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Medicine, Tongji University, Shanghai, China
Background: Liver cancer, including hepatocellular carcinoma (HCC), is a

leading cause of cancer-related deaths globally, emphasizing the need for

accurate and early detection methods.

Objective: This study introduces LiverCompactNet, an advanced deep learning

framework for the early detection and classification of liver cancer.

Methods: LiverCompactNet classifies liver images into three categories: benign,

malignant, and normal. The dataset comprised 5,000 liver images (1,500 benign,

1,500malignant, and 2,000 normal), divided into training (3,500), validation (750),

and test (750) subsets. Data preprocessing involved normalization using

MinMaxScaler, class balancing. Additionally, exploratory Principal Component

Analysis (PCA) was performed only on derived tabular features (e.g., intensity

histograms, categorical encodings) to visualize variance structure, but PCA was

not directly applied to raw imaging data or CNN training inputs.

Results: LiverCompactNet demonstrated outstanding performance with an

overall accuracy of 99.1%, malignant detection sensitivity of 98.3%, specificity

of 99.4%, precision of 97.6%, and an AUC-ROC score of 0.995. Training

performance steadily improved, with accuracy rising from 90% in epoch 1 to

99% by epoch 20, and validation accuracy increasing from 88% to 98.5%. Loss

analysis revealed effective learning, with training loss approaching zero and

validation loss remaining marginally higher. Final evaluations confirmed near-

perfect classificationmetrics: precision at 97.6%, sensitivity at 96.8%, specificity at

98.9%, and an AUC-ROC score of 0.993.

Conclusion: LiverCompactNet offers highly accurate, reliable, and early

detection capabilities for liver cancer, paving the way for improved medical

image analysis and clinical decision-making.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1650800/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1650800/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1650800/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1650800/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1650800&domain=pdf&date_stamp=2025-11-21
mailto:17521005594@163.com
mailto:liverpancreas1818@163.com
https://doi.org/10.3389/fonc.2025.1650800
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1650800
https://www.frontiersin.org/journals/oncology


Dai et al. 10.3389/fonc.2025.1650800
1 Introduction

Liver cancer, particularly hepatocellular carcinoma (HCC), is a

major global health concern. More than 800,000 people die from liver

cancer each year, making it the third leading cause of cancer-related

mortality worldwide (1). HCC is primarily associated with chronic liver

disease, especially hepatitis B (HBV), C (HCV) and liver cirrhosis,

which are prevalent globally (2, 3). Other major risk factors include

hepatitis D virus (HDV), heavy alcohol consumption, aflatoxin, non-

alcoholic fatty liver disease (NAFLD), and obesity (4, 5). Although

treatment for HCC has improved, prognosis remains poor because the

diseases are often diagnosed in the advanced stage. Improved strategies

for early detection are critical to prolong survival and enhance the

effectiveness of available therapies such as resection, transplantation,

and directed therapies (6).

Currently, liver cancer diagnosis relies on imaging and

biochemical tests, including ultrasound, computed tomography

(CT), magnetic resonance imaging (MRI), and alpha-fetoprotein

(AFP) (7, 8). While these methods are widely used, they remain

imprecise. Imaging outcomes vary due to differences in

interpretation among radiologists, and AFP has limited sensitivity

and specificity, making it unreliable for early HCC detection (9, 10).

Consequently, many patients present with tumors that are no

longer resectable, as HCC is often asymptomatic in their early

stages (11, 12). This highlights the urgent need for more accurate,

consistent, and scalable diagnostic methods.

Recent advances in artificial intelligence (AI), particularly deep

learning (DL), have shown significant promise in medical

diagnostics (13). DL, a subset of machine learning (ML), leverages

artificial neural networks to achieve high performance in medical

image analysis (14). Convolutional neural network (CNN) are

among the most effective DL techniques for image categorization,

segmentation, and pattern recognition, Unlike traditional methods,

CNNs can automatically learn relevant features directly from raw

images, making them well-suited for tasks such as tumor detection

and classification of liver cancer.

A growing body of research demonstrates the potential of CNNs

in liver cancer diagnosis. For example, studies have reported high

accuracy in detecting liver lesions from CT scans, thereby reducing

the workload of radiologists while improving diagnostic efficiency

(15, 16). Similarly, CNN models have been used to differentiate

HCC, metastatic lesions, and benign tumors with performance

comparable to radiologists (17, 18). Despite these advances, most

models focus on binary classification (presence or absence of

tumors) and rarely address cancer staging. Cancer staging—

encompassing early, intermediate, and advanced phases—remains

insufficiently integrated into current AI models, though it is critical

for guiding therapy and predicting prognosis (19).

