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Background: Acute myeloid leukemia (AML) is a highly heterogeneous

malignancy, with leukemic cell diversity contributing to disease progression

and treatment resistance. This study aimed to evaluate the functional and

prognostic significance of leukemic cell-related genes.

Methods: We analyzed single-cell RNA sequencing data to identify malignant

marker genes in AML. Consensus clustering was used to assess associations with

prognosis and immune responses. A prognostic model, the malignant leukemia

marker gene prognostic signature (MLAPS), was developed using 101 models

across 10 machine learning algorithms and validated in five independent cohorts.

Functional assays were conducted to explore the role of CD69.

Results: We identified a set of malignant marker genes significantly correlated

with prognosis and immune classification. The MLAPS showed strong predictive

performance, surpassing most clinical features and previously published

signatures. Experimental validation confirmed that CD69 promotes malignant

progression in AML.

Conclusion: This study highlights the clinical value of leukemic cell-specific

genes and presents MLAPS as a robust prognostic tool. CD69 may serve as a

potential therapeutic target in AML.
KEYWORDS
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Introduction

Acute myeloid leukemia (AML) is an aggressive blood cancer, characterized by the

abnormal proliferation of immature myeloid cells (1). These cells accumulate in the bone

marrow and bloodstream, disrupting the normal production of blood cells. Despite

advances in genomic and epigenetic research that have enhanced our understanding of

AML, the prognosis remains poor, particularly in older patients (1, 2). AML prognosis
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varies significantly depending on several factors, including the

patient’s age, overall health, genetic mutations, and response to

initial therapy. Older patients or those with adverse genetic

mutations tend to have worse outcomes. Even with intensive

treatment, the 5-year survival rate of <30% (3). New treatment

combinations, such as targeted therapies and immunotherapies, are

being explored to improve survival rates (4). In conclusion, while

there have been some advances in treating AML, significant

challenges remain. In the era of precision medicine, personalized

innovative therapies and the development of effective survival

models may be key to improving prognosis.

An ideal prognostic biomarker should demonstrate stable and

consistent expression across different AML patients, especially

within the various subtypes of the French-American-British

(FAB) classification. A biomarker that exhibits homogeneous

expression across subtypes can more effectively predict disease

progression and treatment outcomes. However, due to the high

heterogeneity of AML, single-gene biomarkers often fail to

accurately predict disease prognosis in all patients. Thus, a multi-

gene prognostic model has been considered a potential strategy to

address the issue of AML heterogeneity effectively. In recent years,

with the rapid advancements in molecular biology, genomics, and

bioinformatics, the gene expression characteristics of AML have

been explored in greater depth. Through large-scale data analysis,

researchers have identified a series of genes associated with AML

prognosis (4, 5). These gene signatures have not only been validated

in the laboratory but are also regarded as potential prognostic

biomarkers and therapeutic targets for AML. Multi-gene models

can integrate various gene information, revealing individualized

pathological characteristics of AML patients, thereby providing

more precise references for clinical decision-making. However,

despite the promising potential of multi-gene prognostic models,

their application in clinical practice still faces numerous difficulties

and challenges. First, existing AML transcriptome data have not

been fully utilized. Inappropriate application of machine learning

methods, coupled with a lack of rigorous validation across different

cohorts, has limited the ability to fully explore potential biomarkers,

restricting the accuracy and clinical applicability of these models. In

summary, while multi-gene prognostic models theoretically hold

promise as effective tools for addressing AML heterogeneity, there

remain significant challenges in model development, data

utilization, and cross-cohort validation.

To develop an ideal prognostic model, we identified malignant

cell marker genes in AML datasets by single-cell RNA sequencing

(scRNA-seq). Through in-depth analysis of its prognosis, immune

infiltration, and clinical features using 101 integrated machine

learning-based models, we developed and validated a machine

learning-based AML gene prognostic signature (MLAPS) across
Abbreviations: MLAPS, malignant leukemia marker gene prognostic signature;

CoxBoost, Boosting in Cox regression; Lasso, Least Absolute Shrinkage and

Selection Operator; plsRcox, partial least squares regression for Cox; RSF,

random survival forest; SuperPC, supervised principal components; GBM,

generalized boosted regression modeling; Enet, elastic network; survival-SVM,

survival support vector machine.
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multiple cohorts, which may help optimize precision treatment and

further improve the clinical outcomes of AML patients.
Materials and methods

Data collection and processing

We acquired the 6 independent public datasets in this work,

they were collected frommultiple repositories including The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/), Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),

and Therapeutically Applicable Research To Generate Effective

Treatments (TARGET, https://www.cancer.gov/ccg/research/

genome-sequencing/target). Among the datasets, the RNA-seq

data was transformed into transcripts per kilobase million (TPM),

log2 transformed, and further removed batch effects. Finally, we

enrolled four datasets with completive OS information, TCGA-

LAML (n = 132), GSE37642 (n = 417), GSE12417 (n = 163), and

GSE106291 (n = 250) were used for construction and validation of

our prognostic model. The independent dataset GSE10358 (n = 91)

was used to verify the predicting value of MLAPS, and the acute

lymphoid leukemia dataset TARGET-ALL (n = 611) was used to

assess the applicability of our signature in other blood tumors.
Identification of malignant cell marker
genes

We downloaded the AML scRNA-seq dataset GSE116256 from

GEO, raw gene expression matrices were imported and processed

using the Seurat R package (6), and we set the parameters to remove

low-quality cells: min.cells = 3, nFeature_RNA > 50, percent.mt < 15.

