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Lung nodules are critical indicators for early lung cancer detection, yet accurately

distinguishing between benign and malignant lesions remains a clinical

challenge. This review summarizes advances in predictive models for lung

nodule risk assessment, spanning classical clinical-imaging models, biomarker-

based approaches, and artificial intelligence (AI)-driven tools. While classical

models provide a foundational framework, their performance often varies

across populations. Biomarkers and AI models significantly enhance diagnostic

precision by capturing molecular and imaging features imperceptible to the

human eye. However, issues such as generalizability, standardization, and data

security persist. The most promising direction lies in multimodal integration,

combining clinical, imaging, biomarker, and AI data to achieve superior accuracy

with an area under the curve (AUC) >0.90. Future efforts should focus on multi-

center validation, standardized biomarker assays, and data secure, scalable AI

systems to translate these innovations into routine clinical practice, enabling

personalized and early lung cancer diagnosis.
KEYWORDS
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1 Introduction

Lung cancer is the most frequently diagnosed cancer worldwide and is one of the

leading cause of cancer-related mortality (1). Lung nodules are defined as round or oval

lesions (≤3 cm in diameter) within the lungs, detectable through imaging, and serve as

critical indicators of early-stage lung cancer. These nodules are typically identified using CT

scan or chest X-ray (2). Statistically, the detection rate of nodules via chest X-ray is 2.1%,

whereas CT scans can achieve a detection rate of up to 17.0%, primarily due to the superior

spatial resolution offered by CT technology (3). The widespread application of CT

technology has led to a marked increase in the detection rate of lung nodules (4).

Furthermore, the integration of advanced imaging techniques, such as high-resolution

CT combined with Positron Emission Tomography (PET), has significantly enhanced the
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differential diagnosis of lung nodules, facilitating early lung cancer

screening (5). The characteristics of nodules, including size,

number, and location, are significantly correlated to the risk of

lung cancer (6, 7). Nonetheless, due to the potential for false

positives in imaging screenings, the definitive determination of

nodule characteristics should be corroborated with other

examinations (8). It is imperative to develop a comprehensive

diagnostic framework in clinical practice that integrates the

imaging attributes of lung nodules, pathological assessments,

laboratory examinations and individual patient risk factors.

Tumor markers serve as valuable adjuncts in the diagnosis and

management of lung cancer. Although lacking sufficient sensitivity

or specificity for primary screening, they provide critical

information that complements imaging findings. Commonly

utilized serum markers include Carcinoembryonic Antigen

(CEA), Squamous Cell Carcinoma Antigen (SCCA), Cytokeratin-

19 fragments (CYFRA 21-1), and Neuron-Specific Enolase (NSE).

In addition, novel biomarkers including microRNAs (miRNAs),

autoantibodies, circulating tumor cells (CTCs), and circulating

abnormal cells (CACs) have been developed in recent years for

the diagnosis of lung cancer, which holds significant promise for

improving personalized diagnosis of lung cancer (9). However,

challenges remain in the clinical application of these biomarkers,

including the need for standardization of detection methods,

variable specificity, and high costs for certain markers.

As the development of AI, deep learning, random forest

algorithms, and ensemble learning methods have revolutionized the

discrimination of benign and malignant pulmonary nodules on CT

scans (10, 11). AI models automatically learn to extract complex

radiographic features—such as size, shape, texture, and growth

patterns—that are often imperceptible to the human eye, providing

a quantitative assessment of malignancy risk. However, performance

can also be hampered by limited generalizability if models are trained

on non-diverse datasets from specific scanners or populations.

Despite these current limitations of each kind of prediction

models, their integration into multimode represents the most

promising direction for enhancing diagnostic accuracy of lung

nodules (12). However, a comprehensive and up-to-date synthesis

that systematically compares classical models with emerging

biomarker-based and AI-driven approaches, while critically

evaluating their integration and translational challenges, is

lacking. Taken together, this review aimed to summarize the

characteristics of malignancy risk predictive models for lung

nodules, underscoring the advantages and limitations of each

category of models, based on previous studies searching from

PubMed using the key words as lung nodules, predictive model,

biomarkers, AI or multimode in recent ten years. Moreover, we

mainly focused on the emerging biomarkers, AI-based technology

and methodological innovations in this area, and offered insights

into the potential clinical applications of these models. In addition,

we discussed about the comparative performance of models across

diverse populations and the prospective directions of data security

as the application of large cohort and AI tools. By providing a

holistic overview, this review fills a critical gap in the literature and

serves as a valuable resource for clinicians and researchers
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navigating the rapidly evolving landscape of lung nodule risk

