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Ensemble machine learning
models for predicting bone
metastasis in bladder cancer
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Hai Chao Chao2 and Tao Zeng2*

1The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China,
2Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
Background and purpose: The occurrence of bone metastasis (BM) in advanced

bladder cancer (BC) often signifies a poor prognosis. Currently, the accurate

prediction of BM in BC remains a challenge. This study develops predictive

models using machine learning algorithms to predict bladder cancer bone

metastasis (BCBM) and aid in personalized clinical decisions.

Patients and methods: We reviewed and analyzed data from patients diagnosed

with BC between 2010 and 2015 in the Surveillance, Epidemiology, and End

Results (SEER) database. In addition, we included 327 patients treated at the

Second Affiliated Hospital of Nanchang University and Jiangxi Cancer Hospital as

an external validation cohort. Independent risk factors for BM in patients with BC

were identified through univariate and multivariate logistic regression analyses.

These features were then integrated into seven machine learning algorithms to

build predictive models: logistic regression (LR), support vector machine (SVM),

gradient boosting machine (GBM), neural network (NN), random forest (RF),

extreme gradient boosting (XGB), and k-nearest neighbors (KNN). The

performance of these models was evaluated using the area under the receiver

operating characteristic curve (AUC), along with accuracy, sensitivity (recall),

and specificity.

Results: A total of 22,114 patients diagnosed with BC were included in this study,

with 537 (2.4%) patients developing BM. The identified independent risk factors

for BCBM included age, race, tumor histology, tumor grade, T stage, N stage, the

presence of brain metastasis, liver metastasis, and lung metastasis, and history of

radiotherapy. Among the seven developed machine learning models, the tree-

based GBMmodel exhibited the best performance in the test set, achieving AUC,

accuracy, sensitivity, and specificity values of 0.855, 0.813, 0.733, and 0.815,

respectively. The GBM model also demonstrated robust performance in the

external validation set, achieving an AUC of 0.766 and accuracy of 0.945.

According to Shapley additive explanations (SHAP), the most significant feature

in the GBM prediction model is the T stage, followed by the N stage

and radiotherapy.

Conclusion: The GBM model offers a precise and personalized approach to

predicting BCBM, potentially enhancing clinical decision-making and the

efficiency of BM screening in patients with BC.
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Introduction

Bladder cancer (BC) is the second most common urogenital

cancer (1). Worldwide, it ranks as the ninth most prevalent cancer,

with approximately 614,000 new cases and 220,000 deaths reported

in 2022 (2). BC is characterized by a high rate of recurrence and

metastasis (3). Metastatic bladder cancer (mBC) primarily spreads

to the lymph nodes, the bones, the lungs, and the liver (4).

Approximately 10%–15% of patients with BC are diagnosed with

metastasis at the initial presentation (5), with the bone being the

most common site of metastasis (6, 7). Bone metastasis (BM) can

lead to skeletal-related events (SREs), which often result in

complications such as pain, hypercalcemia, spinal cord

compression, pathological fractures, and neurological deficits.

These complications significantly diminish the patient’s quality of

life (8) and adversely affect survival rates (9), with the 1-year

survival rate for patients with bladder cancer bone metastasis

(BCBM) as low as 21% (10). The TNM staging system established

by the American Joint Cancer Committee (AJCC) is widely

recognized for predicting the metastasis risk and the prognosis of

various cancer patients (11). However, the TNM system does not

account for additional risk factors such as age, gender, and previous

treatment history, which have been shown to be valuable in

predicting BC metastasis (12, 13). Consequently, the predictive

accuracy of the TNM staging system for patients with BM may be

limited. Many patients with BC may not receive a timely diagnosis

of BM, potentially missing optimal treatment windows and leading

to poorer prognosis. Therefore, accurately predicting the

occurrence of BM in patients with BC is of great significance.

In recent years, artificial intelligence (AI) models based on

machine learning (ML) algorithms have been increasingly

integrated into clinical practice (14, 15). As a key branch of AI,

ML has been utilized to independently extract features from large

datasets and construct high-precision prediction models,

continuously optimizing the performance of these algorithms.

In medical research, the construction and validation of models

based on ML can uncover potential patterns in large clinical

datasets, providing valuable tools for early diagnosis and

prognosis assessment. ML has been widely applied in the

prognostic evaluation of prostate cancer, kidney cancer, and

gastrointestinal cancer, as well as in studies of organ metastasis

(16, 17). The rapid advancement of health big data in biomedical

science has revealed the significant potential of ML applications in

understanding disease and in health management (18).

Currently, there are limited studies exploring MLmodels for the

prediction of BCBM. In this study, we evaluated seven ML

algorithms and observed that, among them, the gradient boosting

machine (GBM) model showed relatively better performance. This

study extracted data on patients with BC, as well as their clinical and

pathological characteristics, from the Surveillance, Epidemiology,

and End Results (SEER) database for the years 2010–2015. Accurate

and reliable ML models to predict BCBM were constructed, which

could assist clinicians in promptly identifying patients with BM.

