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Background: Liver cancer, including hepatocellular carcinoma (HCC), is a
leading cause of cancer-related deaths globally, emphasizing the need for
accurate and early detection methods.

Objective: This study introduces LiverCompactNet, an advanced deep learning
framework for the early detection and classification of liver cancer.

Methods: LiverCompactNet classifies liver images into three categories: benign,
malignant, and normal. The dataset comprised 5,000 liver images (1,500 benign,
1,500 malignant, and 2,000 normal), divided into training (3,500), validation (750),
and test (750) subsets. Data preprocessing involved normalization using
MinMaxScaler, class balancing. Additionally, exploratory Principal Component
Analysis (PCA) was performed only on derived tabular features (e.g., intensity
histograms, categorical encodings) to visualize variance structure, but PCA was
not directly applied to raw imaging data or CNN training inputs.

Results: LiverCompactNet demonstrated outstanding performance with an
overall accuracy of 99.1%, malignant detection sensitivity of 98.3%, specificity
of 99.4%, precision of 97.6%, and an AUC-ROC score of 0.995. Training
performance steadily improved, with accuracy rising from 90% in epoch 1 to
99% by epoch 20, and validation accuracy increasing from 88% to 98.5%. Loss
analysis revealed effective learning, with training loss approaching zero and
validation loss remaining marginally higher. Final evaluations confirmed near-
perfect classification metrics: precision at 97.6%, sensitivity at 96.8%, specificity at
98.9%, and an AUC-ROC score of 0.993.

Conclusion: LiverCompactNet offers highly accurate, reliable, and early
detection capabilities for liver cancer, paving the way for improved medical
image analysis and clinical decision-making.

liver cancer, hepatocellular carcinoma (HCC), deep learning, CNN, medical image
classification, early detection
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1 Introduction

Liver cancer, particularly hepatocellular carcinoma (HCC), is a
major global health concern. More than 800,000 people die from liver
cancer each year, making it the third leading cause of cancer-related
mortality worldwide (1). HCC is primarily associated with chronic liver
disease, especially hepatitis B (HBV), C (HCV) and liver cirrhosis,
which are prevalent globally (2, 3). Other major risk factors include
hepatitis D virus (HDV), heavy alcohol consumption, aflatoxin, non-
alcoholic fatty liver disease (NAFLD), and obesity (4, 5). Although
treatment for HCC has improved, prognosis remains poor because the
diseases are often diagnosed in the advanced stage. Improved strategies
for early detection are critical to prolong survival and enhance the
effectiveness of available therapies such as resection, transplantation,
and directed therapies (6).

Currently, liver cancer diagnosis relies on imaging and
biochemical tests, including ultrasound, computed tomography
(CT), magnetic resonance imaging (MRI), and alpha-fetoprotein
(AFP) (7, 8). While these methods are widely used, they remain
imprecise. Imaging outcomes vary due to differences in
interpretation among radiologists, and AFP has limited sensitivity
and specificity, making it unreliable for early HCC detection (9, 10).
Consequently, many patients present with tumors that are no
longer resectable, as HCC is often asymptomatic in their early
stages (11, 12). This highlights the urgent need for more accurate,
consistent, and scalable diagnostic methods.

Recent advances in artificial intelligence (AI), particularly deep
learning (DL), have shown significant promise in medical
diagnostics (13). DL, a subset of machine learning (ML), leverages
artificial neural networks to achieve high performance in medical
image analysis (14). Convolutional neural network (CNN) are
among the most effective DL techniques for image categorization,
segmentation, and pattern recognition, Unlike traditional methods,
CNN s can automatically learn relevant features directly from raw
images, making them well-suited for tasks such as tumor detection
and classification of liver cancer.

A growing body of research demonstrates the potential of CNNs
in liver cancer diagnosis. For example, studies have reported high
accuracy in detecting liver lesions from CT scans, thereby reducing
the workload of radiologists while improving diagnostic efficiency
(15, 16). Similarly, CNN models have been used to differentiate
HCC, metastatic lesions, and benign tumors with performance
comparable to radiologists (17, 18). Despite these advances, most
models focus on binary classification (presence or absence of
tumors) and rarely address cancer staging. Cancer staging—
encompassing early, intermediate, and advanced phases—remains
insufficiently integrated into current AI models, though it is critical
for guiding therapy and predicting prognosis (19).

AT has the potential to support both early detection and staging of
liver cancer, thereby improving treatment planning and patient
survival. CNN-based models large datasets can provide real-time
image analysis, serving as a valuable second opinion for radiologists
or assisting in cases requiring expert consensus. Moreover, these
models often achieve greater accuracy and speed than traditional
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diagnostic approaches (20, 21). Nonetheless, several challenges
remain. Effective AI systems require large, diverse datasets,
integration of multimodal information (e.g., imaging and genomic
data), and user-friendly platforms that facilitate interpretation by
clinicians (22).