stratification. We also highlight the pressing issues that warrant

further investigation, such as the need for standardized biomarker

assays, multi-center validation of AI algorithms to ensure

generalizability, and the development of secure data-sharing

frameworks for model training.
2 Classical predictive model

2.1 Mayo model

The Mayo model represents one of the pioneering predictive

frameworks for assessing the probability of malignancy in pulmonary

nodules and has been extensively utilized in clinical settings (13). This

model was formulated using clinical data from 629 patients with

isolated pulmonary nodules who were evaluated at the Mayo Clinic

in the United States between 1984 and 1986. The cohort was divided

into a development group comprising 419 patients and a validation

group consisting of 210 patients. The overall malignancy rate among

the nodules was 23%, with diameters ranging from 4 to 30 mm. Benign

nodules were identified through imaging studies that demonstrated

stable, shrinking, or disappearing nodule sizes over a period of at least

two years, while malignant nodules were confirmed via pathological

diagnosis. The equation for the Mayo model is as follows: the

probability of malignancy P = ex/(1 + ex), where x = -6.8272 +

[0.0391 × age (years)] + (0.7917 × history of smoking) + (1.3388 ×

history of malignant tumor) + [0.1274 × diameter (mm)] + (1.0407 ×

spiculation) + (0.7838 × upper lobe). The area under the curve (AUC)

for the model’s receiver operating characteristic (ROC) curve was

0.8328 ± 0.0226 in the development group and 0.8014 ± 0.0360 in the

validation group, indicating robust predictive performance.

The Mayo model offers the advantage of utilizing clinical and

imaging data that are both readily accessible and straightforward to

implement in clinical practice. Nonetheless, themodel presents several

limitations. Firstly, it was developed over three decades ago, and its

relevance may be compromised due to evolving disease patterns and

advancements in imaging technology. Secondly, the model primarily

depends on CT imaging features, which may restrict its predictive

capability for certain complex or atypical nodules. Additionally,

research has indicated that the Mayo model exhibits suboptimal

predictive performance in the Chinese population, evidenced by an

AUC value of only 0.653, thereby suggesting its limited applicability

across diverse populations (14). Overall, the Mayo model has a certain

degree of accuracy in predicting the degree of malignancy of lung

nodules, but with the development of medical technology, its

limitations have gradually appeared, and it may be necessary to

combine with other more advanced models or techniques to

improve the accuracy of its prediction in clinical practice.
2.2 VA model

The VA model utilized data pertaining to lung nodules sourced

from the United States Department of Veterans Affairs. This study
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included 375 patients, with a lung cancer diagnosis rate of 54% (15).

The inclusion criteria specified that patients must have a newly

identified solitary lung nodule measuring between 7 and 30 mm in

diameter as observed on X-ray. Nodules were classified as benign based

on pathological findings indicative of benignity or the nodule size

remained stable over a two-year period. Conversely, nodules were

deemed malignant if the pathological diagnosis suggested malignancy.

The VA model employed a cross-validation approach to

enhance the model’s accuracy and reliability. Specifically, the

researchers implemented a 10-fold cross-validation method,

whereby the study population was randomly divided into 10

equal subsets. The model was trained using data from 9 subsets

and tested on the remaining subset, with this process repeated 10

times, each time with a different test subset. Independent predictors

integrated into the model included smoking duration, age,

maximum nodule diameter, and time since smoking cessation.

The VA model equation was P=ex/(1+ex) , x=-8.404+

(2.061×smoking history)+(0.779×age/10)+(0.112×diameter)-

(0.567×time to quit smoking/10). The AUC of the ROC model

was 0.79, which indicating its accuracy in predicting the degree of

malignancy of lung nodules. The calibration curve demonstrated

that the predicted probabilities were in strong concordance with the

observed probabilities.

The model showed good discrimination and calibration with

stable internal validation and high malignant prevalence. However,

the study only focused on elderly male veterans and lacked women,

younger participants and external validation, limiting its

generalizability. In addition, the measuring of lung nodules from

X-ray was less precise than the CT imaging features, which also

weakened the explanatory power of this model.
2.3 Brock model

The Brock model, alternatively referred to as the Pan Can model

or McWilliams model (16). This study aimed to identify factors that

could predict whether a lung nodule detected during initial low-

dose CT screening was malignant or would be diagnosed as

malignant upon follow-up examination. The training dataset was

sourced from the Pan-Canadian Early Detection of Lung Cancer

Study (Pan Can), while the validation dataset was obtained from the

British Columbia Cancer Agency (BCCA). The training dataset

comprised 1,871 participants with a total of 7,008 lung nodules,

whereas the validation dataset included 1,090 participants with

5,021 lung nodules. The cancer incidence rates were 5.5% for the

training set and 3.7% for the validation set, reflecting a low

incidence of malignant nodules in both cohorts. The study

excluded individuals with no history of smoking, a history of

previous tumors, and those younger than 50 years or older than

75 years. The lung nodules examined in the study ranged from 1 to

86 mm in diameter.

