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Objective: This study investigated the association between Helicobacter pylori
(H. pylori) infection and the expression of CD163" and CD86" tumor-associated
macrophages (TAMs) in colorectal adenoma (CRA) and colorectal cancer
(CRCQ) tissues.

Methods: Immunohistochemistry (IHC) was used to evaluate the expression of
CD163" and CD86* TAMs isolated from colorectal tissues, Multiplex
immunofluorescence (MIF) co-staining was employed to identify CD687CD163*
and CD68"CD86" TAMs, and the **C-urea breath test (UBT) was used to detect
H.pylori infection.

Results: The progression of colorectal lesions was significantly associated with
increased expression of CD163* and CD86™ TAMs, as well as H.pylori infection
(all P < 0.05). The expression of CD163* and CD86% TAMs were positively
correlated with each other and with the severity of colorectal lesions (all P <
0.001). Patients with H.pylori infection exhibited significantly higher expression of
both TAM subsets compared with non-infected individuals (all P < 0.05). Multiple
linear regression analysis showed that in colorectal adenomas measuring > 1 cm,
expression of CD163" and CD86% TAM was significantly greater than in
adenomas <1 cm (P < 0.05), Expression of CD163" TAM was notably higher in
obese patients with CRC. Multiplex immunofluorescence (mIF) quantification
revealed significantly increased densities of both CD68*CD86" and
CD68"CD163" TAMs, and a higher CD68*CD163"/CD68*CD86" ratio in
colorectal cancer (CRC) (all P < 0.001).

Conclusions: The expression of CD68*CD163* and CD68*CD86" TAMs change
dynamically with the progression of colorectal lesions. These changes are
influenced by H.pylori infection, adenoma size, tumor differentiation, and
patient metabolic status.
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1 Introduction

Colorectal cancer (CRC) is a common malignant tumor of the
digestive system. According to global cancer statistics in 2020, the
incidence and mortality of CRC both rank third among all
malignant tumors (1). The pathogenesis of CRC is associated
with multiple factors, including genetic predisposition,
environmental influences, lifestyle, and the gut microbiota.
Notably, dysbiosis of the gut microbiota or infection with certain
bacteria, such as Helicobacterpylori (H. pylori), can increase the risk
of colorectal tumors (2). In addition, Gut microbiota linked to
obesity is implicated in the pathogenesis of colorectal cancer (3).
This is an important issue that warrants considerable attention.

Colorectal adenomas (CRA) mainly include two major
categories: conventional adenomas(CAs) and sessile serrated
adenomas (SSAs). CAs are further subdivided into tubular
adenomas, villous adenomas, and tubulovillous (mixed)
adenomas, each with distinct histological characteristics and
malignant potential. SSAs are characterized by a unique serrated
glandular architecture and a higher rate of malignant
transformation, distinguishing them from CAs. Both types of
adenomas carry a risk of malignant progression (4) and are
recognized as precancerous lesions. Timely detection and
intervention can reduce the risk of CRC development. Although
colorectal cancer (CRC) treatment employs a multidisciplinary,
multimodal integrated strategy (5), a proportion of patients
present with advanced disease at diagnosis, having missed the
optimal window for radical treatment. Consequently, their overall
prognosis is significantly worse than that of early-stage patients
(Stage T patients exhibit a > 90% 5-year survival rate) (6). Thus,
there is an urgent need to identify novel tumor biomarkers that can
predict tumor progression and serve as potential therapeutic targets.

The tumor microenvironment (TME) is a complex and
dynamic ecosystem with high heterogeneity, Macrophages within
the TME, known as tumor-associated macrophages (TAMs), are
important immune effector cells primarily derived from peripheral
blood monocytes and tissue-resident macrophages. TAMs consist
mainly of two subsets, M1 and M2 (7). The M1 phenotype generally
inhibits tumor growth, whereas the M2 phenotype promotes tumor
growth. The balance between both subsets determines the nature of
the immune response in the TME.