We got a single-cell object and then standardized the data via

NormalizeData function. Then we performed FindVariableGenes

function to calculate high variable genes, and conducted ScaleData

and RunPCA to standardize the data and principal component

analysis (PCA) analysis, the clusters were found using FindClusters

function (dims.use = 1:30, resolution = 0.5). We conducted uniform

manifold approximation and projection (UMAP) analysis for

dimension reduction and visualization of marker gene expression.

Cell types were annotated based on the expression of marker genes.

To identify marker genes for each cell type, we employed the

FindAllMarkers function implemented in the Seurat package. This

function was used in conjunction with the Wilcoxon–Mann–

Whitney test to assess differential gene expression between a given

cell type and all other cell types. To ensure the robustness of marker

selection, we applied the following filtering criteria: (i) genes had to be

expressed in at least 10% of the cells within the tested cluster, (ii) only

genes with an adjusted P-value < 0.05 were retained, and (iii) genes

were further restricted to those with an absolute log fold change (|

logFC|) > 1. Genes meeting these thresholds were designated as

marker genes for subsequent analyses. Additionally, the CellChat

package (7) was utilized to identify over-expressed interactions in the

malignant bone marrow microenvironment.
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Consensus clustering

Based on the clustering of malignant cells marker gene profiles, we

utilized ConsensusClusterPlus R package (8) to classify patients in the

meta-cohort (TCGA-LAML, GSE37642, GSE12417, GSE106291, n =

962) into different subtypes. The optimal number of clusters was

determined using the cumulative distribution function (CDF) and

the relative change in the area under the CDF curve, resulting in the

construction of a consensus matrix.
Uni-Cox regression analysis

We utilized intersection genes to conduct univariate Cox

regression analysis in the four cohorts for building a prognostic

model. The consensus prognosis genes were filtered according to

the following criteria: P-value < 0.05 and | HR| >1.
Machine learning−based prognostic model
construction and validation

The 10 basic machine learning algorithms performed in this

research were CoxBoost (Boosting in Cox regression), Lasso (Least

Absolute Shrinkage and Selection Operator), Ridge, plsRcox (partial

least squares regression for Cox), RSF (random survival forest),

SuperPC (supervised principal components), GBM (generalized

boosted regression modeling), stepwise Cox, Enet (elastic network),

survival-SVM (survival support vector machine). Additionally, several

of the algorithms, including Lasso, RSF, stepwise Cox, and CoxBoost,

incorporated feature selection functions. The 10 machine learning

algorithms were integrated into 101 model combinations, Harrell’s

concordance index (C-index) was calculated for each model across all

validation datasets. TCGA-LAML, GSE37642, GSE12417, and

GSE106291 were each split into training and test cohorts at a 3:1

ratio and used for constructing the optimal model. With the optimal

model Machine learning-based AML prognosis signature (MLAPS),

patients were classified into high-risk and low-risk groups according to

the median risk scores obtained from the four independent validation

cohorts. The prognostic significance and predictive performance of the

optimal model were evaluated through receiver operating characteristic

(ROC) curves and Kaplan–Meier (KM) survival curves. Moreover,

GSE10358 and TARGET-ALL were used as independent validation

cohorts to further assess the accuracy of MLAPS.
GO, KEGG, GSEA

In this study, we used clusterProfiler R package for enrichment

analysis (9). Gene Ontology (GO) analysis is widely used to

annotate various genes and shed light on their associated

functions. Additionally, the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database is a valuable tool for integrating

genomic data, aiding in the examination of gene functions and

expression patterns. To pinpoint statistically significant gene sets,
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Gene Set Enrichment Analysis (GSEA) was performed. In this

analysis, a threshold of P < 0.05 was set to determine statistical

significance for GO, KEGG, and GSEA results.
Tumor immune microenvironment

Single-sample gene set enrichment analysis (ssGSEA)

implemented in GSVA package was utilized to quantify the

relative infiltration of 28 immune cell types in the Meta cohort

(TCGA-LAML, GSE37642, GSE12417, GSE106291, and

GSE10358). ESTIMATE algorithm was performed to verify the

tumor immune microenvironment results.
Data availability statement

The original data supporting the findings of this study are

available within the article. Any additional questions or requests for

further clarification on the data can be addressed by contacting the

corresponding authors. The public data utilized in this study can be

accessed through the TCGA Research Network portal (https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/).
Cell culture and infection

K562 cells and Kasumi-1 cells were maintained in RPMI-1640

medium supplemented with 20% fetal bovine serum (FBS)(GIBCO)

at 37°C and 5%CO2. Lentiviral particle was produced in HEK293T

cells by using psPAX2 and pMD2.G helper vectors. We used

lentivirus containing CD69-specific interference sequences or

scramble fragments to infect with AML cell lines K562 and

Kasumi-1. After 48 hours of infection, GFP+ cells were sorted by

flow cytometry. The cell lines used in this experiment were gifted by

Professor Jianxiang Wang’s laboratory.
Western blot

Lysates were prepared using RIPA lysis buffer (Beyotime,

Shanghai, China) with a proteinase inhibitor (Roche, Basel,

Switzerland). After lysis on ice for 30 mins, the supernatant was

collected. Antibodies were used as follows: CD69 Rabbit pAb

(ABclonal, A2045, 1:1000, Wuhan, China), GAPDH Mouse mAb

(ABclonal, AC002, 1:1000, Wuhan, China).
RNA extraction and RT-qPCR

RNA extraction was performed using TRIzol Reagent

(Invitrogen, USA) following the manufacturer’s instructions. RT–

qPCR was performed using a HiScript III 1st Strand cDNA

Synthesis Kit (Vazyme, China) and SYBR®Green Realtime PCR
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Master Mix (TOYOBO, JAPAN) according to the manufacturer’s

instructions. GAPDH was used as the endogenous control.
Cell proliferation assay

Cell proliferation was measured using Cell Counting Kit (CCK-8)