This addresses these gaps by developing an automatic
diagnostic model based on a deep learning approach for early
detection and staging of liver cancer. We propose multiple CNN
architectures, including ResNet-18, Dense Net, and Efficient Net, to
classify evaluating liver cancer across stages I-IV. The performance
of these architectures will be compared in terms of accuracy,
specificity, and computational efficiency, with the goal of
establishing a reliable real-time diagnostic tool for clinical use.
Ultimately, the findings aim to support healthcare professionals
in making timely, accurate decisions that can improve patient
outcomes and reduce the burden on healthcare systems.

2 Materials and methods

2.1 Study design and proposed
methodology

The feature evaluation approach was used to examine the
performance of diagnosing hepatocellular carcinoma (HCC) using
imaging’s as input sources. Using a hybrid retrospective-prospective
design methodology as seen in Figure 1: The dataset was partitioned
into 80% data for training and 20% data for testing. The initial step
was performed through image standardization and mean. Standard
deviation estimates of the baseline images were used for intensity
normalization of the dynamic image sequences and contrast
enhancement. Three networks — Lightweight Convolutional Neural
Network (LWCNN), LiverCompactNet, and SqueezeNet were
created and evaluated during the training stage. LiverCompactNet
was explicitly used to improve the characteristics of liver imaging.
This paper’s proposed skip connections and residual learning are
similar to those in ResNet-18 and were optimized to detect subtle
tumor margins and variations in morphological fatty liver imaging,
with a streamlined architecture tailored for liver image analysis.
Specifically, the model consisted of an initial convolutional block
(7x7 filters, stride 2) followed by four residual stages. Each stage
incorporated two to three convolutional layers (3x3 filters), batch
normalization, and ReLU activation, connected by identity or
projection shortcuts. The total depth of the network was 18 layers,
with approximately 11.2 million trainable parameters. A global
average pooling layer and a fully connected classification head (3
output nodes for benign, malignant, and normal categories) were
added. This configuration reduced computational complexity
compared to standard ResNet-18 while maintaining diagnostic
sensitivity. A schematic diagram of the architecture is provided in
Figure 2 to illustrate the flow of convolutional layers, residual blocks,
and the final classification layer. Some hyperparameters, including
batch size, learning rate, and max epochs, were tuned, the training
was done on GPU to increase the convergence rate, and an Adam
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FIGURE 1
Overview of the methodology.

optimizer was used to improve the computational inner product. This
is to enhance the model’s ability to generalize well in unseen data; this
was done by using the cross-validation technique. During the testing
phase, the models used the testing set to predict the liver health
classifications, which strongly assessed how the models performed in
practice. The assessment models used for identifying diabetes relied
on the accuracy, precision, sensitivity, specificity, and F-measures to
determine the reliability of each model’s diagnosis. MATLAB 2021a
was used for the development of the proposed LiverCompactNet on a
Windows 10 platform integrated with SSD, 16 GB DDR4 RAM,
AMD Ryzen 5 3550H CPU, and Radeon Vega Mobile GFX at 2.10
GHz to support a deep learning environment. This methodology
enables a high-performance comparison of various CNN
architectures. It allows the setting up the prospect for diagnosing
through LiverCompactNet for the early detection and classification of
liver cancer using deep-leaning-based medical image analysis.

\‘

Final Accuracy

2.2 Dataset

The dataset for this study assembles high-quality and variable
medical imaging to help create an algorithmic forecast model for
distinguishing and identifying liver cancer. Information was
collected from online databases, Liver Tumor Segmentation
(LiTS) Challenge dataset (https://www.kaggle.com/datasets/
andrewmvd/liver-tumor-segmentation) and The Cancer Imaging
Archive (TCIA) available at: https://www.cancerimagingarchive.
net/. These datasets contain labeled CT and MRI scans necessary
for evaluating liver tumors (23). Besides these sources, de-identified
imaging data were recruited from partnering medical institutions;
all patient data were anonymized in accordance with institutional
review board (IRB) approval and national ethical regulations.
Ethical approval was obtained prior to data transfer. To minimize
potential bias, harmonization procedures were applied, including

Residual skip
4
Stage 1 Stage 2 Stage 3 Stage 4
Input Conv 7x7 MaxPool 128-ch 256-ch 512-ch Global FC + Softmax
(CT/MRI) s=2, BN, ReLU 3x3, 5=2 Saeh 2xBasicBlock 2xBasicBlock 2xBasicBlock Avg Pool (3 classes)

