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Background: Acute myeloid leukemia (AML) is a highly heterogeneous
malignancy, with leukemic cell diversity contributing to disease progression
and treatment resistance. This study aimed to evaluate the functional and
prognostic significance of leukemic cell-related genes.

Methods: We analyzed single-cell RNA sequencing data to identify malignant
marker genes in AML. Consensus clustering was used to assess associations with
prognosis and immune responses. A prognostic model, the malignant leukemia
marker gene prognostic signature (MLAPS), was developed using 101 models
across 10 machine learning algorithms and validated in five independent cohorts.
Functional assays were conducted to explore the role of CD69.

Results: We identified a set of malignant marker genes significantly correlated
with prognosis and immune classification. The MLAPS showed strong predictive
performance, surpassing most clinical features and previously published
signatures. Experimental validation confirmed that CD69 promotes malignant
progression in AML.

Conclusion: This study highlights the clinical value of leukemic cell-specific
genes and presents MLAPS as a robust prognostic tool. CD69 may serve as a
potential therapeutic target in AML.

KEYWORDS
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Introduction

Acute myeloid leukemia (AML) is an aggressive blood cancer, characterized by the
abnormal proliferation of immature myeloid cells (1). These cells accumulate in the bone
marrow and bloodstream, disrupting the normal production of blood cells. Despite
advances in genomic and epigenetic research that have enhanced our understanding of
AML, the prognosis remains poor, particularly in older patients (1, 2). AML prognosis
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varies significantly depending on several factors, including the
patient’s age, overall health, genetic mutations, and response to
initial therapy. Older patients or those with adverse genetic
mutations tend to have worse outcomes. Even with intensive
treatment, the 5-year survival rate of <30% (3). New treatment
combinations, such as targeted therapies and immunotherapies, are
being explored to improve survival rates (4). In conclusion, while
there have been some advances in treating AML, significant
challenges remain. In the era of precision medicine, personalized
innovative therapies and the development of effective survival
models may be key to improving prognosis.

An ideal prognostic biomarker should demonstrate stable and
consistent expression across different AML patients, especially
within the various subtypes of the French-American-British
(FAB) classification. A biomarker that exhibits homogeneous
expression across subtypes can more effectively predict disease
progression and treatment outcomes. However, due to the high
heterogeneity of AML, single-gene biomarkers often fail to
accurately predict disease prognosis in all patients. Thus, a multi-
gene prognostic model has been considered a potential strategy to
address the issue of AML heterogeneity effectively. In recent years,
with the rapid advancements in molecular biology, genomics, and
bioinformatics, the gene expression characteristics of AML have
been explored in greater depth. Through large-scale data analysis,
researchers have identified a series of genes associated with AML
prognosis (4, 5). These gene signatures have not only been validated
in the laboratory but are also regarded as potential prognostic
biomarkers and therapeutic targets for AML. Multi-gene models
can integrate various gene information, revealing individualized
pathological characteristics of AML patients, thereby providing
more precise references for clinical decision-making. However,
despite the promising potential of multi-gene prognostic models,
their application in clinical practice still faces numerous difficulties
and challenges. First, existing AML transcriptome data have not
been fully utilized. Inappropriate application of machine learning
methods, coupled with a lack of rigorous validation across different
cohorts, has limited the ability to fully explore potential biomarkers,
restricting the accuracy and clinical applicability of these models. In
summary, while multi-gene prognostic models theoretically hold
promise as effective tools for addressing AML heterogeneity, there
remain significant challenges in model development, data
utilization, and cross-cohort validation.

To develop an ideal prognostic model, we identified malignant
cell marker genes in AML datasets by single-cell RNA sequencing
(scRNA-seq). Through in-depth analysis of its prognosis, immune
infiltration, and clinical features using 101 integrated machine
learning-based models, we developed and validated a machine
learning-based AML gene prognostic signature (MLAPS) across

Abbreviations: MLAPS, malignant leukemia marker gene prognostic signature;
CoxBoost, Boosting in Cox regression; Lasso, Least Absolute Shrinkage and
Selection Operator; plsRcox, partial least squares regression for Cox; RSF,
random survival forest; SuperPC, supervised principal components; GBM,
generalized boosted regression modeling; Enet, elastic network; survival-SVM,

survival support vector machine.
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multiple cohorts, which may help optimize precision treatment and
further improve the clinical outcomes of AML patients.

Materials and methods
Data collection and processing

We acquired the 6 independent public datasets in this work,
they were collected from multiple repositories including The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/), Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),
and Therapeutically Applicable Research To Generate Effective
Treatments (TARGET, https://www.cancer.gov/ccg/research/
genome-sequencing/target). Among the datasets, the RNA-seq
data was transformed into transcripts per kilobase million (TPM),
log2 transformed, and further removed batch effects. Finally, we
enrolled four datasets with completive OS information, TCGA-
LAML (n = 132), GSE37642 (n = 417), GSE12417 (n = 163), and
GSE106291 (n = 250) were used for construction and validation of
our prognostic model. The independent dataset GSE10358 (n = 91)
was used to verify the predicting value of MLAPS, and the acute
lymphoid leukemia dataset TARGET-ALL (n = 611) was used to
assess the applicability of our signature in other blood tumors.