(Beyotime, Shanghai, China).2x103 cells were seeded into each well of a

96-well plate, transfected with the specified siRNA, and incubated for

1d, 2d, 3d, 4d, 5d, 6d, 7d and 8d respectively. Two hours before the end

of the incubation, 10 ml CCK-8 reagent was added to each well. The

optical density (OD) at 450 nm (OD450nm) was measured using a

microplate reader.

Resuspend 1x10^3 cells in 300 ml culture mediumMethoCult™

H4535 (STEMCELL, Canada) and seed them into a 24-well plate.

The colony number was counted 14 days after plating.

5-Ethynyl-2′-deoxyuridine (EdU) analysis was performed using the

BeyoClick™ EdUCell Proliferation Kit with Alexa Fluor 594(Beyotime,

Shanghai, China) according to the manufacturer’s instruction.
Flow cytometric analysis

Cell apoptosis was assessed with flow cytometry Cell cycle stage

was assessed with flow cytometry and measured DNA content after

incubation with RNase A and propidium iodide (PI). Apoptosis was

performed by using annexin V-FITC/PI Apoptosis Detection Kit

(Yeasen Biotech). For differentiated cells assay, cells were incubated

on ice for 30min in the dark with antibodies as follows: PE-anti-human

CD11b (Biolegend, USA), APC-anti-human CD14 (Biolegend, USA).
Murine MLL AF9 leukemia model
construction and treatment

A transplantable MLL-AF9-inducible murine AML model was

generated as previously reported (10). In brief, Lin- cells were isolated

from the bone marrow (BM) of 8-week-old wild-type (WT) C57BL/6

mice and transduced with MSCV-MLL-AF9-IRES-GFP retrovirus. A

total of 5x10^5 infected cells were then transplanted into sublethally

irradiated (4.5 Gy) C57BL/6 recipient mice via tail vein injection. On

day 7 post-transplantation, the mice were randomly assigned into two

groups, with one group receiving 4 mg/kg of BTK-IN-8 and the other

PBS, administered every other day for 12 days. All animals were

euthanized on day 19, and leukemia burden in peripheral blood, spleen,

and BM was evaluated by flow cytometry (FACS). All the mouse

experiments were approved (the reference number is IHCAMS-

DWLL-NSFC2024126-1) by the IACUC of the Institute of

Haematology, Chinese Academy of Medical Science.
Statistical analysis

All data preprocessing, analysis, and result visualization in this

study were carried out using R version 4.3.0 or Prism9. Continuous
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variables were evaluated using either the Wilcoxon rank-sum test or

Student’s t-test. Categorical variables were analyzed statistically

using either the Chi-square test or Fisher’s exact test. Univariate

and multivariate Cox regression, along with Kaplan–Meier survival

analysis, were conducted using the survival package. The timeROC

package was applied to generate both ROC and calibration curves.

P < 0.05 was considered statistically significant. Wet experiments,

including WB, cell migration, colony formation, and EdU cell

proliferation assays, have been performed in triplicate.
Results

Identification of AML cell marker genes by
scRNA−seq

The research graphic workflow is displayed in Figure 1. We

downloaded the scRNA-seq dataset from the GEO database

(GSE116256) (11), which includes 36 AML samples. We retained

31,815 cells for further downstream analysis after quality control.

We conducted dimensionality reduction and clustering using

UMAP (Figure 2A). The cells were classified into 10 distinct cell

types (Figure 2B, Supplementary 1A, B), each identified by validated

marker genes: malignant cells were marked with S100A9 and

SRGN; LSCs were marked with FLT3 and CEP70; Monocytes

were marked with SRGN and CXCL8; T cells were marked with

IL7R and EST1; NK cells were marked with CCL5 and GNLY; B

cells were marked with IGLL5 and JCHAIN; NuEry were marked

with HBA2 and HBB. Through cell-cell communication analysis,

we identified the most prominent receptor-ligand pairs (P < 0.01)

among various cell types within the AML bone marrow

microenvironment (Figures 2C-E). LSC cells exhibited cell-cell

communication with NK and T cells (Sup 1.C), and NK cells

showed the highest signal strength in both outgoing and

incoming communication (Figures 2F, G). We categorized the

incoming signals of target cells into four patterns, while the

outgoing signals of secreting cells were divided into three patterns

(Sup 1.D-E), identifying pattern-associated signals (Figures 2H, I).