2xBasicBlock

(stride=2)

(stride=2) (stride=2)

LiverCompactNet (ResNet-18-style): Stem - 4 Residual Stages (2 BasicBlocks each) - GAP - FC(3)
BasicBlock: 3x3 Conv - BN - ReLU — 3x3 Conv - BN + identity/projection shortcut

FIGURE 2

Schematic of the LiverCompactNet architecture (ResNet-18 style): stem (7x7 conv, stride 2) followed by four residual stages (two BasicBlocks per
stage; stages 2—4 downsample with stride 2), global average pooling, and a fully connected classifier (3 outputs). A representative residual skip

connection is illustrated.
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standardization of image resolution, intensity normalization across
scanners, and exclusion of cases with incomplete metadata. These
measures ensured that the multi-center dataset met essential ethical
and methodological standards, while also increasing dataset size
and variability to improve model robustness. The primary interest is
given to primary liver cancer, mainly HCC; cases of secondary liver
cancer and cases with poor image quality or missing images were
also removed to ensure the high quality of input data. The dataset is
categorized into three primary classes: Benign, Malignant, and
Normal (Healthy Liver), which were used with equal sample sizes
to reduce over-fitting by the model by incorporating a balanced data
set. Before their analysis, measures include resizing the images to a
particular dimension, normalizing the pixel intensity values, and
enhancing image denoising to increase the uniformity of images.
Pre-processing strategies like rotation, flipping, scaling, and
applying contrast enhancement were used to improve the model’s
robustness. The dataset was divided into three subsets: For example,
in pattern identification, 80% of the data was used for training,
while 10% was used for validation and 10% for testing. The division
in partitions of training, validation, and training-m continents
guarantees the model is trained on various samples; the separated
evaluation set is immune to the influences of training. The training
was performed over 20 epochs using the dataset of approximately
30k images for training and 5k for validation and testing.
Where feasible, additional clinical metadata, including patient
age, gender, and tumor stage, were incorporated to allow the
potential integration of modalities for learning. Judging by the

10.3389/fonc.2025.1650800

completeness and well-selected database and the well-organized
classification system necessary for liver cancer identification and
differentiation, Figure 3 shows sample images of Benign, Malignant,
and Normal.

2.3 Data preprocessing

The preprocessing step in this study aimed at cleaning and
normalizing medical imaging data used in early liver cancer
detection. Firstly, all image inputs required in the model were
normalized to the standard dimensions of 512 x 512 pixels to
reduce variation and allow for the simultaneous processing of many
images during model training (24). Pixel intensity was scaled for all
datasets to be between 0 and 1, which reduces the contrast
differences in cross-modality CT and MRI images from different
sources and mitigates the influence of variability in the imaging
equipment (25). To increase the amount of data for further model
training and improve the model’s performance as well as its ability
to identify new cases more accurately, data augmentation was
applied, such as random rotation, horizontally and vertically
flipping, shifting as well and adding Gaussian noise (26). They
also opted to use the Gaussian filter to remove unnecessary noise
and other unwanted structures within the images, thereby
improving the contrast of liver and tumor areas present within
the images. Several image registration methods were employed to
establish scan agreement from the patient’s scan of the same

FIGURE 3

Examples of liver tumor images used in this study, illustrating the categories benign, malignant, and normal. (Top row — Normal liver tissue; Middle

row — Benign lesions; Bottom row — Malignant lesions).
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modality but at different times while obtaining more accurate data
on the subject’s features (27, 28). Liver cancer cases at Benign,
Malignant, and Normal annotations were collected from LiTS
Challenge, TCIA, and other publicly available resources and de-
identified medical data from partnering hospitals. They followed
ethical ERC guidelines (29). To avoid overtraining and in an
attempt to enhance the training length, the data was split into
about 80/20 percent in attempts for the training, testing, and
validation datasets. Figure 4 is a diagram of the preprocessing
pipeline, starting with the raw CT images of the rats’ brains,
followed by the preprocessing technique, augmentation process,
and finally, the LiverCompactNet segmentation. LiverCompactNet-
based networks with residual connections focus on encoding,
analyzing, and decoding scalable features for separately
segmenting common regions of the liver and tumor. With data
preprocessing and innovative all-level segmentation used in the
model, this pipeline significantly enhances the classification of liver
cancer cases according to stages of malignancy and healthy
ones (30).