The analytical approach employed was multifactorial logistic

regression analysis, incorporating variables identified as lung cancer

risk factors in the literature as well as those routinely associated with

the disease. The diagnostic criteria were based on the pathological
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incorrect diagnoses and ensuring a high degree of reliability in the

results. Ultimately, the variables included in the model included

gender, diameter, spiculation, and location. Brock’s model equation:

p=ex/(1+ex), x=-6.6144+(0.6467×gender)-[5.5537×diameter in

millimeters]+(0.9309×spiculation)+(0.6009×superior lobe). This

model integrates multiple imaging features and clinical data to

provide a comprehensive assessment. The Brock model

demonstrates high predictive accuracy; for instance, in a

comparative study, the AUC of the Brock model was 0.902,

surpassing the AUC of the Mayo model, which was 0.895,

thereby indicating the superior predictive accuracy of the Brock

model (17).

The model was developed based on two prospective,

multicenter, population-based lung cancer screening cohorts,

resulting in good generalizability. Moreover, it included an online

calculator. It uses the Brock model to predict the likelihood of lung

nodule malignancy. By entering basic patient and nodule details, it

provides an immediate malignancy estimate. It is scientifically

rigorous, highly accurate, free, and easy to use, aiding clinicians

in making informed, low-risk decisions regarding lung nodules. The

model also uniquely confirmed that no malignant risk for peri

segmental nodules, offering valuable clinical insights. However, this

model only focused on high-risk smokers, making it less applicable

to broader groups.
2.4 PKUPH model

The Peking University People’s Hospital (PKUPH) model

represents the inaugural predictive framework for assessing the

probability of malignancy in pulmonary nodules, developed within

China utilizing domestic patient data. This model was formulated

through multifactorial logistic regression analysis using the clinical

data from patients who underwent surgical intervention and

received a pathological diagnosis of Solitary Pulmonary Nodule

(SPN) at PKUPH between 2000 and 2009 (18). 371 patients were

included in the development cohort and 62 patients were included

in the validation cohort. The model integrates variables including

patient age, maximum nodule diameter, family history of tumors,

calcification, spiculation sign, and nodule borders. The model’s

performance is characterized by an AUC value of 0.754, a sensitivity

of 69.51%, and a specificity of 73.55%. The prediction formula of the

PKUPH model was P=ex/(1+ex), and x=-4.496+(0.070×age) +

(0.676×maximum tumor diameter) + (0.736 × spiculation sign) +

(1.267 × family history of tumor) - (1.615 × calcification) - (1.408 ×

well defined border).

In a comparative study of the PKUPH and Mayo models, the

PKUPH model demonstrated superior discriminatory capability in

differentiating between malignant and benign nodules (19).

Notably, nodule calcification was identified as an independent

risk factor in this model, which is not emphasized in other

international models and deserves more attention in future

studies. The PKUPH model is particularly pertinent to the

Chinese population limiting its application. Additionally, variable
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assessment depends on subjective physician descriptions, affecting

its reproducibility and generalizability, which require further

validation. The key characteristics of the classical predictive

models for lung cancer are listed (Table 1).
3 Biomarker-based predictive models

Biomarkers are observable and quantifiable indicators reflecting

physiological or pathological states of human body, which facilitates

the diagnosis, prediction, and treatment of diseases (20). Classic

tumor markers like CEA, CYFRA 21-1, and NSE assist in

diagnosing lung cancer due to their non-invasive, allowing for

treatment monitoring and early detection of recurrence. However,

they have notable drawbacks as low sensitivity and specificity. Thus,

they are not definitive diagnostic or screening tools and should be

used alongside imaging and pathology for a complete clinical

evaluation (21). In recent years, the development of predictive

models based on biomarkers has emerged as a significant research

focus, particularly in differentiating benign from malignant lung

nodules, which is crucial for the early diagnosis of lung cancer (22).

The integration of multiple biomarkers, such as circulating tumor

RNA (ctRNA), circulating tumor DNA (ctDNA), DNA

methylation, and lung cancer-related proteins, with clinical data

and imaging characteristics enhances diagnostic precision while

minimizing the need for invasive procedures. Here compares the

main features of previously published biomarker-based lung-cancer

predictive models (Table 2).
3.1 Lung cancer-related protein markers

In recent years, protein marker assays related to lung cancer

have emerged as significant tools for the qualitative diagnosis of

pulmonary nodules. Commonly utilized biomarkers include CEA,

CYFRA21-1, NSE, and SCC. A diagnosis model built by

trichotomizing CEA, CYFRA21–1 and NSE, achieved an AUC of

0.88, with a sensitivity as 0.79 and a specificity as 0.80, clearly

superior to any single marker (0.63–0.78) (23). Besides, a single-

center retrospective study combining CT-radiomics nomogram

with CEA and CYFRA21-1, showed an AUC of 0.76 (24).