Pattern-related signals play an important role in immune responses,

such as MHC-I and CD99 (12, 13). Through the above analysis, we

identified the marker genes of AML cells (Malignant and LSC) and

concluded that the infiltration of immune cells plays a crucial role in

shaping the AML bone marrow microenvironment.
Consensus clustering based on AML
marker genes and their relationship with
prognosis

We obtained 621 intersected marker genes by intersecting the

marker gene of AML in scRNA-seq and the gene in four

independent cohorts, we conducted consensus clustering (8) on

AML samples from four independent cohorts (TCGA-LAML,

GSE37642, GSE12417, GSE106291) with the marker gene set,

testing cluster numbers (k) ranging from 2 to 6 (Figures 3A, B).
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Based on the cumulative distribution function (CDF) curves derived

from the consensus score matrix heatmap, the optimal number of

clusters was determined to be k = 2 (Figure 3B). A total of 415

patients were assigned to the C1 group, while 566 patients were

assigned to the C2 group, the survival analysis demonstrated that

the C2 group had a worse prognosis compared to the C1 group

(Figure 3C). We performed GO and KEGG enrichment analyses on

the differentially expressed genes that were upregulated in the C2
Frontiers in Oncology 05
group compared to the C1 group. The results showed that pathways

related to DNA replication and the cell cycle were enriched in the

C2 group, with significant upregulation of proliferation and

metabolism-related pathways, such as the p53 and PI3K/Akt

pathways (Figures 3D, E), and the above findings suggested that

patients with stronger proliferative capacity of AML cells tend to

have a poorer prognosis (14, 15). Additionally, the enrichment of

immune response-regulating signaling pathway indicates that the
FIGURE 1

The workflow of our research.
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tumor immune microenvironment plays a critical role in AML

patients. However, the influence of immune responses within the

AML bone marrow microenvironment on tumor promotion or

suppression requires further analysis. Subsequently, we performed a

preliminary univariate Cox regression analysis (P < 0.05, |HR| > 1),

which identified prognosis-related genes for constructing a machine

learning signature (Figure 3A). Our signature genes underwent

several rounds of screening, and the optimal model was chosen

from 101 algorithms. This approach produced the Machine

learning-based AML prognosis signature (MLAPS) with better

extrapolation potential, ensuring reliable performance across

different AML patient populations and enhancing its

clinical relevance.
Frontiers in Oncology 06
Integrative construction of an AML
prognostic signature based on machine
learning

To develop an AML prognostic signature, we used 101 machine

learning models, including 10 basic algorithms: CoxBoost, Lasso,

Ridge, plsRcox, RSF, SuperPC, GBM, stepwise Cox, Enet, survival-

SVM (16, 17). The meta cohort (the four independent AML cohorts

mentioned above) with the filtered prognostic genes was subjected

to our machine learning-based integrative procedure to develop an

AML prognostic signature (MLAPS). We applied the LOOCV

(Leave One Out Cross Validation) framework to fit 101 different

prediction models and computed the C-index for each model across
FIGURE 2

The overview of the AML bone marrow microenvironment. (A) UMAP plot shows the cell type identification of filtered high-quality cells from AML
patients’ bone marrow samples. Data from GSE116256. (B) Bubble plot illustrates the average expression levels and the percentage of cells
expressing the top DEGs in each cell cluster. (C) Cellchat bubble plot illustrated all the cell communication pathways. (D) Chord plot shows the
inferred intercellular communication network in the AML bone marrow microenvironment. (E) Circle plot presents the interaction number between
each cell type. The line width represented the interaction number. (F, G) NK cells are active in both sending and receiving signals, while LSCs,
malignant cells, and other immune cells are only active in signal sending. Normal myeloid and erythroid cells are not active in cell communication.
(H, I) The river plot illustrates the correspondence between cell types and patterns, as well as the patterns’ associated signaling molecules.
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all validation cohorts. Notably, the most optimal model was RSF

with the highest average C-index (0.732), and the model achieved

the leading C-index across all validation cohorts (Figure 4A). As the

number of survival trees increased, the error rate curve eventually

plateaued, indicating that the number of trees in the RSF model was

appropriate and sufficient for accurate predictions (Figure 4B). This

stabilization of the error rate suggests that adding more trees would

not significantly improve the model’s performance. Additionally,

we presented the importance of each prognostic gene within the

model, demonstrating how individual genes contribute to the

overall survival prediction (Figure 4B). By evaluating the variable

importance of these genes, we can gain insights into the key factors

driving survival outcomes in AML patients. ROC analysis was

performed to evaluate the discriminative ability of the MLAPS

model in predicting patient survival outcomes. The area under the

curve (AUC) values for 1-, 2-, and 3-year survival predictions were

0.75, 0.772, and 0.798, respectively, in the meta cohort (Figure 4C).

These AUC values indicate that the MLAPS model demonstrates

strong predictive performance over time, with increasing accuracy

as the prediction horizon extends. Using the median MLAPS score

as the cutoff value, all patients were stratified into high-risk and low-

risk groups. As shown in Figures 4D-H, patients in the high-risk

group exhibited significantly worse overall survival (OS) compared

to those in the low-risk group across the meta cohort and all four
Frontiers in Oncology 07
individual cohorts (P < 0.05 in each case). These findings suggest

that the MLAPS model is a robust predictor of patient prognosis,

effectively differentiating between individuals with higher and lower

survival probabilities. The clear survival disparity between the two

risk groups underscores the utility of MLAPS in risk stratification

and its potential application in clinical decision-making.
Validation of the MLAPS model

