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Purpose: We developed a machine learning framework to predict the presence
of tertiary lymphoid structures (TLSs) within tumors in patients with
hepatocellular carcinoma (HCC). This framework uses computed tomography
(CT) imaging and clinical data collected before surgery, providing a noninvasive
method for prediction.

Methods: We conducted a retrospective analysis of HCC patients who
underwent surgery at the General Hospital of the Northern Theater
Command’s Hepatobiliary Surgery Department between January 2017 and
October 2024. Using Python software, we extracted radiomic features from
preoperative CT images (arterial and portal venous phases). We then selected
features associated with intratumoral TLSs using statistical methods, including
intraclass correlation coefficient (ICC), Pearson correlation, t-tests, and LASSO
regression. Three models were developed—clinical, radiomics, and combined—
using machine learning techniques and independent clinical predictors. A
predictive nomogram was created and evaluated using the area under the
ROC curve (AUC) and calibration analysis.

Results: Our study included 171 HCC patients, with 80 showing negative and 91
showing positive expression of intratumoral TLSs. Multivariate analysis identified
the albumin-bilirubin (ALBI) score as an independent predictor of intratumoral
TLSs expression. The combined model demonstrated the highest predictive
accuracy, with AUCs of 0.947 in the training set and 0.909 in the validation set,
outperforming both the clinical (AUC: 0.709 training, 0.714 validation) and
radiomics (AUC: 0.935 training, 0.890 validation) models.
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Conclusion: Our combined machine learning model, which integrates
preoperative CT imaging and clinical data, provides an accurate, noninvasive
method for assessing intratumoral TLSs expression in HCC. This tool has the
potential to enhance clinical decision-making, guide therapeutic planning, and
facilitate personalized treatment strategies for HCC patients.

hepatocellular carcinoma, intratumoral tertiary lymphoid structures, machine learning,
radiomics, contrast-enhanced CT

Introduction

Hepatocellular carcinoma (HCC) constitutes the predominant
subtype of liver cancer, accounting for 75-85% of cases (1). Globally,
it ranks as the sixth most commonly diagnosed malignancy and the
third leading cause of cancer-related mortality (2). Although radical
liver resection represents the primary curative treatment for HCC (3),
most patients are diagnosed at intermediate or advanced stages,
rendering them ineligible for surgical intervention (4). The
heterogeneous nature of HCC, combined with its resistance to
conventional radiotherapy and chemotherapy, contributes to a
poor overall prognosis (5, 6).

Recent progress in targeted therapies and immunotherapies has
introduced novel therapeutic options for HCC management. Immune
checkpoint inhibitors, particularly those targeting programmed death-
1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),
have emerged as critical components of contemporary HCC research
(7, 8). In a phase III clinical trial, nivolumab monotherapy achieved an
objective response rate of 18.3% in patients with advanced HCC,
demonstrating clinical efficacy and a favorable safety profile
(9). Despite its superior efficacy relative to other treatments,
immunotherapy is limited by significant interpatient variability in
response (10). Consequently, the development of predictive
biomarkers for immunotherapy response remains essential for
optimizing clinical decision-making in HCC.

