME (18-24).

To test the hypothesis that MRI-based radiomics can
noninvasively characterize the TME status of breast cancer, we
prospectively evaluated the radiomic characteristics from
intratumoral and peritumoral regions on multiparametric MRI—
diftusion-weighted imaging (DWTI), T2-weighted imaging (T2), and
dynamic contrast-enhanced T1-weighted imaging (T1) (25). Our
study extends prior work in three ways. First, it is prospective and
image biomarker standardization initiative (IBSI)-compliant, with
prespecified analyses and adherence to radiomics quality
recommendations (25-27). Second, we anchor imaging findings
to histology using three-dimensional (3D) volume histology as the
reference standard; compared with conventional 2D slides, 3D
histology samples have 20-100x thicker tissue volumes and yields
more accurate, less biased visualization of TME architecture,
including in breast core-needle specimens (28, 29). Third, we
assess both principal arms of the TME—ECM and immune cells
—and perform head-to-head comparisons across MRI sequences
(DWI, T2, dynamic contrast-enhanced T1) and anatomic regions
(intratumoral vs. combined intra-peritumoral).

In practice, an ECM-oriented radiomics signature is intended as
a complementary adjunct to pathology: It can flag collagen-rich
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Consecutive women who were scheduled to undergo ultrasound-guided '

tissue biopsy for suspicious breast masses assessed as BI-RADS

category 4C or 5 between June 2020 and April 2022 (n = 215)
Excluded (n = 94)
* Benign histopathology results (n = 38)
* Ductal carcinoma in situ (n = 19)
* Invasive tumor size less than 10 mm (n = 8)
« Infiltrative non-mass lesion on MRI (n = 7)
* Refusal to participate (n = 10)
* No MRI before treatment (n = 4)
* Inadequate volume histological imaging (n = 3)
* MRI with a different protocol at an external hospital (n = 5)

121 women participated in this study
FIGURE 1

Flowchart of the study participants. 121 participants with invasive breast cancer were included. BI-RADS = Breast Imaging-Reporting and Data

System.

stroma for ECM-modifying approaches or trial referral, suggest
immunotherapy stratification, and support serial, noninvasive
monitoring during treatment. Model probabilitis are mapped to
low/intermediate/high categories using prespecified thresholds and
incorporated into a structured report for multidisciplinary review;
final diagnostic and therapeutic decisions remain anchored
in pathology.

Accordingly, we aimed to determine whether MRI-based
radiomics from intratumoral and peritumoral regions can predict
ECM and immune components of the TME in invasive breast
cancer using DWI, T2, and dynamic contrast-enhanced T1,
referenced to 3D histology.

2 Methods
2.1 Patients

This study was approved by our institutional review board and
written informed consent was obtained from all participants
(Approval Nos. 2020AS0113 and 2021AS0318). This prospective
study was registered at clinicaltrials.gov (NCT06095414). Sample
size estimation was described in the Supplementary Information.
Between June 2020 and April 2022, we enrolled 215 consecutive
women who were scheduled to undergo ultrasound-guided tissue
biopsy for suspicious breast masses assessed as category 4C or 5
according to the Breast Imaging-Reporting and Data System (30). If
a patient had multiple suspicious masses, the most suspicious mass
was selected as the representative lesion before biopsy. Ultrasound-
guided 14-gauge core-needle biopsy (Bard, Tempe, Arizona, USA)
was performed, including the boundary of the tumor. The eligibility
criteria were as follows: (a) histologically confirmed invasive breast
cancer, (b) participant consent, and (c) MRI performed before
treatment. We excluded 94 women for the following reasons:
benign histopathology results (n = 38), ductal carcinoma in situ
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(n = 19), invasive tumor size < 10 mm (n = 8), infiltrative nonmass
lesion on MRI (n = 7), refusal to participate (n = 10), no MRI before
treatment (n = 4), inadequate volume histological imaging (n = 3),
and MRI with a different protocol at an external hospital (n = 5).
Ultimately, 121 women were included in this study (Figure 1).

2.2 Histological evaluation of the TME

We performed FxClear volume histology, which is an
acrylamide-free electrophoretic tissue-clearing protocol with a fast
reaction time and high immunoreactivity (31). Volume imaging
preserves the structural integrity and allows visualization of the
biological architecture in thick tissues and organoids (32, 33). The
immunohistochemical reactivity of TME components of each
cancer was quantified. Primary antibodies were used to assess the
following TME components: collagen type 1 (1:4500, AB34710,
Abcam), laminin (1:4500, L9393, Sigma), nidogen-1 (1:9000, NBP1-
97701, Novus), FOXP3 (1:600, AB20034, Abcam), and CD8 (1:25,
AB75129, Abcam). FOXP3 antibody was used to evaluate
regulatory T cells, and CD8 was used to evaluate cytotoxic T cells.
The expression of ECM components, including collagen, laminin,
and nidogen, was measured as the amount of immunoreactivity.
The expression of regulatory and cytotoxic T cells was assessed by
counting the number of cells (Figure 2). Details of the histological
evaluation of the TME are provided in the Supplementary
Information. We also reviewed the histological reports to evaluate
prognostic factors and subtypes. The histological factors were
dichotomized by respective median value unless specified:
hormone receptor status including estrogen or progesterone
(positive vs. negative), HER2 (positive vs. negative), and Ki67
(high [> 20%] vs. low [< 20%]). The molecular subtype was
classified into four types according to the St Gallen classification
criteria: luminal A, luminal B, HER2-enriched, or triple-
negative (34).
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FIGURE 2

MRI and volume histological images from a 51-year-old woman with triple-negative invasive ductal carcinoma. (A) Initial T1-weighted MRI after
contrast injection shows an irregularly shaped, heterogeneously enhanced mass (arrow) in the left breast. (B) Three-dimensional segmentation of the
tumor is performed on the axial image. The intratumoral region is marked in red and the peritumoral region is marked green. The peritumoral region
is generated by extending the intratumoral regions with 4 mm thickness in three dimensions and then subtracting the intratumoral region

(C, D) Volume histology was performed to evaluate extracellular matrix (C) and immune cells (D) of tumor microenvironment. To assess the
abundance of tumor microenvironmental components, the immunoreactivity of each antibody was quantified by fluorescence imaging. Microscopy
images have two channels: blue (channel 1) represents stained cell nuclei and green (channel 2) represents the color for each antibody of tumor
microenvironment components. To assess the expression of extracellular matrix components such as collagen (C), the amount of immunopositivity
was measured. To assess the abundance of immune cells such as regulatory T cells (D), the number of stained cells is evaluated.
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TABLE 1 Summary of MRI parameters.