Cell surface markers of TAMs primarily include CD68 (pan-
macrophage), CD86 (M1-like macrophage markers), and CD163
(M2-like macrophage markers) (8, 9). In the TME of CRC, the
polarization state of TAMs is associated with cancer-specific
survival, and M1-like/M2-like TAMs phenotypes exhibit distinct
prognostic implications (10). Targeting TAMs as a therapeutic

Abbreviations: H. pylori, Helicobacter pylori; TAMs, tumor-associated
macrophages; CRA, colorectal adenoma; CRC, colorectal cancer; THC,
immunohistochemistry; mIF, multiplex immunofluorescence; UBT, '*C-urea
breath test; SSAs, serrated adenomas; CAs, conventional adenomas; TME,
tumor microenvironment; IOD, integrated optical density; FFPE, paraffin-
embedded; ICC, intraclass correlation coefficient; DB-adjusted, Dunn-

Bonferroni-adjusted; MWU test, Mann-Whitney U test.
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strategy has already become an effective approach to inhibit
tumor progression (11). Nonetheless, the mechanisms by which
TAMs evolve within the TME during the malignant progression of
CRA are still not completely understood.

H.pylori infection can promote tumor development by
influencing TAMs polarization in the TME. For example, sit.
et al. (12) found that H.pylori phospholipase A regulates
macrophage autophagy and apoptosis via the TNFR1-mediated
p38 signaling pathway. Lu et al. (13) reported that interactions
between reactive oxygen species and hypoxia-inducible factor-1o
modulate H.pylori-induced macrophage polarization through the
Akt/mTOR pathway. In addition, H.pylori infection can upregulate
the expression of indoleamine 2,3-dioxygenase in macrophages,
thereby inducing M2-like polarization (14). M2-like TAMs secrete
various growth factors, enabling tumor cells to evade immune
surveillance and elimination. Therefore, further investigation of
the impact of H.pylori infection on TAMs polarization in CRA and
CRC tissues is warranted.

In this study, we analyzed the expression of CD163" and CD86"
TAMs in CRA and CRC tissues and examined their correlation with
H.pylori infection, with the aim of providingreferences for
clinical research.

2 Materials and methods
2.1 Study population

This study included patients diagnosed with CRA or CRC at the
Affiliated Hospital of West Anhui Health Vocational College
between January and December 2023. A total of 109 patients
were enrolled, and clinical data and colorectal tissue specimens
were collected. Among these, 61 patients had CRA, including 36
with CAs and 25 with SSAs. Among the 36 patients with CAs, 18
were tubular adenomas and 18 were tubulovillous adenomas. The
study also included 29 patients with CRC and 19 individuals with
normal colorectal mucosa who served as control. The normal
control group comprised asymptomatic volunteers. Inclusion
required: (i) endoscopically normal colonic mucosa with
histopathological confirmation, (ii) no antibiotics 3 months/PPIs
1 month pre-enrollment, (iii) verified H. pylori-negative status. This
study employed the urea breath test (UBT) as the sole diagnostic
criterion for H.pylori infection. While UBT offers standardized
operational advantages, the lack of orthogonal verification
methods (e.g., histopathology, stool antigen testing, or serology)
may lead to misclassification of infection status, thereby introducing
unquantified classification bias.

2.1.1 Inclusion criteria

The following inclusion criteria were applied to patients for this
study: (i) tissue specimens with a definitive pathological diagnosis of
either a CAs, a SSA, or CRC. The diagnostic criteria for SSA were
crypt distortion and dilation with basal expansion forming a
serrated architecture that extends along the muscularis mucosae,
resulting in an inverted T-shaped or L-shaped configuration (15);
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(ii) availability of complete clinical and pathological data were
available for each patient, including sex, age, tumor stage, tumor
differentiation, lymph node metastasis status, and tumor location;
(iii) H.pylori testing was performed in accordance with consensus
guidelines. All subjects confirmed no history of eradication therapy
and documented discontinuation of antibiotics/bismuth agents (> 4
weeks) as well as PPIs/acid suppressants (> 14 days) prior to
sampling, A 14C-urea breath test (UBT) value > 100 decays per
minute (dpm) is defined as the positive diagnostic threshold for
active H.pylori infection; and (iv) informed consent provided for the
collection and use of their clinical data.

2.1.2 Exclusion criteria

The following patients were excluded: (i) patients with severe
cardiovascular, respiratory, or hematological diseases; (ii) those who
had received any non-surgical treatments (such as radiotherapy,
chemotherapy, targeted therapy, or immunotherapy); and (iii)
patients with incomplete clinical or pathological data. The study
was approved by the ethics committee of the Affiliated Hospital
of West Anhui Health Vocational College (Approval No.
LAEY-2022-017).

