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models for predicting bone
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Background and purpose: The occurrence of bone metastasis (BM) in advanced
bladder cancer (BC) often signifies a poor prognosis. Currently, the accurate
prediction of BM in BC remains a challenge. This study develops predictive
models using machine learning algorithms to predict bladder cancer bone
metastasis (BCBM) and aid in personalized clinical decisions.

Patients and methods: We reviewed and analyzed data from patients diagnosed
with BC between 2010 and 2015 in the Surveillance, Epidemiology, and End
Results (SEER) database. In addition, we included 327 patients treated at the
Second Affiliated Hospital of Nanchang University and Jiangxi Cancer Hospital as
an external validation cohort. Independent risk factors for BM in patients with BC
were identified through univariate and multivariate logistic regression analyses.
These features were then integrated into seven machine learning algorithms to
build predictive models: logistic regression (LR), support vector machine (SVM),
gradient boosting machine (GBM), neural network (NN), random forest (RF),
extreme gradient boosting (XGB), and k-nearest neighbors (KNN). The
performance of these models was evaluated using the area under the receiver
operating characteristic curve (AUC), along with accuracy, sensitivity (recall),
and specificity.

Results: A total of 22,114 patients diagnosed with BC were included in this study,
with 537 (2.4%) patients developing BM. The identified independent risk factors
for BCBM included age, race, tumor histology, tumor grade, T stage, N stage, the
presence of brain metastasis, liver metastasis, and lung metastasis, and history of
radiotherapy. Among the seven developed machine learning models, the tree-
based GBM model exhibited the best performance in the test set, achieving AUC,
accuracy, sensitivity, and specificity values of 0.855, 0.813, 0.733, and 0.815,
respectively. The GBM model also demonstrated robust performance in the
external validation set, achieving an AUC of 0.766 and accuracy of 0.945.
According to Shapley additive explanations (SHAP), the most significant feature
in the GBM prediction model is the T stage, followed by the N stage
and radiotherapy.

Conclusion: The GBM model offers a precise and personalized approach to
predicting BCBM, potentially enhancing clinical decision-making and the
efficiency of BM screening in patients with BC.
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Introduction

Bladder cancer (BC) is the second most common urogenital
cancer (1). Worldwide, it ranks as the ninth most prevalent cancer,
with approximately 614,000 new cases and 220,000 deaths reported
in 2022 (2). BC is characterized by a high rate of recurrence and
metastasis (3). Metastatic bladder cancer (mBC) primarily spreads
to the lymph nodes, the bones, the lungs, and the liver (4).
Approximately 10%-15% of patients with BC are diagnosed with
metastasis at the initial presentation (5), with the bone being the
most common site of metastasis (6, 7). Bone metastasis (BM) can
lead to skeletal-related events (SREs), which often result in
complications such as pain, hypercalcemia, spinal cord
compression, pathological fractures, and neurological deficits.
These complications significantly diminish the patient’s quality of
life (8) and adversely affect survival rates (9), with the 1-year
survival rate for patients with bladder cancer bone metastasis
(BCBM) as low as 21% (10). The TNM staging system established
by the American Joint Cancer Committee (AJCC) is widely
recognized for predicting the metastasis risk and the prognosis of
various cancer patients (11). However, the TNM system does not
account for additional risk factors such as age, gender, and previous
treatment history, which have been shown to be valuable in
predicting BC metastasis (12, 13). Consequently, the predictive
accuracy of the TNM staging system for patients with BM may be
limited. Many patients with BC may not receive a timely diagnosis
of BM, potentially missing optimal treatment windows and leading
to poorer prognosis. Therefore, accurately predicting the
occurrence of BM in patients with BC is of great significance.

In recent years, artificial intelligence (AI) models based on
machine learning (ML) algorithms have been increasingly
integrated into clinical practice (14, 15). As a key branch of Al,
ML has been utilized to independently extract features from large
datasets and construct high-precision prediction models,
continuously optimizing the performance of these algorithms.

In medical research, the construction and validation of models
based on ML can uncover potential patterns in large clinical
datasets, providing valuable tools for early diagnosis and
prognosis assessment. ML has been widely applied in the
prognostic evaluation of prostate cancer, kidney cancer, and
gastrointestinal cancer, as well as in studies of organ metastasis
(16, 17). The rapid advancement of health big data in biomedical
science has revealed the significant potential of ML applications in
understanding disease and in health management (18).