Identification of malignant cell marker
genes

We downloaded the AML scRNA-seq dataset GSE116256 from
GEO, raw gene expression matrices were imported and processed
using the Seurat R package (6), and we set the parameters to remove
low-quality cells: min.cells = 3, nFeature_RNA > 50, percent.mt < 15.
We got a single-cell object and then standardized the data via
NormalizeData function. Then we performed FindVariableGenes
function to calculate high variable genes, and conducted ScaleData
and RunPCA to standardize the data and principal component
analysis (PCA) analysis, the clusters were found using FindClusters
function (dims.use = 1:30, resolution = 0.5). We conducted uniform
manifold approximation and projection (UMAP) analysis for
dimension reduction and visualization of marker gene expression.
Cell types were annotated based on the expression of marker genes.
To identify marker genes for each cell type, we employed the
FindAllMarkers function implemented in the Seurat package. This
function was used in conjunction with the Wilcoxon-Mann-
Whitney test to assess differential gene expression between a given
cell type and all other cell types. To ensure the robustness of marker
selection, we applied the following filtering criteria: (i) genes had to be
expressed in at least 10% of the cells within the tested cluster, (ii) only
genes with an adjusted P-value < 0.05 were retained, and (iii) genes
were further restricted to those with an absolute log fold change (|
logFC|) > 1. Genes meeting these thresholds were designated as
marker genes for subsequent analyses. Additionally, the CellChat
package (7) was utilized to identify over-expressed interactions in the
malignant bone marrow microenvironment.
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Consensus clustering

Based on the clustering of malignant cells marker gene profiles, we
utilized ConsensusClusterPlus R package (8) to classify patients in the
meta-cohort (TCGA-LAML, GSE37642, GSE12417, GSE106291, n =
962) into different subtypes. The optimal number of clusters was
determined using the cumulative distribution function (CDF) and
the relative change in the area under the CDF curve, resulting in the
construction of a consensus matrix.

Uni-Cox regression analysis

We utilized intersection genes to conduct univariate Cox
regression analysis in the four cohorts for building a prognostic
model. The consensus prognosis genes were filtered according to
the following criteria: P-value < 0.05 and | HR| >1.

Machine learning—based prognostic model
construction and validation

The 10 basic machine learning algorithms performed in this
research were CoxBoost (Boosting in Cox regression), Lasso (Least
Absolute Shrinkage and Selection Operator), Ridge, plsRcox (partial
least squares regression for Cox), RSF (random survival forest),
SuperPC (supervised principal components), GBM (generalized
boosted regression modeling), stepwise Cox, Enet (elastic network),
survival-SVM (survival support vector machine). Additionally, several
of the algorithms, including Lasso, RSF, stepwise Cox, and CoxBoost,
incorporated feature selection functions. The 10 machine learning
algorithms were integrated into 101 model combinations, Harrell's
concordance index (C-index) was calculated for each model across all
validation datasets. TCGA-LAML, GSE37642, GSE12417, and
GSE106291 were each split into training and test cohorts at a 3:1
ratio and used for constructing the optimal model. With the optimal
model Machine learning-based AML prognosis signature (MLAPS),
patients were classified into high-risk and low-risk groups according to
the median risk scores obtained from the four independent validation
cohorts. The prognostic significance and predictive performance of the
optimal model were evaluated through receiver operating characteristic
(ROC) curves and Kaplan-Meier (KM) survival curves. Moreover,
GSE10358 and TARGET-ALL were used as independent validation
cohorts to further assess the accuracy of MLAPS.

GO, KEGG, GSEA

In this study, we used clusterProfiler R package for enrichment
analysis (9). Gene Ontology (GO) analysis is widely used to
annotate various genes and shed light on their associated
functions. Additionally, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database is a valuable tool for integrating
genomic data, aiding in the examination of gene functions and
expression patterns. To pinpoint statistically significant gene sets,
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Gene Set Enrichment Analysis (GSEA) was performed. In this
analysis, a threshold of P < 0.05 was set to determine statistical
significance for GO, KEGG, and GSEA results.

Tumor immune microenvironment

Single-sample gene set enrichment analysis (ssGSEA)
implemented in GSVA package was utilized to quantify the
relative infiltration of 28 immune cell types in the Meta cohort
(TCGA-LAML, GSE37642, GSE12417, GSE106291, and
GSE10358). ESTIMATE algorithm was performed to verify the
tumor immune microenvironment results.

Data availability statement

The original data supporting the findings of this study are
available within the article. Any additional questions or requests for
further clarification on the data can be addressed by contacting the
corresponding authors. The public data utilized in this study can be
accessed through the TCGA Research Network portal (https://
portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/).

Cell culture and infection

K562 cells and Kasumi-1 cells were maintained in RPMI-1640
medium supplemented with 20% fetal bovine serum (FBS)(GIBCO)
at 37°C and 5%CO2. Lentiviral particle was produced in HEK293T
cells by using psPAX2 and pMD2.G helper vectors. We used
lentivirus containing CD69-specific interference sequences or
scramble fragments to infect with AML cell lines K562 and
Kasumi-1. After 48 hours of infection, GFP+ cells were sorted by
flow cytometry. The cell lines used in this experiment were gifted by
Professor Jianxiang Wang’s laboratory.

