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Lung nodules are critical indicators for early lung cancer detection, yet accurately
distinguishing between benign and malignant lesions remains a clinical
challenge. This review summarizes advances in predictive models for lung
nodule risk assessment, spanning classical clinical-imaging models, biomarker-
based approaches, and artificial intelligence (Al)-driven tools. While classical
models provide a foundational framework, their performance often varies
across populations. Biomarkers and Al models significantly enhance diagnostic
precision by capturing molecular and imaging features imperceptible to the
human eye. However, issues such as generalizability, standardization, and data
security persist. The most promising direction lies in multimodal integration,
combining clinical, imaging, biomarker, and Al data to achieve superior accuracy
with an area under the curve (AUC) >0.90. Future efforts should focus on multi-
center validation, standardized biomarker assays, and data secure, scalable Al
systems to translate these innovations into routine clinical practice, enabling
personalized and early lung cancer diagnosis.
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1 Introduction

Lung cancer is the most frequently diagnosed cancer worldwide and is one of the
leading cause of cancer-related mortality (1). Lung nodules are defined as round or oval
lesions (<3 cm in diameter) within the lungs, detectable through imaging, and serve as
critical indicators of early-stage lung cancer. These nodules are typically identified using CT
scan or chest X-ray (2). Statistically, the detection rate of nodules via chest X-ray is 2.1%,
whereas CT scans can achieve a detection rate of up to 17.0%, primarily due to the superior
spatial resolution offered by CT technology (3). The widespread application of CT
technology has led to a marked increase in the detection rate of lung nodules (4).
Furthermore, the integration of advanced imaging techniques, such as high-resolution
CT combined with Positron Emission Tomography (PET), has significantly enhanced the
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differential diagnosis of lung nodules, facilitating early lung cancer
screening (5). The characteristics of nodules, including size,
number, and location, are significantly correlated to the risk of
lung cancer (6, 7). Nonetheless, due to the potential for false
positives in imaging screenings, the definitive determination of
nodule characteristics should be corroborated with other
examinations (8). It is imperative to develop a comprehensive
diagnostic framework in clinical practice that integrates the
imaging attributes of lung nodules, pathological assessments,
laboratory examinations and individual patient risk factors.

Tumor markers serve as valuable adjuncts in the diagnosis and
management of lung cancer. Although lacking sufficient sensitivity
or specificity for primary screening, they provide critical
information that complements imaging findings. Commonly
utilized serum markers include Carcinoembryonic Antigen
(CEA), Squamous Cell Carcinoma Antigen (SCCA), Cytokeratin-
19 fragments (CYFRA 21-1), and Neuron-Specific Enolase (NSE).
In addition, novel biomarkers including microRNAs (miRNAs),
autoantibodies, circulating tumor cells (CTCs), and circulating
abnormal cells (CACs) have been developed in recent years for
the diagnosis of lung cancer, which holds significant promise for
improving personalized diagnosis of lung cancer (9). However,
challenges remain in the clinical application of these biomarkers,
including the need for standardization of detection methods,
variable specificity, and high costs for certain markers.

As the development of AI, deep learning, random forest
algorithms, and ensemble learning methods have revolutionized the
discrimination of benign and malignant pulmonary nodules on CT
scans (10, 11). AT models automatically learn to extract complex
radiographic features—such as size, shape, texture, and growth
patterns—that are often imperceptible to the human eye, providing
a quantitative assessment of malignancy risk. However, performance
can also be hampered by limited generalizability if models are trained
on non-diverse datasets from specific scanners or populations.

Despite these current limitations of each kind of prediction
models, their integration into multimode represents the most
promising direction for enhancing diagnostic accuracy of lung
nodules (12). However, a comprehensive and up-to-date synthesis
that systematically compares classical models with emerging
biomarker-based and Al-driven approaches, while critically
evaluating their integration and translational challenges, is
lacking. Taken together, this review aimed to summarize the
characteristics of malignancy risk predictive models for lung
nodules, underscoring the advantages and limitations of each
category of models, based on previous studies searching from
PubMed using the key words as lung nodules, predictive model,
biomarkers, AI or multimode in recent ten years. Moreover, we
mainly focused on the emerging biomarkers, Al-based technology
and methodological innovations in this area, and offered insights
into the potential clinical applications of these models. In addition,
we discussed about the comparative performance of models across
diverse populations and the prospective directions of data security
as the application of large cohort and Al tools. By providing a
holistic overview, this review fills a critical gap in the literature and
serves as a valuable resource for clinicians and researchers
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navigating the rapidly evolving landscape of lung nodule risk
stratification. We also highlight the pressing issues that warrant
further investigation, such as the need for standardized biomarker
assays, multi-center validation of AI algorithms to ensure
generalizability, and the development of secure data-sharing
frameworks for model training.

2 Classical predictive model
2.1 Mayo model

The Mayo model represents one of the pioneering predictive
frameworks for assessing the probability of malignancy in pulmonary
nodules and has been extensively utilized in clinical settings (13). This
model was formulated using clinical data from 629 patients with
isolated pulmonary nodules who were evaluated at the Mayo Clinic
in the United States between 1984 and 1986. The cohort was divided
into a development group comprising 419 patients and a validation
group consisting of 210 patients. The overall malignancy rate among
the nodules was 23%, with diameters ranging from 4 to 30 mm. Benign
nodules were identified through imaging studies that demonstrated
stable, shrinking, or disappearing nodule sizes over a period of at least
two years, while malignant nodules were confirmed via pathological
diagnosis. The equation for the Mayo model is as follows: the
probability of malignancy P = €%/(1 + €¥), where x = -6.8272 +
[0.0391 x age (years)] + (0.7917 x history of smoking) + (1.3388 x
history of malignant tumor) + [0.1274 x diameter (mm)] + (1.0407 x
spiculation) + (0.7838 x upper lobe). The area under the curve (AUC)
for the model’s receiver operating characteristic (ROC) curve was
0.8328 + 0.0226 in the development group and 0.8014 + 0.0360 in the
validation group, indicating robust predictive performance.

The Mayo model offers the advantage of utilizing clinical and
imaging data that are both readily accessible and straightforward to
implement in clinical practice. Nonetheless, the model presents several
limitations. Firstly, it was developed over three decades ago, and its
relevance may be compromised due to evolving disease patterns and
advancements in imaging technology. Secondly, the model primarily
depends on CT imaging features, which may restrict its predictive
capability for certain complex or atypical nodules. Additionally,
research has indicated that the Mayo model exhibits suboptimal
predictive performance in the Chinese population, evidenced by an
AUC value of only 0.653, thereby suggesting its limited applicability
across diverse populations (14). Overall, the Mayo model has a certain
degree of accuracy in predicting the degree of malignancy of lung
nodules, but with the development of medical technology, its
limitations have gradually appeared, and it may be necessary to
combine with other more advanced models or techniques to
improve the accuracy of its prediction in clinical practice.

