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Purpose: We developed a machine learning framework to predict the presence

of tertiary lymphoid structures (TLSs) within tumors in patients with

hepatocellular carcinoma (HCC). This framework uses computed tomography

(CT) imaging and clinical data collected before surgery, providing a noninvasive

method for prediction.

Methods: We conducted a retrospective analysis of HCC patients who

underwent surgery at the General Hospital of the Northern Theater

Command’s Hepatobiliary Surgery Department between January 2017 and

October 2024. Using Python software, we extracted radiomic features from

preoperative CT images (arterial and portal venous phases). We then selected

features associated with intratumoral TLSs using statistical methods, including

intraclass correlation coefficient (ICC), Pearson correlation, t-tests, and LASSO

regression. Three models were developed—clinical, radiomics, and combined—

using machine learning techniques and independent clinical predictors. A

predictive nomogram was created and evaluated using the area under the

ROC curve (AUC) and calibration analysis.

Results: Our study included 171 HCC patients, with 80 showing negative and 91

showing positive expression of intratumoral TLSs. Multivariate analysis identified

the albumin-bilirubin (ALBI) score as an independent predictor of intratumoral

TLSs expression. The combined model demonstrated the highest predictive

accuracy, with AUCs of 0.947 in the training set and 0.909 in the validation set,

outperforming both the clinical (AUC: 0.709 training, 0.714 validation) and

radiomics (AUC: 0.935 training, 0.890 validation) models.
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Conclusion: Our combined machine learning model, which integrates

preoperative CT imaging and clinical data, provides an accurate, noninvasive

method for assessing intratumoral TLSs expression in HCC. This tool has the

potential to enhance clinical decision-making, guide therapeutic planning, and

facilitate personalized treatment strategies for HCC patients.
KEYWORDS

hepatocellular carcinoma, intratumoral tertiary lymphoid structures, machine learning,
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Introduction

Hepatocellular carcinoma (HCC) constitutes the predominant

subtype of liver cancer, accounting for 75–85% of cases (1). Globally,

it ranks as the sixth most commonly diagnosed malignancy and the

third leading cause of cancer-related mortality (2). Although radical

liver resection represents the primary curative treatment for HCC (3),

most patients are diagnosed at intermediate or advanced stages,

rendering them ineligible for surgical intervention (4). The

heterogeneous nature of HCC, combined with its resistance to

conventional radiotherapy and chemotherapy, contributes to a

poor overall prognosis (5, 6).

Recent progress in targeted therapies and immunotherapies has

introduced novel therapeutic options for HCC management. Immune

checkpoint inhibitors, particularly those targeting programmed death-

1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),

have emerged as critical components of contemporary HCC research

(7, 8). In a phase III clinical trial, nivolumab monotherapy achieved an

objective response rate of 18.3% in patients with advanced HCC,

demonstrating clinical efficacy and a favorable safety profile

(9). Despite its superior efficacy relative to other treatments,

immunotherapy is limited by significant interpatient variability in

response (10). Consequently, the development of predictive

biomarkers for immunotherapy response remains essential for

optimizing clinical decision-making in HCC.

Tertiary lymphoid structures (TLSs) have recently emerged as a

promising focus in cancer immunotherapy research due to their

potential to improve treatment outcomes (11). These organized

aggregates of immune cells develop in non-lymphoid tissues, driven

by chronic inflammatory conditions such as cancer, autoimmune

disorders, or persistent infections (12). Structurally, TLSs

recapitulate the architecture of lymph nodes, featuring a core of B

cells (CD20+) surrounded by T cells (CD3+), which collectively

facilitate the initiation and coordination of adaptive immune

responses (13). TLSs can remodel the local immune landscape by

promoting the infiltration of anti-tumor effector cells while

simultaneously suppressing pro-tumorigenic populations (14).