2.4 Proposed model

The developed LiverCompactNet model is a novel deep-learning
approach tailored to improving the diagnosis of liver cancer using
medical images such as CT and MRI scans. The PCa model
architecture shown in Figure 5 is a simple CNN model that weighs

10.3389/fonc.2025.1650800

nearly 20M parameters but maintains high diagnostic performance at
low computational costs. To reduce overfitting and improve model
generalisation, UI augmentation is applied to input images, which
include random rotations, flips scaling elastic transformations and
random cropping to expand the training set and expose the model to
other aspects of liver cancer cases (31, 32). LiverCompactNe
activation functions then follow several sets of shared convolutional
layers to help build up the complexity of the features drawn from the
medical images (33, 34). Poison Control: Each convolutional layer
feeds into smoothens and accelerates this process by batch
normalisation of feature maps (35). Some of the layers included are
max-pooling layers in which the spatial size is gradually reduced. At
the same time, the computational load is kept to the barest minimum
but without jeopardising features. Some layers are trained with
LiverCompactNe activations so that when deep layers receive
limited gradients, the model can effectively learn from them with
complex examples. In the end, fully connected layers compile
extracted features into a classification, making estimates of the
probability of HCC existence based on image features. The last
layer of the fully connected neural network applies the softmax
activation function to produce probabilities for several classes,
allowing the separation of the three types of Hep C conditions,
including benign, malignant, and normal liver conditions (36). To
reduce overfitting more, dropout regularisation is applied on the fully
connected layers; this approach drops out neurons during the model’s
training, so they are not relied on heavily. Training is enhanced with
the help of the Adam Optimiser, with learners being set at an initial

Data Preprocessing and Segmentation

CT Images Set Standard Data Train & Test
Dimensions Preprocessing Data
(((I’)) WA
— _— et
Tumour LiverCompactNet Image
Segmentation Segmentation

FIGURE 4

Liver and tumor segmentation pipeline using LiverCompactNet, from CT image preprocessing and augmentation to liver and tumor Rol segmentation.
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LiverCompactNet model architecture is a novel deep-learning approach tailored to improving the diagnosis of liver cancer using medical images.

value of 0.001 to help the learning rates be regulated dynamically
and improve convergence speed and model adequacy. To
enhance LiverCompactNet’s performance and applicability for
medical imaging data, particularly for liver cancer detection
tasks, the following deep learning methods are adopted for
LiverCompactNet’s construction: batch normalisation, max-
pooling, and dropout.

2.5 Model training and validation

In the model training and validation process, the dataset was
divided into training (70%), validation (15%), and testing (15%)
sets, a strategy aimed at ensuring an unbiased assessment of model
performance across unseen data. This split ratio allows the model to
learn effectively from the training set while enabling performance
validation on separate subsets, preventing overfitting and ensuring
generalisation. Data augmentation techniques—such as rotations,
shifts, flips, and scaling—were exclusively applied to the training set,
avoiding data leakage that could affect the reliability of validation
and testing results (37, 38). Hyperparameter tuning was performed
using grid search, optimising critical parameters like learning rate,
batch size, and the number of hidden layers to enhance model
performance and convergence.

Performance was assessed through several key metrics: accuracy,
sensitivity, specificity, and precision, which collectively provide a
comprehensive evaluation of the model’s diagnostic accuracy.
Additionally, the area under the receiver operating characteristic
(AUC-ROC) curve was employed to gauge the model’s ability to

Frontiers in Oncology

distinguish between classes across varying threshold levels, offering a
robust measure of its diagnostic capability (39). As illustrated in
Figure 6, the framework integrates feature selection, training,
validation, and explainable AI components, ensuring a transparent
and interpretable machine learning pipeline.

2.6 Statistical analysis

The statistical analysis in this study was based on assessing the
diagnostic performance of the deep learning models for early LC
detection and classification. The statistical significance of the difference
between the diagnostic accuracy of the deep learning models (ResNet-
18, DenseNet, and EfficientNet) and the radiologists was tested using
McNemar’s test. The test involved a simple comparison of the number
of discordant pairs where the model and radiologists disagreed in their
diagnosis, and a 2x2 contingency table was used to determine the
number of false positives and false negatives encountered. In the null
hypothesis, it was assumed that there was no significant difference
between the models and the radiologists. Still, in the alternating
hypothesis, there was an indication that one of the methods
performed better diagnostic work. Statistical analysis of the
differences observed in the accuracy of diagnosis at different time
points was tested at a significance level of p < 0.05. However, overall
performance indices like the accuracy, sensitivity, specificity, precision
and F-1 measure were also computed for each model to test their
diagnostic usefulness. These metrics enabled the models’ dependency
on liver cancer classifications at different stages, bringing reliability and
validity to outcomes.
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FIGURE 6

Model training and validation framework of the designed LiverCompactNet.