To further validate the performance of the MLAPS model in our

study and to mitigate the risk of overfitting in the prognostic model,

we employed an independent dataset (GSE10358, n = 91) as the

validation cohort. This external validation step is critical for

assessing the generalizability of the MLAPS model beyond the

meta cohort. The KM analysis for OS demonstrated that the high

MLAPS group possessed significantly shorter survival in the AML

validation cohort (Figure 5A). the ROC curves were plotted and the

AUC was calculated at 1-, 2-, and 3-years were 0.899, 0.84, 0.851

(Figure 5B). GSEA was applied to elucidate the potential functional

pathways of MLAPS in the high-score group of meta and validation

cohorts. As illustrated in Figure 5C, the high MLAPS group was

remarkably enriched for proliferate and metabolism-related

pathways, such as E2F transcription factor targets, MYC targets,
FIGURE 3

Prognostic association of malignant marker genes. (A) The process of selecting prognostic genes for the constructing model. (B) Consensus
clustering analysis based on malignant marker genes from AML scRNA-seq dataset, samples from four bulk RNA-seq datasets (TCGA-AML,
GSE106291, GSE12417, GSE37642, n = 962) are divided into subgroups. The CDF curves of consensus matrix for each k, the clustering results are
optimal when k=2. (C) Kaplan–Meier curves for overall survival (OS) in C1 and C2. (D) Cnetplot of GO pathways derived from highly expressed DEGs
in C2 group shows enrichment in pathways. (E) Bar plot of KEGG pathways derived from highly expressed DEGs in C2 group indicates a significant
association between these genes and cell proliferation functions.
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and mTORC1 signaling, which partly explained its more advanced

grades and worse prognosis (18, 19). Additionally, to further assess

the predictive performance of MLAPS, we used the TARGET-

ALLP2 dataset (n = 83) as another validation cohort to

investigate its predictive capability in lymphoid leukemia. KM

analysis indicated that the high MLAPS group also exhibited

shorter overall survival in ALL (acute lymphoblastic leukemia)

(Figure 5G). ROC analysis measured the discrimination of

MLAPS, with 1-, 2-, and 3-year AUCs of 0.609, 0.777, and 0.866

(Figure 5H). By testing the model on the separate datasets, we can

ensure its predictive accuracy holds across different patient
Frontiers in Oncology 08
populations, reinforcing the robustness and reliability of MLAPS

as a prognostic tool for AML.
Evaluation of the MLAPS model

To assess the prognostic performance of MLAPS, we included

the AML validation cohort for both univariate and multivariate Cox

regression analyses. The results demonstrated that MLAPS is an

independent risk factor for OS, with a hazard ratio (HR) of 2.82

(95% CI: 2.01–3.96, P < 0.01, Figure 5D). This indicates that
FIGURE 4

Construction of a prognostic model for AML via machine learning-based integrative procedure. (A) In total, 101 predictive models were constructed
using 10 basic algorithms, and the C-index of each model was further calculated across all cohorts. (B) The importance of prognostic genes in the
RSF model. (C) ROC curves present 1-, 2-, and 3-year OS in the test set of the meta cohort. (D-H) KM curves of OS in the meta, GSE106291,
GSE12417, GSE37642, and TCGA-AML cohorts based on the model showed longer survival time in low-risk groups.
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patients with higher MLAPS scores are at significantly increased

risk of poor survival outcomes, independent of other clinical

variables. In addition, we calculated the C-index for MLAPS,

along with other clinical factors including Age, Sex, FAB

classification, Cytogenetics, BM Blast count, PB WBC count, and

PB Blast count (Figure 5E). Among these, MLAPS demonstrated

the highest C-index at 0.806 (95% CI: 0.634–0.908), indicating its

superior predictive accuracy for overall survival. Comparisons

between MLAPS and other clinical variables revealed statistically

significant differences, with P-values less than 0.05 in each case.

These results highlight the robust prognostic power of MLAPS

compared to traditional clinical indicators in AML. We conducted a

comparison of gene expression-based prognostic signatures in AML

(20–23) (Figure 5F), and while most models performed well within
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their respective training datasets, they lacked validation in

independent external cohorts. This limitation is likely due to the

reduced generalizability of models that are overfitted to their

training data (23). This underscores the importance of validating

prognostic models in external cohorts to ensure their broader

applicability and reliability in clinical settings.
The immune landscape and molecular
mechanisms of MLAPS

In the above GO and KEGG enrichment analyses, immune

response-related pathways were enriched in the high-risk group

(Figures 3D, E). To further explore this, we investigated the immune
FIGURE 5

Validation in independent acute leukemia cohorts. (A) KM curves of OS in the AML validation cohort (GSE10358) based on the model showed longer
survival time in low-risk groups. (B) ROC curves present 1-, 2-, and 3-year OS in the AML validation cohort (GSE10358). (C) The top 5 Hallmark-
enriched pathways in the High MLAPS groups. (D) Multivariable Cox regression analysis of OS in GSE10358. Statistic test: two-sided Wald test. Data
are presented as hazard ratio (HR) ± 95% confidence interval (CI). (E) The predictive performance of MLAPS was compared to common clinical and
molecular variables in the GSE10358 dataset. *P < 0.05; **P < 0.01. (F) Comparison between MLAPS and previously published signatures. (G) KM
curves of OS in the ALL validation cohort (TARGET-ALL). (H) ROC curves present 1-, 2-, and 3-year OS in the ALL validation cohort (TARGET-ALL)
and the predict value in other blood cancers.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1649594
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1649594
landscape and expression of immune checkpoint molecules (ICMs)

between the high and low MLAPS groups across five cohorts

(GSE106291, GSE12417, GSE37642, TCGA-AML, and

GSE10358). Using single-sample gene set enrichment analysis

(ssGSEA), we observed that the low MLAPS group exhibited

significantly higher infiltration of anti-tumor immune cells,

including activated T cells, central memory T cells, effector

memory T cells, activated dendritic cells, and natural killer cells

(all P < 0.05, Figures 6A, C). According to the ESTIMATE

algorithm, aside from stromal score, the low and high MLAPS

groups showed significant differences in both Immune Score and

Estimate Score (P < 0.01, Figure 6B). Furthermore, analysis of 21

ICMs revealed that the high MLAPS group had markedly elevated

expression levels of key immune checkpoint molecules, such as

CTLA4, HHLA2, ICOS, PDCD1LG2, VTCN1, CD40, and CD70

(Figure 6D). Together, these findings suggest that the high MLAPS

group is more likely to benefit from immunotherapy, and targeting

immune-related factors may serve as an effective therapeutic

strategy to improve the prognosis of high-risk AML patients.
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CD69 promotes the malignant progression
of AML cells