This evidence positions TLSs as localized hubs for priming anti-

tumor immunity, underscoring their significance as a key area of

investigation for advancing therapeutic strategies.
02
Emerging evidence highlights the pivotal role of TLSs as central

hubs for initiating systemic antitumor immune responses. In

melanoma, dense perivascular clusters of CD8+ T cells surrounding

TLSs underscore their function as activation sites for tumor-directed

immunity (15). Mature TLSs have been identified as a key biomarker

for predicting immunotherapy efficacy (16), with soft tissue sarcomas

harboring TLSs exhibiting superior responses to immune checkpoint

blockade (17). Clinically, TLSs presence correlates with prolonged

overall survival across diverse malignancies, including gastric,

cervical, and breast cancers (18–22). In HCC, intratumoral TLSs are

linked to reduced early recurrence post-resection and better prognosis

in early-stage disease (23). Furthermore, the spatial distribution and

density of TLSs in intrahepatic cholangiocarcinoma offer a refined

immune-based stratification system for prognostic assessment (24).

Given these findings, preoperative prediction of TLSs presence in HCC

holds significant clinical value, enabling more accurate prognosis

estimation, personalized therapeutic strategies, and optimized

treatment selection.

Currently, TLSs can only be definitively identified through

postoperative histopathological analysis. However, HCC is

primarily diagnosed non-invasively using imaging techniques such

as computed tomography (CT) or magnetic resonance imaging

(MRI), which often eliminates the need for pathological

confirmation. Given the prognostic and therapeutic significance of

TLSs, there is an urgent need for a non-invasive, efficient preoperative

tool to predict the presence of intratumoral TLSs in HCC.

Machine learning (ML) has emerged as a powerful tool for

disease diagnosis and treatment optimization, combining high

accuracy with computational efficiency (25). Radiomics—a field

focused on extracting and analyzing quantitative imaging features

to uncover hidden biological patterns—has gained significant

traction in clinical research due to its potential to predict disease

onset, progression, and outcomes (26, 27). In liver cancer, radiomics

has already demonstrated promising results. For instance, Feng

et al. developed an MRI-based radiomics model for the preoperative

prediction of microvascular invasion (MVI), achieving an

area under the curve (AUC) of 0.83 (28). Similarly, Li et al.

constructed a multiparametric CT-derived radiomics nomogram

to identify the massive macrotrabecular HCC subtype with high

accuracy (29).
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Building on these advances, this study focuses on intratumoral

TLSs in HCC and aims to develop a preoperative prediction model

using machine learning algorithms applied to contrast-enhanced CT

imaging and clinical data. The model is designed to improve clinical

decision-making, advance precision medicine, enable personalized

preoperative risk stratification, and optimize therapeutic strategies for

HCC patients.
Materials and methods

Workflow for the development of the clinical-radiomics model

is shown in Figure 1.
Data preparation and patient selection

The Ethics Committee of Northern Theater General Hospital

approved this retrospective study conducted at a single center (Ethics

No: Y(2024)028). Between 2017 and 2024, 353 consecutive HCC

patients who underwent surgical treatment at the Hepatobiliary

Surgery Department of Northern Theater General Hospital were

included. The inclusion criteria were: (1) a confirmed postoperative

pathological diagnosis of HCC; and (2) contrast-enhanced CT of the

liver performed within 1 month before surgery. The exclusion criteria

were: (1) lesion size <1.0 cm; (2) missing imaging or clinical data; (3)

poor image quality that hindered lesion identification; (4) history of

preoperative treatments such as radiotherapy, chemotherapy,

targeted therapy, or immunotherapy; and (5) missing postoperative
Frontiers in Oncology 03
pathological data (Figure 2). After applying the inclusion and

exclusion criteria.

Baseline data collected included age, sex, hepatitis virus

infection, Barcelona Clinic Liver Cancer staging (30), liver

cirrhosis status (31), presurgical blood panels, clotting function,

hepatic biochemical markers, albumin-bilirubin (ALBI) score, and

serum AFP levels at admission. The calculation method for the

ALBI score is provided in the Supplementary Material.
Pathological diagnosis

All tissue sections were reviewed by two pathologists, each with

> 5 years of experience in liver pathology. The presence of

intratumoral TLSs was morphologically assessed using H&E-

stained histopathological slides. Any disagreements between the

two pathologists were resolved by a third senior pathologist

(associate chief or higher). Intratumoral TLSs were classified

into two maturity stages: lymphoid aggregates (Agg) and

lymphoid follicles (FOL) (17). Our analysis strictly adhered to the

established classification and diagnostic criteria for intratumoral

TLSs proposed by Julien Calderaro and colleagues (23).