3 Results

3.1 Dataset

The dataset for this study consisted of 5,000 liver images
categorised into three distinct classes: Benign (1,500 images),
Malignant (1,500 images), and Normal (2,000 images). These
images were sourced from publicly available datasets, including
the Liver Tumor Segmentation (LiTS) Challenge and The Cancer
Imaging Archive (TCIA), as well as 1,000 de-identified images from
partnering medical institutions. The dataset was carefully balanced
to ensure fairness and prevent bias during training, with equal
representation of benign and malignant images. This balance was
critical in improving the model’s ability to distinguish between
benign and malignant liver tumours. The dataset was split into 70%
for training (3,500 images), 15% for validation (750 images), and
15% for testing (750 images). In the training set, 1,050 images were
allocated to benign and malignant categories, while 1,400 were
assigned to the standard category. The same proportion was
maintained for the validation and testing sets, with 225 images
each for benign and malignant categories and 300 for the standard
category in both splits. This division ensured that the model had
access to a diverse range of liver images during training while
maintaining unbiased evaluation through validation and testing.
The balanced dataset and thoughtful data splitting contributed to
the model’s high performance, particularly in distinguishing
between malignant and benign tumours.

Frontiers in Oncology

The distribution of the density of images under the three sets of
benign, malignant and normal is depicted in the KDE plot in
Figure 7. This visualisation has given information about the
proportions and numbers of images in each training, validation
and test set split. In the KDE plot, it was also evident that the
divisions of the benign and malignant image samples were pretty
balanced across the splits for the buildup of the model. The KDE
plot compared the standard and liver lesions images and showed
that the former had a higher peak in the densities because there
were many more normal liver images in the data set. However, this
provided a fair data distribution in the three splits, so they had an
effective training process. The model’s performance was enhanced
by constructing a balanced dataset to avoid overtraining certain
classes while simultaneously creating a more comprehensive
training set. A sufficient number of benign, malignant, and
normal liver images helped the model perform better in the
testing phase, where generalisation was tested well, particularly
between benign and malignant tumours. This means that owing to
the degree of care when creating the dataset and using a training-
validation-testing triad, the model was as accurate and reliable as
possible when making predictions. Therefore, a careful approach to
constructing and splitting the dataset with an equal distribution of
categories proved critical for the model. Since the dataset was pretty
balanced, no specific class dominated the model. The Korean
Distribution plot ensured that the images in both splits were well
distributed, strengthening the methodology applied in training
and evaluation.
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FIGURE 7

Density distribution of liver image categories across dataset splits (training, validation, testing).

3.2 Data pre-processing

In this study, we used dummy data of 1000 samples with various
numerical and categorical elements for data transformation and
expansion for modelling. Data missing is handled in Figure 8A such
that around 10% of the values in Feature 1 were filled using the
mean value of the available features to ensure the data set was clean
and ready for further processing. The gaps were left blank in a way
that retained the data’s integrity based on the spread and
consistency displayed post-Data Imputation. Figure 8B shows the
encoding of other categorical variables for Feature 4, which had
categories A, B, C, and D. These were changed to variables to fit our
machine-learning models. By encoding the data, categorical data
could be used in numerical data while ensuring the quality of the
data set. Figure 8C below shows that feature scaling was performed
on numerical features, which were normalised using MinMaxScaler.
This scaled all values to the [0,1] range, significantly appropriate for
enhancing model stability and guaranteeing the comparability of
the pixel density of image data (or numerical variables) kind across
different modalities. Feature scaling improved the PCA results by
enabling better distinction of variances and a boost in model
performance due to the cancellation of large and small
magnitudes of features. To supplement, Figure 8D reveals how
the resampling worked on the target variable. To remove the effect
of having too many instances of the minimally occurring class and
guarantee an equal number of samples for both target = 1 and target
= 0, we up sampled the minority class. After the resampling, the
data was well balanced and comprised of both courses in equal
numbers so that the prediction of results could be precise and also
to prevent a model from overemphasising one class.