Currently, there are limited studies exploring ML models for the
prediction of BCBM. In this study, we evaluated seven ML
algorithms and observed that, among them, the gradient boosting
machine (GBM) model showed relatively better performance. This
study extracted data on patients with BC, as well as their clinical and
pathological characteristics, from the Surveillance, Epidemiology,
and End Results (SEER) database for the years 2010-2015. Accurate
and reliable ML models to predict BCBM were constructed, which
could assist clinicians in promptly identifying patients with BM.
This approach aims to provide personalized clinical strategies for
patients and promote the rational allocation of medical resources.
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Methods
Ethics statement

The SEER database is a publicly available, anonymized cancer
registry where all patient data have been de-identified. Therefore,
this study was exempt from ethics review and patient
consent requirements.

Patient selection and variables

All data were extracted from the SEER database using SEERStat
software (version 8.4.4). This database covers approximately 28% of
the US population and includes 17 population-based cancer
registries, providing clinicopathological, demographic, and
survival outcome information. The case listing was based on the
dataset of Incidence—SEER Research Data, 17 Registries, Nov 2023
Sub (2000-2021). Subjects with BC were identified using site codes
C67.0-C67.9. In this study, patients with a diagnosis of malignant
BC by positive histology diagnosed between 2010 and 2015 were
selected. The exclusion criteria were as follows: 1) patients under the
age of 18 years; 2) patients with unknown AJCC T or N staging; 3)
patients with unknown race or histological grade; 4) patients with
unknown bone, brain, liver, or lung metastasis status; 5) patients
with unknown radiotherapy or chemotherapy information; and 6)
patients with two or more primary tumors. The flowchart for the
case screening is shown in Figure 1. The external validation cohort
comprised 327 patients with pathologically confirmed BC
diagnosed between 2016 and 2023, among whom 11 developed
BM. The final follow-up was completed in November 2024. This
study was approved by the Institutional Review Boards of the
Second Affiliated Hospital of Nanchang University and Jiangxi
Cancer Hospital, with a waiver of informed consent granted. A
total of 13 variables related to patient demographics and
clinicopathological characteristics were extracted for analysis. The
demographic variables included age, sex, and race, while the
clinicopathological variables included tumor histology type,
tumor grade, T stage, N stage, radiotherapy, chemotherapy, brain
metastasis, BM, lung metastasis, and liver metastasis. Patient age
was categorized into three subgroups, <60 years, 60-80 years, and
>80 years, and the tumor grade into two subgroups. The histological
types were classified into transitional cell carcinoma, squamous cell
carcinoma, adenocarcinoma, and other types. All cancer patients
exhibited histopathological and morphological evidence consistent
with the International Classification of Diseases for Oncology,
Third Edition (ICD-O-3), and all BC patients were staged
according to the AJCC 7th Edition guidelines and the SEER

staging information.

Data processing and feature engineering

All statistical analyses and data descriptions were conducted
using R version 4.4.1 and SPSS version 27. The continuous variable
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Patients diagnosed with bladder cancer in the SEER database between 2010 and 2015
(n=103482)
Exclude:
1.Patients with two or more primary tumors(n=44809)
2. unknown histology grade(n=14853)
3. unknown AJCC T, N stage(n=21380)
4.unknown bone, brain, liver and lung metastatic status(n=114)
5. unknown race(n=114)
6. radiotherapy unknown(n=97)
7.<18 years old patients(n=1)
Study population
(n=22114)
Train set(n=15480)
| Machine learning model value |
FIGURE 1

Study flowchart of case screening.

age was converted into a categorical variable, which was then
processed using the label encoding method. In this study, logistic
regression analysis was performed on the variables collected from
the SEER database using R software to identify features suitable for
ML models. Significant variables in patients with BCBM were
identified through univariate logistic regression analysis (p <
0.05). These variables were subsequently included in a
multifactorial logistic regression analysis, and the ML models
were built using the variables that remained statistically
significant (p < 0.05) in the multivariate analysis. Correlation
analysis was conducted to examine the relationships between the
selected variables. In addition, to compare the importance of each
feature, the feature importance in the ML model was extracted
based on the principle of permutation importance. Finally, the
importance of each feature was ranked using Shapley additive
explanations (SHAP), helping decision-makers understand how to
effectively utilize the model and comprehend the impact of each
feature on the final predicted outcome. To achieve this, SHAP was
employed to quantify the contribution of each feature to the model
predictions, providing a transparent and interpretable analysis.
Given that this dataset is unbalanced, which may affect the model
performance, the synthetic minority oversampling technique
(SMOTE) was employed as the sampling method in the training
set to mitigate the impact of sample imbalance on the
evaluation results.