Western blot

Lysates were prepared using RIPA lysis buffer (Beyotime,
Shanghai, China) with a proteinase inhibitor (Roche, Basel,
Switzerland). After lysis on ice for 30 mins, the supernatant was
collected. Antibodies were used as follows: CD69 Rabbit pAb
(ABclonal, A2045, 1:1000, Wuhan, China), GAPDH Mouse mAb
(ABclonal, AC002, 1:1000, Wuhan, China).

RNA extraction and RT-qPCR

RNA extraction was performed using TRIzol Reagent
(Invitrogen, USA) following the manufacturer’s instructions. RT-
qPCR was performed using a HiScript III 1st Strand cDNA
Synthesis Kit (Vazyme, China) and SYBR®Green Realtime PCR
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Master Mix (TOYOBO, JAPAN) according to the manufacturer’s
instructions. GAPDH was used as the endogenous control.

Cell proliferation assay

Cell proliferation was measured using Cell Counting Kit (CCK-8)
(Beyotime, Shanghai, China).2x10> cells were seeded into each well of a
96-well plate, transfected with the specified siRNA, and incubated for
1d, 2d, 3d, 4d, 5d, 6d, 7d and 8d respectively. Two hours before the end
of the incubation, 10 pl CCK-8 reagent was added to each well. The
optical density (OD) at 450 nm (OD450nm) was measured using a
microplate reader.

Resuspend 1x1043 cells in 300 pl culture medium MethoCult™™
H4535 (STEMCELL, Canada) and seed them into a 24-well plate.
The colony number was counted 14 days after plating.

5-Ethynyl-2'-deoxyuridine (EdU) analysis was performed using the
BeyoClickTM EdU Cell Proliferation Kit with Alexa Fluor 594(Beyotime,
Shanghai, China) according to the manufacturer’s instruction.

Flow cytometric analysis

Cell apoptosis was assessed with flow cytometry Cell cycle stage
was assessed with flow cytometry and measured DNA content after
incubation with RNase A and propidium iodide (PI). Apoptosis was
performed by using annexin V-FITC/PI Apoptosis Detection Kit
(Yeasen Biotech). For differentiated cells assay, cells were incubated
on ice for 30min in the dark with antibodies as follows: PE-anti-human
CD11b (Biolegend, USA), APC-anti-human CD14 (Biolegend, USA).

Murine MLL AF9 leukemia model
construction and treatment

A transplantable MLL-AF9-inducible murine AML model was
generated as previously reported (10). In brief, Lin- cells were isolated
from the bone marrow (BM) of 8-week-old wild-type (WT) C57BL/6
mice and transduced with MSCV-MLL-AF9-IRES-GFP retrovirus. A
total of 5x105 infected cells were then transplanted into sublethally
irradiated (4.5 Gy) C57BL/6 recipient mice via tail vein injection. On
day 7 post-transplantation, the mice were randomly assigned into two
groups, with one group receiving 4 mg/kg of BTK-IN-8 and the other
PBS, administered every other day for 12 days. All animals were
euthanized on day 19, and leukemia burden in peripheral blood, spleen,
and BM was evaluated by flow cytometry (FACS). All the mouse
experiments were approved (the reference number is THCAMS-
DWLL-NSFC2024126-1) by the TACUC of the Institute of
Haematology, Chinese Academy of Medical Science.

Statistical analysis

All data preprocessing, analysis, and result visualization in this
study were carried out using R version 4.3.0 or Prism9. Continuous
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variables were evaluated using either the Wilcoxon rank-sum test or
Student’s t-test. Categorical variables were analyzed statistically
using either the Chi-square test or Fisher’s exact test. Univariate
and multivariate Cox regression, along with Kaplan-Meier survival
analysis, were conducted using the survival package. The timeROC
package was applied to generate both ROC and calibration curves.
P < 0.05 was considered statistically significant. Wet experiments,
including WB, cell migration, colony formation, and EdU cell
proliferation assays, have been performed in triplicate.

Results

Identification of AML cell marker genes by
scRNA-seq

The research graphic workflow is displayed in Figure 1. We
downloaded the scRNA-seq dataset from the GEO database
(GSE116256) (11), which includes 36 AML samples. We retained
31,815 cells for further downstream analysis after quality control.
We conducted dimensionality reduction and clustering using
UMAP (Figure 2A). The cells were classified into 10 distinct cell
types (Figure 2B, Supplementary 1A, B), each identified by validated
marker genes: malignant cells were marked with S100A9 and
SRGN; LSCs were marked with FLT3 and CEP70; Monocytes
were marked with SRGN and CXCLS; T cells were marked with
IL7R and EST1; NK cells were marked with CCL5 and GNLY; B
cells were marked with IGLL5 and JCHAIN; NuEry were marked
with HBA2 and HBB. Through cell-cell communication analysis,
we identified the most prominent receptor-ligand pairs (P < 0.01)
among various cell types within the AML bone marrow
microenvironment (Figures 2C-E). LSC cells exhibited cell-cell
communication with NK and T cells (Sup 1.C), and NK cells
showed the highest signal strength in both outgoing and
incoming communication (Figures 2F, G). We categorized the
incoming signals of target cells into four patterns, while the
outgoing signals of secreting cells were divided into three patterns
(Sup 1.D-E), identifying pattern-associated signals (Figures 2H, I).
Pattern-related signals play an important role in immune responses,
such as MHC-I and CD99 (12, 13). Through the above analysis, we
identified the marker genes of AML cells (Malignant and LSC) and
concluded that the infiltration of immune cells plays a crucial role in
shaping the AML bone marrow microenvironment.