2.2 VA model

The VA model utilized data pertaining to lung nodules sourced
from the United States Department of Veterans Affairs. This study
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included 375 patients, with a lung cancer diagnosis rate of 54% (15).
The inclusion criteria specified that patients must have a newly
identified solitary lung nodule measuring between 7 and 30 mm in
diameter as observed on X-ray. Nodules were classified as benign based
on pathological findings indicative of benignity or the nodule size
remained stable over a two-year period. Conversely, nodules were
deemed malignant if the pathological diagnosis suggested malignancy.

The VA model employed a cross-validation approach to
enhance the model’s accuracy and reliability. Specifically, the
researchers implemented a 10-fold cross-validation method,
whereby the study population was randomly divided into 10
equal subsets. The model was trained using data from 9 subsets
and tested on the remaining subset, with this process repeated 10
times, each time with a different test subset. Independent predictors
integrated into the model included smoking duration, age,
maximum nodule diameter, and time since smoking cessation.
The VA model equation was P=e*/(1+e), x=-8.404+
(2.061xsmoking history)+(0.779xage/10)+(0.112xdiameter)-
(0.567xtime to quit smoking/10). The AUC of the ROC model
was 0.79, which indicating its accuracy in predicting the degree of
malignancy of lung nodules. The calibration curve demonstrated
that the predicted probabilities were in strong concordance with the
observed probabilities.

The model showed good discrimination and calibration with
stable internal validation and high malignant prevalence. However,
the study only focused on elderly male veterans and lacked women,
younger participants and external validation, limiting its
generalizability. In addition, the measuring of lung nodules from
X-ray was less precise than the CT imaging features, which also
weakened the explanatory power of this model.

2.3 Brock model

The Brock model, alternatively referred to as the Pan Can model
or McWilliams model (16). This study aimed to identify factors that
could predict whether a lung nodule detected during initial low-
dose CT screening was malignant or would be diagnosed as
malignant upon follow-up examination. The training dataset was
sourced from the Pan-Canadian Early Detection of Lung Cancer
Study (Pan Can), while the validation dataset was obtained from the
British Columbia Cancer Agency (BCCA). The training dataset
comprised 1,871 participants with a total of 7,008 lung nodules,
whereas the validation dataset included 1,090 participants with
5,021 lung nodules. The cancer incidence rates were 5.5% for the
training set and 3.7% for the validation set, reflecting a low
incidence of malignant nodules in both cohorts. The study
excluded individuals with no history of smoking, a history of
previous tumors, and those younger than 50 years or older than
75 years. The lung nodules examined in the study ranged from 1 to
86 mm in diameter.

The analytical approach employed was multifactorial logistic
regression analysis, incorporating variables identified as lung cancer
risk factors in the literature as well as those routinely associated with
the disease. The diagnostic criteria were based on the pathological

Frontiers in Oncology

10.3389/fonc.2025.1648548

findings of the patients, thereby minimizing bias from unknown or
incorrect diagnoses and ensuring a high degree of reliability in the
results. Ultimately, the variables included in the model included
gender, diameter, spiculation, and location. Brock’s model equation:
p=ex/(1+ex), x=-6.6144+(0.6467xgender)-[5.5537xdiameter in
millimeters]+(0.9309xspiculation)+(0.6009xsuperior lobe). This
model integrates multiple imaging features and clinical data to
provide a comprehensive assessment. The Brock model
demonstrates high predictive accuracy; for instance, in a
comparative study, the AUC of the Brock model was 0.902,
surpassing the AUC of the Mayo model, which was 0.895,
thereby indicating the superior predictive accuracy of the Brock
model (17).

The model was developed based on two prospective,
multicenter, population-based lung cancer screening cohorts,
resulting in good generalizability. Moreover, it included an online
calculator. It uses the Brock model to predict the likelihood of lung
nodule malignancy. By entering basic patient and nodule details, it
provides an immediate malignancy estimate. It is scientifically
rigorous, highly accurate, free, and easy to use, aiding clinicians
in making informed, low-risk decisions regarding lung nodules. The
model also uniquely confirmed that no malignant risk for peri
segmental nodules, offering valuable clinical insights. However, this
model only focused on high-risk smokers, making it less applicable
to broader groups.

2.4 PKUPH model

The Peking University People’s Hospital (PKUPH) model
represents the inaugural predictive framework for assessing the
probability of malignancy in pulmonary nodules, developed within
China utilizing domestic patient data. This model was formulated
through multifactorial logistic regression analysis using the clinical
data from patients who underwent surgical intervention and
received a pathological diagnosis of Solitary Pulmonary Nodule
(SPN) at PKUPH between 2000 and 2009 (18). 371 patients were
included in the development cohort and 62 patients were included
in the validation cohort. The model integrates variables including
patient age, maximum nodule diameter, family history of tumors,
calcification, spiculation sign, and nodule borders. The model’s
performance is characterized by an AUC value of 0.754, a sensitivity
0f 69.51%, and a specificity of 73.55%. The prediction formula of the
PKUPH model was P=ex/(1+ex), and x=-4.496+(0.070xage) +
(0.676xmaximum tumor diameter) + (0.736 x spiculation sign) +
(1.267 x family history of tumor) - (1.615 x calcification) - (1.408 x
well defined border).

In a comparative study of the PKUPH and Mayo models, the
PKUPH model demonstrated superior discriminatory capability in
differentiating between malignant and benign nodules (19).
Notably, nodule calcification was identified as an independent
risk factor in this model, which is not emphasized in other
international models and deserves more attention in future
studies. The PKUPH model is particularly pertinent to the
Chinese population limiting its application. Additionally, variable
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assessment depends on subjective physician descriptions, affecting
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TABLE 2 key characteristics of Biomarker-based diagnostic models for lung cancer.

Authors (year)

Li et al. (2020)

Study design

Retrospective cohort

Population

China (2000.1-2020.4)
No specific quantity has been

Data source

Multicenter

Predictors used

CEA*

Calibration

Not calibrated

AUC* (95%Cl)

0.77(0.73-0.80)