2.2 Main reagents and equipment

The following reagents and equipment were used in this study:
mouse monoclonal anti-CD163 antibody (10D6, ma5-11458,
Invitrogen, Waltham, MA02451, USA); rabbit monoclonal anti-
CD86 antibody (EP1158-37, ab269587, Abcam, Cambridge, UK);
rabbit Polyclonal anti-CD68 antibody (GB113150, Servicebio,
Wuhan, China); rabbit Polyclonal anti-CD163 antibody
(GB113152, Servicebio, Wuhan, China); rabbit Polyclonal anti-
CD86 antibody (GB115630, Servicebio, Wuhan, China);
secondary antibodies and DAB chromogenic kits (Biomiky,
Biosharp, and Servicebio, respectively). '*C-urea breath test
detector (Haidwei HUBT-20A2); and Haidwei disposable gas
collection cards. Positive control tissues: (i) CD68" and CD163"
macrophages: Human spleen (red pulp region); (ii) CD86"
macrophages: Human tonsil (germinal center). For validation,
three randomly selected cases per cohort were analyzed by: (i)
IHC quantification via H-score (range 0-300); (ii) Dual-color mIF
confirming cellular co-expression in lesional tissue.

2.3 Immunohistochemistry

Specimens were fixed in formalin, embedded in paraffin, and
sectioned into 3 um-thick slices, Heat mediated antigen retrieval
with Tris-EDTA buffer (pH 9.0) at 98 °8 for 20 minutes, Primary
antibodies against CD163 (1:50) and CD86 (1:100) were applied
after dilution, and slides were incubated at 4 °C, Secondary antibody
incubation was conducted at room temperature for 15 min,
followed by DAB staining for 4 minutes, Hematoxylin
counterstaining and gradient alcohol dehydration were
performed, and sections were mounted using neutral resin.
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Yellow-brown or tan granular staining was interpreted as positive
expression. Two independent researchers evaluated the samples,
For each slide, five randomly selected non-overlapping fields were
analyzed at 200x magnification, The integrated optical density
(IOD) of positive staining was quantified using Image] software,
The mean IOD was calculated and used as the final result for each
sample (16, 17).

2.4 Multiplex immunofluorescence

Twenty formalin-fixed, paraffin-embedded (FFPE) colorectal tissue
samples were analyzed across three groups: normal mucosa (n=4), The
CRA cohort included 10 cases: 5 CAs (3 tubular, 2 tubulovillous) and 5
SSA, and CRC (n=6). For each specimen, two consecutive sections
were prepared and subjected to immunofluorescence staining: one for
dual detection ofCD68"CD163" TAMs, and the other for
CD68'CD86" TAMs. Double-positive macrophage density was
quantified by dual-channel co-localization analysis (Pearson’s
coefficient > 0.6) in Image]. For each specimen, three anatomical
zones were defined: Central zone (tumor core + 1 mm), Marginal zone
(invasive front + 500 um),Adjacent mucosal zone (= 2 mm from the
margin). Cell counting primarily focused on stromal and combined
zones, using hexagonal grid systematic sampling with 9 non-
overlapping fields per zone (200 x magnification). Field distribution
satisfied spatial uniformity testing (K-S p > 0.05). Data were
normalized to cells per square millimeter (cells/mm?). Observer
Agreement: Two pathologists independently counted 100% of
specimens in a blinded manner. Intraclass Correlation Coefficient
(ICC) = 0.92 (95% CI 0.88-0.95), Bland-Altman analysis: Mean bias
+ 1.5 cells/mm?® (95% LoA-6.2 to 9.3), Results exceeded the prespecified
reliability threshold (ICC > 0.85).

2.5 Statistical analysis

All statistical analyses were conducted using SPSS v.27.0
software. Continuous variables conformed to normal distribution
(Shapiro-Wilk p > 0.05), presented as [M + SD], One-way ANOVA
was employed to analyze intergroup differences (eftect size np2), If
results were significant (p < 0.05), Tukey HSD method was applied
for pairwise comparisons (controlling FWER at o = 0.05).
Continuous variables failing normality tests (Shapiro-Wilk p <
0.05) were summarized by medians and IQRs, defined as [Ql,
Q3], Group differences were assessed using the Kruskal-Wallis H-
test for three or more groups, Upon significance (p<0.05), pairwise
localization employed Dunn-Bonferroni-adjusted (DB-adjusted)
post hoc procedures, Comparisons between exactly two
independent groups utilized the Mann-Whitney U test (MWU
test). Categorical variables are presented as n (%), Intergroup
comparisons were performed using Pearson’s y’-test or Fisher’s
exact test based on expected frequencies. Correlations between
variables were assessed using Spearman’s rank correlation
coefficient. A P-value < 0.05 was considered statistically
significant. Multiple linear regression analysis was performed to
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identify independent factors associated with CD163" and CD86"
TAMs expression. The regression model was specified as follows:

Y =By +Bi X, +BXy +.. + B X+ €

where Y represents the expression level of CD163" or CD86"
TAMs (as integrated optical density, IOD), B, is the intercept, 3; to
B, are regression coefficients for the independent variables X; to X;,
and € is the error term. The model assumptions were checked using
residual plots and the Shapiro-Wilk test. No severe multicollinearity
was detected (all variance inflation factors < 5).