Another multimodal model fusing protein markers, CT metrics

and clinical features distinguished malignant from benign nodules,

showing an AUC of 0.904 with 81.4% sensitivity and 90.1%

specificity (25). Similarly, a study developed a four-protein

plasma panel (CA125, CEA, pro-SFTPB, CYFRA21-1) integrated

with clinical-imaging data that distinguished indeterminate

nodules, showing an AUC of 0.95 with 62% sensitivity and 95%

specificity (26). All the models-built combing with multiple classical

tumor biomarkers achieved an improved diagnostic efficiency of

lung cancer than single tumor biomarker did. However, the

sensitivity of this model is still not satisfactory.

Beyond conventional tumor biomarkers, diverse signaling and

immunomodulatory proteins driving lung cancer development are

expected to sharpen the discrimination of benign versus malignant
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TABLE 2 key characteristics of Biomarker-based diagnostic models for lung cancer.

Authors (year) Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference

0.77(0.73-0.80) 33% 92% (23)

0.76(0.66-0.86) 84.3% 63.6% (24)

0.904(0.859-0.949) 81.4% 90.1% (25)

0.90 99.6% 28% (26)

0.794(0.681-0.908) 81.4% 70.0% (28)

0.83 (0.76–0.90) 63% 83% (30)

0.802(0.673-0.930) 55.8% 81.3% (32)

0.805 Not reported Not reported (33)

0.847 (0.769–0.924) 61.0% 94.1% (48)

0.78(0.70–0.87) 77% 72% (49)

0.921 Not reported Not reported (53)
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5

Li et al. (2020)
Retrospective cohort
study

China (2000.1-2020.4)
No specific quantity has been
explicitly stated

Multicenter CEA* Not calibrated

Hou et al. (2024)
Retrospective cohort
study

China (2016.5-2021.5)
n=239(Training set)
n=103(Validation set)

Single center
CEA*, CYFRA21-1*, Radiomics
Score

Excellent

Zhang et al. (2024)
Multi-stage
validation study

China (2017.11-2020.1)
n=168(Training set)
No independent validation set

Multicenter

PRDX2*, PON1*, APOC3*,
lobulation, spiculation, vascular,
indentation, CEA*, CA125*,
CYFRA21-1*

Not calibrated

Ostrin et al. (2021)
Retrospective case-
control study

American (2004–2019)
n=200(Training set)
n=60(Validation set)

Multicenter
pro-SFTPB*, CEA*, CYFRA21-1*,
CA125*

Not calibrated

Kuang et al. (2019)
Retrospective cohort
study

China
n=63(Training set)
No independent validation set

Single center FGB*, FGG* Not calibrated

Guida et al. (2018)
Retrospective cohort
study

Europe
n=324(Training set)
n=153(Validation set)

Multicenter
CEA, CA125, CYFRA21-1, Pro-
SFTPB*, smoking

Not calibrated

Zhou et al. (2019)
Prospective cohort
study

China (2013.10-2016.9)
n=260(Training set)
n=122(Validation set)

Multicenter
FR+-CTC*, CEA*, CYFRA21-1*,
NSE*

Excellent

Ren et al. (2025)
Prospective cohort
study

China (2018–2023)
n=76(Training set)
No specific quantity has been
explicitly stated

Single center
CTC count + uAI* platform risk
stratification

Excellent

Yang et al.(2022)
Retrospective
diagnostic study

China (2020.5-2021.4)
n=93(Training set)
No independent validation set

Single center PNAIDS*, CAC* Not calibrated

Tahvilian et al.
(2023)

Prospective cohort
study

American (2018.12-2021.2)
n=151(Training set)
No independent validation set

Multicenter CAC* Excellent

Li et al. (2017)
Prospective
observational pilot
study

China (2015.3-2015.11)
n=39(Training set)
No independent validation set

Single center

Age, smoking history,
emphysema, nodule diameter,
spiculation, vascular sign,
CYFRA21-1*, CEA*, miRNA-21-
5p, miRNA-574-5p

Not calibrated
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TABLE 2 Continued

Authors (year) Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference

d 0.94 88.9% 90.5% (54)

d 0.761 (0.658–0.864) 56% 100% (56)

d 0.89(0.84–0.94) 86.96% 74.65% (64)

d 0.883 (0.830–0.924) 91.0% 70.0% (65)

d 0.90 83.8% 81.4% (66)

d
0.7398 (0.6493–
0.8303)