Modality Sequence TR (ms) TE (ms) FOV (mm)
T1 3D GRASP-VIBE = 3.80 ‘ 1.69 355 x 355
T2 3D SPACE 1000 ‘ 133 340 x 340
DWI IVIM 3000 ‘ 56 340 x 340

10.3389/fonc.2025.1654508

Resolution (mm) FA (°) b value (s/mm?)

101 x 101 x 1.00 12 NA

0.33 x 0.33 x 1.00 125 NA

121 x 121 x 4.00 NA 0, 20, 50, 80, 100, 150, 200, 500, 800, 1000, 1500

TR, repetition time, TE , echo time, FOV , field of view, FA , flip angle, T1, T1-weighted imaging, 3D GRASP-VIBE , 3D golden-angle radial sparse parallel volumetric interpolated breath-hold
examination, NA , not applicable, T2, T2-weighted imaging, 3D SPACE , 3D sampling perfection with application-optimized contrasts using different flip angle evolutions, DWT , diffusion-

weighted imaging, IVIM , intravoxel incoherent motion.

2.3 MRI acquisition and feature extraction

MRI was performed with the patient in the prone position using
a 3T magnet (MAGNETOM Vida; Siemens Healthineers, Erlangen,
Germany) with a dedicated 18-channel breast coil. 3D T2, 3D
dynamic contrast-enhanced T1, and DWI were obtained in each
patient. Table 1 demonstrates acquisition parameters for MRI. All
images were obtained with bilateral axial views and fat saturation.
For dynamic contrast-enhanced T1, five postcontrast phases were
acquired at 60, 120, 180, 240, and 300 seconds after intravenous
contrast administration. DWI was performed using the intravoxel
incoherent motion technique.

For radiomics, we analyzed five MRI inputs: T2, DWI (b = 800
s/mm?), precontrast T1, initial-phase postcontrast T1 (60 s), and
delayed-phase postcontrast T1 (300 s). In this manuscript, ‘phase’
denotes the two time points (initial and delayed) of the same
dynamic contrast-enhanced T1 sequence. Although five DCE
time points were acquired (60, 120, 180, 240, 300 s), we pre-
specified 60 s and 300 s as the representative phases for radiomics
because they correspond to the Breast Imaging-Reporting and Data
System (BI-RADS) MRI lexicon windows (initial enhancement vs.
delayed persistent/plateau/washout) (35). The initial-phase
emphasizes perfusion/permeability, whereas the delayed-phase
reflects delayed contrast retention. Intermediate phases (120-
240 s) were used only to derive BI-RADS kinetic labels for
descriptive reporting and were not included as radiomic inputs to
avoid multicollinearity and unnecessary dimensional inflation.

For 3D segmentation of tumors, regions of interest (ROIs) along
the entire enhancing tumor margin of cross-sectional area were
drawn at axial views of initial-phase contrast-enhanced T1 from top
to bottom of each tumor. On precontrast and delayed-phase
contrast-enhanced T1, ROIs were drawn on the lesion
corresponding to initial-phase contrast-enhanced T1. Because the
slice thickness differed for DWI (4 mm) and T2 (3 mm) relative to
T1 (1 mm), ROIs for DWI and T2 were drawn separately.
Segmentation was performed on axial images by a radiologist
(E.S.K. with 5 years of experience in breast MRI) using a semi-
automated method with MRIcro software (version 1.40, https://
www.nitrc.org/projects/mricro/) under the supervision of a senior
radiologist (B.K.S. with 23 years of experience in breast MRI), while
blinded to the clinicohistological data except for information about
the diagnosis of breast cancer (Figure 2). The peritumoral regions
were generated by extending the intratumoral regions with 4 mm
thickness in 3D. A distance of 4 mm from the tumor was chosen to
evaluate the peritumoral area based on previous breast peritumoral
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radiomics studies (22, 23). In addition, we performed a margin-
sensitivity analysis using an 8-mm annulus on the best-performing
input from the main analyses to assess robustness.

To assess intra-reader segmentation reproducibility, we
performed a stratified random sampling of 50 cases according to
tumor-size distribution; each case was re-segmented by the same
reader using the identical semi-automated protocol and compared
with the original segmentation. Agreement between the two
segmentations by the same reader was quantified using the Dice
similarity coefficient (DSC) and the Jaccard similarity coefficient
(JSC) for volumetric overlap (36).

For feature robustness, isotropic resampling was performed
prior to feature extraction. For each of the five MRI inputs, 1618
features were extracted from the intratumoral region and combined
intratumoral and peritumoral regions. Thus, a total of 16180
radiomic features were extracted for each cancer. The 1618
features were categorized into four groups: (a) histogram-based
first-order statistical features (n = 17), (b) shape and volume
features (n = 7), (c) textural features using the gray-level co-
occurrence matrix (GLCM) and gray-level run-length matrix
(GLRLM) (n = 162), and (d) wavelet-transformed features (n =
1432) (26). We extracted MRI radiomic features in compliance with
IBSI (27, 37) using MATLAB R2023b (MathWorks) and the
Pyradiomics 3.1.0 library (https://www.radiomics.io/
pyradiomics.html) in Python 3.8. The radiomics quality score was
25 out of 36 (69%) (Supplementary Table 1) (25). By context, prior
oncology radiomics studies have reported a mean radiomics quality
score of 9/36 (26%). Details of feature extraction are provided in the
Supplementary Information.