Prior to constructing the multivariate linear regression model,
we first performed univariate analyses to screen clinical variables
associated with TAMs expression. Covariates ultimately included in
the model comprised variables with P-values < 0.05 in the
univariate analyses, as well as important potential confounders
identified based on clinical knowledge and expert judgment.
Accordingly, factors such as adenoma size, adenoma number,
obesity, tumor differentiation grade, lymph node metastasis, TNM
stage, and H. pylori infection were collectively included in the final
model. This strategy ensured that the model incorporated both
statistical associations from the data and biological plausibility,
thereby enabling a more accurate estimation of the independent
associations between these factors and TAMs expression.

Given the relatively small sample size in the CRC group, the
precision and statistical power of the model may be limited. This
issue was addressed by using bidirectional stepwise regression to
optimize variable selection and minimize overfitting, with results
presented with 95% confidence intervals to reflect uncertainty.

3 Results

3.1 Expression of CD163" TAMs, CD86™
TAMs, and H. pylori infection

CD163" and CD86" TAMs were primarily located in the
stromal matrix and appeared as brownish-yellow or tan granules.
Their expression increased progressively with colorectal
malignancy, from normal tissue to CRC, indicating a potential
immunological role in tumor progression (Figures 1A, B).

Statistical analysis revealed significant differences in the
expression of CD163" and CD86" TAMs among the normal,
CAs, SSA, and CRC groups (all P < 0.05) (Figures 1C, D). DB-
adjusted for pairwise comparison showed significantly higher
expression in CRC than in tissues from CAs and SSA groups, and
higher levels in CAs and SSA than tissues in the normal group (all P
< 0.05). No significant difference was found between the CAs and
SSA groups (P > 0.05). The overall trend in tissue expression was as
follows: normal < CRA < CRC (P < 0.05) (Table 1).

H.pylori infection rates also differed significantly among groups
(P < 0.05). Bonferroni-corrected partitioned chi-square method for
Pairwise comparisons indicated a higher rate in CRC compared
with CAs and SSA, and higher in CAs and SSA compared with the
normal group (all P < 0.05). There was no significant difference
between CAs and SSA (P > 0.05). The overall trend in the infection
rate was CRC > CRA > Normal (P < 0.05) (Table 1).
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3.2 Association between CD163*/CD86™
TAMs, H. pylori infection, and colorectal
malignancy

CD163" and CD86" TAM:s were significantly more abundant in
H.pylori-positive patients compared with those without infection
(P < 0.001; Figure 2A). A strong positive correlation was found
between CD163" and CD86™ expression (Spearman’s p = 0.813, P <
0.001; Figure 2B). Both markers were also positively correlated with
CRC progression (CD163™: p = 0.561, P < 0.001; CD86™: p = 0.587,
P < 0.001; Figures 2C, D).

3.3 Expression in CRA patients by clinical
characteristics

In the CRA group, patients with adenomas >1 c¢m in diameter
had higher expression of CD163" and CD86" TAMs than those
with smaller adenomas (P < 0.05). Similarly, patients with multiple
adenomas showed higher expression than those with single
adenomas (P < 0.05). Patients who were H.pylori-positive also
had higher marker expression than non-infected individuals (P <
0.05) (Table 2).

3.4 Expression in CRC patients by clinical
characteristics

In CRC patients, CD163" TAM expression was significantly
higher in stages III-IV compared with I-II (P < 0.05), in those with
lymph node metastases (P < 0.05), and in patients with low tumor
differentiation (P < 0.05). CD86" TAM expression was lower in
patients at stages III-IV and in those with metastases or low
differentiation (all P < 0.05). Both markers were expressed at
higher levels in H.pylori-infected patients (P < 0.05) (Table 3).