Tertiary lymphoid structures (TLSs) have recently emerged as a
promising focus in cancer immunotherapy research due to their
potential to improve treatment outcomes (11). These organized
aggregates of immune cells develop in non-lymphoid tissues, driven
by chronic inflammatory conditions such as cancer, autoimmune
disorders, or persistent infections (12). Structurally, TLSs
recapitulate the architecture of lymph nodes, featuring a core of B
cells (CD20+) surrounded by T cells (CD3+), which collectively
facilitate the initiation and coordination of adaptive immune
responses (13). TLSs can remodel the local immune landscape by
promoting the infiltration of anti-tumor effector cells while
simultaneously suppressing pro-tumorigenic populations (14).
This evidence positions TLSs as localized hubs for priming anti-
tumor immunity, underscoring their significance as a key area of
investigation for advancing therapeutic strategies.
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Emerging evidence highlights the pivotal role of TLSs as central
hubs for initiating systemic antitumor immune responses. In
melanoma, dense perivascular clusters of CD8+ T cells surrounding
TLSs underscore their function as activation sites for tumor-directed
immunity (15). Mature TLSs have been identified as a key biomarker
for predicting immunotherapy efficacy (16), with soft tissue sarcomas
harboring TLSs exhibiting superior responses to immune checkpoint
blockade (17). Clinically, TLSs presence correlates with prolonged
overall survival across diverse malignancies, including gastric,
cervical, and breast cancers (18-22). In HCC, intratumoral TLSs are
linked to reduced early recurrence post-resection and better prognosis
in early-stage disease (23). Furthermore, the spatial distribution and
density of TLSs in intrahepatic cholangiocarcinoma offer a refined
immune-based stratification system for prognostic assessment (24).
Given these findings, preoperative prediction of TLSs presence in HCC
holds significant clinical value, enabling more accurate prognosis
estimation, personalized therapeutic strategies, and optimized
treatment selection.

Currently, TLSs can only be definitively identified through
postoperative histopathological analysis. However, HCC is
primarily diagnosed non-invasively using imaging techniques such
as computed tomography (CT) or magnetic resonance imaging
(MRI), which often eliminates the need for pathological
confirmation. Given the prognostic and therapeutic significance of
TLSs, there is an urgent need for a non-invasive, efficient preoperative
tool to predict the presence of intratumoral TLSs in HCC.

Machine learning (ML) has emerged as a powerful tool for
disease diagnosis and treatment optimization, combining high
accuracy with computational efficiency (25). Radiomics—a field
focused on extracting and analyzing quantitative imaging features
to uncover hidden biological patterns—has gained significant
traction in clinical research due to its potential to predict disease
onset, progression, and outcomes (26, 27). In liver cancer, radiomics
has already demonstrated promising results. For instance, Feng
et al. developed an MRI-based radiomics model for the preoperative
prediction of microvascular invasion (MVI), achieving an
area under the curve (AUC) of 0.83 (28). Similarly, Li et al.
constructed a multiparametric CT-derived radiomics nomogram
to identify the massive macrotrabecular HCC subtype with high
accuracy (29).
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Building on these advances, this study focuses on intratumoral
TLSs in HCC and aims to develop a preoperative prediction model
using machine learning algorithms applied to contrast-enhanced CT
imaging and clinical data. The model is designed to improve clinical
decision-making, advance precision medicine, enable personalized
preoperative risk stratification, and optimize therapeutic strategies for
HCC patients.

Materials and methods

Workflow for the development of the clinical-radiomics model

is shown in Figure 1.

Data preparation and patient selection

The Ethics Committee of Northern Theater General Hospital
approved this retrospective study conducted at a single center (Ethics
No: Y(2024)028). Between 2017 and 2024, 353 consecutive HCC
patients who underwent surgical treatment at the Hepatobiliary
Surgery Department of Northern Theater General Hospital were
included. The inclusion criteria were: (1) a confirmed postoperative
pathological diagnosis of HCC; and (2) contrast-enhanced CT of the
liver performed within 1 month before surgery. The exclusion criteria
were: (1) lesion size <1.0 cm; (2) missing imaging or clinical data; (3)
poor image quality that hindered lesion identification; (4) history of
preoperative treatments such as radiotherapy, chemotherapy,
targeted therapy, or immunotherapy; and (5) missing postoperative
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pathological data (Figure 2). After applying the inclusion and
exclusion criteria.

Baseline data collected included age, sex, hepatitis virus
infection, Barcelona Clinic Liver Cancer staging (30), liver
cirrhosis status (31), presurgical blood panels, clotting function,
hepatic biochemical markers, albumin-bilirubin (ALBI) score, and
serum AFP levels at admission. The calculation method for the
ALBI score is provided in the Supplementary Material.