2.4 Feature selection and predictive model
construction

After z-score normalization of all features, the dataset was
randomly divided into training and testing cohorts in a 7:3 ratio.
For each MRI input independently, feature selection was performed
using the least absolute shrinkage and selection operator (LASSO)
method with fivefold cross-validation to determine the optimal
lambda (0.05). The LASSO tool is a statistical method used to select
the most relevant features from complex data sets. The LASSO
process was iterated 25 times, and features that were selected 20
times during each iteration were considered significant radiomic
features. After the process iterations, we identified two sets of five
top features from intratumoral features alone and from both
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intratumoral and peritumoral features and then used these radiomic
signatures as predictors in a linear regression analysis (38, 39).
Beyond the primary 7:3 split, we performed fivefold cross-
validation to assess internally stability and robustness of the
predictive models. We report the mean area under the receiver-
operating characteristic curve (AUC) and 95% confidence intervals
(CI) across folds as the cross-validated performance. Ultimately, we
constructed two predictive models: intratumoral-only model based
on intratumoral radiomic signatures and a combined intratumoral-
peritumoral model combing both intratumoral and peritumoral
signatures. To aid interpretability, we visualized the relative
contributions of the top 10 selected features as bar plots of
standardized coefficients with bootstrap 95% Cls, and assessed
redundancy or complementarity using a Pearson
correlation heatmap.

2.5 Statistical analysis

To assess potential imbalance between the training and testing
cohorts, we compared baseline clinicopathological characteristics:
age, tumor size, hormone receptor status, HER2 status, Ki67, and
molecular subtype. For continuous variables, normality was
assessed with the Shapiro-Wilk test, and between-group
differences were evaluated using Welch’s ¢ test or the Mann-
Whitney U test, as appropriate. For categorical variables, chi-
square or Fisher’s exact tests were applied. We also calculated
effect sizes (Cohen’s d for continuous variables; absolute
differences in proportions for categorical variables), interpreting
0.2, 0.5, and 0.8 as small, medium, and large effects,
respectively (40).

In addition, we examined the associations between MRI
radiomic features and histological TME components. Model
performance was assessed using AUC, accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value.
To assess the model’s discriminative performance, the AUC was
calculated with its 95% CI determined using the bootstrap method,
focusing on the 2.5% and 97.5% percentiles of the distribution. The
DeLong test was conducted to compare the performance of models
using only intratumoral radiomic signatures with models that
combine intratumoral and peritumoral radiomic signatures.
Additionally, test compared predictive performance across five
MRI sequences. A P value < 0.01 (0.05/5), 0.0125 (0.05/4), or
0.025 (0.05/2) from the DeLong test was considered significant,
applying Bonferroni correction for multiple comparisons. All
reported performance metrics were derived from confusion
matrices of our cross-validated predictions.

We evaluated clinical utility using decision-curve analysis. For
each model, net benefit was computed across prespecified threshold
probabilities (Pt = 0.10-0.40) and compared with treat-none and
treat-all strategies. We compared intratumoral-only and combined
intratumoral- peritumoral models for two representative endpoints:
collagen (ECM) and regulatory T cells (immune cells), using the
best performing sequence.
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Furthermore, we performed subtype-stratified analyses using
the MRI sequence that showed the best overall predictive
performance in the main analyses. Within each subtype,
intratumoral-only and combined models were evaluated, and
pairwise AUC comparisons were conducted using DeLong’s test
with Bonferroni correction. To compare performance between
subtypes, we used bootstrap resampling (1,000 iterations) to
estimate P values and ClIs, accounting for unequal and relatively
small sample sizes.

All statistical metrics were computed using scikit-learn in
Python 3.8 (41). The overall design of the study is presented in
Figure 3. Analysis code is available at [ https://github.com/KUAH-
rad/Radiomics-analysis].

3 Results
3.1 Patient characteristics

We evaluated samples from 121 women (mean age, 54 + 11
years; age range, 30-83 years) with invasive breast cancer. Of the
121 cancers, 114 were invasive ductal carcinoma (Figure 2), five
invasive lobular carcinoma, one medullary carcinoma, and one
metaplastic carcinoma. Table 2 summarizes baseline
characteristics, and Supplementary Figure 1 compares the training
and testing cohorts. No significant differences were observed for
age, tumor size, estrogen receptor, progesterone receptor, hormone
receptor, HER2, Ki67, or molecular subtype (all P > 0.05). Effect-
size analyses indicated negligible-to-small differences across all
variables, with the largest for age (Cohen’s d = 0.188) and Ki-67
(d = 0.176). Additionally, standardized mean differences for the top
10 radiomic features in the best-performing models—predicting
collagen (ECM representative) and regulatory T cells (immune
representative)—showed no material imbalances between the
training and testing cohorts. (Supplementary Figure 2).

3.2 Comparison of TME Prediction
Performance between Models using
Intratumoral Regions Alone and Models
Combining Intratumoral and Peritumoral
Regions

Tables 3, 4 demonstrate the performance of models using
intratumoral radiomics signatures and combing intratumoral and
peritumoral radiomic signatures from each MRI sequence. Because
model performance ultimately depends on reliable ROI definition,
we evaluated intra-reader segmentation reproducibility in 50
randomly selected cases; volumetric overlap was excellent (mean
DSC = 0.97 + 0.01, mean JSC = 0.95 *+ 0.02). The radiomic
signatures of intratumoral regions included 60 first-order and 65
texture features (62 GLCM features and three GLRLM features),
and those of combined regions included 59 first-order, 53 texture
features (52 GLCM features and one GLRLM feature), and 13 shape
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First-order features LASSO
e ¥
Model establishment

o

B Intratumoral

Combined
(Intratumoral + Peritumoral)