This approach aims to provide personalized clinical strategies for

patients and promote the rational allocation of medical resources.
Frontiers in Oncology 02
Methods

Ethics statement

The SEER database is a publicly available, anonymized cancer

registry where all patient data have been de-identified. Therefore,

this study was exempt from ethics review and patient

consent requirements.
Patient selection and variables

All data were extracted from the SEER database using SEERStat

software (version 8.4.4). This database covers approximately 28% of

the US population and includes 17 population-based cancer

registries, providing clinicopathological, demographic, and

survival outcome information. The case listing was based on the

dataset of Incidence—SEER Research Data, 17 Registries, Nov 2023

Sub (2000–2021). Subjects with BC were identified using site codes

C67.0–C67.9. In this study, patients with a diagnosis of malignant

BC by positive histology diagnosed between 2010 and 2015 were

selected. The exclusion criteria were as follows: 1) patients under the

age of 18 years; 2) patients with unknown AJCC T or N staging; 3)

patients with unknown race or histological grade; 4) patients with

unknown bone, brain, liver, or lung metastasis status; 5) patients

with unknown radiotherapy or chemotherapy information; and 6)

patients with two or more primary tumors. The flowchart for the

case screening is shown in Figure 1. The external validation cohort

comprised 327 patients with pathologically confirmed BC

diagnosed between 2016 and 2023, among whom 11 developed

BM. The final follow-up was completed in November 2024. This

study was approved by the Institutional Review Boards of the

Second Affiliated Hospital of Nanchang University and Jiangxi

Cancer Hospital, with a waiver of informed consent granted. A

total of 13 variables related to patient demographics and

clinicopathological characteristics were extracted for analysis. The

demographic variables included age, sex, and race, while the

clinicopathological variables included tumor histology type,

tumor grade, T stage, N stage, radiotherapy, chemotherapy, brain

metastasis, BM, lung metastasis, and liver metastasis. Patient age

was categorized into three subgroups, <60 years, 60–80 years, and

>80 years, and the tumor grade into two subgroups. The histological

types were classified into transitional cell carcinoma, squamous cell

carcinoma, adenocarcinoma, and other types. All cancer patients

exhibited histopathological and morphological evidence consistent

with the International Classification of Diseases for Oncology,

Third Edition (ICD-O-3), and all BC patients were staged

according to the AJCC 7th Edition guidelines and the SEER

staging information.
Data processing and feature engineering

All statistical analyses and data descriptions were conducted

using R version 4.4.1 and SPSS version 27. The continuous variable
frontiersin.org
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age was converted into a categorical variable, which was then

processed using the label encoding method. In this study, logistic

regression analysis was performed on the variables collected from

the SEER database using R software to identify features suitable for

ML models. Significant variables in patients with BCBM were

identified through univariate logistic regression analysis (p <

0.05). These variables were subsequently included in a

multifactorial logistic regression analysis, and the ML models

were built using the variables that remained statistically

significant (p < 0.05) in the multivariate analysis. Correlation

analysis was conducted to examine the relationships between the

selected variables. In addition, to compare the importance of each

feature, the feature importance in the ML model was extracted

based on the principle of permutation importance. Finally, the

importance of each feature was ranked using Shapley additive

explanations (SHAP), helping decision-makers understand how to

effectively utilize the model and comprehend the impact of each

feature on the final predicted outcome. To achieve this, SHAP was

employed to quantify the contribution of each feature to the model

predictions, providing a transparent and interpretable analysis.

Given that this dataset is unbalanced, which may affect the model

performance, the synthetic minority oversampling technique

(SMOTE) was employed as the sampling method in the training

set to mitigate the impact of sample imbalance on the

evaluation results.
Model construction and evaluation

The data from the SEER database were randomly divided into a

training set and a test set at a ratio of 7:3. In this study, seven ML

algorithms were selected, including three tree-based models

[random forest (RF), GBM, and extreme gradient boosting
Frontiers in Oncology 03
(XGB)]; a linear model (logistic regression, LR); a kernel-based

model (support vector machine, SVM); a distance-based model (k-

nearest neighbors, KNN); and neural networks. External validation

was subsequently conducted to further evaluate the generalizability

of the model. The evaluation indicators for the ML algorithms

included the area under the receiver operating characteristic curve

(AUC), accuracy, sensitivity, and specificity. The ML models were

developed using the caret framework in R software. The relevant

parameters of the model can be found in Supplementary Table S1.
Results

Patient characteristics and metastasis

A total of 22,114 patients with BC were included in this study.

At the time of initial diagnosis, 21,577 patients (97.6%) had no BM,

while 537 patients (2.4%) had BM. The patients were randomly

divided into a training set (n = 15,480) and a test set (n = 6,634) at a

7:3 ratio. In the external validation cohort, 316 patients (96.6%)

showed no evidence of BM, while 11 patients (3.4%) developed BM.

The characteristics of all cohorts are presented in Tables 1 and 2.
Feature filter

A total of 10 independent risk factors related to BM were

identified through univariate and multivariate logistic regression

analyses. These included age, race, tumor histology, tumor grade, T

stage, N stage, radiotherapy, brain metastasis, lung metastasis, and

liver metastasis (p < 0.05) (Table 3). Among these, the three most

significant risk factors were brain metastasis (OR = 5.98, 95%CI =

2.37–15.14), liver metastasis (OR = 5.89, 95%CI = 4.05–8.56), and
FIGURE 1

Study flowchart of case screening.
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TABLE 1 Clinical and pathological characteristics of the training and test sets.