Model construction and evaluation

The data from the SEER database were randomly divided into a
training set and a test set at a ratio of 7:3. In this study, seven ML
algorithms were selected, including three tree-based models
[random forest (RF), GBM, and extreme gradient boosting
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(XGB)]; a linear model (logistic regression, LR); a kernel-based
model (support vector machine, SVM); a distance-based model (k-
nearest neighbors, KNN); and neural networks. External validation
was subsequently conducted to further evaluate the generalizability
of the model. The evaluation indicators for the ML algorithms
included the area under the receiver operating characteristic curve
(AUC), accuracy, sensitivity, and specificity. The ML models were
developed using the caret framework in R software. The relevant
parameters of the model can be found in Supplementary Table S1.

Results
Patient characteristics and metastasis

A total of 22,114 patients with BC were included in this study.
At the time of initial diagnosis, 21,577 patients (97.6%) had no BM,
while 537 patients (2.4%) had BM. The patients were randomly
divided into a training set (n = 15,480) and a test set (n = 6,634) at a
7:3 ratio. In the external validation cohort, 316 patients (96.6%)
showed no evidence of BM, while 11 patients (3.4%) developed BM.
The characteristics of all cohorts are presented in Tables 1 and 2.

Feature filter

A total of 10 independent risk factors related to BM were
identified through univariate and multivariate logistic regression
analyses. These included age, race, tumor histology, tumor grade, T
stage, N stage, radiotherapy, brain metastasis, lung metastasis, and
liver metastasis (p < 0.05) (Table 3). Among these, the three most
significant risk factors were brain metastasis (OR = 5.98, 95%CI =
2.37-15.14), liver metastasis (OR = 5.89, 95%CI = 4.05-8.56), and
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TABLE 1 Clinical and pathological characteristics of the training and test sets.

Test set, n (%)

Training set, n (%)

Variable
NBM (n = 15,104) BM (n = 376) NBM (n = 6,473) BM (n = 161)
Age (years)
<60 2,585 (17.1) 98 (26.1) 1,133 (17.5) 48 (29.8)
60-80 8,533 (56.5) 222 (59.0) 3,677 (56.8) 84 (52.2)
>80 3,986 (26.4) 56 (14.9) 1,663 (25.7) 29 (18.0)
‘ Sex
Men 10,995 (72.8) 289 (76.9) 4,754 (73.4) 127 (78.9)
Women 4,109 (27.2) 87 (23.1) 1,719 (26.6) 34 (21.1)
‘ Race
White 13,145 (87.0) 315 (83.8) 5,697 (88.0) 134 (83.2)
Black 1,017 (6.7) 45 (12.0) 446 (6.9) 18 (11.2)
Other 942 (6.2) 16 (4.3) 330 (5.1) 9 (5.6)
‘ Grade
I-11 1,940 (12.8) 16 (4.3) 822 (12.7) 9 (5.6)
-1V 13,164 (87.2) 360 (95.7) 5,651 (87.3) 152 (94.4)
‘ Histologic type
Transitional cell carcinoma 14,156 (93.7) 334 (88.8) 6,041 (93.3) 144 (89.4)
Squamous cell carcinoma 344 (2.3) 6 (1.6) 176 (2.7) 7 (4.3)
Adenocarcinoma 268 (1.8) 8(2.1) 106 (1.6) 1 (0.6)
Other 336 (2.2) 28 (7.4) 150 (2.3) 9 (5.6)
T stage
Tl 7,916 (52.4) 63 (16.8) 3,351 (51.8) 35 (21.7)
T2 4,782 (31.7) 206 (54.8) 2,089 (32.3) 84 (52.2)
T3 1,390 (9.2) 32(8.5) 593 (9.2) 11 (6.8)
T4 1,016 (6.7) 75 (19.9) 440 (6.8) 31(19.3)
N stage
NO 13,683 (90.6) 244 (64.9) 5,853 (90.4) 94 (58.4)
N1 559 (3.7) 37 (9.8) 248 (3.8) 21 (13.0)
N2 685 (4.5) 66 (17.6) 300 (4.6) 32 (19.9)
N3 177 (1.2) 29 (7.7) 72 (1.1) 14 (8.7)
‘ Brain metastasis
Yes 16 (0.1) 13 (3.5) 12 (0.2) 2(12)
No 15,088 (99.9) 363 (96.5) 6,461 (99.8) 159 (98.8)
‘ Liver metastasis
Yes 161 (1.1) 70 (18.6) 56 (0.9) 33 (20.5)
No 14,943 (98.9) 306 (81.4) 6,417 (99.1) 128 (79.5)
‘ Lung metastasis
Yes 283 (1.9) 88 (23.4) 117 (1.8) 50 (31.1)
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TABLE 1 Continued

Training set, n (%)

Variable

10.3389/fonc.2025.1653506

Test set, n (%)