¥

Radiomics assessment

Receiver operating charactristi

Linear regression

FIGURE 3

[llustration of the radiomics workflow. After segmentation of the intratumoral (in red) and peritumoral (in green) regions on MRI, a total of 16180
radiomic features (histogram-based first-order statistical features, volume and shape features, texture features, and wavelet-transformed features)
were extracted from five MRI sequences of each cancer. Radiomic features were selected, and model building was predicted using the least
absolute shrinkage and selection operator (LASSO) and linear regression analysis. The performance of the prediction of each microenvironmental
component was obtained using the area under the receiver-operating characteristic curve. Diffusion = diffusion-weighted imaging, initial
postcontrast T1 = initial T1-weighted imaging after contrast injection, delayed postcontrast T1 = delayed T1-weighted imaging after contrast
injection, T2 = T2-weighted imaging, LASSO = least absolute shrinkage and selector operator.

and volume features (Supplementary Tables 2, Supplementary
Tables 3). Among these signatures, the most frequently selected
feature for intratumoral regions was the first-order standard
deviation and in the combined regions, it was the first-order
energy. These two features were found to increase in cancers
associated with higher ECM and regulatory T cells, and lower
cytotoxic T cells. These conditions, when the TME components
were dichotomized based on the median, correlated with a poor
prognosis (P < 0.05) (Supplementary Table 4).

Table 5 shows the comparison of AUCs between two models
using intratumoral radiomic signatures alone and combined
intratumoral and peritumoral radiomic signatures to predict
TME. Models using combined radiomic signatures showed
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significant improvements in predicting laminin on delayed
postcontrast T1 (AUC [95% CI] for combined model vs.
intratumoral model, 0.83 [0.78, 0.88] vs. 0.80 [0.76, 0.85]),
nidogen on DWI (0.73 [0.68, 0.78] vs. 0.68 [0.64, 0.72]),
regulatory T cells on DWT (0.69 [0.64, 0.74] vs. 0.66 [0.63, 0.69]),
regulatory T cells on T2 (0.82 [0.77, 0.87] vs. 0.77 [0.72, 0.81]), and
cytotoxic T cells on precontrast T1 (0.82 [0.76, 0.87] vs. 0.79 [0.74,
0.83]) (P < 0.01).

The bar plot of standardized coefficients highlighted a subset of
top features with the greatest contributions (Supplementary
Figure 3). The Pearson correlation heatmap demonstrated
clustered groups of highly correlated features and low inter-
feature correlations (Supplementary Figure 4).
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TABLE 2 Study participant characteristics.

Characteristics Value

Age (years) 54 + 11 (30-83)

Tumor size (mm) 28 + 18 (10-115)
>20 64 (53)
<20 57 (47)

Histologic type

Invasive ductal carcinoma 114 (94)
Invasive lobular carcinoma 5(4)
Medullary carcinoma 1(1)
Metaplastic carcinoma 1(1)
Estrogen receptor

Positive 102 (84)
Negative 19 (16)
Progesterone receptor

Positive 99 (82)
Negative 22 (18)
HER2

Positive 31 (26)
Negative 90 (74)
Ki67

Positive 52 (43)
Negative 69 (57)
Subtype

Luminal A 57 (47)
Luminal B 49 (40)
HER2-enriched 4 (3)
Triple-negative 11 (9)

Unless otherwise indicated, data are the number of cancers with percentages in parentheses.
Age and tumor size are presented with mean value + standard deviation and data in
parentheses are range. All participants (n = 121) were women. HER2 = human epidermal
growth factor receptor 2.

3.3 Comparison of TME prediction
performance according to MRI sequences

When comparing performance between five MRI sequences in
models using combined intratumoral and peritumoral radiomic
signatures, delayed postcontrast T1 yielded the highest AUCs (AUC
[95% CI] for collagen 0.82 [0.79, 0.86], laminin 0.83 [0.78, 0.88],
nidogen 0.83 [0.76, 0.89], regulatory T cells 0.83 [0.78, 0.88], and
cytotoxic T cells 0.83 [0.79, 0.89]) (Table 4). The AUCs of delayed
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postcontrast T1 were significantly superior to those of DWI in
predicting all the TME components, precontrast T1 in predicting
collagen, and T2 in predicting nidogen (P < 0.0125) (Table 6).
However, there was no difference in AUCs between delayed
postcontrast T1 and initial postcontrast T1 for all TME
components (P > 0.0125). The combination of initial postcontrast
T1 and delayed postcontrast T1 did not show a significant
improvement over using either initial or delayed postcontrast T1
alone (P > 0.025) (Supplementary Table 5).

Using fivefold cross-validation, the AUCs of the overall
performance in predicting the abundance of ECM and immune
cells using combined features were 0.82 [0.78, 0.87] and 0.82 [0.78,
0.88] on initial postcontrast T1 and 0.82 [0.77, 0.87] (Figure 4) and
0.83 [0.78. 0.88] on delayed postcontrast T1, respectively (Figure 5).
As shown in these figures, the “Actual AUCs” listed in the figure
panels represent the values obtained from each fold of the fivefold
cross-validation. Table 7 shows radiomic signatures for predicting
overall ECM and immune cell abundance on initial or delayed
postcontrast T1. Nineteen (95%) out of 20 radiomic signatures were
first-order and GLCM texture features.

Decision-curve analysis demonstrated that the combined
intratumoral-peritumoral models provided consistently greater net
benefit than intratumoral-only models across the clinically relevant
threshold range (P, = 0.10-0.40) (Supplementary Figure 5). For
collagen, the combined model outperformed the intratumoral-only
model across all threshold, and both exceeded the treat-all and treat-
none strategies. Similarly, for regulatory T cells, the combined model
consistently yielded higher net benefit than the intratumoral-only
model within the same threshold range. In the combined models on
delayed-phase postcontrast T1, we performed correlation analyses
between the top radiomic features and quantitative histology metrics,
collagen (ECM) and regulatory T cells (immune cells). GLCM
contrast was significantly correlated with collagen proportion, and
first-order standard deviation was correlated with regulatory T-cell
density (both P < 0.001) (Supplementary Figure 6).