Pathological diagnosis

All tissue sections were reviewed by two pathologists, each with
> 5 years of experience in liver pathology. The presence of
intratumoral TLSs was morphologically assessed using H&E-
stained histopathological slides. Any disagreements between the
two pathologists were resolved by a third senior pathologist
(associate chief or higher). Intratumoral TLSs were classified
into two maturity stages: lymphoid aggregates (Agg) and
lymphoid follicles (FOL) (17). Our analysis strictly adhered to the
established classification and diagnostic criteria for intratumoral
TLSs proposed by Julien Calderaro and colleagues (23).

Aggregates: Vague, ill-defined clusters of lymphocytes.

Primary follicles (FL-I) are round, well-defined clusters of
lymphocytes without a germinal center. Secondary follicles (FL-II)
are follicles that contain a visible germinal center.

Tumors containing at least one intratumoral TLS were
classified as TLSs-positive, while those without were classified as

TLSs-negative.
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Workflow for development of the clinical-radiomics model. HBV, hepatitis B virus; HCV, hepatitis C virus; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; AFP, alpha-fetoprotein; CE-CT, contrast-enhanced computed tomography; VOI, volume of interest; ALBI, albumin-

bilirubin; RS, Rad Signature.
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FIGURE 2

Flowchart of patient selection. HCC, hepatocellular carcinoma.

CT image acquisition, volume of interest
segmentation, and extraction of
radiological features

The process of CT image acquisition is detailed in the
supplementary document. The images were imported into ITK-
SNAP (version 3.8.0). An experienced physician specializing in
abdominal imaging manually delineated the VOI for each tumor
layer along the tumor boundaries using ITK-SNAP. Before model
construction, imaging data from 20 randomly selected patients were
used. The first physician reoutlined the VOI after 1 month. A second
experienced physician specializing in abdominal imaging also
delineated the VOI for the same 20 patients. Observer agreement was
assessed both between different raters (inter-observer) and within the
same rater (intra-observer) through ICC calculations. Features with an
ICC > 0.75 were selected for further analysis. Both physicians
performed their assessments blinded to clinical and pathological
records. Feature extraction from medical images was conducted using
Pyradiomics (version 3.0.1), an open-source computational package.
From both arterial and portal venous phases, 1, 502 radiomic features
were derived (Supplementary Figure 1). Features were labeled with an
“A” (arterial) or “V” (venous) prefix and merged using a pre-fusion
approach, resulting in 3, 004 radiomic features per patient.
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Radiomics feature selection, clinical-
radiomics model construction, and
evaluation

A 7:3 random split was used to divide HCC patients into training
and validation datasets. Univariate analysis was conducted on the
clinical data from the training set, and variables with P < 0.1 were
included in a multivariate logistic regression to develop a clinical
model. For feature dimensionality reduction, statistically insignificant
features were initially excluded using t-tests (P < 0.05), followed by
LASSO regression with 10-fold cross-validation. The A value was
selected based on the minimum criterion to identify the most
predictive radiomic features.

After evaluating multiple machine learning-derived radiomics
models, the highest-performing model was enhanced by
incorporating independent prognostic factors to develop a
combined model. The predictive model’s calibration was assessed
through (1) the generation of calibration curves comparing
predicted values with actual TLSs expression, and (2) the
computation of SHAP values to explain feature contributions.
The model’s goodness of fit was evaluated using the Hosmer-
Lemeshow test. Clinical applicability was assessed via decision
curve analysis (DCA).
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FIGURE 3

Bar charts of the intraclass correlation coefficient for (A) intra- and (B) inter-observer reliability. (C) Statistical plot of radiomic features.

Statistical analysis

We analyzed the data using SPSS version 27.0 (IBM Corporation).
A p-value < 0.05 was considered statistically significant. For qualitative
data, we applied the chi-square test and Fisher’s exact test. Quantitative
variables with a normal distribution were analyzed using the t-test, and
results were presented as mean + standard deviation. For data not
normally distributed, we used the rank sum test and reported results as
median (interquartile range). High-dimensional feature selection,
model construction, and evaluation—including LASSO regression,
cross-validation, and machine learning methods—along with model
interpretability analysis (SHAP analysis), were performed using Python
version 3.9.