NBM (n = 15,104)

Lung metastasis

BM (n = 376)

NBM (n = 6,473) BM (n = 161)

No 14,821 (98.1) 288 (76.6) 6,356 (98.2) 111 (68.9)
Radiotherapy

Yes 1,520 (10.1) 119 (31.6) 674 (10.4) 43 (26.7)
No 13,584 (89.9) 257 (68.4) 5,799 (89.6) 118 (73.3)
Chemotherapy

Yes 5,300 (35.1) 198 (52.7) 2,278 (35.2) 89 (55.3)
No 9,804 (64.9) 178 (47.3) 4,195 (64.8) 72 (44.7)

NBM, no bone metastasis; BM, bone metastasis.

lung metastasis (OR = 5.87, 95%CI = 4.25-8.09). Based on these
features, seven different models were developed in this study using
ML algorithms.

Importance of correlation analysis and
features for prediction

Spearman’s correlation analysis was used to evaluate the correlation
between factors and examine the independence of the data
characteristics. As shown in Figure 2, the correlation heatmap
illustrates no significant correlation among the 10 variables filtered
using logistic regression. Figure 3 displays the importance of the features
extracted from the different ML algorithms. Notably, in the majority of
the predictive models, T stage consistently emerged as the most
influential feature, underscoring its critical role in predicting BM in
BC. In contrast, tumor histology, tumor grade, race, and brain
metastasis contributed relatively little to the model across most
algorithms, with no significant differences in their importance. In the
GBM model, the features ranked from the highest to the lowest
importance were: T stage, N stage, lung metastasis, radiotherapy, liver
metastasis, age, race, tumor histology, tumor grade, and brain
metastasis. The SHAP values were then calculated for each variable in
the GBM model, with the SHAP bar graph (Figure 4A) illustrating the
importance of each feature. The results indicated that T stage, N stage,
and radiotherapy are the most significant contributors to the GBM
model. Both methods were consistent in identifying T stage and N stage
as the top two characteristics, while the bottom four—race, tumor
histology, tumor grade, and brain metastasis—were also nearly identical.
A summary plot of the SHAP values is presented in Figure 4B, which
explains the impact of each feature on the model predictions.

Model performance and subgroup analysis

Figure 5 and Table 4 present the performance of the seven
prediction models. The training set, balanced using SMOTE, was
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employed to train the models, while the test set was used to evaluate
the accuracy and generalization ability of the models. To further
validate the generalizability of the GBM model, external validation
was performed using an independent cohort. Seven ML models
were developed using the identified risk factors. After a
comprehensive comparison, the GBM model demonstrated the
best predictive value, achieving the highest AUC value of 0.855,
along with accuracy, sensitivity (recall), and specificity values of
0.813,0.733, and 0.815, respectively. The GBM model demonstrated
favorable performance in the external validation cohort, achieving
an AUC of 0.766 and an accuracy of 0.945 (Supplementary Table
S2). The discrepancy between the model accuracy and AUC may be
attributed to sample imbalance. Given that only 11 cases of BM
were available, the model likely exhibited bias toward the majority
class. This results in superficially high accuracy while limiting the
model’s ability to identify minority class samples, consequently
compromising the AUC performance. The confusion matrices for
the GBM model in both the training and test sets are displayed in
Figure 6. The predictive performance of the GBM model was
compared with that of TNM staging to evaluate whether the
model could provide more accurate and clinically meaningful
predictions. As shown in Figure 7, the GBM model demonstrated
superior performance to TNM staging alone, achieving an AUC of
0.855 compared with the lower AUC of TNM staging. This suggests
that the GBM model may better capture features associated with the
risk of BM. Stratified analyses of the model predictions were
conducted to evaluate its fairness across demographic subgroups
(Figure 8). Patients were stratified by gender, race, and age, with the
model performance metrics calculated separately for each subgroup.
The results showed comparable predictive performance between
genders (AUC of 0.865 for male vs. 0.831 for female patients). Racial
subgroup analysis revealed AUCs of 0.859 (white), 0.781 (black),
and 0.847 (other). Age-stratified performance demonstrated AUCs
of 0.920 (<60 years), 0.840 (60-80 years), and 0.788 (>80 years).
While some inter-subgroup variability was observed, the model
maintained clinically acceptable performance across all
demographic strata.
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TABLE 2 Clinical and pathological characteristics of the external

validation set.