78.7% 61.8% (67)

d 0.83 82.5% 83.3% (83)

d 0.943(0.891-0.995) 92.0% 96.0% (84)

0.932 (95%Cl: 0.872–
0.992)

89.1% 82.8%( (85)

d Not reported 75% 89% (87)

d 0.93 (0.90–0.97) 94% 80% (88)
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Lin et al. (2017)
Prospective cohort
study

North America and China
n=135(Training set)
n=224(Validation set)

Multicenter
miR-205-5p, miR-126-3p,
Maximum diameter of the nodule

Not calibrat

Yu et al. (2017)
Retrospective cohort
study

China (2012–2013)
n=80(Training set)
No specific quantity has been
explicitly stated

Single center miR-92a-2 Not calibrat

Yuan et al. (2020)
Prospective
observational
diagnostic study

China (2015.11-2017.12)
n=265(Training set)
n=223(Validation set)

Single center
RMRP*, NEAT1*, TUG1*,
MALAT1*

Not calibrat

Xie et al. (2018)
Retrospective cohort
study

China (2010–2012)
n=260(Training set)
n=200(Validation set)

Single center
SOX2OT*, ANRIL*, CEA*,
CYFRA21-1*, SCCA*

Not calibrat

Lamiaa M Kamel
et al., 2019

Retrospective cohort
study

American (2018–2021)
n=485(Training set)
n=261(Validation set)

Single center GAS5*, SOX2OT* Not calibrat

Jiang et al. (2018)
Retrospective cohort
study

China (2014–2017)
n=148(Training set)
No specific quantity has been
explicitly stated

Single center lncRNA XLOC_009167 Not calibrat

Liang et al. (2020)
Prospective clinical
trial study

China(2018.9-2022.3)
No specific quantity has been
explicitly stated

Multicenter

ctDNA Methylation Classifier,
Physician Cancer Probability
Estimates, Validated Lung Nodule
Risk Models

Not calibrat

Xing et al. (2021)
Retrospective cohort
study

China (2019.1-2020.6) n=110
(Training set)
n=100(Validation set)

Single center
PTGER4*, RASSF1A*, SHOX2*,
nodule diameter

Not calibrat

He et al. (2025)
Prospective cohort
study

China (2019.1-2023.3)
n=210(Training set)
n=82(Validation set)

Single center
SHOX2*, SCT*, HOXA7*, age,
size

Excellent

Leung et al. (2020) Prospective study
UK (2009.1-2018.5)
n=192(Training set)
No independent validation set

Single center
ctDNA mutations in KRAS*,
EGFR*, TP53*

Not calibrat

Mathios et al. (2021) Prospective study
American (2012–2013)
n=365(Training set)
n=431(Validation set)

Multicenter
cfDNA fragmentation profiles
(DELFI*), CEA*

Not calibrat
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TABLE 2 Continued

Authors (year) Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference

nel (p53,
GE7, GBU4-5,
*

Not calibrated 0.775(0.740–0.810) 50.1% 82.0% (91)

X2*, GAGE7*,
18, CAGE*,
ng history,
tumors,
diameter,
, nodule
lar sign,
bulation sign,
n, cavitation

Not calibrated 0.96 96.4% 79.1% (92)

el:3 IgA-
7A, TRIM33,
-autoantigens
MAGEC2) *

Not calibrated Not reported 68.2% 87.0% (93)

s, Orn*, C16*,
r

Excellent 0.81 74% 76% (97)

A21-1*,
, nervonic acid

Excellent Not reported 81.6% 86.8% (98)

keratin 19 Fragment 21-1; NSE, Neuron-Specific Enolase; CA125, Cancer Antigen 125. CA19-9, Cancer Antigen 19-9; PNAIDS,
ial RNA processing endoribonuclease; NEAT1, Nuclear Enriched Abundant Transcript 1; TUG1, Taurine Upregulated Gene 1.
5; SOX2OT, SOX2-overlapping transcript. CTA-384D8.35. a cancer/testis antigen-associated long noncoding RNA. PGM5-AS1,
iated 1 pseudogene; PTGER4, Prostaglandin E Receptor 4; RASSF1A, Ras Association Domain Family 1 Isoform A; SHOX2, Short
olog; EGFR, epidermal growth factor receptor; TP53, tumor protein p53. anti-p53, tumor protein 53. anti-PGP9.5, protein gene

-MAGEA1, melanoma-associated antigen A1; DELFI, DNA Evaluation of Fragments for Early Interception. anti-CAGE, cancer-
scription termination factor 4; CTAG1A, Cancer testis antigen 1A; DDX4, DEAD-box helicase 4; MAGEC2, Melanoma antigen
B; FGB, Fibrinogen beta chain; FGG, Fibrinogen gamma chain; Orn, Ornithine; C16, Palmitoylcarnitine; C5DC, Butyrylcarnitine;
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Huang et al. (2020)
Retrospective case-
control study