Results
Clinical characteristics

The study included 171 HCC patients, with 119 (69.6%) in the
training set and 52 (30.4%) in the validation set. The prevalence of
intratumoral TLSs was balanced between the two sets, with 52.94%
(63/119) TLSs-positive cases in the training set and 53.85% (28/52)
in the validation set (P = 0.914 for inter-set difference).

Frontiers in Oncology

Notably, TLSs-positive patients demonstrated significantly
more favorable clinical profiles (Table 1).

Lower rates of AFP > 400 ng/mL (training set: P = 0.027;
validation set: P = 0.035).

Reduced prevalence of ALBI grade > 2 (training set: P < 0.001;
validation set: P = 0.008).

Multivariate analysis, including all variables that were significant
in univariate analysis (P < 0.1), confirmed that an ALBI grade > 2 is
an independent negative predictor of intratumoral TLSs expression
(adjusted OR: 0.32, 95% CI: 0.18-0.56; P < 0.001). Detailed results are
presented in Supplementary Table 1.

Feature selection and predictive
performance assessment in radiomics
modeling

Our radiomics feature selection process demonstrated high
reproducibility, with 94.8% (2, 847/3, 004) and 87.4% (2, 626/3,
004) of features meeting the consistency threshold (ICC = 0.75) in
intra- and inter-observer analyses, respectively (Figures 3A, B).
Ultimately, 2, 588 imaging features were retained for subsequent
analysis. These features underwent rigorous statistical refinement:
initial univariate screening using t-tests identified significantly

05 frontiersin.org
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discriminative features (Figure 3C), which were then standardized
and processed via LASSO regression with 10-fold cross-validation
(Figures 4A, B). Following final dimensionality reduction, 24
optimal predictive radiomics features were selected (13 from the
arterial phase and 11 from the portal venous phase; Figure 4C).
These features were significantly correlated with the expression of
intratumoral TLSs in hepatocellular carcinoma.

Building and utilizing clinical-radiomics
prediction models

Our comprehensive evaluation of eight machine learning
algorithms identified logistic regression as the optimal radiomics
model, demonstrating superior predictive performance in both the
training set (AUC 0.935, 95% CI 0.894-0.975) and the validation set
(AUC 0.890, 95% CI 0.799-0.981) (Figures 5A, B, Table 2).
SHAP analysis provided transparent interpretation of feature
contributions (Figure 6), with detailed local explanations available
through waterfall and force plots (Supplementary Figures 2). The
integration of radiomic features with clinical predictors (ALBI grade
> 2) in our combined nomogram (Figure 5C) achieved outstanding
discrimination, with AUCs of 0.947 (95% CI 0.910-0.983) in the
training set and 0.909 (95% CI 0.820-0.999) in the validation set—
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representing significant improvements over the clinical-only
model’s performance (training AUC 0.709, validation AUC 0.714;
Figures 7A, B). The model’s clinical utility was further supported by
excellent calibration (Figures 7C, D) and favorable decision curve
analysis results (Supplementary Figure 3), confirming its reliability
for predicting intratumoral TLSs expression in HCC patients.

Discussion

Surgical resection, liver transplantation, and transarterial
chemoembolization (TACE) remain cornerstone treatments for
HCC; however, their efficacy is often limited in advanced-stage
disease (32). Accumulating evidence highlights intratumoral
immune cell infiltration as a key predictor of immunotherapy
response (33), with intratumoral TLSs playing a particularly
critical role. The density of TLSs correlates with improved
pathological responses and prolonged recurrence-free survival.
Notably, the presence of atypical TLSs in tumor regression zones
may promote T-cell memory formation, further underscoring their
importance in HCC immunotherapy (34).