In subtype-stratified analyses using the delayed postcontrast
T1-weighted sequence, luminal A cancers showed AUCs of 0.59-
0.61 for intratumoral-only models and 0.64-0.67 for combined
intratumoral-peritumoral models (Supplementary Tables 6,
Supplementary Tables 7). Luminal B cancers showed AUCs of
0.59-0.60 for intratumoral-only models and 0.62-0.65 for combined
models. Triple-negative breast cancer showed AUCs of 0.56-0.59
for intratumoral-only models and 0.58-0.64 for combined models.
Across subtypes, combined models tended to outperform
intratumoral-only models for TME prediction, but differences did
not reach statistical significance after correction for multiple
comparisons (P > 0.016) (Supplementary Table 8). In the
combined models, ECM prediction for luminal A cancers was
higher than for triple-negative cancers (collagen P = 0.031;
nidogen P = 0.28); however, these pairwise differences did not
meet the Bonferroni-corrected significance threshold (P = 0.025 for
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TABLE 3 Performance of predictive models for tumor microenvironment using intratumoral radiomic signatures.

Tumor microenvironmental components

MRI sequence  Performance Extracellular matrix Immune cells
Collagen Laminin Nidogen Reglgaetl(l)ry U Cytotoxic T Cell

DWI Accuracy (%) 69 (64, 74) 67 (62, 73) 69 (65, 74) 70 (65, 75) 69 (64, 74)
Sensitivity (%) 70 (65, 75) 68(62, 74) 70 (65, 75) 70 (66, 75) 72 (67, 76)
Specificity (%) 70 (63, 76) 63(57, 68) 66 (59, 72) 70 (63, 77) 63 (57, 70)
PPV (%) 78 (69, 77) 70 (63, 74) 71 (65, 76) 72 (66, 76) 72 (67, 78)
NPV (%) 46 (38, 51) 49 (44, 53) 51 (45, 57) 50 (45, 54) 49 (40, 55)
AUC 0.67 (0.63, 0.72) 0.65 (0.60, 0.70) 0.68 (0.64, 0.72) 0.66 (0.63, 0.68) 0.69 (0.66, 0.71)

Precontrast T1 Accuracy (%) 80 (74, 86) 82 (76, 88) 82 (75, 89) 82 (74, 89) 81 (75, 88)
Sensitivity (%) 80 (74, 86) 83 (79, 87) 85 (77, 92) 83 (78, 88) 83 (76, 90)
Specificity (%) 68 (63, 73) 78 (70, 85) 77 (73, 81) 71 (65, 77) 63 (58, 68)
PPV (%) 70 (64, 77) 79 (66, 78) 75 (66, 79) 76 (70, 80) 76 (69, 81)
NPV (%) 44 (38, 53) 47 (40, 52) 48 (40, 53) 54 (48, 61) 48 (40, 54)
AUC 0.73 (0.70, 0.76) 0.80 (0.76, 0.83) 0.81 (0.78, 0.84) 0.81 (0.77, 0.85) 0.79 (0.74, 0.83)

Initial postcontrast T1 Accuracy (%) 81 (75, 88) 82 (76, 88) 83 (78, 88) 81 (76, 86) 83 (78, 89)
Sensitivity (%) 82 (78, 87) 86 (81, 92) 84 (77, 90) 83 (76, 90) 84 (77,91)
Specificity (%) 72 (65, 79) 70 (64, 76) 70 (64, 77) 70 (64, 76) 72 (65, 79)
PPV (%) 79 (69, 82) 79 (68, 83) 80 (74, 85) 79 (68, 83) 80 (74, 85)
NPV (%) 52 (47, 62) 51 (45, 62) 52 (47, 58) 54 (48, 59) 54 (47, 58)
AUC 0.80 (0.76, 0.84) 0.81 (0.79, 0.83) 0.81 (0.78, 0.85) 0.80 (0.76, 0.84) 0.82 (0.78, 0.85)

Delayed postcontrast

T1 Accuracy (%) 80 (76, 85) 82 (74, 89) 82 (76, 89) 80 (74, 87) 81 (76, 86)
Sensitivity (%) 82 (74, 89) 83 (77, 88) 83 (76, 90) 81 (75, 87) 82 (78, 86)
Specificity (%) 70 (64, 77) 77 (72, 82) 70 (65, 75) 70 (65, 75) 69 (63, 74)
PPV (%) 80 (73, 85) 79 (69, 84) 80 (75, 86) 80 (72, 85) 80 (73, 84)
NPV (%) 54 (47, 59) 54 (46, 60) 55 (49, 59) 53 (49, 58) 54 (48, 58)
AUC 0.80 (0.76, 0.83) 0.80 (0.76, 0.85) 0.81 (0.76, 0.86) 0.81 (0.76, 0.86) 0.80 (0.73, 0.86)

T2 Accuracy (%) 81 (77, 85) 79 (73, 86) 78 (72, 84) 79 (73, 86) 80 (75, 85)
Sensitivity (%) 82 (76, 87) 80 (74, 86) 80 (72, 88) 80 (74, 86) 81 (75, 87)
Specificity (%) 70 (63, 78) 77 (72, 81) 71 (67, 75) 70 (65, 74) 63 (59, 68)
PPV (%) 79 (68, 84) 78 (72, 84) 77 (76, 83) 76 (70, 82) 78 (73, 83)
NPV (%) 50 (44, 56) 52 (48, 55) 54 (46, 58) 53 (48, 58) 51 (48, 56)
AUC 0.79 (0.75, 0.84) 0.77 (0.71, 0.83) 0.75 (0.71, 0.80) 0.77 (0.72, 0.81) 0.80 (0.76, 0.84)

Data in parentheses are 95% confidence intervals. DWI, diffusion-weighted imaging, T1, T1-weighted imaging, T2 , T2-weighted imaging, AUC, area under the receiver-operating characteristic
curve, PPV, positive predictive value, NPV, negative predictive value.

two comparisons, 0.05/2) (Supplementary Table 9). HER2-enriched Additionally, we performed a peritumoral margin-sensitivity
tumors (n = 4) were excluded from statistical testing because sucha  analysis (4 mm vs. 8 mm) on delayed postcontrast T1. the 8 mm
limited cohort renders receiver-operating characteristic curve  annulus yielded lower AUCs, supporting 4 mm as the primary
estimation unstable and prevents reliable inference. peritumoral margin (Supplementary Table 10).
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TABLE 4 Performance of predictive models for tumor microenvironment using intratumoral and peritumoral radiomic signatures.