Variable, n (%)

External validation set (n = 327)

Age (years)

<60 56 (17.1)
60-80 196 (59.9)
>80 75 (23.0)
Sex

Men 91 (27.8)
‘Women 236 (72.2)
Race

White 0

Black 0

Other 327 (100)
Grade

I-1I 33 (10.1)
II-1v 294 (89.9)
Histologic type

Trar'lsitional cell 303 (92.7)
carcinoma

SqueAlmous cell 11 G4
carcinoma

Adenocarcinoma 6 (1.8)
Other 7 (2.1)

T stage

T1 155 (47.4)
T2 110 (33.6)
T3 36 (11.1)
T4 26 (7.9)
N stage

NO 287 (87.8)
N1 11 (3.4)
N2 27 (8.2)
N3 2(0.6)
Brain metastasis

Yes 2 (0.6)
No 325 (99.4)
Liver metastasis

Yes 6 (1.8)
No 321 (98.2)

Lung metastasis

Frontiers in Oncology
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TABLE 2 Continued

Variable, n (%) External validation set (n = 327)

Lung metastasis

Yes 5(1.5)
No 322 (98.5)
Radiotherapy

Yes 32 (9.8)
No 295 (90.2)
Chemotherapy

Yes 125 (38.2)
No 202 (61.8)

Discussion

BC is a fatal urinary tumor that can be classified into non-muscle-
invasive bladder cancer (NMIBC), muscle-invasive bladder cancer
(MIBC), or clinical metastatic disease (19). The 5-year survival rate for
mBC is only 5% (20). Patients with BCBM have the worst prognosis
compared to other BM patients with urogenital cancers (21). The early
identification of BM in BC could help improve the clinical outcomes.
The available prediction methods have certain limitations. In this
study, a GBM model was developed to assess the risk of BM in patients
with BC. The model provides individualized risk stratification based
on patient-specific characteristics (e.g., age, tumor stage, and histologic
subtype), thereby informing personalized clinical decision-making.
For patients across different risk categories, therapeutic strategies may
be judiciously tailored—individuals at high risk might benefit from
intensified multimodal regimens combining chemotherapy,
immunotherapy, and targeted agents, while patients at low risk
could potentially undergo reduced-frequency bone imaging
surveillance—measures that may help alleviate financial burden,
enhance quality of life, and mitigate metastasis-related complications.

Currently, the treatment strategies for BC are rapidly evolving.
Immunotherapies and targeted therapies have transformed the
treatment paradigm, offering broader and more effective
therapeutic options for patients. Particularly noteworthy are the
latest antibody-drug conjugates (ADCs), which have demonstrated
significant benefits in BC (22, 23). The BM prediction model (GBM)
developed in this study can provide decision-making support for
ADC-based treatment strategies. For patients predicted to be at high
risk of BM, we recommend direct adoption of combination therapy
with ADCs and immune checkpoint inhibitors (ICIs). Studies have
indicated that patients with metastatic predisposition who receive
ADCHICI combination therapy achieve a remarkable 1-year disease-
free survival (DFS) rate of 97.4%, while the overall pathological
downstaging rate reaches 75.5% (24), fully demonstrating the
substantial advantage of this combined approach. Al is a research
field that utilizes computers to simulate human intelligence, which
has been successfully utilized in various domains, including
autonomous driving, facial recognition, and music creation (25-

frontiersin.org


https://doi.org/10.3389/fonc.2025.1653506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yu et al. 10.3389/fonc.2025.1653506

TABLE 3 Univariate and multivariate logistic regression analyses of the variables.

Univariate analysis Multivariate analysis

Variable
OR (95%Cl) OR (95%Cl)

Age (years)

<60 Reference Reference

60-80 0.69 (0.54-0.87) 0.002 0.75 (0.57-0.99) 0.041

>80 0.37 (0.27-0.52) <.001 0.42 (0.29-0.61) <0.001
‘ Sex

Women Reference

Men 1.24 (0.97-1.58) 0.080
‘ Race

White Reference Reference

Black 1.85 (1.34-2.54) <0.001 1.45 (1.03-2.06) 0.035

Other 0.71 (0.43-1.18) 0.183 0.80 (0.47-1.37) 0.418
‘ Grade

I-11 Reference Reference

1I-1v 3.32 (2.01-5.48) <0.001 1.79 (1.04-3.09) 0.037

Histologic type

Transitional cell carcinoma Reference Reference

Squamous cell carcinoma 0.74 (0.33-1.67) 0.467 0.54 (0.23-1.28) 0.163
Adenocarcinoma 1.27 (0.62-2.58) 0.517 0.99 (0.46-2.11) 0.979
Other 3.53 (2.37-5.27) <0.001 1.61 (1.01-2.57) 0.043
T stage