3.5 mlIF analysis confirmed significant
enrichment of TAMs in CRC tissues

mIF-based quantitative analysis revealed significantly higher
counts of CD68"CD163" and CD68"CD86" TAMs and an elevated
CD68YCD1637CD68YCD86™ TAMs ratio in the CRC cohort (n=6)
compared to the CAS cohort (n=10) and normal controls(n=4). The
overall trend in tissue expression was as follows: CRC > CRA >
Normal (all P < 0.001). (Figures 3, 4).

3.6 Multiple linear regression in CRA and
CRC groups

Multiple linear regression was performed using CD163" and
CD86" TAMs expression as dependent variables. For the CRA
group, independent variables included adenoma size, number,
obesity, age, sex, site, and H.pylori infection status. For the CRC
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FIGURE 1

Immunohistochemical detection of CD163" and CD86™ TAMs in colorectal tissues (x200). (A) CD163 staining in various tissues. (B) CD86 staining.
(C) 10D for CD163. (D) IOD for CD86. Data expressed as M (Q1, Q3) (n = 109). *P < 0.05, **P < 0.01, ***P < 0.001 (DB-adjusted). Groups: 1, Normal;
2, CAS; 3, SSA; 4, CRC. M: Median; Qg: 1st Quartile; Qs: 3rd Quartile.

TABLE 1 Expression of CD163*/CD86* TAMs and H. pylori infection rates across groups.

CRA(n=61)
Variables Normal (n=19) CAs (n=36) SSA (n=25) CRC (n=29) Statistic
CD163,M (Q;,Qs) | 2066.45 (1492.80,3769.28) = 8195.20 (5009.03,14448.74)" = 6134.79 (4148.07,9337.56)" = 19614.60 (7182.47,22899.10)"> = %?=51.913*  <0.001
CDS6M (Q1,Qs) | 2227.46 (1590.13,2721.17) | 6139.86 (4491.34,8963.26)° | 4261.13 (3055.10,5898.95)° | 11644.53 (6618.20,15188.14)*2  x*=61431* | <0.001
H.pylori,n(%) ¥?=33.755 <0.001
Uninfected 18 (94.74) 18 (50)° 14 (56.00)" 3 (10.34)"A
Infected 1 (5.26) 18 (50)° 11 (44.00)" 26 (89.66)"2

*: Kruskal-Wallis test; M: Median; Q;: 1st Quartile; Qs: 3rd Quartile. DB-adjusted/Pearson’s ” test: #P < 0.05 vs. normal, /AP < 0.05 vs. CRA.
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FIGURE 2

Correlation of CD163*/CD86* TAMs levels with CRC development. (A) Differential expression between H.pylori-infected and uninfected groups.
(B) Correlation between CD163" and CD86™ expression. (C, D) Positive correlation of both markers with malignancy grade. Groups: 1, Normal; 2,
CAS; 3, SSA; 4, CRC. ***P < 0.001 (MWU test).

TABLE 2 Expression of CD163*/CD86" TAMs and H. pylori infection across CRA patient subgroups.

Variable N (%) CD163,M (Q,,Q3) Statistic CD86,M (Q41,Q3) Statistic
Total 61 (100) 7065.96 (4483.53,10672.70) 5601.69 (3684.24,8045.12)
Sex Z=-0.131 0.896 7=0.000 1.000
Male 34 (55.74) 7702.38 (4773.17,9427.82) 5580.89 (3780.79,7007.27)
Female 27 (44.26) 7015.93 (4477.27,13379.70) 5632.93 (3331.30,8710.58)
Age 7=-0.247 0.805 7=-0.261 0.794
< 60 34 (55.74) 7253.25 (4128.22,12354.00) 5580.89 (3427.60,8784.28)
> 60 27 (44.26) 7055.07 (5791.30,9578.44) 5632.93 (4482.40,7086.22)
Site 7=-0.073 0.942 7=-0.054 0.957
Rectum 12 (19.67) 7442.74 (3873.30,12539.05) 4997.73 (3783.96,7924.32)
Colon 49 (80.33) 7065.96 (4647.59,10658.54) 5601.69 (3503.18,8464.31)
Diameter 7=-6.022 <.001 Z=-6.311 <.001
<1l cm 32 (52.46) 4565.56 (3645.91,6652.60) 3732.52 (2921.31,4746.60)
>1 cm 29 (47.54) 11626.15 (8781.84,15454.57) 8464.31 (6173.92,9480.48)
Number Z=-6.115 <.001 Z=-5.690 <.001
Solitary 25 (40.98) 4128.22 (3139.36,4926.54) 3503.18 (2746.34,4362.52)
(Continued)
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TABLE 2 Continued