AML is a malignant hematologic tumor characterized by the

abnormal proliferation of immature myeloid cells in the bone

marrow and peripheral blood (1). Therefore, we hypothesized

that the upregulated genes in our model are valuable for

understanding the malignant progression of AML cells.

Consistent with our expectations, an extensive literature review

revealed that most of these upregulated genes play critical roles in

AML progression and prognosis. CD69 has been identified as a

biomarker that promotes the malignant progression of various

cancers (24) and is highly expressed in AML (25). CD69

demonstrated a relatively high variable importance within the

prognostic model (Figure 4B). In the AML cohort, CD69

expression was positively correlated with the immune

microenvironment abundance of pro-cancer immune cells,

including CD56dim natural killer cells, immature dendritic cells,

and MDSCs (Supplementary Figure S2). Additionally, CD69 was
FIGURE 6

The immune landscape in the high and low MLAPS groups. (A) Heatmap of 28 immune cell types in the high and low MLAPS groups. The 12 cell
types above are anti-cancer types, and the 8 cell types in the middle are pro-cancer types. (B) Boxplots compare the ESTIMATE score, stromal
score, immune score, and tumor purity between high and low MLAPS groups. (C) Boxplots present the relative abundance of each cell type. The
gene order of the boxplots is the same as the heatmap. (D) Boxplots display the relative expression levels of 21 immune checkpoint profiles between
the high and low MLAPS groups.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1649594
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1649594
highly expressed in the high MLAPS group across five combined

AML cohorts (Figure 7A). However, despite its recognized

overexpression, the precise function of CD69 in AML remains

elusive. Further research is required to elucidate its specific role in

the disease, which may provide new insights into the molecular

mechanisms underlying AML progression. To bridge this

knowledge gap, we established CD69 knockdown cell lines using

two AML cell lines, K562 and KASUMI-1, through shRNA

lentiviral transduction (Figure 7B). In the CCK-8 assay, we

observed a significant reduction in cell viability in CD69

knockdown (sh-CD69) AML cell lines (Figure 7C). Furthermore,

cell cycle analysis revealed a marked increase in the proportion of

cells in the G2/M phase in the sh-CD69 AML cells (Figure 7D),

suggesting that CD69 depletion may impair cell proliferation by

inducing cell cycle arrest at the G2/M phase (Figures 3D, E, 7D).

Flow cytometric analysis was performed to assess the frequency of

apoptosis in AML cells expressing either Scramble shRNA (Scr) or

sh-CD69, Annexin V staining was used to identify and quantify

apoptotic cells, the results indicated a higher proportion of

apoptotic cells in the sh-CD69 group (Figure 7E). To further

validate the results from the CCK-8 cell proliferation assay, we

conducted an EdU incorporation experiment, which allowed us to

visualize the proliferation status of AML cells by detecting newly

synthesized DNA. As illustrated in Figures 7F-I, the EdU positivity

rate decreased in the CD69 knockdown AML cells, indicating a

reduction in newly synthesized DNA. Additionally, in colony

formation assays, we found that the low expression of CD69 also

significantly diminished the colony-forming ability of AML cells

(Figures 7L-O). Notably, CD69 knockdown resulted in a significant

increase in the frequency of CD11b and CD14 positive cells in

K562 cells, as well as an increase in CD14 positive cells in

KASUMI-1 cells. Furthermore, we observed that the KASUMI-1

cell line exhibited poor staining for CD11b during the

immunophenotyping process, suggesting either reduced

accessibility of the CD11b antigen on the cell membrane or

overall low expression levels (Figures 7H-L). These findings

highlight the potential role of CD69 in promoting AML cell

survival and malignant proliferation, further supporting the role

of CD69 in regulating cell survival and highlighting its potential as a

therapeutic target in AML.
In vivo efficacy of BTK-IN-8 treatment in
MLL-AF9 leukemia mouse models

BTK (Bruton’s tyrosine kinase) is an essential tyrosine kinase

primarily expressed in various immune cells. BTK inhibitors

selectively suppress the kinase activity of BTK, a mechanism that

effectively reduces the growth and spread of hematologic tumor

cells (26). BTK-IN-8 demonstrates strong targeting activity against

CD69 (27). The in vivo efficacy of BTK-IN-8 was evaluated using

the MLL-AF9 leukemia mouse model, where two treatment arms

were implemented: a control vehicle group and a BTK-IN-8

treatment group (4 mg/kg daily) (Figure 7P). Leukemia burden

was assessed across multiple sites, including bone marrow, spleen,
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and peripheral blood, at several time points (D3, D6, D10, and