Sensitivity

33%

Specificity

92%

Reference

(23)

study

No independent validation set

CYFRA21-1%, CEA*, miRNA-21-
5p, miRNA-574-5p

tud
stucy explicitly stated
Chi 2016.5-2021.5
Retrospective cohort ina ( o ) i CEA*, CYFRA21-1*, Radiomics
Hou et al. (2024) n=239(Training set) Single center Excellent 0.76(0.66-0.86) 84.3% 63.6% (24)
study . Score
n=103(Validation set)
PRDX2*, PON1*, APOC3*,
. China (2017.11-2020.1) . . .
Multi-stage o . lobulation, spiculation, vascular, .
Zhang et al. (2024) L n=168(Training set) Multicenter R . Not calibrated 0.904(0.859-0.949) 81.4% 90.1% (25)
validation study No independent validation set indentation, CEA*, CA125%,
P CYFRA21-1*
Al i 2004-2019
_ Retrospective case- merican (2( ) , pro-SFTPB*, CEA*, CYFRA21-1%, .
Ostrin et al. (2021) n=200(Training set) Multicenter Not calibrated 0.90 99.6% 28% (26)
control study . CA125*
n=60(Validation set)
Retrospective cohort China
Kuang et al. (2019) ud P n=63(Training set) Single center FGB*, FGG* Not calibrated 0.794(0.681-0.908) 81.4% 70.0% (28)
stug
¥ No independent validation set
Europe
Ret: ti hort CEA, CA125, CYFRA21-1, Pro- .
Guida et al. (2018) etrospective cohor n=324(Training set) Multicenter ) o Not calibrated 0.83 (0.76-0.90) 63% 83% (30)
study . SFTPB*, smoking
n=153(Validation set)
Chi 2013.10-2016.9
Prospective cohort ina ( O ) . FR+-CTC*, CEA*, CYFRA21-1%,
Zhou et al. (2019) stud n=260(Training set) Multicenter NSE* Excellent 0.802(0.673-0.930) 55.8% 81.3% (32)
u
Y n=122(Validation set)
China (2018-2023)
P ti hort =76(Traini t CTC t AT* platfc isk
Ren et al. (2025) rospective cotor n=76( r'amlng 5 .) Single center . c0u1.1 Al platiorm s Excellent 0.805 Not reported Not reported (33)
study No specific quantity has been stratification
explicitly stated
. China (2020.5-2021.4)
Retrospective . . .
Yang et al.(2022) R R n=93(Training set) Single center PNAIDS*, CAC* Not calibrated 0.847 (0.769-0.924) 61.0% 94.1% (48)
diagnostic study X L
No independent validation set
American (2018.12-2021.2)
Tahvilian et al. P ti hort
anviian etd rospective coho n=151(Training set) Multicenter CAC Excellent 0.78(0.70-0.87) 77% 72% (49)
(2023) study X L
No independent validation set
Age, smoking history,
Prospective China (2015.3-2015.11) emphysema, nodule diameter,
Li et al. (2017) observational pilot n=39(Training set) Single center spiculation, vascular sign, Not calibrated 0.921 Not reported Not reported (53)
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TABLE 2 Continued

Authors (year)

Lin et al. (2017)

Study design

Prospective cohort

Population

North America and China
n=135(Training set)

Data source

Multicenter

Predictors used

miR-205-5p, miR-126-3p,

Calibration

Not calibrated

AUC* (95%Cl)

0.94

Sensitivity

88.9%

Specificity

90.5%

Reference

(54)

tud Maxi diameter of the nodul
study n=224(Validation set) aximum diameter of the nodule
China (2012-2013)
Ret ti hort =80(Traini t
Yu et al. (2017) etrospective cohort | n=80(Training set) Single center miR-92a-2 Not calibrated | 0.761 (0.658-0.864)  56% 100% (56)
study No specific quantity has been
explicitly stated
ProspectAive China (201-5111—2017.12) ‘ RP*, NEATI*, TUGL", ‘
Yuan et al. (2020) observational n=265(Training set) Single center MALATL* Not calibrated 0.89(0.84-0.94) 86.96% 74.65% (64)
diagnostic study n=223(Validation set)
Chi 2010-2012
Xie et al. (2018) Retrospective cohort | ;r;)((Tra'nin se)t) Single center SOX20T", ANRIL, CEA', Not calibrated = 0.883 (0.830-0.924) | 91.0% 70.0% (65)
i . = i i i . .830-0. . .
study ining CYFRA21-1%, SCCA* ° °
n=200(Validation set)
X . American (2018-2021)
L M Kamel Ret; t hort
amiaa W Rame CLrospective CONOTL 1 —485(Training set) Single center GAS5*, SOX20T* Not calibrated  0.90 83.8% 81.4% (66)
et al., 2019 study S
n=261(Validation set)
China (2014-2017)
Ret ti hort =148(Traini t 0.7398 (0.6493—
Jiang et al. (2018) etrospective cohort | n=148(Training set) Single center IncRNA XLOC_009167 Not calibrated ( 78.7% 61.8% (67)
study No specific quantity has been 0.8303)
explicitly stated
X ctDNA Methylation Classifier,
Prospective clinical China(2018.9-2022.3) Physician Cancer Probabili
Liang et al. (2020) K P No specific quantity has been Multicenter Y . ty Not calibrated 0.83 82.5% 83.3% (83)
trial study explicitly stated Estimates, Validated Lung Nodule
HpUCy Risk Models
. China (2019.1-2020.6) n=110
Ret ti hort PTGER4*, RASSF1A*, SHOX2*, .
Xing et al. (2021) CLrospective COROT | Training set) Single center _ Not calibrated | 0.943(0.891-0.995) | 92.0% 96.0% (84)
study o nodule diameter
n=100(Validation set)
Chi 2019.1-2023.3
Prospective cohort ina ( . ) i SHOX2*, SCT*, HOXA7*, age, 0.932 (95%Cl: 0.872—
He et al. (2025) n=210(Training set) Single center ) Excellent 89.1% 82.8%( (85)
study L size 0.992)
n=82(Validation set)
K (2009.1-2018.
i UK (2009 i _0 8) . ctDNA mutations in KRAS*, i
Leung et al. (2020) Prospective study n=192(Training set) Single center EGER*. TP53* Not calibrated Not reported 75% 89% (87)
No independent validation set ?
American (2012-2013) X
fDNA fi tat fil
Mathios et al. (2021) | Prospective study n=365(Training set) Multicenter N ragmentation profries Not calibrated 0.93 (0.90-0.97) 94% 80% (88)

n=431(Validation set)

(DELFI*), CEA*
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Authors (year) = Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference
. China (2014-2018) 7-autoantibody panel (p53,
Retrospective case- . . .
Huang et al. (2020) control stud n=624(Training set) Single center PGP9.5, SOX2, GAGE7, GBU4-5, Not calibrated 0.775(0.740-0.810) 50.1% 82.0% (91)
Y No independent validation set MAGEA1, CAGE)*
P53%, PGP9.5%, SOX2*, GAGE7*,
GBU4-5%, MAGEA18, CAGE*,
age, gender, smoking history,
hist f ious t X
) China (2017.08-2020.06) story of previous tumors
Retrospective cohort o . maximum nodule diameter, i
Xu et al. (2022) n=933(Training set) Single center Not calibrated 0.96 96.4% 79.1% (92)
study X L number of nodules, nodule
No independent validation set » K
composition, vascular sign,
spiculation sign, lobulation sign,
pleural traction sign, cavitation
sign
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nodules. The fibrinogen beta chain (FGB) and fibrinogen gamma
chain (FGG) are two subunits of fibrinogen. A preliminary study
revealed that patients with malignant pulmonary nodules exhibited
significantly elevated expression of FGB and FGG in plasma
exosomes compared to those with benign pulmonary nodules
(fold change > 1.5, p < 0.05) (27). The combination of plasma
exosomal FGB and FGG were found to discriminate malignant
from benign lung nodules at AUC 0.794 (81% sensitivity, 70%
specificity) (28). In addition, the surfactant protein B precursor
(Pro-SFTPB) was reported to be capable to predict the risk of lung
cancer development (29). A proof-of-principle study from the
Integrative Analysis of Lung Cancer Etiology and Risk
(INTEGRAL) Consortium showed that a panel of four circulating
protein biomarkers (CA125, CEA, CYFRA 21-1 and Pro-SFTPB)
could be used to identify high-risk individuals for lung cancer
screening, demonstrating an AUC of 0.83 (30). Although these
novel protein biomarkers are promising, multiomics, in vitro, in
vivo and large cohort studies are needed for the screening and
validation of these biomarkers, to further improve the
diagnostic efficiency.