Consensus clustering based on AML
marker genes and their relationship with
prognosis

We obtained 621 intersected marker genes by intersecting the
marker gene of AML in scRNA-seq and the gene in four
independent cohorts, we conducted consensus clustering (8) on
AML samples from four independent cohorts (TCGA-LAML,
GSE37642, GSE12417, GSE106291) with the marker gene set,
testing cluster numbers (k) ranging from 2 to 6 (Figures 3A, B).
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The workflow of our research.

Based on the cumulative distribution function (CDF) curves derived
from the consensus score matrix heatmap, the optimal number of
clusters was determined to be k = 2 (Figure 3B). A total of 415
patients were assigned to the C1 group, while 566 patients were
assigned to the C2 group, the survival analysis demonstrated that
the C2 group had a worse prognosis compared to the C1 group
(Figure 3C). We performed GO and KEGG enrichment analyses on
the differentially expressed genes that were upregulated in the C2
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group compared to the C1 group. The results showed that pathways
related to DNA replication and the cell cycle were enriched in the
C2 group, with significant upregulation of proliferation and
metabolism-related pathways, such as the p53 and PI3K/Akt
pathways (Figures 3D, E), and the above findings suggested that
patients with stronger proliferative capacity of AML cells tend to
have a poorer prognosis (14, 15). Additionally, the enrichment of
immune response-regulating signaling pathway indicates that the
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Cellgroups Pattems Patterns Signaling

The overview of the AML bone marrow microenvironment. (A) UMAP plot shows the cell type identification of filtered high-quality cells from AML
patients’ bone marrow samples. Data from GSE116256. (B) Bubble plot illustrates the average expression levels and the percentage of cells
expressing the top DEGs in each cell cluster. (C) Cellchat bubble plot illustrated all the cell communication pathways. (D) Chord plot shows the
inferred intercellular communication network in the AML bone marrow microenvironment. (E) Circle plot presents the interaction number between
each cell type. The line width represented the interaction number. (F, G) NK cells are active in both sending and receiving signals, while LSCs,
malignant cells, and other immune cells are only active in signal sending. Normal myeloid and erythroid cells are not active in cell communication.
(H, 1) The river plot illustrates the correspondence between cell types and patterns, as well as the patterns’ associated signaling molecules.

tumor immune microenvironment plays a critical role in AML
patients. However, the influence of immune responses within the
AML bone marrow microenvironment on tumor promotion or
suppression requires further analysis. Subsequently, we performed a
preliminary univariate Cox regression analysis (P < 0.05, [HR| > 1),
which identified prognosis-related genes for constructing a machine
learning signature (Figure 3A). Our signature genes underwent
several rounds of screening, and the optimal model was chosen
from 101 algorithms. This approach produced the Machine
learning-based AML prognosis signature (MLAPS) with better
extrapolation potential, ensuring reliable performance across
different AML patient populations and enhancing its
clinical relevance.
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Integrative construction of an AML
prognostic signature based on machine
learning

To develop an AML prognostic signature, we used 101 machine
learning models, including 10 basic algorithms: CoxBoost, Lasso,
Ridge, plsRcox, RSF, SuperPC, GBM, stepwise Cox, Enet, survival-
SVM (16, 17). The meta cohort (the four independent AML cohorts
mentioned above) with the filtered prognostic genes was subjected
to our machine learning-based integrative procedure to develop an
AML prognostic signature (MLAPS). We applied the LOOCV
(Leave One Out Cross Validation) framework to fit 101 different
prediction models and computed the C-index for each model across
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Prognostic association of malignant marker genes. (A) The process of selecting prognostic genes for the constructing model. (B) Consensus
clustering analysis based on malignant marker genes from AML scRNA-seq dataset, samples from four bulk RNA-seq datasets (TCGA-AML,
GSE106291, GSE12417, GSE37642, n = 962) are divided into subgroups. The CDF curves of consensus matrix for each k, the clustering results are
optimal when k=2. (C) Kaplan—Meier curves for overall survival (OS) in C1 and C2. (D) Cnetplot of GO pathways derived from highly expressed DEGs
in C2 group shows enrichment in pathways. (E) Bar plot of KEGG pathways derived from highly expressed DEGs in C2 group indicates a significant

association between these genes and cell proliferation functions.