AI has the potential to support both early detection and staging of

liver cancer, thereby improving treatment planning and patient

survival. CNN-based models large datasets can provide real-time

image analysis, serving as a valuable second opinion for radiologists

or assisting in cases requiring expert consensus. Moreover, these

models often achieve greater accuracy and speed than traditional
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diagnostic approaches (20, 21). Nonetheless, several challenges

remain. Effective AI systems require large, diverse datasets,

integration of multimodal information (e.g., imaging and genomic

data), and user-friendly platforms that facilitate interpretation by

clinicians (22).

This addresses these gaps by developing an automatic

diagnostic model based on a deep learning approach for early

detection and staging of liver cancer. We propose multiple CNN

architectures, including ResNet-18, Dense Net, and Efficient Net, to

classify evaluating liver cancer across stages I–IV. The performance

of these architectures will be compared in terms of accuracy,

specificity, and computational efficiency, with the goal of

establishing a reliable real-time diagnostic tool for clinical use.

Ultimately, the findings aim to support healthcare professionals

in making timely, accurate decisions that can improve patient

outcomes and reduce the burden on healthcare systems.
2 Materials and methods

2.1 Study design and proposed
methodology

The feature evaluation approach was used to examine the

performance of diagnosing hepatocellular carcinoma (HCC) using

imaging’s as input sources. Using a hybrid retrospective-prospective

design methodology as seen in Figure 1: The dataset was partitioned

into 80% data for training and 20% data for testing. The initial step

was performed through image standardization and mean. Standard

deviation estimates of the baseline images were used for intensity

normalization of the dynamic image sequences and contrast

enhancement. Three networks – Lightweight Convolutional Neural

Network (LWCNN), LiverCompactNet, and SqueezeNet were

created and evaluated during the training stage. LiverCompactNet

was explicitly used to improve the characteristics of liver imaging.

This paper’s proposed skip connections and residual learning are

similar to those in ResNet-18 and were optimized to detect subtle

tumor margins and variations in morphological fatty liver imaging,

with a streamlined architecture tailored for liver image analysis.

Specifically, the model consisted of an initial convolutional block

(7×7 filters, stride 2) followed by four residual stages. Each stage

incorporated two to three convolutional layers (3×3 filters), batch

normalization, and ReLU activation, connected by identity or

projection shortcuts. The total depth of the network was 18 layers,

with approximately 11.2 million trainable parameters. A global

average pooling layer and a fully connected classification head (3

output nodes for benign, malignant, and normal categories) were

added. This configuration reduced computational complexity

compared to standard ResNet-18 while maintaining diagnostic

sensitivity. A schematic diagram of the architecture is provided in

Figure 2 to illustrate the flow of convolutional layers, residual blocks,

and the final classification layer. Some hyperparameters, including

batch size, learning rate, and max epochs, were tuned, the training

was done on GPU to increase the convergence rate, and an Adam
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optimizer was used to improve the computational inner product. This

is to enhance the model’s ability to generalize well in unseen data; this

was done by using the cross-validation technique. During the testing

phase, the models used the testing set to predict the liver health

classifications, which strongly assessed how the models performed in

practice. The assessment models used for identifying diabetes relied

on the accuracy, precision, sensitivity, specificity, and F-measures to

determine the reliability of each model’s diagnosis. MATLAB 2021a

was used for the development of the proposed LiverCompactNet on a

Windows 10 platform integrated with SSD, 16 GB DDR4 RAM,

AMD Ryzen 5 3550H CPU, and Radeon Vega Mobile GFX at 2.10

GHz to support a deep learning environment. This methodology

enables a high-performance comparison of various CNN

architectures. It allows the setting up the prospect for diagnosing

through LiverCompactNet for the early detection and classification of

liver cancer using deep-leaning-based medical image analysis.
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2.2 Dataset

The dataset for this study assembles high-quality and variable

medical imaging to help create an algorithmic forecast model for

distinguishing and identifying liver cancer. Information was

collected from online databases, Liver Tumor Segmentation

(LiTS) Challenge dataset (https://www.kaggle.com/datasets/

andrewmvd/liver-tumor-segmentation) and The Cancer Imaging

Archive (TCIA) available at: https://www.cancerimagingarchive.

net/. These datasets contain labeled CT and MRI scans necessary

for evaluating liver tumors (23). Besides these sources, de-identified

imaging data were recruited from partnering medical institutions;

all patient data were anonymized in accordance with institutional

review board (IRB) approval and national ethical regulations.