3.2 Circulating tumor cell

CTCs—tumor cells shed into circulation that retain malignant
morphology and molecular signatures—are captured by
immunomagnetic, microfluidic or size-based enrichment and serve
as liquid-biopsy biomarkers for diagnosis and treatment monitoring
(31). Previous study employed an immunomagnetic bead assay to
quantify folate receptor-positive CTC (FR+ CTC) and demonstrated
that their efficiency in distinguishing between benign and malignant
nodules with a sensitivity of 78.6% and a specificity of 68.8% (32). The
FR+ CTC model in this study offers a minimally invasive method using
a blood draw to detect circulating tumor cells by targeting folate
receptor-alpha, specific to lung adenocarcinoma. In addition, Ren D
et al. constructed an interpretable nomogram integrating pan-epithelial
keratin-positive (CK7/19/panCK", CD45") CTC counts with three-
dimensional malignant risk stratification from the unbiased Artificial
Intelligence (uAl) platform CT, based on 76 surgically confirmed
pulmonary nodule patients (33). Internal validation via 1,000
bootstrap iterations yielded an AUC of 0.805 (95% CI: 0.705-0.905)
for the combined model, significantly outperforming either CTC count
alone (AUC 0.743, 95% CI: 0.622-0.864) or uAl imaging alone
(AUC 0.730, 95% CI: 0.606-0.854). Additionally, Vimentin-positive
circulating tumor cells (Vim+ CTCs) (34), Vascular Endothelial
Growth Factor Receptor positive circulating tumor cells (VEGFR2+
CTCs) (35), Programmed Death-Ligand 1 positive circulating tumor
cells (PD-L1+ CTCs) (36) were also associated with lung
cancer diagnosis.

Due to tumor cell heterogeneity, limitations in the CTC capture
strategies using either biomolecular markers or size-dependence are
obvious. Charge-mediated CTC isolation (CMCTCI) has been
applied in cell specific targeting overcoming the above limitations
(37-40). The charged nanoprobes (NPs) provide new bio-
electricity-based cell targeting and capturing that is not relying on
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any protein-based biomarkers whose specificity has been a universal
issue. Since the glycolytic-regulated surface negative charge is the
hallmark characteristic of all cancer cells regardless of genotypic
differences, the charge-based targeting will be unique, exclusive, and
highly specific only to those that exhibit significant glycolysis. This
separation technique requires no antibody labelling and is not
constrained by tumor heterogeneity. Using merely 1 mL of
peripheral blood, it achieves efficient, broad-spectrum capture of
2-8 circulating tumor cells within 20 minutes, while only 0-1
circulating tumor cell was detected in blood samples from 10
healthy donors (41).

As CTCs are extremely rare and heterogeneous cells in the
bloodstream (a few as 0-1/7.5ml) and the majority are cleared by the
immune system or perish in the circulation (42, 43), further studies are
needed to improve the detection and isolation platform of CTC.

3.3 Circulating genetically abnormal cell

Circulating genetically abnormal cells are cells found in the
bloodstream that possess acquired genetic mutations or
chromosomal abnormalities (44). These cells are often indicative of
serious pathological processes, most notably cancer, where they can
detach from tumors and circulate (45). Their detection and analysis
are crucial in oncology for early diagnosis, monitoring treatment
response, and assessing the risk of metastasis (46). The detection
primarily relies on analyzing blood samples to identify genetically
abnormal cells or cell-free DNA (cfDNA). This is achieved through
advanced techniques like polymerase chain reaction (PCR), DNA
sequencing, and fluorescence in situ hybridization (FISH) to pinpoint
specific mutations or chromosomal abnormalities (47).

CAC in conjunction with CT scans for the diagnosis of lung
nodules by using the Pulmonary Nodules Artificial Intelligence
Diagnostic System (PNAIDS), showed an AUC at 0.847 (48). In
addition, the Lung LB™ model was built in prospective and
multicenter study using CAC for the diagnosis of lung cancer.
The Lung LB™ is a 4-color fluorescence in-situ hybridization assay
for detecting circulating genetically abnormal cells (CGACs) from
peripheral blood. The model demonstrated a 77% sensitivity and a
72% specificity (49). The study indicates combined CAC analysis
boosts diagnostic accuracy and spares invasive biopsies.

These finding suggests that CAC can complement CT imaging,
offering enhanced support for the early detection of lung cancer. This
model shows promise for early diagnosis of pulmonary nodules as a
non-invasive tool but needs further validation due to its limited
sample size, single-center design, and lack of external validation. The
complexity and cost of CAC detection may limit routine use, and
standardization of these methods requires more research.

3.4 Circulating tumor RNA

3.4.1 miRNA
MiRNAs, a category of small non-coding RNAs with gene-
regulatory functions, have shown significant potential in the
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diagnosis of tumors (50). Circulating miRNAs are resistant to
multiple freeze-thaw cycles (51). The noninvasiveness and
stability make circulating miRNAs a potential tool to identify
diagnostic markers in oncology. Various methods exist for
miRNA extraction, including traditional Trizol reagent extraction,
commercial column extraction kits, and magnetic bead enrichment.
Detection techniques for miRNAs comprise reverse transcription
quantitative polymerase chain reaction (RT-qPCR), digital PCR,
Northern blotting, capillary gel electrophoresis, homogeneous
multiplexed detection methods, and next-generation sequencing
(NGS) (52).