Variable
Training set, n (%) Test set, n (%)

NBM (n = 15,104) BM (n = 376) NBM (n = 6,473) BM (n = 161)

Age (years)

<60 2,585 (17.1) 98 (26.1) 1,133 (17.5) 48 (29.8)

60–80 8,533 (56.5) 222 (59.0) 3,677 (56.8) 84 (52.2)

>80 3,986 (26.4) 56 (14.9) 1,663 (25.7) 29 (18.0)

Sex

Men 10,995 (72.8) 289 (76.9) 4,754 (73.4) 127 (78.9)

Women 4,109 (27.2) 87 (23.1) 1,719 (26.6) 34 (21.1)

Race

White 13,145 (87.0) 315 (83.8) 5,697 (88.0) 134 (83.2)

Black 1,017 (6.7) 45 (12.0) 446 (6.9) 18 (11.2)

Other 942 (6.2) 16 (4.3) 330 (5.1) 9 (5.6)

Grade

I–II 1,940 (12.8) 16 (4.3) 822 (12.7) 9 (5.6)

III–IV 13,164 (87.2) 360 (95.7) 5,651 (87.3) 152 (94.4)

Histologic type

Transitional cell carcinoma 14,156 (93.7) 334 (88.8) 6,041 (93.3) 144 (89.4)

Squamous cell carcinoma 344 (2.3) 6 (1.6) 176 (2.7) 7 (4.3)

Adenocarcinoma 268 (1.8) 8 (2.1) 106 (1.6) 1 (0.6)

Other 336 (2.2) 28 (7.4) 150 (2.3) 9 (5.6)

T stage

T1 7,916 (52.4) 63 (16.8) 3,351 (51.8) 35 (21.7)

T2 4,782 (31.7) 206 (54.8) 2,089 (32.3) 84 (52.2)

T3 1,390 (9.2) 32 (8.5) 593 (9.2) 11 (6.8)

T4 1,016 (6.7) 75 (19.9) 440 (6.8) 31 (19.3)

N stage

N0 13,683 (90.6) 244 (64.9) 5,853 (90.4) 94 (58.4)

N1 559 (3.7) 37 (9.8) 248 (3.8) 21 (13.0)

N2 685 (4.5) 66 (17.6) 300 (4.6) 32 (19.9)

N3 177 (1.2) 29 (7.7) 72 (1.1) 14 (8.7)

Brain metastasis

Yes 16 (0.1) 13 (3.5) 12 (0.2) 2 (1.2)

No 15,088 (99.9) 363 (96.5) 6,461 (99.8) 159 (98.8)

Liver metastasis

Yes 161 (1.1) 70 (18.6) 56 (0.9) 33 (20.5)

No 14,943 (98.9) 306 (81.4) 6,417 (99.1) 128 (79.5)

Lung metastasis

Yes 283 (1.9) 88 (23.4) 117 (1.8) 50 (31.1)

(Continued)
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lung metastasis (OR = 5.87, 95%CI = 4.25–8.09). Based on these

features, seven different models were developed in this study using

ML algorithms.
Importance of correlation analysis and
features for prediction

Spearman’s correlation analysis was used to evaluate the correlation

between factors and examine the independence of the data

characteristics. As shown in Figure 2, the correlation heatmap

illustrates no significant correlation among the 10 variables filtered

using logistic regression. Figure 3 displays the importance of the features

extracted from the different ML algorithms. Notably, in the majority of

the predictive models, T stage consistently emerged as the most

influential feature, underscoring its critical role in predicting BM in

BC. In contrast, tumor histology, tumor grade, race, and brain

metastasis contributed relatively little to the model across most

algorithms, with no significant differences in their importance. In the

GBM model, the features ranked from the highest to the lowest

importance were: T stage, N stage, lung metastasis, radiotherapy, liver

metastasis, age, race, tumor histology, tumor grade, and brain

metastasis. The SHAP values were then calculated for each variable in

the GBM model, with the SHAP bar graph (Figure 4A) illustrating the

importance of each feature. The results indicated that T stage, N stage,

and radiotherapy are the most significant contributors to the GBM

model. Both methods were consistent in identifying T stage and N stage

as the top two characteristics, while the bottom four—race, tumor

histology, tumor grade, and brainmetastasis—were also nearly identical.

A summary plot of the SHAP values is presented in Figure 4B, which

explains the impact of each feature on the model predictions.
Model performance and subgroup analysis