Ethical approval was obtained prior to data transfer. To minimize

potential bias, harmonization procedures were applied, including
FIGURE 2

Schematic of the LiverCompactNet architecture (ResNet-18 style): stem (7×7 conv, stride 2) followed by four residual stages (two BasicBlocks per
stage; stages 2–4 downsample with stride 2), global average pooling, and a fully connected classifier (3 outputs). A representative residual skip
connection is illustrated.
FIGURE 1

Overview of the methodology.
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standardization of image resolution, intensity normalization across

scanners, and exclusion of cases with incomplete metadata. These

measures ensured that the multi-center dataset met essential ethical

and methodological standards, while also increasing dataset size

and variability to improve model robustness. The primary interest is

given to primary liver cancer, mainly HCC; cases of secondary liver

cancer and cases with poor image quality or missing images were

also removed to ensure the high quality of input data. The dataset is

categorized into three primary classes: Benign, Malignant, and

Normal (Healthy Liver), which were used with equal sample sizes

to reduce over-fitting by the model by incorporating a balanced data

set. Before their analysis, measures include resizing the images to a

particular dimension, normalizing the pixel intensity values, and

enhancing image denoising to increase the uniformity of images.

Pre-processing strategies like rotation, flipping, scaling, and

applying contrast enhancement were used to improve the model’s

robustness. The dataset was divided into three subsets: For example,

in pattern identification, 80% of the data was used for training,

while 10% was used for validation and 10% for testing. The division

in partitions of training, validation, and training-m continents

guarantees the model is trained on various samples; the separated

evaluation set is immune to the influences of training. The training

was performed over 20 epochs using the dataset of approximately

30k images for training and 5k for validation and testing.

Where feasible, additional clinical metadata, including patient

age, gender, and tumor stage, were incorporated to allow the

potential integration of modalities for learning. Judging by the
Frontiers in Oncology 04
completeness and well-selected database and the well-organized

classification system necessary for liver cancer identification and

differentiation, Figure 3 shows sample images of Benign, Malignant,

and Normal.
2.3 Data preprocessing

The preprocessing step in this study aimed at cleaning and

normalizing medical imaging data used in early liver cancer

detection. Firstly, all image inputs required in the model were

normalized to the standard dimensions of 512 x 512 pixels to

reduce variation and allow for the simultaneous processing of many

images during model training (24). Pixel intensity was scaled for all

datasets to be between 0 and 1, which reduces the contrast

differences in cross-modality CT and MRI images from different

sources and mitigates the influence of variability in the imaging

equipment (25). To increase the amount of data for further model

training and improve the model’s performance as well as its ability

to identify new cases more accurately, data augmentation was

applied, such as random rotation, horizontally and vertically

flipping, shifting as well and adding Gaussian noise (26). They

also opted to use the Gaussian filter to remove unnecessary noise

and other unwanted structures within the images, thereby

improving the contrast of liver and tumor areas present within

the images. Several image registration methods were employed to

establish scan agreement from the patient’s scan of the same
FIGURE 3

Examples of liver tumor images used in this study, illustrating the categories benign, malignant, and normal. (Top row – Normal liver tissue; Middle
row – Benign lesions; Bottom row – Malignant lesions).
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modality but at different times while obtaining more accurate data

on the subject’s features (27, 28). Liver cancer cases at Benign,

Malignant, and Normal annotations were collected from LiTS

Challenge, TCIA, and other publicly available resources and de-

identified medical data from partnering hospitals. They followed

ethical ERC guidelines (29). To avoid overtraining and in an

attempt to enhance the training length, the data was split into

about 80/20 percent in attempts for the training, testing, and

validation datasets. Figure 4 is a diagram of the preprocessing

pipeline, starting with the raw CT images of the rats’ brains,

followed by the preprocessing technique, augmentation process,

and finally, the LiverCompactNet segmentation. LiverCompactNet-

based networks with residual connections focus on encoding,

analyzing, and decoding scalable features for separately

segmenting common regions of the liver and tumor. With data

preprocessing and innovative all-level segmentation used in the

model, this pipeline significantly enhances the classification of liver

cancer cases according to stages of malignancy and healthy

ones (30).
2.4 Proposed model

The developed LiverCompactNet model is a novel deep-learning

approach tailored to improving the diagnosis of liver cancer using

medical images such as CT and MRI scans. The PCa model

architecture shown in Figure 5 is a simple CNN model that weighs
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nearly 20M parameters but maintains high diagnostic performance at