A predictive model incorporating a plasma four-biomarker
panel (miR-21-5p, miR-574-5p, CEA, CYFRA21-1) plus clinical
and imaging features distinguished benign from malignant lung
nodules with 80% positive predictive value (PPV), 89.5% negative
predictive value (NPV) and AUC 0.921 (53). In addition, a model
developed by integrating plasma miR-126, miR-210, and miR-205-
5p, clinical features, and imaging characteristics exhibited excellent
diagnostic efficiency for breast cancer, with an AUC 0.87, and
sensitivity and specificity, achieving rates of 89.9% and 90.9% (54).
Besides, research has demonstrated that a predictive model
incorporating serum miR-15b-5p, miR-16-5p, and miR-20a-5p is
effective in distinguishing early-stage non-small cell lung cancer
(NSCLC) cases from healthy individuals (55). For testing the utility
of miRNAs as a minimally-invasive diagnostic biomarker, Yu et al.
investigated the expression of miR-92-a2 in the plasma of Small Cell
Lung Cancer (SCLC) patients and healthy controls. The study
revealed significant overexpression of plasma miR-92a-2 levels in
SCLC patients compared to controls and specificity and sensitivity
of 100% and 56%, respectively, along with an AUC of 0.761 was
obtained for the diagnosis of SCLC (56).

Moreover, a panel comprising 34 miRNAs has demonstrated
the capability to identify individuals with early-stage NSCLC among
asymptomatic high-risk populations, achieving an accuracy rate of
up to 80% (57). This miRNA-based diagnostic test, which utilizes a
signature of 13 specific miRNAs, was administered to over 1,000
high-risk participants in the Continuous Observation of Smoking
Subjects (COSMOS) study (58). The test exhibited an overall
diagnostic accuracy for lung cancer of 75% (95% CI 72-78)
(59).Additionally, the other studies have found that circulating
miR-25 (60), miR-233 (60), miR-21 (61) were upregulated in lung
cancer, while miR-486-5p (62), miR-126 (61), miR-30d (61), miR-
30d (61), miR-30e-5p (61) and miR-451 (61) were downregulated,
indicating potential application in the diagnosis of lung cancer.

However, the inconsistency in miRNA evaluation makes this
method less applicable in clinical settings. A standard control,
standardized isolation method and large cohort are needed to
improve the reliability of the results.

3.4.2 LncRNA

Long non-coding RNA (IncRNA) represents a category of non-
coding RNA molecules exceeding 200 nucleotides in length, which
are intricately associated with tumorigenesis and tumor
progression. In sufficient quantity, tumor-derived IncRNA
typically form a highly stable secondary structure, which is
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resistant to ribonuclease activity and is thus stable in peripheral
blood, making IncRNA suitable for quantitative detection (63).

A diagnostic model incorporating four-IncRNAs panel (RNA
component of mitochondrial RNA processing endoribonuclease
[RMRP], Taurine up-regulated gene 1 [TUGL1], Nuclear
paraspeckle assembly transcript 1 [NEATI] and Metastasis
associated lung adenocarcinoma transcript 1 [MALATI1])
achieved AUCs of 0.89, outperforming traditional lung cancer-
related tumor marker combinations (CEA, CA125, and CYFRA21-
1) for the diagnosis of adenocarcinoma (64). LncRNA Sex-
Determining Region Y Box 2 overlapping transcript (SOX20T),
antisense noncoding RNA in the antisense non-coding RNA in the
Inhibitor of Cyclin-Dependent Kinase 4 locus (ANRIL), combined
with traditional tumor biomarkers CEA, SCCA, and CYFRA21-1
were selected to form a diagnostic panel for NSCLC (65). Higher
specificity and sensitivity were observed in the panel both in test
and validation set compared to single biomarkers. Furthermore,
plasma IncRNAs Growth Arrest-Specific 5 (GAS5) and SOX20T
combined as dual-gene diagnostic model distinguished NSCLC
from benign nodules with an AUC of 0.82 (77%-87%), with
83.8% sensitivity and 81.4% specificity (66). To distinguish
between lung cancer and pneumonia, IncRNA eXpressed LOCus
009167 (XLOC_009167) was found to be elevated in the whole
blood of lung cancer patients and achieved an AUC of 0.7005 and a
sensitivity of 90.1% (67). In addition, the single IncRNAs including
LncRNA 152, GAS5, Cytoskeleton regulator RNA (CYTOR),
membrane-associated guanylate kinase inverted 2 antisense RNA
3 (MAGI12-AS3) and zinc finger antisense 1 (ZNAS1) have been
shown to hold potential to serve as a diagnostic marker
distinguishing NSCLC from benign lung disease (63, 68).

3.5 Circulating tumor DNA

Tumor-released ctDNA, genetically mirroring its tissue origin,
offers a non-invasive biomarker for early detection, treatment
monitoring, and prognosis of cancer (69). Cell death, active
secretion through Extracellular Vesicles (EVs) and lipoprotein
complexes, CTC disruption, chromosomal instability, and external
factors like anti-tumor therapies, all contribute to the increased
release of ctDNA (70, 71). Current methodologies for extracting
ctDNA from blood samples include magnetic bead-based, in silico
column-based, and liquid-phase extraction techniques. Several
studies have demonstrated the potential of ctDNA (Tumor Protein
p53 [TP53], Retinoblastoma 1 [RB1]) as a valuable tool for the
diagnosis and prognosis of SCLC (72, 73). Oncogenic driver gene
alterations within ctDNA are typically identified using single-gene
PCR and NGS technologies (74). ctDNA can be classified into various
types according to its characteristics, commonly including
methylated ctDNA, mutated ctDNA, and copy number variant
ctDNA (75).

Tumor-derived ctDNA carries cytosine phosphodiester bond
guanine-island (CpG-island) 5-methylcytosine (5-mC), a chemical
modification that can be detected in blood (76). Hypermethylation
of the CpG islands in promoter regions of tumor-suppressor genes
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has been shown to contribute to carcinogenesis (77). Several studies
have reported the potential of investigating tumor-specific
methylations in blood for screening and diagnosis of lung cancer.
For example, various gene promoters were found to be differentially
methylated in ctDNA between patients with lung cancer and
controls, including short stature homeobox 2 (SHOX2) (78, 79),
doublecortin like kinase 1 (DCLK1) (80), septin9 (SEPT9) (81), ras
association domain family 1 isoform A (RASSF1A), and retinoic
acid receptor B2 (RARB2) (82).

In a multicenter observational trial of 10,560 patients with 0.5-3
cm non-calcified nodules, a ¢tDNA methylation model
distinguished benign from malignant disease with 82.5%
sensitivity and 83.3% specificity (83). Similarly, fusing ctDNA
methylation (Prostaglandin E Receptor 4 [PTGER4]/RASSF1A/
SHOX2) with imaging lifted lung-nodule classification to AUC
0.951, outperforming image-only or traditional Mayo-type models
and validating the “epigenetics-plus-imaging” paradigm (84). In
addition, A SHOX2/Secretin (SCT)/Homeobox A7 (HOXA7)
ctDNA methylation panel plus clinical variables yielded AUC
0.87, reinforcing the robustness of methylation-based models for
benign-malignant nodule discrimination (85). Prior work centered
on ctDNA methylation, while mutation-bearing ctDNA fragments
are likewise being explored for early cancer detection (86). In a
study analyzing mutant ctDNA in blood of patients, it was found to
exhibit good diagnostic performance as a biomarker for lung cancer
diagnosis (87). It showed high specificity (89%), sensitivity (75%)
and PPV (98%), underscoring its utility for flagging malignancy.
Moreover, DNA Evaluation of Fragments for Early Interception
(DELFI), a machine-learning tool that profiles ctDNA
fragmentation, distinguished lung cancer from non-cancer in 781
symptomatic individuals (AUC = 0.90); adding clinical variables
and CEA lifted the AUC to 0.93 (88).