all validation cohorts. Notably, the most optimal model was RSF
with the highest average C-index (0.732), and the model achieved
the leading C-index across all validation cohorts (Figure 4A). As the
number of survival trees increased, the error rate curve eventually
plateaued, indicating that the number of trees in the RSF model was
appropriate and sufficient for accurate predictions (Figure 4B). This
stabilization of the error rate suggests that adding more trees would
not significantly improve the model’s performance. Additionally,
we presented the importance of each prognostic gene within the
model, demonstrating how individual genes contribute to the
overall survival prediction (Figure 4B). By evaluating the variable
importance of these genes, we can gain insights into the key factors
driving survival outcomes in AML patients. ROC analysis was
performed to evaluate the discriminative ability of the MLAPS
model in predicting patient survival outcomes. The area under the
curve (AUC) values for 1-, 2-, and 3-year survival predictions were
0.75, 0.772, and 0.798, respectively, in the meta cohort (Figure 4C).
These AUC values indicate that the MLAPS model demonstrates
strong predictive performance over time, with increasing accuracy
as the prediction horizon extends. Using the median MLAPS score
as the cutoff value, all patients were stratified into high-risk and low-
risk groups. As shown in Figures 4D-H, patients in the high-risk
group exhibited significantly worse overall survival (OS) compared
to those in the low-risk group across the meta cohort and all four
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individual cohorts (P < 0.05 in each case). These findings suggest
that the MLAPS model is a robust predictor of patient prognosis,
effectively differentiating between individuals with higher and lower
survival probabilities. The clear survival disparity between the two
risk groups underscores the utility of MLAPS in risk stratification
and its potential application in clinical decision-making.

Validation of the MLAPS model

To further validate the performance of the MLAPS model in our
study and to mitigate the risk of overfitting in the prognostic model,
we employed an independent dataset (GSE10358, n = 91) as the
validation cohort. This external validation step is critical for
assessing the generalizability of the MLAPS model beyond the
meta cohort. The KM analysis for OS demonstrated that the high
MLAPS group possessed significantly shorter survival in the AML
validation cohort (Figure 5A). the ROC curves were plotted and the
AUC was calculated at 1-, 2-, and 3-years were 0.899, 0.84, 0.851
(Figure 5B). GSEA was applied to elucidate the potential functional
pathways of MLAPS in the high-score group of meta and validation
cohorts. As illustrated in Figure 5C, the high MLAPS group was
remarkably enriched for proliferate and metabolism-related
pathways, such as E2F transcription factor targets, MYC targets,
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and mTORCI signaling, which partly explained its more advanced
grades and worse prognosis (18, 19). Additionally, to further assess
the predictive performance of MLAPS, we used the TARGET-
ALLP2 dataset (n
investigate its predictive capability in lymphoid leukemia. KM
analysis indicated that the high MLAPS group also exhibited
shorter overall survival in ALL (acute lymphoblastic leukemia)

83) as another validation cohort to

(Figure 5G). ROC analysis measured the discrimination of
MLAPS, with 1-, 2-, and 3-year AUCs of 0.609, 0.777, and 0.866
(Figure 5H). By testing the model on the separate datasets, we can
ensure its predictive accuracy holds across different patient
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populations, reinforcing the robustness and reliability of MLAPS
as a prognostic tool for AML.

Evaluation of the MLAPS model

To assess the prognostic performance of MLAPS, we included
the AML validation cohort for both univariate and multivariate Cox
regression analyses. The results demonstrated that MLAPS is an
independent risk factor for OS, with a hazard ratio (HR) of 2.82
(95% CI: 2.01-3.96, P < 0.01, Figure 5D). This indicates that
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Validation in independent acute leukemia cohorts. (A) KM curves of OS in the AML validation cohort (GSE10358) based on the model showed longer
survival time in low-risk groups. (B) ROC curves present 1-, 2-, and 3-year OS in the AML validation cohort (GSE10358). (C) The top 5 Hallmark-
enriched pathways in the High MLAPS groups. (D) Multivariable Cox regression analysis of OS in GSE10358. Statistic test: two-sided Wald test. Data
are presented as hazard ratio (HR) + 95% confidence interval (Cl). (E) The predictive performance of MLAPS was compared to common clinical and
molecular variables in the GSE10358 dataset. *P < 0.05; **P < 0.01. (F) Comparison between MLAPS and previously published signatures. (G) KM
curves of OS in the ALL validation cohort (TARGET-ALL). (H) ROC curves present 1-, 2-, and 3-year OS in the ALL validation cohort (TARGET-ALL)

and the predict value in other blood cancers.

patients with higher MLAPS scores are at significantly increased
risk of poor survival outcomes, independent of other clinical
variables. In addition, we calculated the C-index for MLAPS,
along with other clinical factors including Age, Sex, FAB
classification, Cytogenetics, BM Blast count, PB WBC count, and
PB Blast count (Figure 5E). Among these, MLAPS demonstrated
the highest C-index at 0.806 (95% CI: 0.634-0.908), indicating its
superior predictive accuracy for overall survival. Comparisons
between MLAPS and other clinical variables revealed statistically
significant differences, with P-values less than 0.05 in each case.
These results highlight the robust prognostic power of MLAPS
compared to traditional clinical indicators in AML. We conducted a
comparison of gene expression-based prognostic signatures in AML
(20-23) (Figure 5F), and while most models performed well within
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their respective training datasets, they lacked validation in
independent external cohorts. This limitation is likely due to the
reduced generalizability of models that are overfitted to their
training data (23). This underscores the importance of validating
prognostic models in external cohorts to ensure their broader
applicability and reliability in clinical settings.