T1 Reference Reference

T2 5.41 (4.07-7.19) <0.001 291 (2.13-3.98) <0.001
T3 2.89 (1.88-4.44) <0.001 1.39 (0.87-2.23) 0.165
T4 9.28 (6.59-13.05) <0.001 3.46 (2.32-5.15) <0.001
N stage

NO Reference Reference

N1 3.71 (2.60-5.30) <0.001 1.77 (1.17-2.67) 0.006
N2 5.40 (4.07-7.17) <0.001 2.28 (1.62-3.21) <0.001
N3 9.19 (6.08-13.88) <0.001 4.33 (2.68-6.97) <0.001

Brain metastasis

No Reference Reference

Yes 33.77 (16.13-70.73) <0.001 5.98 (2.37-15.14) <0.001

Liver metastasis

No Reference Reference

Yes 21.23 (15.69-28.73) <0.001 5.89 (4.05-8.56) <0.001

Lung metastasis

No Reference Reference

(Continued)
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TABLE 3 Continued

Univariate analysis

Variable OR (95%Cl)

10.3389/fonc.2025.1653506

Multivariate analysis

OR (95%Cl)

Lung metastasis

Yes 16.00 (12.26-20.88) <0.001 5.87 (4.25-8.09) <0.001
Radiotherapy

No Reference Reference

Yes 4.14 (3.31-5.18) <0.001 3.08 (2.38-4.00) <0.001
Chemotherapy

No Reference Reference

Yes 2.06 (1.68-2.53) <0.001 0.94 (0.74-1.20) 0.643

OR, odds ratio; 95%CI, 95% confidence interval.

27). ML, as a subset of Al can assist clinicians in making better
clinical decisions, thereby improving patient care and overall health
(28). Tsai et al. (29) conducted a diagnostic study involving 1,336
patients with cystitis, BC, renal cancer, uterine cancer, and prostate
cancer. The authors innovatively combined clinical laboratory data
with ML methods to establish a diagnostic model for BC. Key
indicators included calcium, alkaline phosphatase (ALP), albumin,
urinary ketones, urethral occult blood, creatinine, alanine
aminotransferase (ALT), and diabetes. Of the five models
constructed in the study, LightGBM exhibited the best predictive
performance, achieving an AUC value of 0.923 and an accuracy of
87.6%, demonstrating the potential of using clinical laboratory data
for cancer detection. Xiong et al. (30) conducted a retrospective study
involving 105 patients with BC. By comparing the performance of
clinical models, radiomic models, and clinical-radiomic fusion
models, the authors found that ML models combining radiomic
features with clinical variables could more accurately predict the
clinical staging of BC. Liosis et al. (31) developed an elastic net ML

prediction model that successfully identified gene markers related to
BC treatment response and disease progression, effectively predicting
patients’ treatment responses and disease progression. Zheng et al.
(32) created an ML algorithm based on pathological sections of MIBC
to accurately quantify the tumor-stratum ratio (TSR) in patients.
Their study showed a significant correlation between a low TSR and
poorer overall survival, providing an automated TSR quantification
method that reduces the subjectivity and inter-observer variability
associated with traditional visual assessment methods. Despite
significant progress in the construction and utilization of various
models for the diagnosis, staging, treatment, and prediction of the
prognosis of BC, there remains considerable room for improvement
in the development of models that predict BCBM. For instance, Fan
et al. (33) constructed a nomogram based on traditional logistic
models to predict BCBM, identifying age, lung metastasis, liver
metastasis, brain metastasis, N stage, T stage, histological type,
pathological grading, primary tumor sites, and race as independent
risk factors for BM in patients with BC. This study did not include
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FIGURE 2
Heat map of the correlation of features.
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patients’ previous treatment information, which could be considered ~ brain metastasis, but did not construct a corresponding
in future model refinements. Zhang et al. (10) identified risk factors  predictive model.

for BM in patients with BC, including age, race, marital status, T In summary, while previous studies have developed nomogram
stage, N stage, tumor grading, lung metastasis, liver metastasis, and ~ models based on LR for predicting BM in patients with BC, these
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Interpretability of the gradient boosting machine (GBM) model assessed using the SHAP method. (A) SHAP bar chart showing the importance of
each feature based on the mean SHAP values. (B) SHAP summary plot showing the impact of each feature on the model predictions. Individual dots
symbolize patients, and different colors represent different levels of influence on the model output. SHAP, Shapley additive explanations.
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Receiver operating characteristic (ROC) curves of the prognostic models based on machine learning in the training set (A), test set (B), and the

external validation set (C).

traditional approaches may have limitations in handling complex
datasets. Our ML-based method offers an alternative approach that
could potentially provide additional insights for clinical decision-
making (34, 35). The existing prediction models for BCBM have
shown varying performance. Identifying the risk factors for BCBM
remains important for risk stratification and clinical management.
In this study, ML algorithms were applied to analyze potential
associations between clinical factors and BCBM risk, with the aim of
developing an improved predictive approach (36).