3.6 Tumor-associated autoantibodies

Tumor-associated autoantibodies are host immunoglobulins
directed against aberrantly expressed or mutation-generated
antigens (89). These autoantibodies enable early detection of lung
cancer, guide therapy monitoring, and support prognostic
assessment (90).

A four-autoantibody panel (tumor protein 53 [p53]/Sex-
Determining Region Y-Box Transcription Factor 2 [SOX2]/G
antigen 7 [GAGE7]/Glycosylated B-subunit 4-5 [GBU4-5])
detected by enzyme-linked immunosorbent assay (ELISA)
distinguished early-stage lung cancer from benign nodules with
AUC 0.764, outperforming single-marker tests and establishing a
multiplexed model that balances sensitivity (0.478) and specificity
(0.814) (91). Similarly, integrating seven-autoantibody (P53,
protein gene product 9.5 [PGP9.5], SOX2, GAGE7, GUB4-5,
melanoma-associated antigen A 1 [MAGEA1], and cancer antigen
gene [CAGE]) signatures with clinical and imaging data raised
early-stage lung-nodule diagnosis to 59.7% sensitivity and 81.1%
specificity, lifting the ROC-AUC from 0.748 to 0.96 (92). Another
study that adds plasma IgA to IgG against TIF1y raised the AUC
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from single-IgG levels to 0.734, capturing mucosal immunity and
yielding clinically useful early-lung-cancer detection (93). The Early
Cancer Detection Test-Lung (EarlyCDT-Lung) test a prospective
autoantibody panel for lung-cancer detection, yielded 9-16% six-
month PPV in 1613 high-risk patients, depending on six-
autoantibody (p53, New York Esophageal Squamous Cell
Carcinoma 1 [NY-ESO-1], CAGE, GBU4-5, SOX2, Human
Neuronal Protein D [HuD]) versus seven-autoantibody (p53, NY-
ESO-1, CAGE, GBU4-5, SOX2, HuD, Melanoma-associated
antigen 4 [MAGE A4]) model (94).

In summary, these findings underscore the potential of
integrating autoantibody signatures with clinical-imaging data
enables accurate, non-invasive early diagnosis of lung cancer.

3.7 Lung cancer-related metabolites

During the development of tumors, metabolites in the body
change. More recently, researchers have turned to metabolomics to
analyze specific metabolic markers for the early diagnosis of lung
cancer (95). Metabolomics offers a novel perspective in this context
and can provide real-time reflections of cellular status (96).

A plasma metabolomics—eXtreme Gradient Boosting (XGBoost)
model built from 478 cancers and 370 benign nodules distilled 16
features (demographics, six amino acids, eight acyl-carnitines) to
yield 0.81 AUC, 74% sensitivity and 75% specificity, pinpointing
ornithine and palmitoyl-carnitine as non-invasive early markers and
validating metabolomics-guided risk stratification of pulmonary
nodules (97). Additionally, integration of chest CT features
(location, lobulation, spiculation, vascular convergence), elevated
serum CEA/CYFRA21-1, and a plasma fatty-acid signature
(palmitate, stearate, docosahexaenoic acid [DHA], a-linolenic acid
[ALA], etc.) accurately discriminated 72 malignant pulmonary
nodule (MPN) from 38 benign pulmonary nodule (BPN),
underscoring the added value of multi-modal imaging-metabolite-
marker synergy for non-invasive nodule characterization (98). A
clinical study of 65 non-smoking female NSCLC patients, 6 benign
lung-tumor cases and 65 healthy controls identified the cysteine/
serine/1-monooleoylglycerol panel as a biomarker signature for
diagnosing non-smoking female NSCLC (99).

Moreover, numerous studies have identified metabolites associated
with lung cancer. Gas Chromatography-Mass Spectrometry (GC-MS)
plasma profiling by Musharraf et al. showed lung-cancer patients had
elevated fatty acids and glucose versus Chronic Obstructive Pulmonary
Disease (COPD), healthy smoker and non-smoker controls (100).
Besides, Ding et al. linked lung cancer to dysregulated glucose
metabolism, citing elevated glycerol-3-phosphate, lactate, acetyl-CoA
and 3-phosphoglycerate (101). Lung-cancer sera display increased
glycerophospholipids and hypoxanthine alongside divergent gut-
microbiome and metabolome profiles relative to healthy subjects
(102). In addition, a seven-metabolite microbiota-derived panel
(uracil [Ura], histamine [His], cysteine [Cys], 3-hydroxypicolinic acid
[HPA], uric acid [UA], indoleacrylic acid [IA], and fatty acid [FA])
reliably distinguishes early-stage lung adenocarcinoma from healthy
controls (103).
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Ultimately, metabolomics-anchored, multidimensional models
merging metabolic, imaging and clinical data promise accurate,
non-invasive triage of pulmonary nodules for early lung-cancer
care. However, Low metabolite identification accuracy hampers
discovery of effective lung-cancer biomarkers.

4 Artificial intelligence based
predictive models

Against the backdrop of numerous data points, Al excels at
extracting features from large-scale lung-nodule imaging data and
building robust predictive models that help clinicians rapidly and
accurately distinguish benign from malignant nodules, markedly
improving diagnostic precision and efficiency (104). Al-based lung-
nodule predictors fall into two streams: classical machine-learning
models that rely on hand-crafted features (Logistic Regression [LR],
Linear Discriminant Analysis [LDA], Support Vector Machine
[SVM], Decision Tree [DT], Random Forest [RF], Gradient
Boosting Tree [GBT], K-Nearest Neighbors [KNN], etc.) and
deep-learning models (CNN, DBN, etc.) that autonomously learn
hierarchical patterns via multi-layer neural nets (105).

In recent years, the integration of Al tools with medical imaging
has enabled a new generation of models to detect cancer,
representing a significant leap in precision diagnostics. For
example, an Al-radiomics logistic model integrating age and CT
features (-350 Hounsfield Unit [HU] Consolidation-to-Tumor
Ratio [CTR] > 50%) showed stable malignancy prediction for
subsolid nodules, achieving AUCs of 0.721 (training) and 0.757
(validation) in 370 nodules (106). This study confirmed that AI-
radiomics model delivers individualized, non-invasive malignancy
risk estimates for central pulmonary nodules. Similarly, a study
implemented Grid-tuned hyper-parameter optimization lifted SVM
t0 99.2% accuracy on a small Kaggle lung-cancer set, outperforming
optimized XGBoost, DT and LR, yet larger multi-disease and
prospective data remain essential for clinical translation (107).