The immune landscape and molecular
mechanisms of MLAPS
In the above GO and KEGG enrichment analyses, immune

response-related pathways were enriched in the high-risk group
(Figures 3D, E). To further explore this, we investigated the immune
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landscape and expression of immune checkpoint molecules (ICMs)
between the high and low MLAPS groups across five cohorts
(GSE106291, GSE12417, GSE37642, TCGA-AML, and
GSE10358). Using single-sample gene set enrichment analysis
(ssGSEA), we observed that the low MLAPS group exhibited
significantly higher infiltration of anti-tumor immune cells,
including activated T cells, central memory T cells, effector
memory T cells, activated dendritic cells, and natural killer cells
(all P < 0.05, Figures 6A, C). According to the ESTIMATE
algorithm, aside from stromal score, the low and high MLAPS
groups showed significant differences in both Immune Score and
Estimate Score (P < 0.01, Figure 6B). Furthermore, analysis of 21
ICMs revealed that the high MLAPS group had markedly elevated
expression levels of key immune checkpoint molecules, such as
CTLA4, HHLA2, ICOS, PDCDILG2, VICN1, CD40, and CD70
(Figure 6D). Together, these findings suggest that the high MLAPS
group is more likely to benefit from immunotherapy, and targeting
immune-related factors may serve as an effective therapeutic
strategy to improve the prognosis of high-risk AML patients.
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CD69 promotes the malignant progression
of AML cells

AML is a malignant hematologic tumor characterized by the
abnormal proliferation of immature myeloid cells in the bone
marrow and peripheral blood (1). Therefore, we hypothesized
that the upregulated genes in our model are valuable for
understanding the malignant progression of AML cells.
Consistent with our expectations, an extensive literature review
revealed that most of these upregulated genes play critical roles in
AML progression and prognosis. CD69 has been identified as a
biomarker that promotes the malignant progression of various
cancers (24) and is highly expressed in AML (25). CD69
demonstrated a relatively high variable importance within the
prognostic model (Figure 4B). In the AML cohort, CD69
expression was positively correlated with the immune
microenvironment abundance of pro-cancer immune cells,
including CD56%™ natural killer cells, immature dendritic cells,
and MDSCs (Supplementary Figure S2). Additionally, CD69 was
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highly expressed in the high MLAPS group across five combined
AML cohorts (Figure 7A). However, despite its recognized
overexpression, the precise function of CD69 in AML remains
elusive. Further research is required to elucidate its specific role in
the disease, which may provide new insights into the molecular
mechanisms underlying AML progression. To bridge this
knowledge gap, we established CD69 knockdown cell lines using
two AML cell lines, K562 and KASUMI-1, through shRNA
lentiviral transduction (Figure 7B). In the CCK-8 assay, we
observed a significant reduction in cell viability in CD69
knockdown (sh-CD69) AML cell lines (Figure 7C). Furthermore,
cell cycle analysis revealed a marked increase in the proportion of
cells in the G2/M phase in the sh-CD69 AML cells (Figure 7D),
suggesting that CD69 depletion may impair cell proliferation by
inducing cell cycle arrest at the G2/M phase (Figures 3D, E, 7D).
Flow cytometric analysis was performed to assess the frequency of
apoptosis in AML cells expressing either Scramble ShRNA (Scr) or
sh-CD69, Annexin V staining was used to identify and quantify
apoptotic cells, the results indicated a higher proportion of
apoptotic cells in the sh-CD69 group (Figure 7E). To further
validate the results from the CCK-8 cell proliferation assay, we
conducted an EdU incorporation experiment, which allowed us to
visualize the proliferation status of AML cells by detecting newly
synthesized DNA. As illustrated in Figures 7F-I, the EAU positivity
rate decreased in the CD69 knockdown AML cells, indicating a
reduction in newly synthesized DNA. Additionally, in colony
formation assays, we found that the low expression of CD69 also
significantly diminished the colony-forming ability of AML cells
(Figures 7L-O). Notably, CD69 knockdown resulted in a significant
increase in the frequency of CD11b and CD14 positive cells in
K562 cells, as well as an increase in CD14 positive cells in
KASUMI-1 cells. Furthermore, we observed that the KASUMI-1
cell line exhibited poor staining for CD11b during the
immunophenotyping process, suggesting either reduced
accessibility of the CD11b antigen on the cell membrane or
overall low expression levels (Figures 7H-L). These findings
highlight the potential role of CD69 in promoting AML cell
survival and malignant proliferation, further supporting the role
of CD69 in regulating cell survival and highlighting its potential as a
therapeutic target in AML.