Variable N (%) CD163,M (Q,,Q3) Statistic P CD86,M (Q41,Q3) Statistic P
Multiple 36 (59.02) 9578.44 (7702.38,14577.13) 7046.79 (5738.68,9268.61)
Obesity 7=-2.388 0.017 7=-1.288 198
yes 28(45.90) 8528.66(7026.26,11142.35) 5990.63(4371.46,8569.32)
no 33(54.10) 5764.89(3699.20,10672.70) 5138.11(3494.33,7803.52)
H.pylori Z=-5416 <001 Z=-5.705 <001
Infected 29(47.54) 10672.70 (8194.00,15454.57) 7803.52 (6038.08,9480.48)
Uninfected 32(52.46) 4565.56 (3645.91,6864.03) 3732.52 (2921.31,4746.60)

Z: Mann-Whitney test; M: Median; Q;: 1st Quartile; Qs: 3rd Quartile.

TABLE 3 Expression of CD163*/CD86" TAMs and H. pylori infection in CRC patient subgroups.

Variable CD163,M (Q4,Q3) Statistic P CD86,M (Q1,Q5) Statistic
Total 29 (100) 19614.60 (7182.47,22899.10) 11644.53 (6618.20,15188.14)
Sex Z=-1.594 0.117 7=-1373 0.180
Male 12 (41.38) | 1443426 (4841.20,22105.68) 12642.80 (10927.33,16746.85)
Female 17 (58.62) 20303.61 (13682.83,26651.32) 10396.24 (5969.45,13086.00)
Ase 7=-0.330 0.764 7--0236 0.835
group
<60 9(31.03) 1663937 (13682.83,21559.32) 11822.28 (7094.63,13572.10)
> 60 20 (68.97) | 20291.80 (6723.18,23286.39) 11337.34 (6584.85,16746.85)
Site 7=-0.094 0.945 7=-0754 0472
Rectum 9(31.03) | 1639073 (7182.47,28215.57) 11644.53 (5969.45,13572.10)
Colon 20 (68.97) | 19959.11 (9320.94,22804.17) 11528.45 (7019.85,16746.85)
TNM
tage 7=2.575 0.009 7=-2.095 0.037
L1 14 (4828) | 7100.39 (4841.94,21559.32) 15107.70 (10824.51,18771.47)
LIV 15(51.72) | 21645.88 (18287.86,25162.50) 10396.24 (6260.48,11767.89)
metl;zasis 7=2.182 0.029 7=-2182 0.029
Negative 15(51.72) | 7182.47 (4971.80,22229.21) 1502725 (11083.95,18538.51)
Positive 14 (4828) | 21307.44(16961.12,23673.68) 8745.44 (5969.45,11713.50)
Histology 7-3822 <0.001 7=-2.956 0.002
Low 22 (7586) | 21602.60 (16639.37,26551.32) 10713.19 (6181.94,12294.42)
Middle
High 7(2414) | 4841.94 (4749.17,6059.98) 18771.47 (15938.83,19515.05)
Obesity 7=-4.099 <0.001 7=2.147 0.032
yes 21(7241) | 21645.88(16961.12,26651.32) 11030.14(6551.50,12294.42)
no 8(27.59) | 4971.80(4749.17,6641.10) 18538.51(12198.31,195515.05)
H.pylori 2=-2.077 0.037 7=-2.005 0.045
Infected 26(89.66) | 20636.31 (12229.14,23673.68) 11767.89 (6945.07,17212.47)
Uninfected 3(1034) | 6263.88 (5402.55,8943.73) 5869.24 (5261.12,8346.88)

Z: Mann-Whitney test; M: Median; Q;: 1st Quartile; Qs: 3rd Quartile.
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FIGURE 3
Multiplex immunofluorescence (200x) : CD68* (red), CD163" (green), CD86" (green), DAPI (nuclei, blue), Merge (multichannel overlay), Scale bar: 50 um. (A)
CD68"CD163" dual-positive cells (IF). (B) CD68*CD86" dual-positive cells (IF)

group, independent variables included age, sex, site, tumor 4 Djscussion

differentiation, lymph node metastasis, TNM stage, obesity, and

H.pylori infection status. The results indicated that expression levels The transition from CRA to CRC is a prolonged process that
were significantly associated with adenoma diameter in CRA, and  requires several decades. Therefore, early detection and resection of
with differentiation, obesity, and H.pylori infection in patients with  precancerous lesions are critical for preventing progression of CRC.
CRC (Table 4). TAMs have been implicated in the pathogenesis of H.pylori-related
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FIGURE 4

Changes in cell density and proportion of CD68*CD163*/CD68*CD86" dual-positive TAMs across groups. Groups: 1, Normal; 2, CRA; 3, CRC. ***p

< 0.001 (Tukey HSD).