low computational costs. To reduce overfitting and improve model

generalisation, UI augmentation is applied to input images, which

include random rotations, flips scaling elastic transformations and

random cropping to expand the training set and expose the model to

other aspects of liver cancer cases (31, 32). LiverCompactNe

activation functions then follow several sets of shared convolutional

layers to help build up the complexity of the features drawn from the

medical images (33, 34). Poison Control: Each convolutional layer

feeds into smoothens and accelerates this process by batch

normalisation of feature maps (35). Some of the layers included are

max-pooling layers in which the spatial size is gradually reduced. At

the same time, the computational load is kept to the barest minimum

but without jeopardising features. Some layers are trained with

LiverCompactNe activations so that when deep layers receive

limited gradients, the model can effectively learn from them with

complex examples. In the end, fully connected layers compile

extracted features into a classification, making estimates of the

probability of HCC existence based on image features. The last

layer of the fully connected neural network applies the softmax

activation function to produce probabilities for several classes,

allowing the separation of the three types of Hep C conditions,

including benign, malignant, and normal liver conditions (36). To

reduce overfitting more, dropout regularisation is applied on the fully

connected layers; this approach drops out neurons during the model’s

training, so they are not relied on heavily. Training is enhanced with

the help of the Adam Optimiser, with learners being set at an initial
FIGURE 4

Liver and tumor segmentation pipeline using LiverCompactNet, from CT image preprocessing and augmentation to liver and tumor RoI segmentation.
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value of 0.001 to help the learning rates be regulated dynamically

and improve convergence speed and model adequacy. To

enhance LiverCompactNet’s performance and applicability for

medical imaging data, particularly for liver cancer detection

tasks, the following deep learning methods are adopted for

LiverCompactNet’s construction: batch normalisation, max-

pooling, and dropout.
2.5 Model training and validation

In the model training and validation process, the dataset was

divided into training (70%), validation (15%), and testing (15%)

sets, a strategy aimed at ensuring an unbiased assessment of model

performance across unseen data. This split ratio allows the model to

learn effectively from the training set while enabling performance

validation on separate subsets, preventing overfitting and ensuring

generalisation. Data augmentation techniques—such as rotations,

shifts, flips, and scaling—were exclusively applied to the training set,

avoiding data leakage that could affect the reliability of validation

and testing results (37, 38). Hyperparameter tuning was performed

using grid search, optimising critical parameters like learning rate,

batch size, and the number of hidden layers to enhance model

performance and convergence.

Performance was assessed through several key metrics: accuracy,

sensitivity, specificity, and precision, which collectively provide a

comprehensive evaluation of the model’s diagnostic accuracy.

Additionally, the area under the receiver operating characteristic

(AUC-ROC) curve was employed to gauge the model’s ability to
Frontiers in Oncology 06
distinguish between classes across varying threshold levels, offering a

robust measure of its diagnostic capability (39). As illustrated in

Figure 6, the framework integrates feature selection, training,

validation, and explainable AI components, ensuring a transparent

and interpretable machine learning pipeline.
2.6 Statistical analysis

The statistical analysis in this study was based on assessing the

diagnostic performance of the deep learning models for early LC

detection and classification. The statistical significance of the difference

between the diagnostic accuracy of the deep learning models (ResNet-

18, DenseNet, and EfficientNet) and the radiologists was tested using

McNemar’s test. The test involved a simple comparison of the number

of discordant pairs where the model and radiologists disagreed in their

diagnosis, and a 2x2 contingency table was used to determine the

number of false positives and false negatives encountered. In the null

hypothesis, it was assumed that there was no significant difference

between the models and the radiologists. Still, in the alternating

hypothesis, there was an indication that one of the methods

performed better diagnostic work. Statistical analysis of the

differences observed in the accuracy of diagnosis at different time

points was tested at a significance level of p < 0.05. However, overall

performance indices like the accuracy, sensitivity, specificity, precision

and F-1 measure were also computed for each model to test their

diagnostic usefulness. These metrics enabled the models’ dependency

on liver cancer classifications at different stages, bringing reliability and

validity to outcomes.
FIGURE 5

LiverCompactNet model architecture is a novel deep-learning approach tailored to improving the diagnosis of liver cancer using medical images.
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3 Results