The formation of TLS alters the spatial architecture within liver
cancer tumors. For instance, texture features may reflect the
microscopic complexity resulting from lymphocyte aggregation,
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while morphological features may correspond to the overall
macroscopic structure of TLS. Although these microscopic changes
are not directly visible to the naked eye in imaging, they can be decoded
using quantitative radiomics algorithms. Therefore, this study employs
machine learning to investigate the correlation between radiomics
features of HCC and the pathological characteristics of TLS. By
integrating radiomics features with clinical data, we aim to conduct
an in-depth exploration of the intrinsic relationship between
intratumoral TLS and HCC progression.

Our research found that the occurrence rate of intratumora TLSs
among tumor cells in HCC (53.22%, 91/171) was consistent with
previously reported rates (29, 35). Multivariate analysis indicated that
the ALBI score was the only clinical parameter independently
associated with the presence of TLSs within the tumor. The study
confirmed that the ALBI score has an independent prognostic role in
HCC. A higher ALBI score (2 or 3 points, compared to 1 point)
independently indicates a threefold increase in the risk of death (36).
Moreover, a higher ALBI score is associated with an increased risk of
postoperative recurrence (37), which may reflect impaired immune
surveillance in decompensated liver disease. Our data show a
significant negative correlation between the ALBI score and the
density of TLSs within the tumor (p < 0.05). Better liver function
(lower ALBI score) may imply healthier immune system function,
supporting a more effective anti-tumor immune response and the

formation of TLSs. Conversely, liver dysfunction may hinder the
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generation and maintenance of TLSs through systemic inflammation
or immunosuppressive states. Patients with ALBI grade 1 have better
immune function, promoting the generation of intratumoral TLSs
and a better prognosis.

ML has emerged as a transformative tool in the medical field,
demonstrating remarkable potential in various omics domains of
liver cancer (26). Its application in liver cancer diagnosis is
particularly prominent. Gao et al. developed an ML model that
utilizes preoperative contrast-enhanced CT imaging and clinical
data to distinguish malignant liver tumors. The model achieved an
accuracy rate of 86.2% and an AUC value of 0.893, enabling the
differentiation between HCC and intrahepatic cholangiocarcinoma
(ICC) (38).

ML also exhibits outstanding practicality in predicting key
histopathological features of liver cancer. MVI, an important
predictor of postoperative recurrence, has long been a focus of
radiomics research. Multiple ML models incorporating radiomics
features have demonstrated excellent performance in predicting
MVI (39, 40). These advancements highlight the ability of machine
learning to extract clinically relevant information from routine
imaging data, indicating that ML can obtain certain pathological
features of tumors from imaging materials.

To date, no studies have developed ML models combining CT
radiomics and clinical data to predict intratumoral TLSs expression
in HCC. However, pioneering work by Xu et al. demonstrated ML’s
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TABLE 1 Characteristics of patients in the training and validation sets.

Training set (n=119)

10.3389/fonc.2025.1652509

Validation set (n=52)

Variables

TLSs-negative
(n=56)

TLSs-positive
(n=63)

TLSs-negative
(n=24)

TLSs-positive
(n=28)