Aggregates: Vague, ill-defined clusters of lymphocytes.

Primary follicles (FL-I) are round, well-defined clusters of

lymphocytes without a germinal center. Secondary follicles (FL-II)

are follicles that contain a visible germinal center.

Tumors containing at least one intratumoral TLS were

classified as TLSs-positive, while those without were classified as

TLSs-negative.
FIGURE 1

Workflow for development of the clinical-radiomics model. HBV, hepatitis B virus; HCV, hepatitis C virus; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; AFP, alpha-fetoprotein; CE-CT, contrast-enhanced computed tomography; VOI, volume of interest; ALBI, albumin-
bilirubin; RS, Rad Signature.
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CT image acquisition, volume of interest
segmentation, and extraction of
radiological features

The process of CT image acquisition is detailed in the

supplementary document. The images were imported into ITK-

SNAP (version 3.8.0). An experienced physician specializing in

abdominal imaging manually delineated the VOI for each tumor

layer along the tumor boundaries using ITK-SNAP. Before model

construction, imaging data from 20 randomly selected patients were

used. The first physician reoutlined the VOI after 1 month. A second

experienced physician specializing in abdominal imaging also

delineated the VOI for the same 20 patients. Observer agreement was

assessed both between different raters (inter-observer) and within the

same rater (intra-observer) through ICC calculations. Features with an

ICC > 0.75 were selected for further analysis. Both physicians

performed their assessments blinded to clinical and pathological

records. Feature extraction from medical images was conducted using

Pyradiomics (version 3.0.1), an open-source computational package.

From both arterial and portal venous phases, 1, 502 radiomic features

were derived (Supplementary Figure 1). Features were labeled with an

“A” (arterial) or “V” (venous) prefix and merged using a pre-fusion

approach, resulting in 3, 004 radiomic features per patient.
Frontiers in Oncology 04
Radiomics feature selection, clinical-
radiomics model construction, and
evaluation

A 7:3 random split was used to divide HCC patients into training

and validation datasets. Univariate analysis was conducted on the

clinical data from the training set, and variables with P < 0.1 were

included in a multivariate logistic regression to develop a clinical

model. For feature dimensionality reduction, statistically insignificant

features were initially excluded using t-tests (P < 0.05), followed by

LASSO regression with 10-fold cross-validation. The l value was

selected based on the minimum criterion to identify the most

predictive radiomic features.

After evaluating multiple machine learning-derived radiomics

models, the highest-performing model was enhanced by

incorporating independent prognostic factors to develop a

combined model. The predictive model’s calibration was assessed

through (1) the generation of calibration curves comparing

predicted values with actual TLSs expression, and (2) the

computation of SHAP values to explain feature contributions.

The model’s goodness of fit was evaluated using the Hosmer-

Lemeshow test. Clinical applicability was assessed via decision

curve analysis (DCA).
FIGURE 2

Flowchart of patient selection. HCC, hepatocellular carcinoma.
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Statistical analysis

We analyzed the data using SPSS version 27.0 (IBM Corporation).

A p-value < 0.05 was considered statistically significant. For qualitative

data, we applied the chi-square test and Fisher’s exact test. Quantitative

variables with a normal distribution were analyzed using the t-test, and

results were presented as mean ± standard deviation. For data not

normally distributed, we used the rank sum test and reported results as

median (interquartile range). High-dimensional feature selection,

model construction, and evaluation—including LASSO regression,

cross-validation, and machine learning methods—along with model

interpretability analysis (SHAP analysis), were performed using Python

version 3.9.
Results

Clinical characteristics

The study included 171 HCC patients, with 119 (69.6%) in the

training set and 52 (30.4%) in the validation set. The prevalence of

intratumoral TLSs was balanced between the two sets, with 52.94%

(63/119) TLSs-positive cases in the training set and 53.85% (28/52)

in the validation set (P = 0.914 for inter-set difference).
Frontiers in Oncology 05
Notably, TLSs-positive patients demonstrated significantly

more favorable clinical profiles (Table 1).