Based on a big data analysis of the SEER database, this study
identified independent risk factors related to BM through logistic
regression analysis. A total of 12 clinically relevant variables
associated with BCBM were included, namely, age, gender, race,
tumor histology, tumor grade, T stage, N stage, radiotherapy,
chemotherapy, brain metastasis, liver metastasis, and lung
metastasis. Using multiple logistic regression analysis, 10
independent risk factors related to BM were identified: brain
metastasis, lung metastasis, liver metastasis, radiotherapy, tumor
grade, tumor histology, T stage, N stage, race, and age. BC exhibits
diverse histological subtypes, including transitional cell carcinoma,
squamous cell carcinoma, adenocarcinoma, and other subtypes.
These variants demonstrated significant differences in biological

TABLE 4 Test set predictive performance of the different models.

behavior and prognostic outcomes (37). In this study, the limited
number of BM-positive cases may have precluded comprehensive
stratification to fully capture the heterogeneous impact of the
histological subtypes on metastatic risk. Nevertheless, SHAP
analysis confirmed their non-negligible contribution to the
predictive model. Notably, chemotherapy was not identified as an
independent risk factor for BM. This may be attributed to its
predominant use in the advanced stage or in patients with mBC,
who inherently exhibit a higher baseline risk of BM. Consequently,
while chemotherapy appeared associated with BM in the univariable
analysis, its effect became non-significant in the multivariable analysis
after adjusting for T stage, N stage, and the presence of other
metastases (e.g., liver/lung). These variables were incorporated into
the model, enabling the development of an ML-based predictive tool.
Model performance was assessed using standard metrics such as
AUGC, accuracy, sensitivity, and specificity on the test set. The GBM
model demonstrated an AUC of 0.855, with a sensitivity of 0.733 and
a specificity of 0.815, showing improved predictive capability
compared with the other models developed in the study. These
results suggest that this model may help identify patients with BC
at an increased risk for BM. Furthermore, the subgroup analysis
revealed diminished predictive performance of the model in two

Model AUC Accuracy Sensitivity Specificity
LR 0.839 0.764 0.764 0.764
SVM 0.832 0.771 0.752 0.771
GBM 0.855 0.813 0.733 0815
RF 0.838 0.82 0.72 0.822
XGB 0.845 0.753 0.789 0.752
KNN 0.730 0.899 0.553 0.907
Neural network 0.846 0.706 0.801 0.704

AUC, area under the curve; LR, logistic regression; SVM, support vector machine; GBM, gradient boosting machine; RF, random forest; XGB, extreme gradient boosting; KNN, K-nearest

neighbors.

Frontiers in Oncology

frontiersin.org


https://doi.org/10.3389/fonc.2025.1653506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yu et al.

10.3389/fonc.2025.1653506

Target

Yes

Prediction
Yes

No

FIGURE 6

Target
No

1.8% 18.1%

Yes.

18

1200

Prediction

0.6%

No

43

Confusion matrices of the gradient boosting machine (GBM) model in the training set (A) and the test set (B).

specific populations: black patients and those aged over 80 years. This
observed reduction in accuracy may be attributable to data
limitations and potential selection biases inherent in the study
design. The GBM model, an ensemble learning algorithm,
iteratively builds decision trees to correct prediction errors. Its
ability to capture complex nonlinear relationships makes it highly
effective for disease prognosis and risk stratification (38). Using the
SHAP method, we determined that the T stage, the N stage,
radiotherapy, age, lung metastasis, and liver metastasis are
important predictors of BCBM. By comparing the characteristic
rankings from the ML model with the SHAP analysis results, it was
found that the T stage and the N stage consistently ranked as the top
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FIGURE 7

two features, indicating their significant contribution to model
predictions. In addition, it was observed that four variables—
radiotherapy, age, liver metastasis, and lung metastasis—ranked
among the top six in importance across both methods, highlighting
their value in predicting BCBM. Furthermore, it is noteworthy that
radiotherapy emerged as a significant risk factor in the multifactor
logistic regression analysis, with its importance ranking third in the
SHAP graph, following T stage and N stage. This result may be
related to the potential of radiotherapy to alter the tumor
microenvironment and disrupt the normal synthesis and folding
processes of the endoplasmic reticulum (ER) proteins, thereby
promoting tumor aggressiveness and metastatic potential (39).
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Stratified analysis of the gradient boosting machine (GBM) model performance by gender (A, B), race (C—E), and age (F—H) subgroups in the test set.