As manually engineered features plateaued, the field naturally
turned to deep learning, where convolutional networks automatically
discover hierarchical imaging patterns and now dominate pulmonary-
nodule classification. A deep-learning Lung Cancer Prediction-
Convolutional Neural Network (LCP-CNN) model outperformed the
Brock model (AUC 0.896 vs 0.868), offering a non-invasive, accurate
alternative for pulmonary nodule malignancy prediction (108). Going
deeper, an M-ResNet combining residual blocks and pyramid pooling
captured multi-scale CT features of complex lung nodules on Lung
Image Database Consortium and Image Database Resource Initiative
(LIDC-IDRI), delivering AUC 0.928 (95% CI: 0.917-0.938) to classify
benign and malignant pulmonary nodules, and setting a robust
baseline for nodule characterization (109). Besides, a prospective 260-
nodule Zhongshan Hospital cohort (2018-2021) demonstrated that the
Al-assisted diagnostic platform o-Discover/Lung V1.0.2—an
integrated deep-learning framework that probabilistically classifies
pulmonary nodule benignity or malignancy from clinical CT
imaging—achieved 75.8% accuracy, 89.6% sensitivity, 48.3%
specificity and AUC 0.755, corroborating its practical utility in
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routine lung-nodule management (110). Moreover, novel dense
architectures D1/D2 attained 99.96% mean 10-fold accuracy on
colon/lung histopathology and CT (Lung and Colon Cancer
Histopathological Image Dataset [LC25000], National Clinical Trial-
Colorectal Cancer [NCT-CRC], etc.), outperforming ResNet50,
Xception and seven other baselines with only 10% of the data,
offering a robust, multimodal boost to cancer imaging (111). These
studies presented the key characteristics of the Al-based predictive
models for lung cancer (Table 3).

In addition, other emerging AI techniques also facilitate disease
diagnosis which are promising in the application of lung nodules
prediction. For example, Multi-Strategy Parrot Optimizer (MSOP)
refines breast-cancer imaging. Deep learning sharpens forensic bone-
age assessment (112). Besides, Inception-V4 paired with Dynamic
Snow Leopard boosts diabetic-retinopathy grading (113). As the
development of conversational Al in healthcare, ChatGPT helps
children with Down syndrome enhance emotional recognition (114).

To conclude, Al-based predictive models for lung cancer have
evolved decisively from classical algorithms to advanced deep learning,
establishing themselves as powerful tools for precision diagnostics.
Their successful application in prospective studies underscores a
tangible path toward broader clinical implementation, heralding a
new era in oncological care. Looking forward, the critical next steps
involve transcending pure performance metrics to address the
challenges of real-world integration——including model
interpretability, multi-center data standardization, and seamless
workflow adoption—to fully realize the promise of Al in routine
pulmonary nodule management and beyond.

5 Multimodal predictive model

Recent advances in Al, especially deep learning, have significantly
improved the differentiation of pulmonary nodules in medical imaging.
Studies show that clinical phenotypes (like age and smoking history)
and biomarkers (such as serum tumor markers and gene mutations)
are linked to whether nodules are benign or malignant. By combining
clinical, imaging, and biomarker data with AI through multimodal
approaches, more accurate models for predicting the malignancy risk
of pulmonary nodules can be developed.

A study created a multimodal deep learning model (clinical-
biomarker-combined deep radiomics [CB-DR]) combining clinical
data, CT radiomics, and biomarkers TPI-1 and miR-206, validated
externally (115). The model showed excellent diagnostic performance
with an AUC of 0.90, 90% accuracy, 90% sensitivity, and 82%
specificity. Besides, by adding adipose-tissue radiomics that mirror
the tumor micro-environment, the deep-learning radiomics clinical
nomogram (DLRCN) lifted CT discrimination of 6-30 mm nodules to
AUCs = 0.946 in both internal and external cohorts, outperforming
clinical-only (AUC 0.80), intranodular-plus-perinodular (0.80), fat-
only (0.86), Mayo (0.56) and Brock (0.59) models, while Decision
Curve Analysis (DCA) and significant Net Reclassification
Improvement (NRI)/Integrated Discrimination Improvement (IDI)
gains (p < 0.05) confirmed the added value of fat-derived imaging
biomarkers (116). Moreover, in a study Fusing CT morphology, Al
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TABLE 3 key characteristics of Al-based diagnostic models for lung cancer.

Authors (year)  Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference
. China (2018.01-2023.12) .
h Age, sol lume, 1
Shi et al. (2025) Retrospective cohort > 2 Training set) Multicenter ge, solid component volume, nodule | 0.757(0.632-0.881) | 82.0% 82.6% (106)
study S mean CT value
n=111(Validation set)
Gender, Age, Wheezing, Swallowing
. . X difficulty, yellow fingers, Chronic
h fi h
Syed et al. (2024) Retrospective cohort | No speci 'c.quantlty s Single center Disease, Anxiety, Coughing, Alcohol. Not calibrated 0.992 100% Not reported (107)
study been explicitly stated . )
Chest pain, Allergy, Smoking, Peer
pressure, Shortness of breath, Fatigue
. UK (2018.01-2019.08) LCP-CNN AI Model: Extracts solely
. Retrospective cohort - . . .
Baldwin et al. (2020) stud No reported training set =~ Multicenter CT nodule image features (deep Not calibrated 0.896(87.6-91.5) 99.57% 28.0% (108)
u
Y n=1397(Validation set) learning) *
Retrospective cohort Pakistan
Batool et al. (2025) stud P No specific quantity has | Single center Bone X-ray images Not calibrated 0.928(0.917-0.938) 99.98% 99.95% (109)
¥ been explicitly stated
China (2018.1-2021.4)
Ret: ti hort =260 CTi i h: teristi density,
Zhang et al. (2023) etrospective conor N R 3 Single center .u-nagm-g characteristics (density: Not calibrated 0.755 89.6% 48.3% (110)
study No specific quantity has position, size, etc.)
been explicitly stated
Ret ti hort N ifi tity h:
Uddin et al. (2024) etrospective cohor 0 spedt 'c.quan ity has Multicenter Multimodal images Not calibrated 0.99 99.96% 99.99% (111)
study been explicitly stated

AUC, area under curve; LCP-CNN, Lung Cancer Prediction Convolutional Neural Network.
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probability, serum Vascular Endothelial Growth Factor (VEGF) and a
7-autoantibody panel for 176 histology-proven nodules, a logistic
model reached AUC 0.946 (training) and 0.856 (external validation,
80% sensitivity, 86% specificity), outperforming imaging-only, Al-only
and any single-biomarker approach, with significant NRI/IDI (p <
0.05) and superior DCA net benefit, underscoring the value of
multimodal biomarker integration for early lung-cancer diagnosis
(117). It summarizes the key characteristics of the multimodal
predictive models that have been applied to lung cancer, including
their study design, sample size, predictors and reported performance
metrics (Table 4).