TABLE 4 Multiple linear regression analysis of factors associated with CD163*/CD86" TAM expression in CRA and CRC patients.

Variables B (95%Cl)

CRA-CD86 Diameter

< lem Reference

21 cm 4488.870 505.200 8.885 <.001 4488.870 (3477.967 ~ 5499.773)
CRA-CD163 ‘ Diameter ‘

<l cm Reference

>1 cm 7545.441 984.454 7.665 <.001 7545.441 (5575.552 ~ 9515.329)
CRC-CD86 ‘ H.pylori ‘

Uninfected Reference

Infected 6228.716 2493.190 2.498 0.019 6228.716 (1103.890 ~ 11353.542)

Histology

Low Reference

Middle

High 7991.376 1774.363 4.504 <.001 7991.376 (4344.122 ~ 11638.631)
CRC-CD163 Obesity

no Reference

yes 16405.198 2206.201 7.436 <.001 16405.198 (11878.446 ~ 20931.949)

Stepwise (bidirectional) regression method.

gastric malignancies (18). Wei et al. demonstrated that H.pylori can
activate the JAK1/STAT1 signaling pathway in macrophages, leading
to CCL3 secretion and subsequent gastric mucosal damage (19).
Furthermore, H.pylori promotes gastric carcinogenesis by enhancing
interleukin (IL)-6-mediated autocrine and paracrine loops between
macrophages and gastric epithelial cells (20). Recent studies have also
linked H.pylori infection to an elevated risk of CRC (21-24). Notably,
CRC incidence decreases significantly following H.pylori eradication
(25). Ralser et al. found that Helicobacter pylori infection accelerates
tumorigenesis, concomitant with depletion of regulatory T (Treg)
cells and pro-inflammatory T cells, goblet cell deficiency, and STAT3
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pathway activation (26). Luo et al. further reported that H.pylori-
induced temperate phage expansion and microbiota interactions may
contribute to CRC pathogenesis (27). Our study found that H.pylori
infection rates were highest in CRC patients, followed by those with
CRA, and lowest in the normal group, suggesting a positive
correlation between infection and disease severity. This supports
the hypothesis that H. pylori may play a role in CRC development.

CD163 is predominantly expressed on monocytes and tissue
macrophages, Prior studies indicate that CD163" TAMs may
induce regulatory T cell expansion via IL-10/TGF-sl thereby
exhausting effector T cells. Numerous studies have reported that
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CD163 is increased in different cancers and is associated with poor
prognosis due to its tumor-promoting functions (28-30). For
example, Lira et al. demonstrated that M2-like macrophages
facilitate cervical cancer progression via the STAT3/NF-xB
pathway (31), whereas Ito et al. showed that in CRC, M2-like
macrophages enhance their resistance to oxidative stress through
the Nrf2/HO-1 axis, promoting survival in the TME (32). CD86 is
an immunophenotype associated with antitumor immune
modulation, Evidence suggests that CD86" TAMs may inhibit
CD8" T cell activation through PD-L1 co-expression. Teng et al.
reported that CASC19 transferred from M1-like macrophages to
colon cancer cells via exosomes inhibited tumor cell proliferation
and migration by targeting miR-410-3p (33). A reduction in M1-
like macrophages infiltration has also been associated with poor
prognosis in right-sided CRC patients (34). This study revealed
progressively elevated CD163" and CD86" TAMs levels in
colorectal tissues: normal mucosa < CRA < CRC, suggesting their
potential involvement in immune modulation during tumor
progression. These findings offer insights for developing potential
immunotherapeutic and prognostic strategies in CRC.