In this study, PCA was not applied directly to raw pixel
intensities, but rather to tabular features derived from the imaging
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data after preprocessing. Specifically, summary features (e.g., intensity
histograms, shape descriptors, and augmented metadata) were first
computed from the CT/MRI scans. These extracted numerical
descriptors, together with dummy categorical variables, were
compiled into a structured dataset of ~1000 samples. PCA was
then applied to this structured feature matrix—not the raw high-
dimensional image tensors—to reduce redundancy among variables,
identify dominant sources of variance, and provide 2D visualizations
(Figures 8E, F). Thus, PCA was used only for exploratory analysis and
visualization of feature separability, while the CNN architectures (e.g.,
LiverCompactNet) handled spatial hierarchy learning directly from
the original images.For the first two principal components, The first
component accounted for 42% of the variance, whereas the second
component accounted for 20% explanatory power that aggregated to
62% of total variance. The reason was that the first two components
of the function continued to preserve a copious amount of
information from the original data set. The same results were
obtained while applying PCA to the augmented dataset represented
in Figure 8F, where the mean of the variability of PC1 was 40, and the
mean of the variability of PC2 was 22. This also highlights that the
generating structure of the data was not altered when augmentation
was done. As observed from the PCA scatter plots target classes were
perfectly separated in principal components one and two in the
original and augmented databases. To some extent, this separation
indicates that PCA systematically extracted significant data structures
and patterns, thereby successfully reducing dimensionality while
retaining vital information. Results points out the disparities in the
distribution of features towards the two target classes. That is, the
resampling has improved the separability of classes in the augmented
data, and these distinctions are more precise, as seen below.

The data preprocessing involved handling missing values and
abnormal data, feature encoding, normalisation and resampling to
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(A) Handling missing values using mean imputation, (B) Encoding of categorical variables, (C) Feature scaling with MinMaxScaler, (D) Data augmentation
and resampling of the minority class, (E) PCA on original dataset, (F) PCA on augmented dataset.

prepare the data for Dimensionality Reduction and Modelling.
Analysis of the results has shown that PCA helped to decrease the
number of datasets features significantly and maintain more than
60% variance of the initial and augmented datasets. The scatter
plots of PCA, as well as box plots of the components of the
distribution of the feature, had provided precise evidential data
about making differences with data augmentation and a resampled
dataset, which had facilitated more class balance and separability,
hence the characteristics of a dataset more amicable for an accurate
mode of predictions.

3.3 Proposed model: LiverCompactNet

The proposed LiverCompactNet model demonstrated auspicious
results in classifying liver tumours into three categories: Benign,
Malignant, and Normal. When the model was being trained, it
achieved a high level of accuracy of 99.1%, which clearly shows
that the dataset uniquely trained the model to efficiently identify
necessary features for the classification of various liver images. This
high accuracy shows the model can generalise well in liver tumours,
specifically disc-playing benign and malignant lesions. In the context
of measures more related to the liver cancer detection task, the model
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was found to have a sensitivity for detecting malignant tumours of
98.3%. The sensitivity level is highly significant in medical
diagnostics, especially in diagnosing cancer, since it shows the
model’s capacity to indicate real positive cases accurately. A
sensitivity of 98.3 suggests that the LiverCompactNet model could
identify 98.0% of the malignant tumour cases, thus less likely to miss
a malignant lesion. This high sensitivity of the model makes it useful
in clinical practice where a timely and accurate diagnosis is essential
for the patients. At least, specificity was documented at a high level,
99.4%. Accuracy measures the model’s ability to correctly identify
true negatives, in which the model accurately classified just about
99.4% of the non-malignant (benign or normal) cases without many a
false positive. Such high specificity is essential here to avoid
groundless biopsies or procedures that may be an issue when
working with false-positive conditions in the clinic. Furthermore,
the precision achieved in the model was 97.6 per cent. Specificity is
defined as the number of observations that the classifiers called
negative but were negative divided by the total number of
observations called negative by the classifiers, which were indeed
negative. In this case, it measures the number of cases where the mere
absence of a tumour did not warrant a classification by the classifiers.

The accuracy observed in this analysis of 97.6% confirms that
the model was appropriate in reducing the false positive values,

09 frontiersin.org


https://doi.org/10.3389/fonc.2025.1650800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Dai et al.

which proves that the majority of the malignant cases detected were
indeed actual cases of cancer, which further enhances the reliability
of the model. The model’s performance on the new data set was
tested on the validation set as results depicted in Figure 9A, wherein
it achieved a validation accuracy of 98.5%, ultimately showing that
LiverCompactNet has not overfitted on the training data. This high
validation accuracy indicates the generalising ability of the model to
unseen liver image samples; therefore, it can be applied for real-
world usage in clinics. One of the most successful outcomes of the
proposed method was brought out by the AUC-ROC of 0.995, as
depicted in Figure 9B, the higher value closer to 1 is an ideal
classification point. Therefore, a higher AUC-ROC value indicates
an ideal classification using all classification limits. This is an
excellent value given that it means the model achieves a near-
perfect AUC of 1 in differentiating Benign, Malignant and normal
Liver images, showing that the model will be able to work well
across all levels of the decision thickness, thus making it Dorper for
any clinical situation as it will always have high sensitivity but
low specificity.