Tumor microenvironmental components

MRI sequence  Performance Extracellular matrix Immune cells
Collagen Laminin Nidogen Reglgaetl(l)ry U Cytotoxic T Cell
DWI Accuracy (%) 66 (61,70) 68 (63,74) 70 (64,76) 70 (65,75) 72 (66,77)
Sensitivity (%) 68 (63,74) 69 (63,75) 73 (66,79) 71 (67,76) 73 (65,77)
Specificity (%) 61 (56,66) 56 (49,61) 68 (62,73) 69 (63,75) 68 (62,73)
PPV (%) 70 (66, 73) 71 (68, 79) 73 (68, 78) 75 (70, 79) 74 (68, 77)
NPV (%) 48 (40, 53) 49 (42, 56) 50 (44, 57) 49 (40, 52) 51 (45, 57)
AUC 0.64 (0.60, 0.68) 0.66 (0.63, 0.70) 0.73 (0.68, 0.78) 0.69 (0.64, 0.74) 0.71 (0.66, 0.75)
Precontrast T1 Accuracy (%) 81 (75,88) 82 (76,87) 81 (76,86) 83 (78,89) 83 (78,87)
Sensitivity (%) 80 (73,85) 83 (79,89) 84 (76,89) 86 (80,90) 84 (78,89)
Specificity (%) 72 (66,79) 78 (72,85) 79 (73,84) 75 (70,79) 79 (74,84)
PPV (%) 77 (73, 84) 79 (74, 85) 73 (65, 79) 78 (72, 85) 79 (72, 84)
NPV (%) 45 (38, 49) 48 (43, 52) 48 (43, 54) 55 (47, 60) 49 (42, 54)
AUC 0.75 (0.71, 0.79) 0.80 (0.75, 0.85) 0.82 (0.77, 0.85) 0.83 (0.79, 0.86) 0.82 (0.76, 0.87)
Initial postcontrast T1 Accuracy (%) 83 (77,86) 83 (76,85) 83 (78,90) 84 (77,90) 84 (81,89)
Sensitivity (%) 81 (74,89) 84 (76,88) 86 (78,91) 86 (82,90) 82 (78,88)
Specificity (%) 77 (73,83) 78 (72,84) 79 (73,85) 76 (71,81) 79 (72,82)
PPV (%) 80 (74, 84) 80 (73, 85) 80 (73, 84) 81 (76, 87) 80 (73, 84)
NPV (%) 56 (50, 63) 53 (49, 58) 54 (48, 59) 55 (49, 58) 55 (47, 60)
AUC 0.82 (0.78, 0.87) 0.82 (0.78, 0.86) 0.83 (0.78, 0.89) 0.83 (0.79, 0.88) 0.82 (0.77, 0.89)
Delayed postcontrast
T1 Accuracy (%) 83 (78,86) 84 (78,89) 84 (79,90) 84 (78,89) 85 (80,89)
Sensitivity (%) 80 (77,89) 85 (77,90) 86 (81,90) 85 (79,91) 87 (76,90)
Specificity (%) 79 (73,85) 71 (67,76) 72 (68,76) 79 (72,86) 76 (68,84)
PPV (%) 82 (76, 85) 81 (72, 87) 82 (76, 86) 81 (75, 87) 82 (75, 87)
NPV (%) 56 (50, 62) 56 (49, 61) 58 (49, 63) 56 (48, 61) 55 (43, 60)
AUC 0.82 (0.79, 0.86) 0.83 (0.78, 0.88) 0.83 (0.76, 0.89) 0.83 (0.78, 0.88) 0.83 (0.79, 0.89)
T2 Accuracy (%) 82 (73.88) 79 (75,84) 80 (75,84) 82 (76,87) 83 (77,88)
Sensitivity (%) 80 (76,86) 81 (75,88) 81 (76,86) 83 (80,86) 85 (79,88)
Specificity (%) 74 (68,80) 76 (70,83) 74 (69,80) 74 (69,79) 72 (68,85)
PPV (%) 79 (72, 85) 77 (70, 84) 79 (72, 84) 76 (70, 82) 75 (68, 80)
NPV (%) 53 (48, 58) 52 (47, 58) 50 (42, 58) 45 (39, 49) 56 (49, 60)
AUC 0.79 (0.77, 0.85) 0.79 (0.74, 0.85) 0.78 (0.72, 0.84) 0.82 (0.77, 0.87) 0.82 (0.78, 0.88)

Data in parentheses are 95% confidence intervals. DWT, diffusion-weighted imaging, T1, T1-weighted imaging, T2 , T2-weighted imaging, AUC, area under the receiver-operating characteristic
curve, PPV = positive predictive value, NPV , negative predictive value.

4 Discussion ECM and immune cells, in invasive breast cancer. Radiomic
features were extracted from both intratumoral and peritumoral

This prospective study highlights the potential of MRI-based  regions across DWI, T2, and dynamic contrast-enhanced TI.
radiomics to noninvasively predict TME components, including the ~ Combined models incorporating both intratumoral and
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TABLE 5 Comparison of AUCs between two models using intratumoral radiomic signatures and combined intratumoral and peritumoral radiomic
signatures to predict tumor microenvironmental components.