In vivo efficacy of BTK-IN-8 treatment in
MLL-AF9 leukemia mouse models

BTK (Bruton’s tyrosine kinase) is an essential tyrosine kinase
primarily expressed in various immune cells. BTK inhibitors
selectively suppress the kinase activity of BTK, a mechanism that
effectively reduces the growth and spread of hematologic tumor
cells (26). BTK-IN-8 demonstrates strong targeting activity against
CD69 (27). The in vivo efficacy of BTK-IN-8 was evaluated using
the MLL-AF9 leukemia mouse model, where two treatment arms
were implemented: a control vehicle group and a BTK-IN-8
treatment group (4 mg/kg daily) (Figure 7P). Leukemia burden
was assessed across multiple sites, including bone marrow, spleen,
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and peripheral blood, at several time points (D3, D6, D10, and
D19). In addition, the survival rates of the mice were monitored and
compared between the two groups. Flow cytometry analysis was
used to quantify the percentage of GFP-positive leukemia cells in
the bone marrow, spleen, and peripheral blood (Figure 7Q). In both
the vehicle (Scr) and BTK-IN-8 treated groups, there was a
significant reduction in GFP-positive leukemia cells in the
peripheral blood and bone marrow following BTK-IN-8
administration. Specifically, at days D3, D6, D10, and D19, the
percentage of GFP-positive cells in the drug treatment group was
notably lower compared to the Scr group, suggesting effective
clearance of leukemia cells (Figure 7S). Additionally, the spleen
size of mice in the BTK-IN-8 treatment group was significantly
reduced compared to the Scr group (Figure 7R), which further
indicates the therapeutic potential of BTK-IN-8. The survival curves
of the two groups clearly demonstrated an extended survival time in
the BTK-IN-8 treated group, with a significant improvement in
overall survival compared to the control (Figure 7T, P<0.01). These
findings provide strong evidence supporting the efficacy of BTK-IN-
8 as a potential therapeutic agent for MLL-AF9 leukemia.

Discussion

In this study, we present the first comprehensive exploration of
the relationship between prognosis-related gene signatures, overall
survival, and potential target genes in AML (1, 5). Our findings
highlight the limitations of traditional prognostic markers, such as
FAB classification, bone marrow blasts (BmBlast), and peripheral
blood blasts (PbBlast), in accurately assessing AML prognosis and
determining optimal treatment timing. These conventional markers
fail to account for the molecular heterogeneity of AML and lack the
precision needed for personalized therapy, potentially leading to
overtreatment or undertreatment of patients (28, 29). Given these
challenges, our study underscores the urgent need for more robust,
data-driven models that integrate clinical and molecular features for
better risk stratification and therapeutic decision-making in AML.

Through a comprehensive single-cell RNA sequencing (scRNA-
seq) analysis, we identified 621 malignant marker genes associated
with AML. Consensus clustering of AML patients from the TCGA
and GEO cohorts revealed significant enrichment in immune
response and cell proliferation pathways in the high-risk group.
Most existing AML prognostic models rely on subjective choices of
algorithms, whereas the 101-machine-learning-algorithm
framework provides an objective approach to identify the most
suitable method for prognostic prediction in AML cohorts. To
further refine our findings, we constructed and validated a
prognostic model, MLAPS, using 101 machine learning algorithm
combinations across four independent AML cohorts. Although the
conventional FAB classification can guide the determination of
different treatment strategies, it fails to account for the molecular
heterogeneity of AML and lacks universal applicability in
prognostic prediction. MLAPS eftectively compensates for these
shortcomings. MLAPS demonstrated superior predictive
performance compared to common clinicopathological features
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CD69 promotes malignant proliferation and apoptotic escape of AML cells. (A) Boxplot compares CD69 expression of the high and low MLAPS
groups. (B) Western blot and gPCR showed CD69 KD efficiency in K562 and KASUMI-1 cells after transduction with shRNA lentiviruses targeting
CD69. (C) In the CCK-8 assay, the cell viability of sh-CD69 AML cells was diminished. (D) Cell cycle analysis revealed that the proportion of G2/M
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KASUMI-1 cells expressed Scramble shRNA (Scr). ***P < 0.001. (L-O) Colony formation assay assessing the colony-forming ability of K562 and
KASUMI-1 cells. (P) In vivo efficacy estimation of BTK-IN-8 treatment. MLL-AF9 leukemia mouse models 2 arms of treatment were applied as
vehicle, BTK-IN-8 4mg/kg daily. Leukemia burden in bone marrow, spleen, and peripheral blood at each observational timepoint and overall survival
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and existing prognostic markers, highlighting its potential as a
valuable tool for AML prognosis and risk stratification. In other
solid tumors, the average highest C-index among 101 combination
models often arises from combinations of two models with
dimensionality reduction, which may offer better extrapolation
potential (16, 17). However, in our research, the best-performing
model is the RSF model, with the LASSO-RSF combination ranking
second in terms of average C-index. One possible explanation is
that LASSO, a linear regression method used for sparse feature
selection, applies L1 regularization to shrink certain regression
coefficients to zero, thereby selecting the most representative
features. However, in the actual AML cohort data, LASSO may
tend to select only a small number of variables (30, 31). If multiple
features contribute similarly to the prognostic model, LASSO might
retain only some of them, potentially excluding other informative
features (30, 31). In the context of survival analysis for AML, some
important features may be discarded due to regularized in LASSO,
which could explain the performance drop in the LASSO-RSF
combination. The RSF model demonstrated the highest C-index
(concordance index, a key metric for evaluating the predictive
accuracy of survival models, reflecting the consistency between
predicted and observed survival rankings, with values ranging
from 0.5 to 1.0, where higher values indicate stronger
discriminatory ability), and it also exhibited robust predictive
performance in other independent validation cohorts. Therefore,
through an objective prognostic gene selection strategy and the
training of 101 models, we identified RSF as the optimal base model
for constructing MLAPS.