Several studies have suggested a link between H.pylori infection
and macrophage polarization. Peng et al. found that H.pylori induced
indoleamine 2,3-dioxygenase expression and M2-like polarization (14).
Lu et al. reported that in all stages of gastric lesions, patients who are
H.pylori-positive showed higher expression of CD86 and CD206
compared with H. pylori-negative individuals (13). our study found
elevated levels of CD163" and CD86" TAMs in H.pylori-infected
patients. This suggests that H.pylori may recruit TAMs through
specific pathways, with testable hypotheses including: (i) H.pylori
drives Treg-mediated immunosuppression by recruiting CD163"
TAMs, verifiable via mIF assessing spatial co-localization between
CCL19" epithelial cells and CD163" TAMs; (ii) CD86" TAMs in
CRC patients lose antigen-presenting capacity and undergo
transformation into a ‘pseudo-activated” state, testable through flow-
sorted CD86" TAMs co-cultured with CD8" T cells followed by PD-1
expression analysis. Thus, elevated CD163"CD86" TAM levels may
associate with T-cell dysfunction, though their causality and H.pylori’s
direct role require further validation.

Zhang et al. found that CD163" macrophages promote polyp
progression in pediatric patients by inhibiting T-cell responses via
TGEF-B production (35). Peyravian et al. showed that CD86
expression positively correlated with dysplasia in polyps (36). Our
univariate analysis indicated that patients with adenomas >1 cm or
multiple adenomas exhibited significantly higher expression of both
CD163" and CD86" TAMs. Multivariate regression further
confirmed this relationship: CD163" TAMs (B = 7545.441, 95% CIL:
5575.552 ~ 9515.329) and CD86" TAMs (B = 4488.870, 95% CI:
3477.967 ~ 5499.773) were significantly increased in patients with
larger adenomas. Our univariate analysis found that in CRC patients,
lower differentiation, advanced TNM stage, and lymph node
metastasis were associated with higher expression of CD163" TAM
and lower expression of CD86" TAM. Consistent with previous
studies (37, 38). These results suggest that TAMs expression reflect
disease severity and may contribute to assess malignancy risk. The
M2-like/M1-like macrophages ratio is a useful prognostic indicator,
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Fadhil et al. reported higher M2-like/M1-like macrophages ratios in
breast cancer patients than in controls (39), and Parekh et al. found
similar results in advanced oral submucous fibrosis and squamous
cell carcinoma (40). Our study further demonstrated a progressive
increase in the CD68"CD163"/CD68"CD86" ratio from normal
tissue through CRA to CRC, highlighting the role of macrophage
phenotypic switching and imbalance in TME homeostasis during
carcinogenesis. Additionally, the body mass index is a known risk
factor for CRC incidence and mortality (41). Obesity may enhance
macrophage activation by suppressing miR-192 expression (42). In
CRC groups, patients with obesity exhibited higher CD163" TAM
expression. Multivariate regression confirmed this association in
CRC (B = 16405.198, 95% CI: 11878.446 ~ 20931.949), suggesting
that obesity-induced TME changes may contribute to CD163" TAM
enrichment and tumorigenesis.

This study also has several limitations:(i) The single-center,
cross-sectional design precludes determination of the temporal
sequence and causal relationships between H.pylori infection and
TAMs;(ii) The relatively small sample size in the CRC cohort may
compromise the precision and statistical power of the multivariate
regression model. Although stepwise regression was employed to
mitigate overfitting, the findings should be interpreted with caution
and validated in larger cohorts;(iii) Elevated H.pylori prevalence
(~90%) in the CRC cohort risks overestimating its effects on TAMs
polarization, compromising findings’ generalizability;(iv) Reliance
on UBT as the sole detection method may introduce non-
differential misclassification, potentially attenuating effect sizes.
Due to sample size limitations, we could not quantify bias
severity by excluding high-risk misclassified subsets. Future
studies should incorporate H.pylori stool antigen testing to
comprehensively enhance diagnostic accuracy; (v) the coverage of
macrophage marker panels was limited; (vi) residual confounding
factors were not fully controlled, in addition, multiple comparisons
introduced statistical inference risks.

Future studies should: (i) Validate and refine the TAMs
differentiation model in expanded prospective cohorts stratified
by H.pylori infection status; (i) Establish a multimodal H.pylori
detection framework integrating stool antigen testing, PCR
genotyping, and culture verification; (iii) Spatially resolve TAM-
tumor cell crosstalk networks under H.pylori-positive conditions
using transcriptomics; (iv) Verify H.pylori-mediated TAMs
regulation via flow-sorted subpopulations and organoid co-
cultures targeting candidate pathways identified in (3).

In conclusion, this study found that CD163" and CD86" TAMs
are significantly increased in CRC and are associated with H. pylori
infection. Their expression correlates with lesion severity, indicating
a potential role in CRC pathogenesis. However, further studies are
warranted to elucidate their exact mechanisms in colorectal tumor
development and progression.
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