Age (y), mean + SD 58.57 + 9.66 59.29 + 9.51 0.686 57.38 £ 10.11 58.64 + 9.63 0.646
WBC (x10%/L), M (Q1, Q3) 5.00 (3.80, 5.73) 4.60 (3.70, 6.70) 0.617 5.45 (4.77, 6.73) 5.50 (4.40, 6.65) 0.776
RBC (x10'%/L), M (Q, Q3) 4.47 (4.00, 4.77) 4.44 (4.08, 4.71) 0.964 4.61 (4.20, 4.81) 4.42 (4.04, 4.75) 0.287
PLT (x10°/L), M (Q,, Qs) 144.00 (115.50, 169.50) 153.00 (95.00, 224.00) 0.239 163.50 (146.75, 197.00) 164.00 (134.00, 216.00) 0.640
ALT (U/L), M (Q,, Q3) 34.28 (24.00, 47.18) 28.72 (22.77, 42.52) 0.270 38.56 (20.88, 44.39) 26.60 (18.14, 39.15) 0.204
AST (U/L), M (Qy, Q) 32.00 (23.75, 45.75) 27.83 (21.02, 40.86) 0.322 24.76 (19.84, 34.82) 28.78 (22.62, 41.89) 0.162
PT (s), M (Q;, Q3) 13.90 (13.40, 14.50) 13.90 (13.40, 14.45) 0.784 13.60 (12.97, 13.90) 13.70 (13.20, 14.30) 0.398
APTT (s), M (Q;, Q3) 35.60 (34.35, 37.80) 36.60 (34.90, 39.40) 0.221 37.45 (34.88, 38.68) 35.45 (34.03, 38.28) 0.169
Sex, n (%) 0.828 0.359
Male 86 (72.27) 41 (73.21) 38 (73.08) 19 (79.17)
Female 33 (27.73) 15 (26.79) 14 (26.92) 5(20.83)
HBV/HCV, n (%) 0.939 1.000
Negative 28 (23.53) 13 (23.21) 10 (19.23) 5 (20.83)
Positive 91 (76.47) 43 (76.79) 42 (80.77) 19 (79.17)
Liver cirrhosis, n (%) 0.500 0.111
Negative 76 (63.87) 34 (60.71) 38 (73.08) 15 (62.50)
Positive 43 (36.13) 22 (39.29) 14 (26.92) 9 (37.50)
BCLC, n (%) 0.435 0.882
0-A 95 (79.83) 43 (76.79) 44 (84.62) 21 (87.50)
B 24 (20.17) 13 (23.21) 8 (15.38) 3 (12.50)
AFP>400ng/ml, n (%) 0.027 0.013
Negative 78 (65.55) 31 (55.36) 27 (51.92) 8(33.33)
Positive 41 (34.45) 25 (44.64) 25 (48.08) 16 (66.67)
ALBI grade>2, n (%) <.001 <.001
Negative 54 (45.38) 11 (19.64) 25 (48.08) 5 (20.83)
Positive 65 (54.62) 45 (80.36) 27 (51.92) 19 (79.17)

Data are presented as number (%), median (interquartile range), or mean + SD.

SD, standard deviation; WBC, white blood cell; RBC, red blood cell; PLT, platelets; ALT, alanine aminotransferase; AST, aspartate aminotransferase; PT, prothrombin time; APTT, activated
partial thromboplastin time; HBV, hepatitis B virus; HCV, hepatitis C virus; BCLC, Barcelona Clinic Liver Cancer Staging System; AFP, alpha-fetoprotein; ALBI, albumin-bilirubin.

The bold values represents a statistically significant difference.

capability to predict TLSs in intrahepatic cholangiocarcinoma
(ICC) using preoperative contrast-enhanced CT portal phase and
multiphase MRI images (41). Subsequent research expanded on this
approach, employing multiphase MRI and clinical data from 192
patients to predict intratumoral TLSs in ICC (42). For HCC
specifically, prior investigations have utilized contrast-enhanced
CT semantic features combined with clinical data to predict
intratumoral TLSs patterns, achieving an average AUC of 0.75
through five-fold cross-validation (43). These foundational studies
not only validate our methodological approach but also confirm the
feasibility of preoperative TLSs prediction. However, a recent study
focused on the density of the peritumoral TLS (pTLS) around the
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tumors of HCC patients and their role in predicting prognosis and
immune treatment response. By integrating multi-omics data
(including spatial transcriptomics and RNA sequencing) and
multi-center imaging data, the study identified key regulatory
factors (CXCL9/10) associated with high pTLS density and
developed a non-invasive classifier based on MRI imaging
biomarkers to accurately predict the density of pTLS (44).

Our study represents the first successful development of
machine learning models that integrate contrast-enhanced CT
radiomics with clinical parameters to predict intratumoral TLSs
expression in HCC. While our clinical-only model achieved
comparable performance (AUC = 0.75) to previous HCC studies,
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TABLE 2 Diagnostic performance of eight machine learning models in the training and validation sets.