Lower rates of AFP ≥ 400 ng/mL (training set: P = 0.027;

validation set: P = 0.035).

Reduced prevalence of ALBI grade ≥ 2 (training set: P < 0.001;

validation set: P = 0.008).

Multivariate analysis, including all variables that were significant

in univariate analysis (P < 0.1), confirmed that an ALBI grade ≥ 2 is

an independent negative predictor of intratumoral TLSs expression

(adjusted OR: 0.32, 95% CI: 0.18–0.56; P < 0.001). Detailed results are

presented in Supplementary Table 1.
Feature selection and predictive
performance assessment in radiomics
modeling

Our radiomics feature selection process demonstrated high

reproducibility, with 94.8% (2, 847/3, 004) and 87.4% (2, 626/3,

004) of features meeting the consistency threshold (ICC ≥ 0.75) in

intra- and inter-observer analyses, respectively (Figures 3A, B).

Ultimately, 2, 588 imaging features were retained for subsequent

analysis. These features underwent rigorous statistical refinement:

initial univariate screening using t-tests identified significantly
FIGURE 3

Bar charts of the intraclass correlation coefficient for (A) intra- and (B) inter-observer reliability. (C) Statistical plot of radiomic features.
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discriminative features (Figure 3C), which were then standardized

and processed via LASSO regression with 10-fold cross-validation

(Figures 4A, B). Following final dimensionality reduction, 24

optimal predictive radiomics features were selected (13 from the

arterial phase and 11 from the portal venous phase; Figure 4C).

These features were significantly correlated with the expression of

intratumoral TLSs in hepatocellular carcinoma.
Building and utilizing clinical-radiomics
prediction models

Our comprehensive evaluation of eight machine learning

algorithms identified logistic regression as the optimal radiomics

model, demonstrating superior predictive performance in both the

training set (AUC 0.935, 95% CI 0.894–0.975) and the validation set

(AUC 0.890, 95% CI 0.799–0.981) (Figures 5A, B, Table 2).

SHAP analysis provided transparent interpretation of feature

contributions (Figure 6), with detailed local explanations available

through waterfall and force plots (Supplementary Figures 2). The

integration of radiomic features with clinical predictors (ALBI grade

≥ 2) in our combined nomogram (Figure 5C) achieved outstanding

discrimination, with AUCs of 0.947 (95% CI 0.910–0.983) in the

training set and 0.909 (95% CI 0.820–0.999) in the validation set—
Frontiers in Oncology 06
representing significant improvements over the clinical-only

model’s performance (training AUC 0.709, validation AUC 0.714;

Figures 7A, B). The model’s clinical utility was further supported by

excellent calibration (Figures 7C, D) and favorable decision curve

analysis results (Supplementary Figure 3), confirming its reliability

for predicting intratumoral TLSs expression in HCC patients.
Discussion

Surgical resection, liver transplantation, and transarterial

chemoembolization (TACE) remain cornerstone treatments for

HCC; however, their efficacy is often limited in advanced-stage

disease (32). Accumulating evidence highlights intratumoral

immune cell infiltration as a key predictor of immunotherapy

response (33), with intratumoral TLSs playing a particularly

critical role. The density of TLSs correlates with improved

pathological responses and prolonged recurrence-free survival.

Notably, the presence of atypical TLSs in tumor regression zones

may promote T-cell memory formation, further underscoring their

importance in HCC immunotherapy (34).

The formation of TLS alters the spatial architecture within liver

cancer tumors. For instance, texture features may reflect the

microscopic complexity resulting from lymphocyte aggregation,
FIGURE 4

(A) Distribution of LASSO coefficients for each radiomic feature. (B) Optimal penalty coefficient (l) for the LASSO model, determined via 10-fold
cross-validation and the 1-SE rule. (C) Histogram of selected feature coefficients. 1-SE, One Standard Error.
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while morphological features may correspond to the overall

macroscopic structure of TLS. Although these microscopic changes

are not directly visible to the naked eye in imaging, they can be decoded

using quantitative radiomics algorithms. Therefore, this study employs

machine learning to investigate the correlation between radiomics

features of HCC and the pathological characteristics of TLS. By

integrating radiomics features with clinical data, we aim to conduct

an in-depth exploration of the intrinsic relationship between

intratumoral TLS and HCC progression.