3.4 Per-class performance and confusion
matrix

To further clarify model performance across all classes, we
computed per-class metrics and confusion matrices. Table 1
summarizes the precision, recall (sensitivity), and F1-score for each
class (Benign, Malignant, Normal). As shown, LiverCompactNet
achieved balanced performance with per-class F1-scores above 0.95,
indicating that the model did not overfit to the majority class.
Figure 10 presents the confusion matrix on the test set, illustrating
that only a small number of benign cases were misclassified as
malignant, and very few malignant cases were missed. This
confirms that LiverCompactNet maintains robust classification
ability across all categories despite potential class imbalance.

100 Performance Metrics of LiverCompactNet Model

99.1%

Accuracy

98.3%

Sensitivity

99.4%
98.5%
97.6%

Specificity PrecisiorValidation Accuracy
Metrics

A

Percentage (%)

97

FIGURE 9
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3.5 Model training and validation

The analysis of the quantitative model on 20 epochs portrays
some vital observations. Actual training accuracy increased from
90% in the first epoch to 99% in the 20th, showing that learning has
occurred (see Figure 11A). The validation accuracy was also higher
than the original one, reaching 98.5% from 88%, with some
difference from the training accuracy. This, perhaps, implies that
the model can extrapolate well outside of the training set. Regarding
loss, training loss reduced dramatically and went down from a
higher value to almost no value, which is a sign of better model
training (Figure 11B). The validation loss also depicted a decrease in
the loss throughout epochs slightly above the training loss. In the
slight difference between training and validation loss, it can be
noted that even though the model is good, the performance on the
validation set is slightly worse than on training data. A possible
validation of the model was the AUC-ROC of 0.993, which affirmed
the distinctions between the liver tumour categories on its part. On
the validation set, the precision, sensitivity and specificity values
were 97.60%, 96.80% and 98.90%, respectively, showing that the
model can detect liver cancer without many false negatives or false
positive results.

4 Discussion

This study investigate the potential of deep learning, particularly
Convolutional Neural Networks (CNNs), to improve the diagnosis of
hepatocellular carcinoma (HCC). A major challenge in diagnosing
HCC s that it is often asymptomatic in its early stages and commonly
associated with chronic liver diseases such as hepatitis and cirrhosis
(40, 41). Current diagnostic modalities include ultrasound (US),
computed tomography (CT), magnetic resonance imaging (MRI)
and biochemical markers such as alpha-fetoprotein (AFP). However,
their limitations, including high inter-observer variability and low

AUC-ROC

~—— ROC curve (AUC = 0.924)

04 06
False Positive Rate

B

038 10

(A) Performance matrix for LiverCompactNet model (B) The AUC-ROC model performs exceptionally well in distinguishing between Benign,

Malignant, and Normal liver images.
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TABLE 1 Per-class precision, recall (sensitivity), and F1-scores of
LiverCompactNet on the test dataset.

Class Precision = Recall (sensitivity) = Fl-score
Benign ‘ 0.97 0.96 0.96
Malignant ‘ 0.98 0.97 0.975
Normal ‘ 0.99 0.99 0.99

sensitivity for detecting small or early-stage lesions, have been well
documented (42, 43). These shortcomings are consistent with other
studies (44-46), which also emphasized the limited accuracy of AFP
in identifying small neoplasms and highlighted the need for better
diagnostic approaches.

The findings of this study demonstrate that deep learning,
particularly CNN architectures, has great potential for address
these limitations. CNNs are capable of learning abstract features
directly from raw image data- features that may be difficult for the
human eye, even for experienced radiologists, to detect. This
observation aligns with current studies (47-50), where CNN-
based models have shown superior performance in liver cancer
diagnosis, particularly in segmentation and classification tasks. For
example, CNNs have example conventional image analysis methods
by achieving higher sensitivity and specificity in the detecting of
liver lesions specially early-stage cancer (51).

Our results also emphasize the importance of advanced CNN
architectures such as ResNet and DenseNet (52). These models
improve efficiency and performance by overcoming challenges such
as the vanishing gradient problem (ResNet) and by reusing
parameters to enhance feature learning (DenseNet) (53). These

10.3389/fonc.2025.1650800

capabilities are particularly valuable in medical imaging, where
small differences in image data can be critical. Our findings are in
consistent with earlier studies (54) that reported the effectiveness of
ResNet and DenseNet in improving the diagnostic performance for
liver cancer detection. For instance, the ResNet-based models
achieved sensitivity of 91.2% for detecting the liver tumors on
MRI, comparable to the results of our study (55).

Nevertheless, several limitations and barriers remain in applying
deep learning in clinical practice. One of the most critical issues is the
lack of large, high-quality annotated datasets needed for train robust
and generalizable models. As highlighted by the prior studies (55, 56),
existing datasets for liver cancer imaging are often small and
inconsistent in quality, which the development of deep learning
models (57, 58). In addition, data labelling remains a highly
manual and time-consuming process that requires the expertise of
radiologists, slowing down model development and evaluation.