Tumor microenvironmental components

MRI sequence Extracellular matrix Immune cells
Collagen Laminin Nidogen Regulatory T cell Cytotoxic T cell
DWI 0.023 0.042 0.008 0.009 0.012
Precontrast T1 0.024 0.057 0.034 0.017 0.009
Initial postcontrast T1 0.016 0.036 0.018 0.013 0.034
Delayed postcontrast T1 0.016 0.009 0.017 0.015 0.012
T2 0.051 0.038 0.016 0.007 0.014

Data are given as P value by DeLong’s test. A P value < 0.01 (0.05/5) is considered significant, applying Bonferroni correction for multiple comparisons. DWT, diffusion-weighted imaging, T1,
T1-weighted imaging, T2 , T2-weighted imaging, AUC , area under the receiver-operating characteristic curve.

TABLE 6 Comparison of AUCs between different MRI sequences in models using combined intratumoral and peritumoral regions to predict tumor
microenvironmental components.

Tumor microenvironmental components

Extracellular matrix Immune cells
MRI sequence
o . Regulator Cytotoxic T
Collagen Laminin Nidogen g y y
T cell cell
Delayed postcontrast T1 vs. DWI 0.002 0.001 0.006 0.003 0.005
Delayed postcontrast T1 vs. precontrast T1 0.011 0.014 0.042 0.059 0.047
Delayed postcontrast T1 vs. initial postcontrast T1 0.047 0.038 0.074 0.075 0.068
Delayed postcontrast T1 vs. T2 0.026 0.017 0.011 0.019 0.039

Data are given as P values by DeLong’s test. A P value < 0.0125 (0.05/4) is considered significant, applying Bonferroni correction for multiple comparisons. DWTI, diffusion-weighted imaging, T1,
T1-weighted imaging, T2 , T2-weighted imaging, AUC , area under the receiver-operating characteristic curve.
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FIGURE 4

Performance in combined models using intratumoral and peritumoral regions on initial postcontrast T1-weighted images. The AUCs (95%
confidence interval) of the overall performance in predicting ECM (A) and immune cell (B) abundance are 0.82 (0.78, 0.87) and 0.82 (0.78, 0.88).
AUC = the area under the receiver-operating characteristic curve, Cl = confidence interval.
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Performance in combined models using intratumoral and peritumoral regions on delayed postcontrast T1-weighted images. The AUCs [95%
confidence interval] of the overall performance in predicting ECM (A) and immune cell (B) abundance are 0.82 (0.77, 0.87) and 0.83 (0.78, 0.88).
AUC = the area under the receiver-operating characteristic curve, Cl = confidence interval.

peritumoral features outperformed models using intratumoral
features alone, with initial or delayed postcontrast T1 showing the
best predictive performance (AUC 0.82-0.83).

Most previous breast radiomic studies have focused on
intratumoral features and overlooked information in the
peritumoral regions (16, 17). However, a growing body of
evidence indicates that characteristics of the peritumoral regions
can provide information about changes in the TME (24, 42-45).
Braman et al. (45) found that incorporating both intratumoral and
peritumoral MRI radiomic features improved the AUC for
identifying HER2-enriched subtypes (0.89 vs. 0.76) and predicting

TABLE 7 Radiomic signatures from combined intratumoral and
peritumoral regions to predict overall extracellular matrix and immune
cell abundance on postcontrast T1.

Tumor microenvironmental
components

MRI sequence

Extracellular

. Immune cells
matrix

Initial postcontrast T1

First-order_Mean

First-order_Skewness

First-order_Kurtosis
First-order_Std
First-order_Range

GLCM_Contrast

First-order_Std
GLCM_Entropy_Std
GLCM_Contrast

First-order_Mean

Delayed postcontrast T1

First-order_Sum

First-order_Energy

First-order_Energy

First-order_Mean

First-order_Median

Shape and
volume_Sphericity

GLCM_Cluster Shade

First-order_Energy

First-order_Mean

First-order_Kurtosis

The radiomic feature name is described by group_discriptor_statistic. T1 , T1-weighted
imaging, GLCM , gray-level co-occurrence matrix, Std standard deviation.
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the pathological response to anti-HER2 therapy (0.80 vs. 0.66).
They also reported a significant association between peritumoral
radiomic features and the density of tumor-infiltrating
lymphocytes. Similarly, a recent retrospective study by Qian et al.
(24) demonstrated that a combined model showed higher
performance in predicting the level of immune cell infiltration of
M2 macrophage than an intratumoral model (AUCs of training and
testing cohorts; 0.84 and 0.74 vs. 0.66 and 0.68). They utilized the
arterial phase of postcontrast T1 for radiomic analysis. In our study,
both initial and delayed postcontrast T1 showed superior
performance in predicting the TME, with no significant difference
between two sequences. The improvement in predicting the
immune cell TME with combined models using both intra- and
peritumoral radiomic features, rather than only intratumoral
features, aligned with our study findings.

In the present study, the most frequently selected radiomic
features were first-order (notably standard deviation and energy)
and GLCM textures. Increases in standard deviation and decreases
in energy indicate reduced histogram-based uniformity and GLCM
contrast captures local intensity differences consistent with textural
heterogeneity (46). GLCM contrast was positively correlated with
collagen proportion, and first-order standard deviation was
positively correlated with regulatory T-cell density (both P <
0.05). These feature-histology associations suggest that radiomic
heterogeneity reflects stromal organization (collagen) and the
immune milieu (regulatory T cells), reinforcing the biological
plausibility of the learned signatures.