China (2014–2018)
n=624(Training set)
No independent validation set

Single center
7-autoantibody pa
PGP9.5, SOX2, G
MAGEA1, CAGE

Xu et al. (2022)
Retrospective cohort
study

China (2017.08-2020.06)
n=933(Training set)
No independent validation set

Single center

P53*, PGP9.5*, SO
GBU4-5*, MAGE
age, gender, smok
history of previou
maximum nodule
number of nodule
composition, vasc
spiculation sign, l
pleural traction si
sign

Pan et al. (2020)
Retrospective cohort
study

China (2015–2018)
n=277(Training set)
n=266(Validation set)

Single center

Final 6-marker pa
autoantigens (BCL
MTERF4) + 3 IgG
(CTAG1A, DDX4

Guan et al. (2023)
Retrospective cohort
study

China (2018.4-2020.12)
n=573(Training set)
n=275(Validation set)

Single center
Serum amino acid
C5DC*, age, gend

Xu et al. (2023)
Retrospective cohort
study

China (2021.3-2022.3)
n=100
No specific quantity has been
explicitly stated

Single center
CT*, CEA*, CYFR
palmitic acid, W3

AUC, area unde curve; FR+-CTC, Folate Receptor-positive Circulating Tumor Cells; CEA, Carcinoembryonic Antigen. CYFRA21-1, Cyto
Pulmonary Nodules Artificial Intelligence Diagnostic System; CAC, Circulating Abnormal Cell; RMRP, RNA component of mitochondr
(uAI), unbiased Artificial Intelligence; MALAT1, Metastasis Associated Lung Adenocarcinoma Transcript 1; GAS5, Growth arrest-specific
PGM5 antisense RNA 1; ANRIL, antisense non-coding RNA in the Inhibitor of Cyclin-Dependent Kinase 4 locus; SFTA1P, surfactant assoc
Stature Homeobox; SCT, Secretin; HOXA7, Homeobox A7; ctDNA, circulating tumor DNA; KRAS, Kirsten rat sarcoma viral oncogene ho
product 9.5. anti-SOX2, sex-determining region Y-box 2. anti-GAGE7, G antigen 7. anti-GBU4-5, DEAD-box RNA helicase GBU4-5. ant
associated gene protein; BCL7A, B-cell CLL/lymphoma 7A; TRIM33, Tripartite motif-containing protein 33; MTERF4, Mitochondrial tra
family C2; PRDX2, Peroxiredoxin-2; PON1, Paraoxonase 1; APOC3, Apolipoprotein C3. pro-SFTPB, proprotein form of Surfactant Protein
CT, Computed Tomography; W3, omega-3 polyunsaturated fatt; acids,
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nodules. The fibrinogen beta chain (FGB) and fibrinogen gamma

chain (FGG) are two subunits of fibrinogen. A preliminary study

revealed that patients with malignant pulmonary nodules exhibited

significantly elevated expression of FGB and FGG in plasma

exosomes compared to those with benign pulmonary nodules

(fold change > 1.5, p < 0.05) (27). The combination of plasma

exosomal FGB and FGG were found to discriminate malignant

from benign lung nodules at AUC 0.794 (81% sensitivity, 70%

specificity) (28). In addition, the surfactant protein B precursor

(Pro-SFTPB) was reported to be capable to predict the risk of lung

cancer development (29). A proof-of-principle study from the

Integrative Analysis of Lung Cancer Etiology and Risk

(INTEGRAL) Consortium showed that a panel of four circulating

protein biomarkers (CA125, CEA, CYFRA 21–1 and Pro-SFTPB)

could be used to identify high-risk individuals for lung cancer

screening, demonstrating an AUC of 0.83 (30). Although these

novel protein biomarkers are promising, multiomics, in vitro, in

vivo and large cohort studies are needed for the screening and

validation of these biomarkers, to further improve the

diagnostic efficiency.
3.2 Circulating tumor cell

CTCs—tumor cells shed into circulation that retain malignant

morphology and molecular signatures—are captured by

immunomagnetic, microfluidic or size-based enrichment and serve

as liquid-biopsy biomarkers for diagnosis and treatment monitoring

(31). Previous study employed an immunomagnetic bead assay to

quantify folate receptor-positive CTC (FR+ CTC) and demonstrated

that their efficiency in distinguishing between benign and malignant

nodules with a sensitivity of 78.6% and a specificity of 68.8% (32). The

FR+ CTCmodel in this study offers a minimally invasive method using

a blood draw to detect circulating tumor cells by targeting folate

receptor-alpha, specific to lung adenocarcinoma. In addition, Ren D

et al. constructed an interpretable nomogram integrating pan-epithelial

keratin-positive (CK7/19/panCK+, CD45-) CTC counts with three-

dimensional malignant risk stratification from the unbiased Artificial

Intelligence (uAI) platform CT, based on 76 surgically confirmed

pulmonary nodule patients (33). Internal validation via 1,000

bootstrap iterations yielded an AUC of 0.805 (95% CI: 0.705–0.905)