Figure 5 and Table 4 present the performance of the seven

prediction models. The training set, balanced using SMOTE, was
Frontiers in Oncology 05
employed to train the models, while the test set was used to evaluate

the accuracy and generalization ability of the models. To further

validate the generalizability of the GBM model, external validation

was performed using an independent cohort. Seven ML models

were developed using the identified risk factors. After a

comprehensive comparison, the GBM model demonstrated the

best predictive value, achieving the highest AUC value of 0.855,

along with accuracy, sensitivity (recall), and specificity values of

0.813, 0.733, and 0.815, respectively. The GBMmodel demonstrated

favorable performance in the external validation cohort, achieving

an AUC of 0.766 and an accuracy of 0.945 (Supplementary Table

S2). The discrepancy between the model accuracy and AUC may be

attributed to sample imbalance. Given that only 11 cases of BM

were available, the model likely exhibited bias toward the majority

class. This results in superficially high accuracy while limiting the

model’s ability to identify minority class samples, consequently

compromising the AUC performance. The confusion matrices for

the GBM model in both the training and test sets are displayed in

Figure 6. The predictive performance of the GBM model was

compared with that of TNM staging to evaluate whether the

model could provide more accurate and clinically meaningful

predictions. As shown in Figure 7, the GBM model demonstrated

superior performance to TNM staging alone, achieving an AUC of

0.855 compared with the lower AUC of TNM staging. This suggests

that the GBMmodel may better capture features associated with the

risk of BM. Stratified analyses of the model predictions were

conducted to evaluate its fairness across demographic subgroups

(Figure 8). Patients were stratified by gender, race, and age, with the

model performance metrics calculated separately for each subgroup.

The results showed comparable predictive performance between

genders (AUC of 0.865 for male vs. 0.831 for female patients). Racial

subgroup analysis revealed AUCs of 0.859 (white), 0.781 (black),

and 0.847 (other). Age-stratified performance demonstrated AUCs

of 0.920 (<60 years), 0.840 (60–80 years), and 0.788 (>80 years).

While some inter-subgroup variability was observed, the model

maintained clinically acceptable performance across all

demographic strata.
TABLE 1 Continued

Variable
Training set, n (%) Test set, n (%)

NBM (n = 15,104) BM (n = 376) NBM (n = 6,473) BM (n = 161)

Lung metastasis

No 14,821 (98.1) 288 (76.6) 6,356 (98.2) 111 (68.9)

Radiotherapy

Yes 1,520 (10.1) 119 (31.6) 674 (10.4) 43 (26.7)

No 13,584 (89.9) 257 (68.4) 5,799 (89.6) 118 (73.3)

Chemotherapy

Yes 5,300 (35.1) 198 (52.7) 2,278 (35.2) 89 (55.3)

No 9,804 (64.9) 178 (47.3) 4,195 (64.8) 72 (44.7)
NBM, no bone metastasis; BM, bone metastasis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1653506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2025.1653506

Frontiers in Oncology 06
Discussion

BC is a fatal urinary tumor that can be classified into non-muscle-

invasive bladder cancer (NMIBC), muscle-invasive bladder cancer

(MIBC), or clinical metastatic disease (19). The 5-year survival rate for

mBC is only 5% (20). Patients with BCBM have the worst prognosis

compared to other BM patients with urogenital cancers (21). The early

identification of BM in BC could help improve the clinical outcomes.

The available prediction methods have certain limitations. In this

study, a GBMmodel was developed to assess the risk of BM in patients

with BC. The model provides individualized risk stratification based

on patient-specific characteristics (e.g., age, tumor stage, and histologic

subtype), thereby informing personalized clinical decision-making.

For patients across different risk categories, therapeutic strategies may

be judiciously tailored—individuals at high risk might benefit from

intensified multimodal regimens combining chemotherapy,

immunotherapy, and targeted agents, while patients at low risk

could potentially undergo reduced-frequency bone imaging

surveillance—measures that may help alleviate financial burden,

enhance quality of life, and mitigate metastasis-related complications.

Currently, the treatment strategies for BC are rapidly evolving.

Immunotherapies and targeted therapies have transformed the

treatment paradigm, offering broader and more effective

therapeutic options for patients. Particularly noteworthy are the

latest antibody–drug conjugates (ADCs), which have demonstrated

significant benefits in BC (22, 23). The BM prediction model (GBM)

developed in this study can provide decision-making support for

ADC-based treatment strategies. For patients predicted to be at high

risk of BM, we recommend direct adoption of combination therapy

with ADCs and immune checkpoint inhibitors (ICIs). Studies have

indicated that patients with metastatic predisposition who receive

ADC+ICI combination therapy achieve a remarkable 1-year disease-

free survival (DFS) rate of 97.4%, while the overall pathological

downstaging rate reaches 75.5% (24), fully demonstrating the

substantial advantage of this combined approach. AI is a research

field that utilizes computers to simulate human intelligence, which

has been successfully utilized in various domains, including

autonomous driving, facial recognition, and music creation (25–
frontiersin.o
TABLE 2 Clinical and pathological characteristics of the external
validation set.

Variable, n (%) External validation set (n = 327)

Age (years)

<60 56 (17.1)

60–80 196 (59.9)

>80 75 (23.0)

Sex

Men 91 (27.8)

Women 236 (72.2)

Race

White 0

Black 0

Other 327 (100)

Grade

I–II 33 (10.1)

III–IV 294 (89.9)

Histologic type

Transitional cell
carcinoma

303 (92.7)

Squamous cell
carcinoma

11 (3.4)

Adenocarcinoma 6 (1.8)

Other 7 (2.1)

T stage

T1 155 (47.4)

T2 110 (33.6)

T3 36 (11.1)

T4 26 (7.9)

N stage

N0 287 (87.8)

N1 11 (3.4)

N2 27 (8.2)

N3 2 (0.6)

Brain metastasis

Yes 2 (0.6)

No 325 (99.4)

Liver metastasis

Yes 6 (1.8)

No 321 (98.2)

Lung metastasis

(Continued)
TABLE 2 Continued

Variable, n (%) External validation set (n = 327)

Lung metastasis

Yes 5 (1.5)

No 322 (98.5)

Radiotherapy

Yes 32 (9.8)

No 295 (90.2)

Chemotherapy

Yes 125 (38.2)

No 202 (61.8)
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TABLE 3 Univariate and multivariate logistic regression analyses of the variables.