3.1 Dataset

The dataset for this study consisted of 5,000 liver images

categorised into three distinct classes: Benign (1,500 images),

Malignant (1,500 images), and Normal (2,000 images). These

images were sourced from publicly available datasets, including

the Liver Tumor Segmentation (LiTS) Challenge and The Cancer

Imaging Archive (TCIA), as well as 1,000 de-identified images from

partnering medical institutions. The dataset was carefully balanced

to ensure fairness and prevent bias during training, with equal

representation of benign and malignant images. This balance was

critical in improving the model’s ability to distinguish between

benign and malignant liver tumours. The dataset was split into 70%

for training (3,500 images), 15% for validation (750 images), and

15% for testing (750 images). In the training set, 1,050 images were

allocated to benign and malignant categories, while 1,400 were

assigned to the standard category. The same proportion was

maintained for the validation and testing sets, with 225 images

each for benign and malignant categories and 300 for the standard

category in both splits. This division ensured that the model had

access to a diverse range of liver images during training while

maintaining unbiased evaluation through validation and testing.

The balanced dataset and thoughtful data splitting contributed to

the model’s high performance, particularly in distinguishing

between malignant and benign tumours.
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The distribution of the density of images under the three sets of

benign, malignant and normal is depicted in the KDE plot in

Figure 7. This visualisation has given information about the

proportions and numbers of images in each training, validation

and test set split. In the KDE plot, it was also evident that the

divisions of the benign and malignant image samples were pretty

balanced across the splits for the buildup of the model. The KDE

plot compared the standard and liver lesions images and showed

that the former had a higher peak in the densities because there

were many more normal liver images in the data set. However, this

provided a fair data distribution in the three splits, so they had an

effective training process. The model’s performance was enhanced

by constructing a balanced dataset to avoid overtraining certain

classes while simultaneously creating a more comprehensive

training set. A sufficient number of benign, malignant, and

normal liver images helped the model perform better in the

testing phase, where generalisation was tested well, particularly

between benign and malignant tumours. This means that owing to

the degree of care when creating the dataset and using a training-

validation-testing triad, the model was as accurate and reliable as

possible when making predictions. Therefore, a careful approach to

constructing and splitting the dataset with an equal distribution of

categories proved critical for the model. Since the dataset was pretty

balanced, no specific class dominated the model. The Korean

Distribution plot ensured that the images in both splits were well

distributed, strengthening the methodology applied in training

and evaluation.
FIGURE 6

Model training and validation framework of the designed LiverCompactNet.
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3.2 Data pre-processing

In this study, we used dummy data of 1000 samples with various

numerical and categorical elements for data transformation and

expansion for modelling. Data missing is handled in Figure 8A such

that around 10% of the values in Feature 1 were filled using the

mean value of the available features to ensure the data set was clean

and ready for further processing. The gaps were left blank in a way

that retained the data’s integrity based on the spread and

consistency displayed post-Data Imputation. Figure 8B shows the

encoding of other categorical variables for Feature 4, which had

categories A, B, C, and D. These were changed to variables to fit our

machine-learning models. By encoding the data, categorical data

could be used in numerical data while ensuring the quality of the

data set. Figure 8C below shows that feature scaling was performed

on numerical features, which were normalised using MinMaxScaler.

This scaled all values to the [0,1] range, significantly appropriate for

enhancing model stability and guaranteeing the comparability of

the pixel density of image data (or numerical variables) kind across

different modalities. Feature scaling improved the PCA results by

enabling better distinction of variances and a boost in model

performance due to the cancellation of large and small

magnitudes of features. To supplement, Figure 8D reveals how

the resampling worked on the target variable. To remove the effect

of having too many instances of the minimally occurring class and

guarantee an equal number of samples for both target = 1 and target

= 0, we up sampled the minority class. After the resampling, the

data was well balanced and comprised of both courses in equal

numbers so that the prediction of results could be precise and also

to prevent a model from overemphasising one class.

In this study, PCA was not applied directly to raw pixel

intensities, but rather to tabular features derived from the imaging
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data after preprocessing. Specifically, summary features (e.g., intensity