for the combined model, significantly outperforming either CTC count

alone (AUC 0.743, 95% CI: 0.622–0.864) or uAI imaging alone

(AUC 0.730, 95% CI: 0.606–0.854). Additionally, Vimentin-positive

circulating tumor cells (Vim+ CTCs) (34), Vascular Endothelial

Growth Factor Receptor positive circulating tumor cells (VEGFR2+

CTCs) (35), Programmed Death-Ligand 1 positive circulating tumor

cells (PD-L1+ CTCs) (36) were also associated with lung

cancer diagnosis.

Due to tumor cell heterogeneity, limitations in the CTC capture

strategies using either biomolecular markers or size-dependence are

obvious. Charge-mediated CTC isolation (CMCTCI) has been

applied in cell specific targeting overcoming the above limitations

(37–40). The charged nanoprobes (NPs) provide new bio-

electricity-based cell targeting and capturing that is not relying on
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any protein-based biomarkers whose specificity has been a universal

issue. Since the glycolytic-regulated surface negative charge is the

hallmark characteristic of all cancer cells regardless of genotypic

differences, the charge-based targeting will be unique, exclusive, and

highly specific only to those that exhibit significant glycolysis. This

separation technique requires no antibody labelling and is not

constrained by tumor heterogeneity. Using merely 1 mL of

peripheral blood, it achieves efficient, broad-spectrum capture of

2–8 circulating tumor cells within 20 minutes, while only 0–1

circulating tumor cell was detected in blood samples from 10

healthy donors (41).

As CTCs are extremely rare and heterogeneous cells in the

bloodstream (a few as 0–1/7.5ml) and the majority are cleared by the

immune system or perish in the circulation (42, 43), further studies are

needed to improve the detection and isolation platform of CTC.
3.3 Circulating genetically abnormal cell

Circulating genetically abnormal cells are cells found in the

bloodstream that possess acquired genetic mutations or

chromosomal abnormalities (44). These cells are often indicative of

serious pathological processes, most notably cancer, where they can

detach from tumors and circulate (45). Their detection and analysis

are crucial in oncology for early diagnosis, monitoring treatment

response, and assessing the risk of metastasis (46). The detection

primarily relies on analyzing blood samples to identify genetically

abnormal cells or cell-free DNA (cfDNA). This is achieved through

advanced techniques like polymerase chain reaction (PCR), DNA

sequencing, and fluorescence in situ hybridization (FISH) to pinpoint

specific mutations or chromosomal abnormalities (47).

CAC in conjunction with CT scans for the diagnosis of lung

nodules by using the Pulmonary Nodules Artificial Intelligence

Diagnostic System (PNAIDS), showed an AUC at 0.847 (48). In

addition, the Lung LB™ model was built in prospective and

multicenter study using CAC for the diagnosis of lung cancer.

The Lung LB™ is a 4-color fluorescence in-situ hybridization assay

for detecting circulating genetically abnormal cells (CGACs) from

peripheral blood. The model demonstrated a 77% sensitivity and a

72% specificity (49). The study indicates combined CAC analysis

boosts diagnostic accuracy and spares invasive biopsies.

These finding suggests that CAC can complement CT imaging,

offering enhanced support for the early detection of lung cancer. This

model shows promise for early diagnosis of pulmonary nodules as a

non-invasive tool but needs further validation due to its limited

sample size, single-center design, and lack of external validation. The

complexity and cost of CAC detection may limit routine use, and

standardization of these methods requires more research.
3.4 Circulating tumor RNA

3.4.1 miRNA
MiRNAs, a category of small non-coding RNAs with gene-

regulatory functions, have shown significant potential in the
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diagnosis of tumors (50). Circulating miRNAs are resistant to

multiple freeze–thaw cycles (51). The noninvasiveness and

stability make circulating miRNAs a potential tool to identify

diagnostic markers in oncology. Various methods exist for

miRNA extraction, including traditional Trizol reagent extraction,

commercial column extraction kits, and magnetic bead enrichment.

Detection techniques for miRNAs comprise reverse transcription

quantitative polymerase chain reaction (RT-qPCR), digital PCR,

Northern blotting, capillary gel electrophoresis, homogeneous

multiplexed detection methods, and next-generation sequencing

(NGS) (52).