In summary, multimodal predictive models that incorporate
clinical data, imaging characteristics, biomarkers, and artificial
intelligence have the potential to improve the accuracy of
differentiating between benign and malignant pulmonary nodules.
Future research should prioritize the ongoing optimization of
algorithmic performance and the validation of its stability and
generalizability across diverse populations. This will support the
broader integration of this technology into clinical practice.

6 Discussion

The rapid evolution of predictive models for lung nodule
malignancy reflects a paradigm shift from relying on single-modal
data to integrating multimodal approaches (118). While classical
clinical-imaging models like the Mayo (13), VA (15), and Brock (16)
models laid the foundational groundwork, they exhibit limitations in
generalizability across diverse populations and ethnicities, as seen in the
suboptimal performance of the Mayo model in Chinese cohorts. This
underscores the critical need for extensive, multi-center, and cross-
population validation to ensure that predictive tools are robust and
equitable. Models developed from specific demographics, such as the
VA model’s focus on elderly male veterans, risk significant
performance decay when applied to the general population,
including women and younger individuals. Future model
development must prioritize prospective, multinational cohorts that
capture global demographic and genetic diversity to build truly
generalizable and clinically reliable tools.

There are a few studies validated their models across-populations.
For example, Artificial Neural Network (ANN) and support vector
machine with least absolute shrinkage and selection operator (SVM-
LASSO) models were trained on 113 Italian Continuous Observation of
Smoking Subjects (COSMOS) nodules. External validation on 72 the
United States-Image Database Resource Initiative (US-LIDC) nodules
dropped AUC only modestly (ANN 0.89—0.82; SVM-LASSO
0.90—0.86), and both still significantly outperformed Lung-RADS
(0.76), with Delong/McNemar tests indicating stable cross-center
performance (119). In addition, a separate investigation employed
the XGBoost-based PKU-M model, trained on 1,739 Chinese MPNs
(AUC 091, Brier 0.122), retained 0.89 across six Chinese plus one
Korean center (n=583) and 0.87 prospectively (n = 200),
outperforming Brock, Mayo, VA and clinicians while boosting
sensitivity +14% and specificity +8% (120). The aforementioned
studies demonstrate that radiomics models retain discriminative
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TABLE 4 key characteristics of multimodal diagnostic models for lung cancer.
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Wei et al. (2025)

miR-206), deep learning-based radiomics

features*

51(Validation set)

n=

(116)
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Deep learning features (extracted by
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Al extraction: lobulation sign, bronchial
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AUC, area under curve; BiVGG, Bilateral VGG. BMI, Body Mass Index. TPI-1, Triosephosphate isomerase-1. VEGF, Vascular Endothelial Growth Factor. TP53, Tumor Protein p53. PGP9.5, Protein Gene Product 9.5. SOX2, SRY-box Transcription Factor 2. GAGE7, G
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power across cohorts, yet true multi-ethnic, multicenter trials remain
scarce. Future work must couple multi-site validation with ensemble
learning to reconcile population-specific biomarker heterogeneity and
harden model robustness.

The exploration of novel biomarkers, including CTCs, CACs,
ctDNA (especially methylation patterns), and various RNA species,
holds immense promise for enhancing diagnostic precision (121).
However, the journey from discovery to clinical application is
fraught with challenges. Key among these is the development of
standardized, cost-effective, and highly specific detection methods.
For instance, while charge-based CTC isolation offers a promising
solution to tumor heterogeneity, and NGS unlocks the potential of
ctDNA methylation signatures, these technologies require further
refinement and simplification for routine clinical use. The
inconsistency in miRNA evaluation methodologies also highlights
a broader issue in the biomarker field: a lack of standardized
protocols for sample processing, analysis, and validation (122).
The future of biomarker discovery likely lies in high-throughput
multi-omics approaches, but this necessitates large-scale,
collaborative studies to identify and validate signatures with high
specificity and clinical utility.

Al particularly deep learning, has revolutionized the analysis of
complex imaging data, often surpassing human interpretation and

Classical model

10.3389/fonc.2025.1648548

traditional models like Brock (123). AT’s ability to autonomously
extract subtle radiographic features has significantly improved
nodule characterization. Nevertheless, its application raises two
significant concerns: data dependency and security. AI models are
often hampered by limited generalizability when trained on non-
diverse, single-source datasets, leading to biases (124). Furthermore,
the use of large-scale, multi-institutional datasets for training
necessitates robust data security frameworks, including federated
learning, to protect patient privacy while enabling collaborative
model improvement. A concise diagram illustrating the
classification of various models (Figure 1).

Data security is a cornerstone in the development of big data
and Al-based diagnostic models. robust security measures are not
merely a regulatory compliance issue but a fundamental ethical and
clinical necessity for building reliable and trustworthy Al tools in
medicine. To meet data security requirements for 3D models, a
dual-layer encryption and steganography mechanism utilizing
memristive coupled neural networks has been developed (125).
This mechanism establishes a highly secure data protection system,
resistant to brute-force attacks, statistical analysis, and linear and
differential attacks. It accomplishes this through hyperchaotic key
generation, dual-layer encryption, an ultra-large key space, NIST
randomness verification, secure S-box design, and a fusion

Al-based model
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FIGURE 1

The evolving landscape of predictive models. Classical clinical-imaging models (Mayo, VA, Brock and PKUPH) rely on logistic regression of
demographic and CT variables. Biomarker-based approaches incorporate CTCs, CACs, circulating tumor DNA/RNA, proteins, autoantibodies and
metabolites, either alone or in combination with clinical features. Al-based models progress from conventional machine learning algorithms (SVM,
Random Forest, XGBoost, etc.) to deep-learning networks (CNN, DBN, MLP, etc.). Contemporary multimodal integration fuses clinical, imaging,
biomarker and Al algorithms, offering a non-invasive pipeline for personalized early lung cancer detection.
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mechanism for encryption and steganography. The presented
algorithm can reliably ensure privacy for sensitive digital data
transmissions and storage applications. Future work should focus
on integrating such hardware-efficient security layers directly into
Al diagnostic pipelines to ensure end-to-end privacy from data
acquisition to clinical decision-making.

Looking forward, the most promising application lies in
multimodal models that seamlessly integrate clinical parameters,
Al-enhanced imaging, and liquid biopsy biomarkers. Studies
combining CT radiomics with adipose-tissue features, serum
autoantibodies, or protein panels have consistently demonstrated
superior performance (AUCs >0.90) compared to any single-
modality approach. The primary challenge for clinical translation
is the transition of these sophisticated models from research settings
to routine practice. This requires the development of user-friendly
interfaces, validation in real-world clinical workflows, and clear
evidence of cost-effectiveness. Ultimately, the future of lung nodule
management will be guided by these integrated, data-driven tools,
enabling more personalized and precise patient care, reducing
unnecessary invasive procedures, and improving early detection
rates of lung cancer.
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