D19). In addition, the survival rates of the mice were monitored and

compared between the two groups. Flow cytometry analysis was

used to quantify the percentage of GFP-positive leukemia cells in

the bone marrow, spleen, and peripheral blood (Figure 7Q). In both

the vehicle (Scr) and BTK-IN-8 treated groups, there was a

significant reduction in GFP-positive leukemia cells in the

peripheral blood and bone marrow following BTK-IN-8

administration. Specifically, at days D3, D6, D10, and D19, the

percentage of GFP-positive cells in the drug treatment group was

notably lower compared to the Scr group, suggesting effective

clearance of leukemia cells (Figure 7S). Additionally, the spleen

size of mice in the BTK-IN-8 treatment group was significantly

reduced compared to the Scr group (Figure 7R), which further

indicates the therapeutic potential of BTK-IN-8. The survival curves

of the two groups clearly demonstrated an extended survival time in

the BTK-IN-8 treated group, with a significant improvement in

overall survival compared to the control (Figure 7T, P<0.01). These

findings provide strong evidence supporting the efficacy of BTK-IN-

8 as a potential therapeutic agent for MLL-AF9 leukemia.
Discussion

In this study, we present the first comprehensive exploration of

the relationship between prognosis-related gene signatures, overall

survival, and potential target genes in AML (1, 5). Our findings

highlight the limitations of traditional prognostic markers, such as

FAB classification, bone marrow blasts (BmBlast), and peripheral

blood blasts (PbBlast), in accurately assessing AML prognosis and

determining optimal treatment timing. These conventional markers

fail to account for the molecular heterogeneity of AML and lack the

precision needed for personalized therapy, potentially leading to

overtreatment or undertreatment of patients (28, 29). Given these

challenges, our study underscores the urgent need for more robust,

data-driven models that integrate clinical and molecular features for

better risk stratification and therapeutic decision-making in AML.

Through a comprehensive single-cell RNA sequencing (scRNA-

seq) analysis, we identified 621 malignant marker genes associated

with AML. Consensus clustering of AML patients from the TCGA

and GEO cohorts revealed significant enrichment in immune

response and cell proliferation pathways in the high-risk group.

Most existing AML prognostic models rely on subjective choices of

algorithms, whereas the 101-machine-learning-algorithm

framework provides an objective approach to identify the most

suitable method for prognostic prediction in AML cohorts. To

further refine our findings, we constructed and validated a

prognostic model, MLAPS, using 101 machine learning algorithm

combinations across four independent AML cohorts. Although the

conventional FAB classification can guide the determination of

different treatment strategies, it fails to account for the molecular

heterogeneity of AML and lacks universal applicability in

prognostic prediction. MLAPS effectively compensates for these

shortcomings. MLAPS demonstrated superior predictive

performance compared to common clinicopathological features
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FIGURE 7

CD69 promotes malignant proliferation and apoptotic escape of AML cells. (A) Boxplot compares CD69 expression of the high and low MLAPS
groups. (B) Western blot and qPCR showed CD69 KD efficiency in K562 and KASUMI-1 cells after transduction with shRNA lentiviruses targeting
CD69. (C) In the CCK-8 assay, the cell viability of sh-CD69 AML cells was diminished. (D) Cell cycle analysis revealed that the proportion of G2/M
phase cells significantly increased in sh-CD69 AML cells. (E) Flow cytometric analysis of apoptosis frequency of AML cells expressed Scramble shRNA
(Scr), sh-CD69.Annexin V1 indicated the apoptotic cells. (F-I). In the EdU experiment indicated a reduction in the ability to proliferate after sh-CD69
treatment. ***P < 0.01.***P < 0.001. (J, K) Flow cytometric analysis of differentiated cell frequency (CD11b and CD14 cells ratio) of, K562 and
KASUMI-1 cells expressed Scramble shRNA (Scr). ***P < 0.001. (L-O) Colony formation assay assessing the colony-forming ability of K562 and
KASUMI-1 cells. (P) In vivo efficacy estimation of BTK-IN-8 treatment. MLL-AF9 leukemia mouse models 2 arms of treatment were applied as
vehicle, BTK-IN-8 4mg/kg daily. Leukemia burden in bone marrow, spleen, and peripheral blood at each observational timepoint and overall survival
were observed and compared among arms respectively. (Q) The percentage of GFP-positive leukemia cells in the bone marrow, spleen, and
peripheral blood of the Scr group and the drug treatment group. (R) The spleen size of AML mice in two groups (Top: Scr group, Bottom: BTK-IN-8
group). (S) The percentage of GFP-positive leukemia cells at D10, D13, D16, and D19 in the Scr group and the drug treatment group. (T) The survival
curves of AML mice in the two groups. **P<0.01.
Frontiers in Oncology frontiersin.org12

https://doi.org/10.3389/fonc.2025.1649594
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1649594
and existing prognostic markers, highlighting its potential as a

valuable tool for AML prognosis and risk stratification. In other

solid tumors, the average highest C-index among 101 combination

models often arises from combinations of two models with

dimensionality reduction, which may offer better extrapolation

potential (16, 17). However, in our research, the best-performing

model is the RSF model, with the LASSO-RSF combination ranking

second in terms of average C-index. One possible explanation is

that LASSO, a linear regression method used for sparse feature

selection, applies L1 regularization to shrink certain regression

coefficients to zero, thereby selecting the most representative

features. However, in the actual AML cohort data, LASSO may

tend to select only a small number of variables (30, 31). If multiple

features contribute similarly to the prognostic model, LASSO might

retain only some of them, potentially excluding other informative

features (30, 31). In the context of survival analysis for AML, some

important features may be discarded due to regularized in LASSO,

which could explain the performance drop in the LASSO-RSF

combination. The RSF model demonstrated the highest C-index

(concordance index, a key metric for evaluating the predictive

accuracy of survival models, reflecting the consistency between

predicted and observed survival rankings, with values ranging

from 0.5 to 1.0, where higher values indicate stronger

discriminatory ability), and it also exhibited robust predictive

performance in other independent validation cohorts. Therefore,

through an objective prognostic gene selection strategy and the

training of 101 models, we identified RSF as the optimal base model

for constructing MLAPS.