Our research found that the occurrence rate of intratumora TLSs

among tumor cells in HCC (53.22%, 91/171) was consistent with

previously reported rates (29, 35). Multivariate analysis indicated that

the ALBI score was the only clinical parameter independently

associated with the presence of TLSs within the tumor. The study

confirmed that the ALBI score has an independent prognostic role in

HCC. A higher ALBI score (2 or 3 points, compared to 1 point)

independently indicates a threefold increase in the risk of death (36).

Moreover, a higher ALBI score is associated with an increased risk of

postoperative recurrence (37), which may reflect impaired immune

surveillance in decompensated liver disease. Our data show a

significant negative correlation between the ALBI score and the

density of TLSs within the tumor (p < 0.05). Better liver function

(lower ALBI score) may imply healthier immune system function,

supporting a more effective anti-tumor immune response and the

formation of TLSs. Conversely, liver dysfunction may hinder the
Frontiers in Oncology 07
generation and maintenance of TLSs through systemic inflammation

or immunosuppressive states. Patients with ALBI grade 1 have better

immune function, promoting the generation of intratumoral TLSs

and a better prognosis.

ML has emerged as a transformative tool in the medical field,

demonstrating remarkable potential in various omics domains of

liver cancer (26). Its application in liver cancer diagnosis is

particularly prominent. Gao et al. developed an ML model that

utilizes preoperative contrast-enhanced CT imaging and clinical

data to distinguish malignant liver tumors. The model achieved an

accuracy rate of 86.2% and an AUC value of 0.893, enabling the

differentiation between HCC and intrahepatic cholangiocarcinoma

(ICC) (38).

ML also exhibits outstanding practicality in predicting key

histopathological features of liver cancer. MVI, an important

predictor of postoperative recurrence, has long been a focus of

radiomics research. Multiple ML models incorporating radiomics

features have demonstrated excellent performance in predicting

MVI (39, 40). These advancements highlight the ability of machine

learning to extract clinically relevant information from routine

imaging data, indicating that ML can obtain certain pathological

features of tumors from imaging materials.

To date, no studies have developed ML models combining CT

radiomics and clinical data to predict intratumoral TLSs expression

in HCC. However, pioneering work by Xu et al. demonstrated ML’s
FIGURE 5

Receiver operating characteristic curves of eight machine learning-based radiomics models for predicting intratumoral tertiary lymphoid structures
for the (A) training and (B) validation sets. (C) Nomogram combining albumin-bilirubin score ≥2 and Rad Signature. LR, logistic regression; SVM,
support vector machine; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; AdaBoost, Adaptive Boosting.
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capability to predict TLSs in intrahepatic cholangiocarcinoma

(ICC) using preoperative contrast-enhanced CT portal phase and

multiphase MRI images (41). Subsequent research expanded on this

approach, employing multiphase MRI and clinical data from 192

patients to predict intratumoral TLSs in ICC (42). For HCC

specifically, prior investigations have utilized contrast-enhanced

CT semantic features combined with clinical data to predict

intratumoral TLSs patterns, achieving an average AUC of 0.75

through five-fold cross-validation (43). These foundational studies

not only validate our methodological approach but also confirm the

feasibility of preoperative TLSs prediction. However, a recent study

focused on the density of the peritumoral TLS (pTLS) around the
Frontiers in Oncology 08
tumors of HCC patients and their role in predicting prognosis and

immune treatment response. By integrating multi-omics data

(including spatial transcriptomics and RNA sequencing) and

multi-center imaging data, the study identified key regulatory

factors (CXCL9/10) associated with high pTLS density and

developed a non-invasive classifier based on MRI imaging

biomarkers to accurately predict the density of pTLS (44).

Our study represents the first successful development of

machine learning models that integrate contrast-enhanced CT

radiomics with clinical parameters to predict intratumoral TLSs

expression in HCC. While our clinical-only model achieved

comparable performance (AUC ≈ 0.75) to previous HCC studies,
TABLE 1 Characteristics of patients in the training and validation sets.