Among MRI sequences, DWI-based models showed inferior
performance compared to T1- or T2-based models, likely due to
DWT’s lower resolution and fewer segmented pixels per lesion (47).
Enhancing the resolution of DWI or utilizing super-resolution
apparent diffusion coefficient maps extracted from DWI may
improve DWI-based radiomics performance (47, 48). In this
study, delayed postcontrast T1 presented the highest predictive
performance. Mechanistically, dynamic postcontrast imaging
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samples contrast-agent kinetics: the initial-phase reflects
microvascular perfusion/permeability (wash-in), whereas the
delayed-phase captures late contrast retention influenced by
interstitial transport and stromal organization (49, 50). A
collagen-rich, fibrotic ECM can increase interstitial resistance and
prolong late retention, while immunosuppressive/angiogenic
milieus can produce heterogeneous early enhancement; these
vascular-stromal interactions are expressed as peritumoral texture
heterogeneity, plausibly explaining the superior performance of
delayed T1 over static contrasts. The superiority of delayed
postcontrast T1 may reflect the reduced influence of early
angiogenic perfusion/permeability effects, while persistent contrast
retention preserves lesion-to-stroma conspicuity for visualizing
ECM architecture. Reig et al. (51) reported that the usefulness of
delayed postcontrast T1 in identifying residual tumors after
neoadjuvant chemotherapy. Residual lesions may show late
enhancement due to the anti-angiogenic effects of chemotherapy.
Further studies are warranted to validate the performance of various
MRI sequences in predicting each TME component in a larger
number of patients for tailored treatment and predicting response
to different treatment modalities.

Although improvements in discrimination between combined
intratumoral-peritumoral and intratumoral-only models were
modest, decision-curve analysis provided complementary evidence
of clinical utility. For both collagen and regulatory T cells, the
combined models showed consistently higher net benefit across
clinically plausible thresholds, indicating that peritumoral
information enhances risk stratification. These findings underscore
the potential clinical value of incorporating tumor-adjacent radiomic
features beyond the tumor boundary. Our margin-sensitivity
experiment further contextualizes this finding. On delayed
postcontrast T1, expanding the peritumoral annulus from 4 mm to
8 mm reduced performance, consistent with signal dilution from
inclusion of non-tumor-proximal tissue. These results support 4 mm
as an appropriate operating margin for the main analyses.

Strengths of our study include the prospective, histology-anchored
design; adherence to IBSI recommendations; and a comparatively high
radiomics quality score (25/36) relative to prior oncology radiomics
reports (25). In addition, intra-reader segmentation reproducibility was
excellent, with DSC and JSC values exceeding 0.95, reinforcing the
robustness of the semi-automated segmentation process and
supporting the reliability of radiomic feature extraction. For clinical
integration, we specify how the ECM- or immune cell-oriented
radiomics signatures would be implemented as adjuncts to
pathology: standardized pretreatment MRI; tumor segmentation on
early postcontrast T1 with a 4 mm peritumoral annulus and mask
propagation to the delayed-phase; feature extraction and model
inference prioritizing delayed postcontrast T1 with intra- and
peritumoral features; and probabilities mapped as low, intermediate,
or high using decision-curve-informed thresholds and presented in a
structured report addendum for multidisciplinary review. Deployment
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proceeds from silent to assisted mode with ongoing calibration and
drift monitoring; final management decisions remain in conjunction
with pathology. Future work will prioritize multicenter, multi-scanner
external validation with protocol harmonization to ensure
generalizability. Methodologically, we will evaluate delta-radiomics
on dynamic MRI—both phase-based (early to delayed) and
longitudinal changes during therapy—to test sensitivity to TME
remodeling. We will also pursue multi-omics integration (radiomics
with genomic signatures of ECM and immune activity) to improve
biological interpretability and predictive performance. Clinically, we
will study neoadjuvant cohorts with serial TME assessment to support
early response adaptation and treatment guidance. Finally, we will
incorporate automated segmentation, rigorous calibration/decision-
curve analyses, and stepwise prospective deployment (silent to
assisted) to assess clinical utility and workflow impact.

Limitations include the following. First, this was a single-center
study on a single 3T system with a fixed protocol; we did not assess
multi-scanner variability or validate on an external dataset, which may
limit generalizability. Second, although statistically justified, the sample
size is relatively small for high-dimensional radiomic modeling,
increasing the risk of overfitting. These limitations underscore the
need for larger, multicenter cohorts with multi-scanner acquisition and
external validation, which we plan to pursue. Third, we did not perform
automated segmentation. To minimize issue with lesion selection,
semiautomatic segmentation was performed by the breast specialist
under the supervision of the senior breast specialist. In addition, intra-
reader segmentation reproducibility was excellent, with DSC and JSC
values exceeding 0.95, reinforcing the robustness of the semi-
automated segmentation process and supporting the reliability of
radiomic feature extraction. Future studies incorporating fully
automated segmentation pipelines to further improve robustness and
reproducibility are warranted. Fourth, patients with invasive tumors
smaller than 10 mm were excluded. Because the slice thickness of T2 (3
mm) and DWI (4 mm) was larger than that of T1 (1 mm), partial
volume effects and misregistration across sequences could have
compromised segmentation accuracy and reproducibility in very
small lesions. Moreover, the restricted voxel counts in such tumors
frequently led to unstable or infeasible radiomics feature extraction.
This exclusion criterion may have limited the applicability of our
findings to subcentimeter tumors. Fifth, in subtype-stratified analyses,
discriminative performance was modest across subtypes. Although
combined intra-peritumoral models tended to outperform
intratumoral-only models for TME prediction, the gains were not
significant. This likely reflects limited sensitivity to subtype-specific
biology under the current sample sizes: the HER2-enriched subgroup
was excluded from statistical testing (n = 4), and the remaining
subgroups were small and imbalanced, leading to wide CIs and
reduced power. Larger, balanced, multicenter cohorts with multi-
scanner acquisition and multi-reader assessment are needed to
validate TME prediction at the subtype level and to support
clinical implementation.
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5 Conclusion

MRI-based radiomic models that incorporate both intratumoral
and peritumoral features demonstrated superior performance over
intratumoral-only models in characterizing the TME in invasive
breast cancer. Among the imaging sequences, contrast-enhanced T1
—particularly the delayed-phase—showed the highest predictive
accuracy for ECM and immune cell components. These findings
suggest that radiomics has the potential to serve as a noninvasive
biomarker for assessing TME profiles, including immunosuppressive
and ECM-rich phenotypes associated with poor prognosis. With
further validation in large, multicenter cohorts, this approach may
contribute to personalized treatment planning and response prediction
in breast cancer.
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