Interestingly, we observed that the high MLAPS group not only
had a poorer prognosis but also exhibited a higher immune score,
suggesting potential immune dysregulation within this cohort.
Specifically, this implies a reduced abundance of natural killer
(NK) cells and activated T cells in the tumor microenvironment,
which could indicate the presence of immunosuppressive
mechanisms contributing to the adverse prognosis (32, 33). This
finding warrants further investigation into the specific immune
pathways and regulatory factors involved, as such insights could
inform future therapeutic strategies aimed at enhancing anti-tumor
immunity in AML.

One of the key immune-related findings in our study was the
identification of CD69 as a critical marker. CD69 is an early
activation marker on various immune cells, playing a significant
role in immune response regulation, inflammation, and lymphocyte
tissue retention (34). While CD69 has been implicated in promoting
anti-tumor immune responses in several solid tumors by regulating
NK cell activity, it may also contribute to immune evasion by
enhancing the suppressive function of regulatory T cells (Tregs),
thereby limiting the activity of effector T cells (24, 35). In our
MLAPS model, CD69 was ranked among the top variables in terms
of importance, highlighting its potential relevance in AML
prognosis and progression. Previous studies have reported the
presence of CD69+ hematopoietic stem cell (HSC)-like leukemia
subpopulations across various AML subtypes, associated with poor
genetic profiles and clinical outcomes (25). However, our research
provides a more in-depth analysis of CD69’s biological role in AML.
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We demonstrated that low expression of CD69 in AML cells leads
to reduced proliferation and increased apoptosis, as evidenced by
assays on colony formation, DNA replication, cell cycle progression,
differentiation markers, and apoptotic activity. These findings
suggest that CD69 could serve as a therapeutic target in AML.
Furthermore, we explored the potential of BTK-IN-8, a novel anti-
leukemia agent with CD69 inhibitory activity (26), which showed
promising results in AML mouse models. However, further clinical
trials are needed to confirm the efficacy of CD69-targeting therapies
in AML patients.

Although this study incorporated large-scale, multi-center AML
cohorts with strong representativeness and a certain degree of statistical
robustness, several limitations remain. First, most publicly available or
collaboratively obtained real-world or clinical trial AML cohorts lack
systematic and detailed documentation of chemotherapy-related
information, such as specific intensive chemotherapy regimens, dose
intensity, number of treatment cycles, and tolerance to adverse effects.
This limitation hinders precise validation of the model’s predictive
performance under different treatment strategies. Second, the proposed
MLAPS model was primarily validated in the overall population, and
its applicability within treatment-stratified subgroups remains to be
clarified. For example, whether the model’s high- and low-risk
stratification can effectively distinguish prognostic differences in
patients receiving conventional intensive chemotherapy, and whether
the model retains comparable predictive value in patients treated with
less-intensive regimens (e.g., Venetoclax combined with
hypomethylating agents), are questions for which sufficient evidence
is currently lacking. Future research, incorporating prospectively
collected treatment-related data, will be essential to further assess the
model’s generalizability and clinical utility across treatment contexts of
varying intensity. In addition, this study revealed that CD69 expression
in AML patients may have prognostic relevance; however, its biological
and clinical significance under different therapeutic settings remains
unclear. Specifically, in the context of intensive chemotherapy, it
remains to be determined whether CD69 expression levels could
serve as an additional biomarker to refine risk stratification or reflect
differential sensitivity to chemotherapy. Likewise, under less-intensive
regimens, whether CD69 expression retains independent
discriminatory value, or instead exerts its influence only within
particular molecular subtypes, is not yet established. Future studies
integrating single-cell sequencing, functional experiments, and
treatment cohort outcome analyses will be needed to systematically
elucidate the role and clinical potential of CD69 in AML under diverse
therapeutic settings.

While MLAPS shows significant clinical promise for predicting
AML prognosis, several limitations in this study must be addressed.
First, all datasets used were derived from publicly available AML
databases, and the model’s validation should ideally be extended to
prospective, multicenter studies to ensure its broader applicability.
Additionally, certain clinical and molecular features in public
datasets may be incomplete or unreliable, potentially impacting
the accuracy and robustness of the model’s associations (36). These
limitations highlight the need for more comprehensive validation to
ensure the generalizability and accuracy of MLAPS across diverse
clinical settings.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1649594
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yan et al.

Conclusion

Our comprehensive prognostic signature marks a substantial
improvement over previous models by integrating machine
learning algorithms with multiple independent validation cohorts.
The robust performance and wide applicability of our model across
diverse datasets highlight its reliability and strength as a clinical
tool. Once validated in clinical settings, MLAPS has the potential to
significantly enhance treatment strategies by pinpointing patients at
risk of aggressive disease progression and poor outcomes under
standard therapies. Additionally, we identified CD69 as a key
molecule in AML progression, with promising potential as a
therapeutic target for AML. Taken together, MLAPS offers a
highly adaptable platform that can enhance risk stratification,
prognostic accuracy, and therapeutic target identification,
ultimately aiding in the improved clinical management of
AML patients.
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