histograms, shape descriptors, and augmented metadata) were first

computed from the CT/MRI scans. These extracted numerical

descriptors, together with dummy categorical variables, were

compiled into a structured dataset of ~1000 samples. PCA was

then applied to this structured feature matrix—not the raw high-

dimensional image tensors—to reduce redundancy among variables,

identify dominant sources of variance, and provide 2D visualizations

(Figures 8E, F). Thus, PCAwas used only for exploratory analysis and

visualization of feature separability, while the CNN architectures (e.g.,

LiverCompactNet) handled spatial hierarchy learning directly from

the original images.For the first two principal components, The first

component accounted for 42% of the variance, whereas the second

component accounted for 20% explanatory power that aggregated to

62% of total variance. The reason was that the first two components

of the function continued to preserve a copious amount of

information from the original data set. The same results were

obtained while applying PCA to the augmented dataset represented

in Figure 8F, where the mean of the variability of PC1 was 40, and the

mean of the variability of PC2 was 22. This also highlights that the

generating structure of the data was not altered when augmentation

was done. As observed from the PCA scatter plots target classes were

perfectly separated in principal components one and two in the

original and augmented databases. To some extent, this separation

indicates that PCA systematically extracted significant data structures

and patterns, thereby successfully reducing dimensionality while

retaining vital information. Results points out the disparities in the

distribution of features towards the two target classes. That is, the

resampling has improved the separability of classes in the augmented

data, and these distinctions are more precise, as seen below.

The data preprocessing involved handling missing values and

abnormal data, feature encoding, normalisation and resampling to
FIGURE 7

Density distribution of liver image categories across dataset splits (training, validation, testing).
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prepare the data for Dimensionality Reduction and Modelling.

Analysis of the results has shown that PCA helped to decrease the

number of datasets features significantly and maintain more than

60% variance of the initial and augmented datasets. The scatter

plots of PCA, as well as box plots of the components of the

distribution of the feature, had provided precise evidential data

about making differences with data augmentation and a resampled

dataset, which had facilitated more class balance and separability,

hence the characteristics of a dataset more amicable for an accurate

mode of predictions.
3.3 Proposed model: LiverCompactNet

The proposed LiverCompactNet model demonstrated auspicious

results in classifying liver tumours into three categories: Benign,

Malignant, and Normal. When the model was being trained, it

achieved a high level of accuracy of 99.1%, which clearly shows

that the dataset uniquely trained the model to efficiently identify

necessary features for the classification of various liver images. This

high accuracy shows the model can generalise well in liver tumours,

specifically disc-playing benign and malignant lesions. In the context

of measures more related to the liver cancer detection task, the model
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was found to have a sensitivity for detecting malignant tumours of

98.3%. The sensitivity level is highly significant in medical

diagnostics, especially in diagnosing cancer, since it shows the

model’s capacity to indicate real positive cases accurately. A

sensitivity of 98.3 suggests that the LiverCompactNet model could

identify 98.0% of the malignant tumour cases, thus less likely to miss

a malignant lesion. This high sensitivity of the model makes it useful

in clinical practice where a timely and accurate diagnosis is essential

for the patients. At least, specificity was documented at a high level,

99.4%. Accuracy measures the model’s ability to correctly identify

true negatives, in which the model accurately classified just about

99.4% of the non-malignant (benign or normal) cases withoutmany a

false positive. Such high specificity is essential here to avoid

groundless biopsies or procedures that may be an issue when

working with false-positive conditions in the clinic. Furthermore,

the precision achieved in the model was 97.6 per cent. Specificity is

defined as the number of observations that the classifiers called

negative but were negative divided by the total number of

observations called negative by the classifiers, which were indeed

negative. In this case, it measures the number of cases where the mere

absence of a tumour did not warrant a classification by the classifiers.

The accuracy observed in this analysis of 97.6% confirms that

the model was appropriate in reducing the false positive values,
FIGURE 8

(A) Handling missing values using mean imputation, (B) Encoding of categorical variables, (C) Feature scaling with MinMaxScaler, (D) Data augmentation
and resampling of the minority class, (E) PCA on original dataset, (F) PCA on augmented dataset.
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which proves that the majority of the malignant cases detected were

indeed actual cases of cancer, which further enhances the reliability

of the model. The model’s performance on the new data set was

tested on the validation set as results depicted in Figure 9A, wherein

it achieved a validation accuracy of 98.5%, ultimately showing that

LiverCompactNet has not overfitted on the training data. This high

validation accuracy indicates the generalising ability of the model to

unseen liver image samples; therefore, it can be applied for real-

world usage in clinics. One of the most successful outcomes of the

proposed method was brought out by the AUC-ROC of 0.995, as

depicted in Figure 9B, the higher value closer to 1 is an ideal

classification point. Therefore, a higher AUC-ROC value indicates

an ideal classification using all classification limits. This is an

excellent value given that it means the model achieves a near-

perfect AUC of 1 in differentiating Benign, Malignant and normal

Liver images, showing that the model will be able to work well

across all levels of the decision thickness, thus making it Dorper for

any clinical situation as it will always have high sensitivity but

low specificity.
3.4 Per-class performance and confusion
matrix

To further clarify model performance across all classes, we

computed per-class metrics and confusion matrices. Table 1

summarizes the precision, recall (sensitivity), and F1-score for each

class (Benign, Malignant, Normal). As shown, LiverCompactNet

achieved balanced performance with per-class F1-scores above 0.95,

indicating that the model did not overfit to the majority class.