Accuracy Sensitivity Specificity AUC (95% ClI)
Training LR 0.84 0.71 0.98 0.93 (0.78-0.98)
SVM 0.89 0.83 0.96 0.95 (0.92-0.98)
RandomPForest 0.92 0.90 0.95 0.97 (0.95-1.00)
XGBoost 0.82 0.76 0.87 0.89 (0.83-0.95)
LightGBM 0.97 0.97 0.98 1.00 (0.99-1.00)
ExtraTrees 0.90 0.87 0.93 0.96 (0.92-0.99)
GradientBoosting 0.93 0.95 091 0.99 (0.97-1.00)
AdaBoost 0.92 0.92 0.93 0.98 (0.96-1.00)
Validation LR 0.85 0.86 0.83 0.89 (0.80-0.98)
SVM 0.83 0.82 0.83 0.84 (0.72-0.95)
RandomForest 0.67 0.75 0.58 0.69 (0.55-0.84)
XGBoost 0.77 0.61 0.96 0.82 (0.70-0.93)
LightGBM 0.69 0.57 0.83 0.76 (0.62-0.89)
ExtraTrees 0.62 0.46 0.79 0.63 (0.48-0.79)
GradientBoosting 0.63 0.46 0.83 0.74 (0.60-0.87)
AdaBoost 0.67 0.79 0.54 0.73 (0.60-0.87)

AUC, area under the curve; ACG; LR, logistic regression; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; AdaBoost,Adaptive

Boosting.

the radiomics model and combined model demonstrated
significantly superior predictive capability, with the integrated
nomogram (combining ALBI score and radiomic features)
emerging as the optimal tool for preope.

This study has several limitations that should be considered. First,
the retrospective design may introduce selection bias, and since our
inclusion criteria were restricted to surgical patients, the findings are
currently only applicable to resectable HCC cases - additional studies
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are needed to evaluate generalizability to advanced/unresectable HCC
populations. Second, as a single-center retrospective analysis, external
validation through prospective multicenter trials will be essential to
confirm our results and support clinical translation. Third, while our
radiomics model demonstrated promising results using contrast-
enhanced CT alone, incorporating preoperative MRI in future
studies could further improve predictive performance and provide
stronger evidence for clinical implementation through multimodal
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FIGURE 7

ROC and calibration curves for the clinical, radiomics, and combined models. (A) ROC curves for the (A) training and (B) validation sets. Calibration
curves for the nomograms in the (C) training and (D) validation sets. ROC, receiver operating characteristic; RS, Rad Signature.

imaging integration. Finally, due to the retrospective nature of this
study, we were unable to prepare traditional clear pathological section
images. Although we have made every effort to provide detailed
textual descriptions, this deficiency still exists. In future related
studies, attention should be paid to the collection and presentation
of pathological images. In the future, we will continue to increase the
number of patients. We will also analyze the relationship between the
presence of TLSs and the prognosis of HCC patients and verify its
correlation with the efficacy of immunotherapy. At the same time, we
may explore the connections between imaging features such as MRI
and PET-CT and TLSs in HCC patients. The integrated model
constructed in this study aims to become a highly accurate, non-
invasive “virtual biopsy” tool, which not only can guide the clinical
decision-making of immunotherapy for patients with hepatocellular
carcinoma but also will promote the exploration of the underlying

mechanisms of the tumor immune microenvironment.

Frontiers in Oncology

Conclusion

In summary, the developed machine learning models for
preoperative prediction of intratumoral TLSs expression in HCC by
integrating radiomic features extracted from arterial and portal phase
contrast-enhanced CT images with relevant clinical data. Our models
- including clinical-only, radiomics-only, and combined approaches -
consistently demonstrated robust predictive performance across both
training and validation sets. These findings suggest that our ML
framework could serve as a valuable clinical tool for noninvasive
intratumoral TLSs assessment prior to surgery, potentially guiding
personalized treatment selection and optimizing therapeutic
decision-making for HCC patients. The strong performance across
all model types highlights the complementary value of both imaging
biomarkers and clinical parameters in predicting this important
immunological feature of HCC.
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