This study has several advantages. Firstly, an ML-based
prediction model that can accurately predict BCBM was
established, offering a more reliable alternative to traditional
nomogram prediction models. Secondly, this research further
explored the relationships among different independent high-risk
factors, providing new directions for future clinical studies. Thirdly,
for interpretability, SHAP values were used to show how each
feature affected the predictions, helping to explain the model’s
behavior. Finally, the generalizability of the model was
independently evaluated using an external validation cohort,
thereby mitigating potential performance overestimation due to
data-splitting bias or overfitting.

However, this study does have certain limitations. Firstly, this
large retrospective SEER-based study may introduce selection bias,

Frontiers in Oncology

particularly for the exclusion of patients due to missing data who
might have a higher BM risk or unique clinical characteristics that
the model failed to adequately learn, potentially compromising the
prediction accuracy for these subgroups in clinical practice.
Secondly, SEER lacks detailed treatment variables such as
chemotherapy regimens and dosages, reducing the clinical
prediction credibility and precluding treatment effect analysis.
Future studies should integrate electronic health records (EHRs)
with chemotherapy/radiotherapy planning systems. Thirdly, the
established BC risk factors (i.e., smoking and occupational/
environmental exposures) are unavailable in SEER and were thus
excluded from the model, limiting the prediction accuracy. A fourth
limitation is SEER’s hospital-reported diagnosis risk
misclassification: BM may be underreported in asymptomatic
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patients without confirmatory imaging, while clinical-pathological
T/N-staging discrepancies may exist. Fifthly, SEER does not track
post-metastasis survival or SREs, which hinders assessment of
whether early prediction improves outcomes. Although the
reliability of the model was validated using AUC, accuracy,
sensitivity, and specificity metrics and its generalizability was
confirmed through external validation, its predictive capability
remains limited and requires prospective clinical trial validation.
Finally, the external validation dataset exhibits both class imbalance
and geographic homogeneity (originating from a single region),
resulting in performance fluctuations and predictive bias in the
external cohort. Furthermore, disproportionate representation
across subgroups may contribute to diminished predictive
accuracy for specific demographic strata.

Today, with the rapid development of AI technology, the
combination of AI with imaging omics plays a significant role in
precision medicine (40) and is widely applied in the diagnosis, risk
stratification, and treatment of various tumors, including BC, liver
cancer, lung cancer, and parotid cancer (41-45). Overall, radiomics
plays a significant role in the diagnosis, treatment, and prognosis of
patients with BC, which enables timely interventions and thereby
improves patients’ quality of life (46, 47). Future research plans
include applying ML in conjunction with imaging omics to predict
BCBM. We believe that, with the continued advancement of Al
technology, ML will become increasingly prevalent in biomedical
science, demonstrating substantial potential for clinical
transformation and promising to significantly transform future
medical practices (48-50).

Clinical implementation and challenges

The GBM model developed in this study demonstrated good
performance in predicting BM in patients with BC. We plan to
implement this model as an interactive risk calculator in clinical
practice, where patients’ clinical characteristics can be input after BC
diagnosis to obtain a preliminary BM risk score (represented as a 0-1
value, e.g,, 0.30 indicating 30% risk). Patients at high risk would be
prioritized for imaging examinations to assist clinical decision-making
(see the model card in the Supplementary Material for details).
However, several potential barriers exist for clinical integration:
Firstly, clinical data integration poses challenges due to fragmented
data across different information systems with inconsistent formats
and missing values, potentially compromising input data quality.
Secondly, establishing a multidisciplinary team that involves
clinicians, data scientists, and other experts is crucial to develop
implementation strategies, determine risk thresholds, create clinical
guidelines and workflows, and obtain regulatory approvals and ethical
clearance. Thirdly, considering the severe consequences of BM and the
healthcare cost-effectiveness, action thresholds should be established
through cost-benefit analysis to minimize the expected costs based on
model-predicted probabilities. In addition, clinicians accustomed to
traditional approaches might exhibit skepticism toward the new
model, questioning its reliability and perceiving it as interfering with
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clinical autonomy, while the complex algorithm and multiple input
features may hinder interpretability and clinician trust. To enable
developers, clinicians, regulatory agencies, and other stakeholders to
quickly understand the model’s applicable scope and potential risks,
we have created a model card (see Supplementary Table S3).

Conclusion

In this study, we developed a ML model to predict BM in BC
using 10 routinely available clinical features. Among the tested
models, the GBM algorithm showed the highest predictive
performance, including in the external validation cohort. These
results suggest that the GBM model may aid in the clinical
assessment of metastasis risk and inform treatment decisions.
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