Figure 10 presents the confusion matrix on the test set, illustrating

that only a small number of benign cases were misclassified as

malignant, and very few malignant cases were missed. This

confirms that LiverCompactNet maintains robust classification

ability across all categories despite potential class imbalance.
Frontiers in Oncology 10
3.5 Model training and validation

The analysis of the quantitative model on 20 epochs portrays

some vital observations. Actual training accuracy increased from

90% in the first epoch to 99% in the 20th, showing that learning has

occurred (see Figure 11A). The validation accuracy was also higher

than the original one, reaching 98.5% from 88%, with some

difference from the training accuracy. This, perhaps, implies that

the model can extrapolate well outside of the training set. Regarding

loss, training loss reduced dramatically and went down from a

higher value to almost no value, which is a sign of better model

training (Figure 11B). The validation loss also depicted a decrease in

the loss throughout epochs slightly above the training loss. In the

slight difference between training and validation loss, it can be

noted that even though the model is good, the performance on the

validation set is slightly worse than on training data. A possible

validation of the model was the AUC-ROC of 0.993, which affirmed

the distinctions between the liver tumour categories on its part. On

the validation set, the precision, sensitivity and specificity values

were 97.60%, 96.80% and 98.90%, respectively, showing that the

model can detect liver cancer without many false negatives or false

positive results.
4 Discussion

This study investigate the potential of deep learning, particularly

Convolutional Neural Networks (CNNs), to improve the diagnosis of

hepatocellular carcinoma (HCC). A major challenge in diagnosing

HCC is that it is often asymptomatic in its early stages and commonly

associated with chronic liver diseases such as hepatitis and cirrhosis

(40, 41). Current diagnostic modalities include ultrasound (US),

computed tomography (CT), magnetic resonance imaging (MRI)

and biochemical markers such as alpha-fetoprotein (AFP). However,

their limitations, including high inter-observer variability and low
FIGURE 9

(A) Performance matrix for LiverCompactNet model (B) The AUC-ROC model performs exceptionally well in distinguishing between Benign,
Malignant, and Normal liver images.
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sensitivity for detecting small or early-stage lesions, have been well

documented (42, 43). These shortcomings are consistent with other

studies (44–46), which also emphasized the limited accuracy of AFP

in identifying small neoplasms and highlighted the need for better

diagnostic approaches.

The findings of this study demonstrate that deep learning,

particularly CNN architectures, has great potential for address

these limitations. CNNs are capable of learning abstract features

directly from raw image data- features that may be difficult for the

human eye, even for experienced radiologists, to detect. This

observation aligns with current studies (47–50), where CNN-

based models have shown superior performance in liver cancer

diagnosis, particularly in segmentation and classification tasks. For

example, CNNs have example conventional image analysis methods

by achieving higher sensitivity and specificity in the detecting of

liver lesions specially early-stage cancer (51).

Our results also emphasize the importance of advanced CNN

architectures such as ResNet and DenseNet (52). These models

improve efficiency and performance by overcoming challenges such

as the vanishing gradient problem (ResNet) and by reusing

parameters to enhance feature learning (DenseNet) (53). These
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capabilities are particularly valuable in medical imaging, where

small differences in image data can be critical. Our findings are in

consistent with earlier studies (54) that reported the effectiveness of

ResNet and DenseNet in improving the diagnostic performance for

liver cancer detection. For instance, the ResNet-based models

achieved sensitivity of 91.2% for detecting the liver tumors on

MRI, comparable to the results of our study (55).

Nevertheless, several limitations and barriers remain in applying

deep learning in clinical practice. One of the most critical issues is the

lack of large, high-quality annotated datasets needed for train robust

and generalizable models. As highlighted by the prior studies (55, 56),

existing datasets for liver cancer imaging are often small and

inconsistent in quality, which the development of deep learning

models (57, 58). In addition, data labelling remains a highly

manual and time-consuming process that requires the expertise of

radiologists, slowing down model development and evaluation.

Another challenge is the interpretability, often referred to as the

‘black box’ problem, of deep learning models. AI models used in

clinical diagnosis are frequently opaque, making it difficult for

clinicians to understand how predictions are generated. To

address this, applied interpretability techniques such as saliency

maps and Grad-CAM to visualize the features contributing to

classification decisions. This is consistent with prior work (59,

60), who emphasizes the importance of interpretability in

increasing clinicians’ trust in AI-based healthcare tools.