Variable
Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age (years)

<60 Reference Reference

60–80 0.69 (0.54–0.87) 0.002 0.75 (0.57–0.99) 0.041

>80 0.37 (0.27–0.52) <.001 0.42 (0.29–0.61) <0.001

Sex

Women Reference

Men 1.24 (0.97–1.58) 0.080

Race

White Reference Reference

Black 1.85 (1.34–2.54) <0.001 1.45 (1.03–2.06) 0.035

Other 0.71 (0.43–1.18) 0.183 0.80 (0.47–1.37) 0.418

Grade

I–II Reference Reference

III–IV 3.32 (2.01–5.48) <0.001 1.79 (1.04–3.09) 0.037

Histologic type

Transitional cell carcinoma Reference Reference

Squamous cell carcinoma 0.74 (0.33–1.67) 0.467 0.54 (0.23–1.28) 0.163

Adenocarcinoma 1.27 (0.62–2.58) 0.517 0.99 (0.46–2.11) 0.979

Other 3.53 (2.37–5.27) <0.001 1.61 (1.01–2.57) 0.043

T stage

T1 Reference Reference

T2 5.41 (4.07–7.19) <0.001 2.91 (2.13–3.98) <0.001

T3 2.89 (1.88–4.44) <0.001 1.39 (0.87–2.23) 0.165

T4 9.28 (6.59–13.05) <0.001 3.46 (2.32–5.15) <0.001

N stage

N0 Reference Reference

N1 3.71 (2.60–5.30) <0.001 1.77 (1.17–2.67) 0.006

N2 5.40 (4.07–7.17) <0.001 2.28 (1.62–3.21) <0.001

N3 9.19 (6.08–13.88) <0.001 4.33 (2.68–6.97) <0.001

Brain metastasis

No Reference Reference

Yes 33.77 (16.13–70.73) <0.001 5.98 (2.37–15.14) <0.001

Liver metastasis

No Reference Reference

Yes 21.23 (15.69–28.73) <0.001 5.89 (4.05–8.56) <0.001

Lung metastasis

No Reference Reference

(Continued)
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27). ML, as a subset of AI, can assist clinicians in making better

clinical decisions, thereby improving patient care and overall health

(28). Tsai et al. (29) conducted a diagnostic study involving 1,336

patients with cystitis, BC, renal cancer, uterine cancer, and prostate

cancer. The authors innovatively combined clinical laboratory data

with ML methods to establish a diagnostic model for BC. Key

indicators included calcium, alkaline phosphatase (ALP), albumin,

urinary ketones, urethral occult blood, creatinine, alanine

aminotransferase (ALT), and diabetes. Of the five models

constructed in the study, LightGBM exhibited the best predictive

performance, achieving an AUC value of 0.923 and an accuracy of

87.6%, demonstrating the potential of using clinical laboratory data

for cancer detection. Xiong et al. (30) conducted a retrospective study

involving 105 patients with BC. By comparing the performance of

clinical models, radiomic models, and clinical–radiomic fusion

models, the authors found that ML models combining radiomic

features with clinical variables could more accurately predict the

clinical staging of BC. Liosis et al. (31) developed an elastic net ML
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prediction model that successfully identified gene markers related to

BC treatment response and disease progression, effectively predicting

patients’ treatment responses and disease progression. Zheng et al.

(32) created anML algorithm based on pathological sections ofMIBC

to accurately quantify the tumor–stratum ratio (TSR) in patients.

Their study showed a significant correlation between a low TSR and

poorer overall survival, providing an automated TSR quantification

method that reduces the subjectivity and inter-observer variability

associated with traditional visual assessment methods. Despite

significant progress in the construction and utilization of various

models for the diagnosis, staging, treatment, and prediction of the

prognosis of BC, there remains considerable room for improvement

in the development of models that predict BCBM. For instance, Fan

et al. (33) constructed a nomogram based on traditional logistic

models to predict BCBM, identifying age, lung metastasis, liver

metastasis, brain metastasis, N stage, T stage, histological type,

pathological grading, primary tumor sites, and race as independent

risk factors for BM in patients with BC. This study did not include
TABLE 3 Continued

Variable
Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Lung metastasis

Yes 16.00 (12.26–20.88) <0.001 5.87 (4.25–8.09) <0.001

Radiotherapy

No Reference Reference

Yes 4.14 (3.31–5.18) <0.001 3.08 (2.38–4.00) <0.001

Chemotherapy

No Reference Reference

Yes 2.06 (1.68–2.53) <0.001 0.94 (0.74–1.20) 0.643
OR, odds ratio; 95%CI, 95% confidence interval.
FIGURE 2

Heat map of the correlation of features.
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patients’ previous treatment information, which could be considered

in future model refinements. Zhang et al. (10) identified risk factors

for BM in patients with BC, including age, race, marital status, T

stage, N stage, tumor grading, lung metastasis, liver metastasis, and
Frontiers in Oncology 09
brain metastasis, but did not construct a corresponding

predictive model.