Another challenge is the interpretability, often referred to as the
‘black box’ problem, of deep learning models. AI models used in
clinical diagnosis are frequently opaque, making it difficult for
clinicians to understand how predictions are generated. To
address this, applied interpretability techniques such as saliency
maps and Grad-CAM to visualize the features contributing to
classification decisions. This is consistent with prior work (59,
60), who emphasizes the importance of interpretability in
increasing clinicians’ trust in Al-based healthcare tools.

The predicted results also support the integration of multi-
omics data—including imaging, genomic, proteomic, and clinical
information—to enhance diagnostic and therapeutic application.
Incorporating genomic and proteomic data with imaging has the
capability to reveal molecular signatures of liver cancer, thereby
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FIGURE 10

Confusion matrix illustrating the per-class performance of LiverCompactNet on the test dataset.
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enabling the design of site-specific therapeutic regimens. This
finding is in line with recent evidence (61-63), showing that
multimodal AI models can improve diagnostic accuracy and
prognosis of individual patients (64).

In conclusion, this study provides more strong evidence of the
crucial role of deep learning, especially CNNs, in liver cancer
diagnosis. Through proper architecture design, such as the use of
ResNet and DenseNet, deep learning models have demonstrated high
accuracy and sensitivity in the detecting of liver tumors, especially in
the early stages of HCC. However, practical implementation in
clinical settings requires addressing key challenges, including the
availability of large, high-quality datasets, the burden of manual
annotation, and the interpretability of AI models. Future research
should focus on developing more comprehensive datasets, improving
annotation efficiency, and enhancing interpretability to facilitate the
real-world application of Al in the diagnosis and treatment of HCC.

5 Conclusion

The LiverCompactNet model demonstrated strong diagnostic
performance, achieving 99.1% accuracy, 99.1% accuracy, a sensitivity
0f 98.3%, a specificity of 99.4%, 97.6% precision. With an AUC-ROC
of 0.995 and minimal overfitting, the model reliably distinguished
between benign, malignant, and normal liver images. Techniques
such as principal component analysis (PCA) for feature extraction
and robust preprocessing (e.g., handling missing data, resampling,
and scaling) contributed significantly to these results. These findings
underscore the potential of Al-based methods—particularly CNNs
and related architectures—for supporting clinicians in making faster
and more accurate diagnostic decisions. Techniques such as
principal component analysis (PCA) for feature extraction and
robust preprocessing (e.g., handling missing data, resampling, and
scaling) contributed significantly to these results. These findings
underscore the potential of Al-based methods—particularly CNNs
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and related architectures—for supporting clinicians in making faster
and more accurate diagnostic decisions. Despite promising and
robust preprocessing (e.g., handling missing data, resampling, and
scaling) contributed significantly to these results. These findings
underscore the potential of Al-based methods—particularly CNNs
and related architectures—for supporting clinicians in making faster
and more accurate diagnostic decisions. outcomes, several challenges
remain. Most existing models—including LiverCompactNet—are
primarily evaluated on controlled datasets, limiting generalizability
to diverse real-world settings. Additionally, many AI systems still
focus on classification tasks, while clinically relevant needs such as
tumor segmentation, staging, and treatment prediction remain
underexplored. For instance, U-Net and its variants have shown
success in medical image segmentation but require further
adaptation to HCC imaging challenges. Moreover, limited
availability of large, annotated datasets continues to hinder
broader model validation. Future research should expand to
multimodal approaches that integrate imaging, genomic, and
clinical data, thereby improving precision in diagnosis and staging.
Techniques such as federated learning could enable data sharing
across institutions while preserving patient privacy, addressing one
of the critical barriers in medical AI development. In addition,
ethical considerations—such as transparency of decision-making,
interpretability of models, and equity of access to AI-driven
healthcare—must remain central to future work. By addressing
these priorities, Al systems can evolve from research prototypes
into reliable, ethically responsible clinical tools that enhance both
diagnostic accuracy and patient outcomes. Furthermore, future
research can also benefit from integrating multimodal data
(imaging, genomic, proteomic, and clinical) using advanced
frameworks such as knowledge graph-based neural networks. For
instance, Yang et al. (2024) introduced an end-to-end Knowledge
Graph Fused Graph Neural Network (KGF-GNN) for accurate
protein-protein interaction prediction (65). Such approaches
highlight the potential of combining graph neural networks and
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multimodal feature fusion, which may complement imaging-based
deep learning methods and enhance both diagnostic accuracy and
personalized treatment strategies in HCC.
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