Variables

Training set (n=119)

P

Validation set (n=52)

PTLSs-negative
(n=56)

TLSs-positive
(n=63)

TLSs-negative
(n=24)

TLSs-positive
(n=28)

Age (y), mean ± SD 58.57 ± 9.66 59.29 ± 9.51 0.686 57.38 ± 10.11 58.64 ± 9.63 0.646

WBC (×109/L), M (Q1, Q3) 5.00 (3.80, 5.73) 4.60 (3.70, 6.70) 0.617 5.45 (4.77, 6.73) 5.50 (4.40, 6.65) 0.776

RBC (×1012/L), M (Q1, Q3) 4.47 (4.00, 4.77) 4.44 (4.08, 4.71) 0.964 4.61 (4.20, 4.81) 4.42 (4.04, 4.75) 0.287

PLT (×109/L), M (Q1, Q3) 144.00 (115.50, 169.50) 153.00 (95.00, 224.00) 0.239 163.50 (146.75, 197.00) 164.00 (134.00, 216.00) 0.640

ALT (U/L), M (Q1, Q3) 34.28 (24.00, 47.18) 28.72 (22.77, 42.52) 0.270 38.56 (20.88, 44.39) 26.60 (18.14, 39.15) 0.204

AST (U/L), M (Q1, Q3) 32.00 (23.75, 45.75) 27.83 (21.02, 40.86) 0.322 24.76 (19.84, 34.82) 28.78 (22.62, 41.89) 0.162

PT (s), M (Q1, Q3) 13.90 (13.40, 14.50) 13.90 (13.40, 14.45) 0.784 13.60 (12.97, 13.90) 13.70 (13.20, 14.30) 0.398

APTT (s), M (Q1, Q3) 35.60 (34.35, 37.80) 36.60 (34.90, 39.40) 0.221 37.45 (34.88, 38.68) 35.45 (34.03, 38.28) 0.169

Sex, n (%) 0.828 0.359

Male 86 (72.27) 41 (73.21) 38 (73.08) 19 (79.17)

Female 33 (27.73) 15 (26.79) 14 (26.92) 5 (20.83)

HBV/HCV, n (%) 0.939 1.000

Negative 28 (23.53) 13 (23.21) 10 (19.23) 5 (20.83)

Positive 91 (76.47) 43 (76.79) 42 (80.77) 19 (79.17)

Liver cirrhosis, n (%) 0.500 0.111

Negative 76 (63.87) 34 (60.71) 38 (73.08) 15 (62.50)

Positive 43 (36.13) 22 (39.29) 14 (26.92) 9 (37.50)

BCLC, n (%) 0.435 0.882

0-A 95 (79.83) 43 (76.79) 44 (84.62) 21 (87.50)

B 24 (20.17) 13 (23.21) 8 (15.38) 3 (12.50)

AFP≥400ng/ml, n (%) 0.027 0.013

Negative 78 (65.55) 31 (55.36) 27 (51.92) 8 (33.33)

Positive 41 (34.45) 25 (44.64) 25 (48.08) 16 (66.67)

ALBI grade≥2, n (%) <.001 <.001

Negative 54 (45.38) 11 (19.64) 25 (48.08) 5 (20.83)

Positive 65 (54.62) 45 (80.36) 27 (51.92) 19 (79.17)
frontier
Data are presented as number (%), median (interquartile range), or mean ± SD.
SD, standard deviation; WBC, white blood cell; RBC, red blood cell; PLT, platelets; ALT, alanine aminotransferase; AST, aspartate aminotransferase; PT, prothrombin time; APTT, activated
partial thromboplastin time; HBV, hepatitis B virus; HCV, hepatitis C virus; BCLC, Barcelona Clinic Liver Cancer Staging System; AFP, alpha-fetoprotein; ALBI, albumin-bilirubin.
The bold values represents a statistically significant difference.
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the radiomics model and combined model demonstrated

significantly superior predictive capability, with the integrated

nomogram (combining ALBI score and radiomic features)

emerging as the optimal tool for preope.