In summary, while previous studies have developed nomogram

models based on LR for predicting BM in patients with BC, these
FIGURE 3

Feature importance of the different models.
FIGURE 4

Interpretability of the gradient boosting machine (GBM) model assessed using the SHAP method. (A) SHAP bar chart showing the importance of
each feature based on the mean SHAP values. (B) SHAP summary plot showing the impact of each feature on the model predictions. Individual dots
symbolize patients, and different colors represent different levels of influence on the model output. SHAP, Shapley additive explanations.
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traditional approaches may have limitations in handling complex

datasets. Our ML-based method offers an alternative approach that

could potentially provide additional insights for clinical decision-

making (34, 35). The existing prediction models for BCBM have

shown varying performance. Identifying the risk factors for BCBM

remains important for risk stratification and clinical management.

In this study, ML algorithms were applied to analyze potential

associations between clinical factors and BCBM risk, with the aim of

developing an improved predictive approach (36).

Based on a big data analysis of the SEER database, this study

identified independent risk factors related to BM through logistic

regression analysis. A total of 12 clinically relevant variables

associated with BCBM were included, namely, age, gender, race,

tumor histology, tumor grade, T stage, N stage, radiotherapy,

chemotherapy, brain metastasis, liver metastasis, and lung

metastasis. Using multiple logistic regression analysis, 10

independent risk factors related to BM were identified: brain

metastasis, lung metastasis, liver metastasis, radiotherapy, tumor

grade, tumor histology, T stage, N stage, race, and age. BC exhibits

diverse histological subtypes, including transitional cell carcinoma,

squamous cell carcinoma, adenocarcinoma, and other subtypes.

These variants demonstrated significant differences in biological
Frontiers in Oncology 10
behavior and prognostic outcomes (37). In this study, the limited

number of BM-positive cases may have precluded comprehensive

stratification to fully capture the heterogeneous impact of the

histological subtypes on metastatic risk. Nevertheless, SHAP

analysis confirmed their non-negligible contribution to the

predictive model. Notably, chemotherapy was not identified as an

independent risk factor for BM. This may be attributed to its

predominant use in the advanced stage or in patients with mBC,

who inherently exhibit a higher baseline risk of BM. Consequently,

while chemotherapy appeared associated with BM in the univariable

analysis, its effect became non-significant in the multivariable analysis

after adjusting for T stage, N stage, and the presence of other

metastases (e.g., liver/lung). These variables were incorporated into

the model, enabling the development of an ML-based predictive tool.

Model performance was assessed using standard metrics such as

AUC, accuracy, sensitivity, and specificity on the test set. The GBM

model demonstrated an AUC of 0.855, with a sensitivity of 0.733 and

a specificity of 0.815, showing improved predictive capability

compared with the other models developed in the study. These

results suggest that this model may help identify patients with BC

at an increased risk for BM. Furthermore, the subgroup analysis

revealed diminished predictive performance of the model in two
FIGURE 5

Receiver operating characteristic (ROC) curves of the prognostic models based on machine learning in the training set (A), test set (B), and the
external validation set (C).
TABLE 4 Test set predictive performance of the different models.

Model AUC Accuracy Sensitivity Specificity

LR 0.839 0.764 0.764 0.764

SVM 0.832 0.771 0.752 0.771

GBM 0.855 0.813 0.733 0.815

RF 0.838 0.82 0.72 0.822

XGB 0.845 0.753 0.789 0.752

KNN 0.730 0.899 0.553 0.907

Neural network 0.846 0.706 0.801 0.704
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; GBM, gradient boosting machine; RF, random forest; XGB, extreme gradient boosting; KNN, K-nearest
neighbors.
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specific populations: black patients and those aged over 80 years. This

observed reduction in accuracy may be attributable to data

limitations and potential selection biases inherent in the study

design. The GBM model, an ensemble learning algorithm,

iteratively builds decision trees to correct prediction errors. Its

ability to capture complex nonlinear relationships makes it highly

effective for disease prognosis and risk stratification (38). Using the

SHAP method, we determined that the T stage, the N stage,

radiotherapy, age, lung metastasis, and liver metastasis are

important predictors of BCBM. By comparing the characteristic

rankings from the ML model with the SHAP analysis results, it was

found that the T stage and the N stage consistently ranked as the top
Frontiers in Oncology 11
two features, indicating their significant contribution to model

predictions. In addition, it was observed that four variables—

radiotherapy, age, liver metastasis, and lung metastasis—ranked

among the top six in importance across both methods, highlighting

their value in predicting BCBM. Furthermore, it is noteworthy that

radiotherapy emerged as a significant risk factor in the multifactor

logistic regression analysis, with its importance ranking third in the

SHAP graph, following T stage and N stage. This result may be

related to the potential of radiotherapy to alter the tumor

microenvironment and disrupt the normal synthesis and folding

processes of the endoplasmic reticulum (ER) proteins, thereby

promoting tumor aggressiveness and metastatic potential (39).
FIGURE 6

Confusion matrices of the gradient boosting machine (GBM) model in the training set (A) and the test set (B).
FIGURE 7

Performance comparison between the gradient boosting machine (GBM) model and TNM staging alone in both the training set (A) and the test set
(B).
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This study has several advantages. Firstly, an ML-based

prediction model that can accurately predict BCBM was

established, offering a more reliable alternative to traditional

nomogram prediction models. Secondly, this research further

explored the relationships among different independent high-risk

factors, providing new directions for future clinical studies. Thirdly,

for interpretability, SHAP values were used to show how each

feature affected the predictions, helping to explain the model’s

behavior. Finally, the generalizability of the model was

independently evaluated using an external validation cohort,

thereby mitigating potential performance overestimation due to

data-splitting bias or overfitting.