Interestingly, we observed that the high MLAPS group not only

had a poorer prognosis but also exhibited a higher immune score,

suggesting potential immune dysregulation within this cohort.

Specifically, this implies a reduced abundance of natural killer

(NK) cells and activated T cells in the tumor microenvironment,

which could indicate the presence of immunosuppressive

mechanisms contributing to the adverse prognosis (32, 33). This

finding warrants further investigation into the specific immune

pathways and regulatory factors involved, as such insights could

inform future therapeutic strategies aimed at enhancing anti-tumor

immunity in AML.

One of the key immune-related findings in our study was the

identification of CD69 as a critical marker. CD69 is an early

activation marker on various immune cells, playing a significant

role in immune response regulation, inflammation, and lymphocyte

tissue retention (34). While CD69 has been implicated in promoting

anti-tumor immune responses in several solid tumors by regulating

NK cell activity, it may also contribute to immune evasion by

enhancing the suppressive function of regulatory T cells (Tregs),

thereby limiting the activity of effector T cells (24, 35). In our

MLAPS model, CD69 was ranked among the top variables in terms

of importance, highlighting its potential relevance in AML

prognosis and progression. Previous studies have reported the

presence of CD69+ hematopoietic stem cell (HSC)-like leukemia

subpopulations across various AML subtypes, associated with poor

genetic profiles and clinical outcomes (25). However, our research

provides a more in-depth analysis of CD69’s biological role in AML.
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We demonstrated that low expression of CD69 in AML cells leads

to reduced proliferation and increased apoptosis, as evidenced by

assays on colony formation, DNA replication, cell cycle progression,

differentiation markers, and apoptotic activity. These findings

suggest that CD69 could serve as a therapeutic target in AML.

Furthermore, we explored the potential of BTK-IN-8, a novel anti-

leukemia agent with CD69 inhibitory activity (26), which showed

promising results in AML mouse models. However, further clinical

trials are needed to confirm the efficacy of CD69-targeting therapies

in AML patients.

Although this study incorporated large-scale, multi-center AML

cohorts with strong representativeness and a certain degree of statistical

robustness, several limitations remain. First, most publicly available or

collaboratively obtained real-world or clinical trial AML cohorts lack

systematic and detailed documentation of chemotherapy-related

information, such as specific intensive chemotherapy regimens, dose

intensity, number of treatment cycles, and tolerance to adverse effects.

This limitation hinders precise validation of the model’s predictive

performance under different treatment strategies. Second, the proposed

MLAPS model was primarily validated in the overall population, and

its applicability within treatment-stratified subgroups remains to be

clarified. For example, whether the model’s high- and low-risk

stratification can effectively distinguish prognostic differences in

patients receiving conventional intensive chemotherapy, and whether

the model retains comparable predictive value in patients treated with

less-intensive regimens (e.g., Venetoclax combined with

hypomethylating agents), are questions for which sufficient evidence

is currently lacking. Future research, incorporating prospectively

collected treatment-related data, will be essential to further assess the

model’s generalizability and clinical utility across treatment contexts of

varying intensity. In addition, this study revealed that CD69 expression

in AML patients may have prognostic relevance; however, its biological

and clinical significance under different therapeutic settings remains

unclear. Specifically, in the context of intensive chemotherapy, it

remains to be determined whether CD69 expression levels could

serve as an additional biomarker to refine risk stratification or reflect

differential sensitivity to chemotherapy. Likewise, under less-intensive

regimens, whether CD69 expression retains independent

discriminatory value, or instead exerts its influence only within

particular molecular subtypes, is not yet established. Future studies

integrating single-cell sequencing, functional experiments, and

treatment cohort outcome analyses will be needed to systematically

elucidate the role and clinical potential of CD69 in AML under diverse

therapeutic settings.

While MLAPS shows significant clinical promise for predicting

AML prognosis, several limitations in this study must be addressed.

First, all datasets used were derived from publicly available AML

databases, and the model’s validation should ideally be extended to

prospective, multicenter studies to ensure its broader applicability.

Additionally, certain clinical and molecular features in public

datasets may be incomplete or unreliable, potentially impacting

the accuracy and robustness of the model’s associations (36). These

limitations highlight the need for more comprehensive validation to

ensure the generalizability and accuracy of MLAPS across diverse

clinical settings.
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Conclusion

Our comprehensive prognostic signature marks a substantial

improvement over previous models by integrating machine

learning algorithms with multiple independent validation cohorts.

The robust performance and wide applicability of our model across

diverse datasets highlight its reliability and strength as a clinical

tool. Once validated in clinical settings, MLAPS has the potential to

significantly enhance treatment strategies by pinpointing patients at

risk of aggressive disease progression and poor outcomes under

standard therapies. Additionally, we identified CD69 as a key

molecule in AML progression, with promising potential as a

therapeutic target for AML. Taken together, MLAPS offers a

highly adaptable platform that can enhance risk stratification,

prognostic accuracy, and therapeutic target identification,

ultimately aiding in the improved clinical management of

AML patients.
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