This study has several limitations that should be considered. First,

the retrospective design may introduce selection bias, and since our

inclusion criteria were restricted to surgical patients, the findings are

currently only applicable to resectable HCC cases - additional studies
Frontiers in Oncology 09
are needed to evaluate generalizability to advanced/unresectable HCC

populations. Second, as a single-center retrospective analysis, external

validation through prospective multicenter trials will be essential to

confirm our results and support clinical translation. Third, while our

radiomics model demonstrated promising results using contrast-

enhanced CT alone, incorporating preoperative MRI in future

studies could further improve predictive performance and provide

stronger evidence for clinical implementation through multimodal
TABLE 2 Diagnostic performance of eight machine learning models in the training and validation sets.

Set Model Accuracy Sensitivity Specificity AUC (95% CI)

Training LR 0.84 0.71 0.98 0.93 (0.78–0.98)

SVM 0.89 0.83 0.96 0.95 (0.92–0.98)

RandomForest 0.92 0.90 0.95 0.97 (0.95–1.00)

XGBoost 0.82 0.76 0.87 0.89 (0.83–0.95)

LightGBM 0.97 0.97 0.98 1.00 (0.99–1.00)

ExtraTrees 0.90 0.87 0.93 0.96 (0.92–0.99)

GradientBoosting 0.93 0.95 0.91 0.99 (0.97–1.00)

AdaBoost 0.92 0.92 0.93 0.98 (0.96–1.00)

Validation LR 0.85 0.86 0.83 0.89 (0.80–0.98)

SVM 0.83 0.82 0.83 0.84 (0.72–0.95)

RandomForest 0.67 0.75 0.58 0.69 (0.55–0.84)

XGBoost 0.77 0.61 0.96 0.82 (0.70–0.93)

LightGBM 0.69 0.57 0.83 0.76 (0.62–0.89)

ExtraTrees 0.62 0.46 0.79 0.63 (0.48–0.79)

GradientBoosting 0.63 0.46 0.83 0.74 (0.60–0.87)

AdaBoost 0.67 0.79 0.54 0.73 (0.60–0.87)
AUC, area under the curve; ACC; LR, logistic regression; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; AdaBoost,Adaptive
Boosting.
FIGURE 6

Mean SHAP values for each radiomic feature. SHAP, SHapley Additive exPlanations.
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imaging integration. Finally, due to the retrospective nature of this

study, we were unable to prepare traditional clear pathological section

images. Although we have made every effort to provide detailed

textual descriptions, this deficiency still exists. In future related

studies, attention should be paid to the collection and presentation

of pathological images. In the future, we will continue to increase the

number of patients. We will also analyze the relationship between the

presence of TLSs and the prognosis of HCC patients and verify its

correlation with the efficacy of immunotherapy. At the same time, we

may explore the connections between imaging features such as MRI

and PET-CT and TLSs in HCC patients. The integrated model

constructed in this study aims to become a highly accurate, non-

invasive “virtual biopsy” tool, which not only can guide the clinical

decision-making of immunotherapy for patients with hepatocellular

carcinoma but also will promote the exploration of the underlying

mechanisms of the tumor immune microenvironment.
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Conclusion

In summary, the developed machine learning models for

preoperative prediction of intratumoral TLSs expression in HCC by

integrating radiomic features extracted from arterial and portal phase

contrast-enhanced CT images with relevant clinical data. Our models

- including clinical-only, radiomics-only, and combined approaches -

consistently demonstrated robust predictive performance across both

training and validation sets. These findings suggest that our ML

framework could serve as a valuable clinical tool for noninvasive

intratumoral TLSs assessment prior to surgery, potentially guiding

personalized treatment selection and optimizing therapeutic

decision-making for HCC patients. The strong performance across

all model types highlights the complementary value of both imaging

biomarkers and clinical parameters in predicting this important

immunological feature of HCC.
FIGURE 7

ROC and calibration curves for the clinical, radiomics, and combined models. (A) ROC curves for the (A) training and (B) validation sets. Calibration
curves for the nomograms in the (C) training and (D) validation sets. ROC, receiver operating characteristic; RS, Rad Signature.
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