However, this study does have certain limitations. Firstly, this

large retrospective SEER-based study may introduce selection bias,
Frontiers in Oncology 12
particularly for the exclusion of patients due to missing data who

might have a higher BM risk or unique clinical characteristics that

the model failed to adequately learn, potentially compromising the

prediction accuracy for these subgroups in clinical practice.

Secondly, SEER lacks detailed treatment variables such as

chemotherapy regimens and dosages, reducing the clinical

prediction credibility and precluding treatment effect analysis.

Future studies should integrate electronic health records (EHRs)

with chemotherapy/radiotherapy planning systems. Thirdly, the

established BC risk factors (i.e., smoking and occupational/

environmental exposures) are unavailable in SEER and were thus

excluded from the model, limiting the prediction accuracy. A fourth

l imitat ion is SEER ’s hospital-reported diagnosis risk

misclassification: BM may be underreported in asymptomatic
FIGURE 8

Stratified analysis of the gradient boosting machine (GBM) model performance by gender (A, B), race (C–E), and age (F–H) subgroups in the test set.
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patients without confirmatory imaging, while clinical–pathological

T/N-staging discrepancies may exist. Fifthly, SEER does not track

post-metastasis survival or SREs, which hinders assessment of

whether early prediction improves outcomes. Although the

reliability of the model was validated using AUC, accuracy,

sensitivity, and specificity metrics and its generalizability was

confirmed through external validation, its predictive capability

remains limited and requires prospective clinical trial validation.

Finally, the external validation dataset exhibits both class imbalance

and geographic homogeneity (originating from a single region),

resulting in performance fluctuations and predictive bias in the

external cohort. Furthermore, disproportionate representation

across subgroups may contribute to diminished predictive

accuracy for specific demographic strata.

Today, with the rapid development of AI technology, the

combination of AI with imaging omics plays a significant role in

precision medicine (40) and is widely applied in the diagnosis, risk

stratification, and treatment of various tumors, including BC, liver

cancer, lung cancer, and parotid cancer (41–45). Overall, radiomics

plays a significant role in the diagnosis, treatment, and prognosis of

patients with BC, which enables timely interventions and thereby

improves patients’ quality of life (46, 47). Future research plans

include applying ML in conjunction with imaging omics to predict

BCBM. We believe that, with the continued advancement of AI

technology, ML will become increasingly prevalent in biomedical

science, demonstrating substantial potential for clinical

transformation and promising to significantly transform future

medical practices (48–50).
Clinical implementation and challenges

The GBM model developed in this study demonstrated good

performance in predicting BM in patients with BC. We plan to

implement this model as an interactive risk calculator in clinical

practice, where patients’ clinical characteristics can be input after BC

diagnosis to obtain a preliminary BM risk score (represented as a 0–1

value, e.g., 0.30 indicating 30% risk). Patients at high risk would be

prioritized for imaging examinations to assist clinical decision-making

(see the model card in the Supplementary Material for details).

However, several potential barriers exist for clinical integration:

Firstly, clinical data integration poses challenges due to fragmented

data across different information systems with inconsistent formats

and missing values, potentially compromising input data quality.

Secondly, establishing a multidisciplinary team that involves

clinicians, data scientists, and other experts is crucial to develop

implementation strategies, determine risk thresholds, create clinical

guidelines and workflows, and obtain regulatory approvals and ethical

clearance. Thirdly, considering the severe consequences of BM and the

healthcare cost-effectiveness, action thresholds should be established

through cost–benefit analysis to minimize the expected costs based on

model-predicted probabilities. In addition, clinicians accustomed to

traditional approaches might exhibit skepticism toward the new

model, questioning its reliability and perceiving it as interfering with
Frontiers in Oncology 13
clinical autonomy, while the complex algorithm and multiple input

features may hinder interpretability and clinician trust. To enable

developers, clinicians, regulatory agencies, and other stakeholders to

quickly understand the model’s applicable scope and potential risks,

we have created a model card (see Supplementary Table S3).
Conclusion

In this study, we developed a ML model to predict BM in BC

using 10 routinely available clinical features. Among the tested

models, the GBM algorithm showed the highest predictive

performance, including in the external validation cohort. These

results suggest that the GBM model may aid in the clinical

assessment of metastasis risk and inform treatment decisions.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://seer.cancer.gov/data-software/.
Author contributions

ZY: Conceptualization, Data curation, Methodology, Validation,

Writing – original draft. XX: Conceptualization, Data curation, Formal

Analysis, Validation, Writing – original draft. XZ: Conceptualization,

Formal Analysis, Methodology, Project administration, Supervision,

Validation, Writing – review & editing. PS: Conceptualization,

Investigation, Software, Supervision, Writing – review & editing. HC:

Formal Analysis, Investigation, Project administration, Software,

Supervision, Validation, Writing – review & editing. TZ: Funding

acquisition, Project administration, Resources, Validation,

Visualization, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was

funded by the National Natural Science Foundation of China (no.