The predicted results also support the integration of multi-

omics data—including imaging, genomic, proteomic, and clinical

information—to enhance diagnostic and therapeutic application.

Incorporating genomic and proteomic data with imaging has the

capability to reveal molecular signatures of liver cancer, thereby
FIGURE 10

Confusion matrix illustrating the per-class performance of LiverCompactNet on the test dataset.
TABLE 1 Per-class precision, recall (sensitivity), and F1-scores of
LiverCompactNet on the test dataset.

Class Precision Recall (sensitivity) F1-score

Benign 0.97 0.96 0.96

Malignant 0.98 0.97 0.975

Normal 0.99 0.99 0.99
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enabling the design of site-specific therapeutic regimens. This

finding is in line with recent evidence (61–63), showing that

multimodal AI models can improve diagnostic accuracy and

prognosis of individual patients (64).

In conclusion, this study provides more strong evidence of the

crucial role of deep learning, especially CNNs, in liver cancer

diagnosis. Through proper architecture design, such as the use of

ResNet and DenseNet, deep learning models have demonstrated high

accuracy and sensitivity in the detecting of liver tumors, especially in

the early stages of HCC. However, practical implementation in

clinical settings requires addressing key challenges, including the

availability of large, high-quality datasets, the burden of manual

annotation, and the interpretability of AI models. Future research

should focus on developing more comprehensive datasets, improving

annotation efficiency, and enhancing interpretability to facilitate the

real-world application of AI in the diagnosis and treatment of HCC.
5 Conclusion

The LiverCompactNet model demonstrated strong diagnostic

performance, achieving 99.1% accuracy, 99.1% accuracy, a sensitivity

of 98.3%, a specificity of 99.4%, 97.6% precision. With an AUC-ROC

of 0.995 and minimal overfitting, the model reliably distinguished

between benign, malignant, and normal liver images. Techniques

such as principal component analysis (PCA) for feature extraction

and robust preprocessing (e.g., handling missing data, resampling,

and scaling) contributed significantly to these results. These findings

underscore the potential of AI-based methods—particularly CNNs

and related architectures—for supporting clinicians in making faster

and more accurate diagnostic decisions. Techniques such as

principal component analysis (PCA) for feature extraction and

robust preprocessing (e.g., handling missing data, resampling, and

scaling) contributed significantly to these results. These findings

underscore the potential of AI-based methods—particularly CNNs
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and related architectures—for supporting clinicians in making faster

and more accurate diagnostic decisions. Despite promising and

robust preprocessing (e.g., handling missing data, resampling, and

scaling) contributed significantly to these results. These findings

underscore the potential of AI-based methods—particularly CNNs

and related architectures—for supporting clinicians in making faster

and more accurate diagnostic decisions. outcomes, several challenges

remain. Most existing models—including LiverCompactNet—are

primarily evaluated on controlled datasets, limiting generalizability

to diverse real-world settings. Additionally, many AI systems still

focus on classification tasks, while clinically relevant needs such as

tumor segmentation, staging, and treatment prediction remain

underexplored. For instance, U-Net and its variants have shown

success in medical image segmentation but require further

adaptation to HCC imaging challenges. Moreover, limited

availability of large, annotated datasets continues to hinder

broader model validation. Future research should expand to

multimodal approaches that integrate imaging, genomic, and

clinical data, thereby improving precision in diagnosis and staging.

Techniques such as federated learning could enable data sharing

across institutions while preserving patient privacy, addressing one

of the critical barriers in medical AI development. In addition,

ethical considerations—such as transparency of decision-making,

interpretability of models, and equity of access to AI-driven

healthcare—must remain central to future work. By addressing

these priorities, AI systems can evolve from research prototypes

into reliable, ethically responsible clinical tools that enhance both

diagnostic accuracy and patient outcomes. Furthermore, future

research can also benefit from integrating multimodal data

(imaging, genomic, proteomic, and clinical) using advanced

frameworks such as knowledge graph–based neural networks. For

instance, Yang et al. (2024) introduced an end-to-end Knowledge

Graph Fused Graph Neural Network (KGF-GNN) for accurate

protein–protein interaction prediction (65). Such approaches

highlight the potential of combining graph neural networks and
FIGURE 11

(A) Training and validation accuracy over 20 epochs; (B) training and validation loss over 20 epochs.
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multimodal feature fusion, which may complement imaging-based

deep learning methods and enhance both diagnostic accuracy and

personalized treatment strategies in HCC.
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