82260598) and the Jiangxi Provincial Academic and Technical Leader

Training Program in Major Disciplines (no. 20225BCJ22009).
Acknowledgments

We are extremely grateful to Dr. Huang Jianbiao from Jiangxi

Cancer Hospital for providing the clinicopathological data on

bladder cancer and for his valuable insights and critical scientific

discussions on the research. We are grateful to Xiao Pang for the

technical support he provided for this research.
frontiersin.org

https://seer.cancer.gov/data-software/
https://doi.org/10.3389/fonc.2025.1653506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2025.1653506
Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The reviewer LC declared a shared parent affiliation with the

authors to the handling editor at the time of review.

Generative AI statement
The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Frontiers in Oncology 14
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1653506/

full#supplementary-material
References
1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J. CA: A Cancer J Clin.
(2024) 74:12–49. doi: 10.3322/caac.21820

2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA: A Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

3. Stellato M, Santini D, Cursano MC, Foderaro S, Tonini G, Procopio G, et al. Bone
metastases from urothelial carcinoma. The dark side of the moon. J Bone Oncol. (2021)
31:100405. doi: 10.1016/j.jbo.2021.100405

4. Tran L, Xiao JF, Agarwal N, Duex JE, Theodorescu D. Advances in bladder cancer
biology and therapy. Nat Rev Cancer. (2021) 21:104–21. doi: 10.1038/s41568-020-
00313-1

5. Luzzago S, Palumbo C, Rosiello G, Pecoraro A, Deuker M, Tian Z, et al. The effect
of radical cystectomy on survival in patients with metastatic urothelial carcinoma of the
urinary bladder. J Surg Oncol. (2019) 120:1266–75. doi: 10.1002/jso.25717

6. Tao L, Pan X, Zhang L, Wang J, Zhang Z, Zhang L, et al. Marital status and
prognostic nomogram for bladder cancer with distant metastasis: A SEER-based study.
Front Oncol. (2020) 10:586458. doi: 10.3389/fonc.2020.586458

7. Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin ME, Van den
Abbeele AD. Metastatic pattern of bladder cancer: correlation with the characteristics
of the primary tumor. AJR Am J Roentgenol. (2011) 196:117–22. doi: 10.2214/
AJR.10.5036

8. Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone
Miner Res: Off J Am Soc Bone Miner Res. (2018) 33:2099–113. doi: 10.1002/jbmr.3618

9. Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review.
Crit Rev Oncol Hematol. (2005) 56:365–78. doi: 10.1016/j.critrevonc.2005.03.011

10. Zhang C, Liu L, Tao F, Guo X, Feng G, Chen F, et al. Bone metastases pattern in
newly diagnosed metastatic bladder cancer: A population-based study. J Cancer. (2018)
9:4706–11. doi: 10.7150/jca.28706

11. Burke HB. Outcome prediction and the future of the TNM staging system. J Natl
Cancer Inst. (2004) 96:1408–9. doi: 10.1093/jnci/djh293

12. Zou XC, Rao XP, Huang JB, Zhou J, Chao HC, Zeng T. Predicting distant
metastasis of bladder cancer using multiple machine learning models: a study based on
the SEER database with external validation. Front Oncol. (2024) 14:1477166.
doi: 10.3389/fonc.2024.1477166

13. Shi S, Peng G, Luo L, Li D. Predictive nomograms for risk and prognostic factors
in metastatic bladder cancer: a population-based study. Trans Cancer Res. (2023)
12:3284–302. doi: 10.21037/tcr-23-1229

14. Jones OT, Calanzani N, Saji S, Duffy SW, Emery J, Hamilton W, et al. Artificial
intelligence techniques thatmay be applied to primary care data to facilitate earlier diagnosis of
cancer: systematic review. J Med Internet Res. (2021) 23:e23483. doi: 10.2196/23483

15. Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical
practice: systematic review. J Med Internet Res. (2021) 23:e25759. doi: 10.2196/25759

16. Peng ZH, Tian JH, Chen BH, Zhou HB, Bi H, He MX, et al. Development of
machine learning prognostic models for overall survival of prostate cancer patients with
lymph node-positive. Sci Rep. (2023) 13:18424. doi: 10.1038/s41598-023-45804-x
17. Wang Z, Xu C, LiuW, Zhang M, Zou J, ShaoM, et al. A clinical prediction model
for predicting the risk of liver metastasis from renal cell carcinoma based on machine
learning. Front Endocrinol. (2023) 13:1083569. doi: 10.3389/fendo.2022.1083569

18. Zhuang Y, Chen YW, Shae ZY, Shyu C-R. Generalizable layered blockchain
architecture for health care applications: development, case studies, and evaluation. J
Med Internet Res. (2020) 22:e19029. doi: 10.2196/19029
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