A predictive model incorporating a plasma four-biomarker

panel (miR-21-5p, miR-574-5p, CEA, CYFRA21-1) plus clinical

and imaging features distinguished benign from malignant lung

nodules with 80% positive predictive value (PPV), 89.5% negative

predictive value (NPV) and AUC 0.921 (53). In addition, a model

developed by integrating plasma miR-126, miR-210, and miR-205-

5p, clinical features, and imaging characteristics exhibited excellent

diagnostic efficiency for breast cancer, with an AUC 0.87, and

sensitivity and specificity, achieving rates of 89.9% and 90.9% (54).

Besides, research has demonstrated that a predictive model

incorporating serum miR-15b-5p, miR-16-5p, and miR-20a-5p is

effective in distinguishing early-stage non-small cell lung cancer

(NSCLC) cases from healthy individuals (55). For testing the utility

of miRNAs as a minimally-invasive diagnostic biomarker, Yu et al.

investigated the expression of miR-92-a2 in the plasma of Small Cell

Lung Cancer (SCLC) patients and healthy controls. The study

revealed significant overexpression of plasma miR-92a-2 levels in

SCLC patients compared to controls and specificity and sensitivity

of 100% and 56%, respectively, along with an AUC of 0.761 was

obtained for the diagnosis of SCLC (56).

Moreover, a panel comprising 34 miRNAs has demonstrated

the capability to identify individuals with early-stage NSCLC among

asymptomatic high-risk populations, achieving an accuracy rate of

up to 80% (57). This miRNA-based diagnostic test, which utilizes a

signature of 13 specific miRNAs, was administered to over 1,000

high-risk participants in the Continuous Observation of Smoking

Subjects (COSMOS) study (58). The test exhibited an overall

diagnostic accuracy for lung cancer of 75% (95% CI 72–78)

(59).Additionally, the other studies have found that circulating

miR-25 (60), miR-233 (60), miR-21 (61) were upregulated in lung

cancer, while miR-486-5p (62), miR-126 (61), miR-30d (61), miR-

30d (61), miR-30e-5p (61) and miR-451 (61) were downregulated,

indicating potential application in the diagnosis of lung cancer.

However, the inconsistency in miRNA evaluation makes this

method less applicable in clinical settings. A standard control,

standardized isolation method and large cohort are needed to

improve the reliability of the results.

3.4.2 LncRNA
Long non-coding RNA (lncRNA) represents a category of non-

coding RNA molecules exceeding 200 nucleotides in length, which

are intricately associated with tumorigenesis and tumor

progression. In sufficient quantity, tumor-derived lncRNA

typically form a highly stable secondary structure, which is
Frontiers in Oncology 09
resistant to ribonuclease activity and is thus stable in peripheral

blood, making lncRNA suitable for quantitative detection (63).

A diagnostic model incorporating four-lncRNAs panel (RNA

component of mitochondrial RNA processing endoribonuclease

[RMRP], Taurine up-regulated gene 1 [TUG1], Nuclear

paraspeckle assembly transcript 1 [NEAT1] and Metastasis

associated lung adenocarcinoma transcript 1 [MALAT1])

achieved AUCs of 0.89, outperforming traditional lung cancer-

related tumor marker combinations (CEA, CA125, and CYFRA21-

1) for the diagnosis of adenocarcinoma (64). LncRNA Sex-

Determining Region Y Box 2 overlapping transcript (SOX2OT),

antisense noncoding RNA in the antisense non-coding RNA in the

Inhibitor of Cyclin-Dependent Kinase 4 locus (ANRIL), combined

with traditional tumor biomarkers CEA, SCCA, and CYFRA21–1

were selected to form a diagnostic panel for NSCLC (65). Higher

specificity and sensitivity were observed in the panel both in test

and validation set compared to single biomarkers. Furthermore,

plasma lncRNAs Growth Arrest-Specific 5 (GAS5) and SOX2OT

combined as dual-gene diagnostic model distinguished NSCLC

from benign nodules with an AUC of 0.82 (77%–87%), with

83.8% sensitivity and 81.4% specificity (66). To distinguish

between lung cancer and pneumonia, lncRNA eXpressed LOCus

009167 (XLOC_009167) was found to be elevated in the whole

blood of lung cancer patients and achieved an AUC of 0.7005 and a

sensitivity of 90.1% (67). In addition, the single lncRNAs including

LncRNA 152, GAS5, Cytoskeleton regulator RNA (CYTOR),

membrane-associated guanylate kinase inverted 2 antisense RNA

3 (MAG12-AS3) and zinc finger antisense 1 (ZNAS1) have been

shown to hold potential to serve as a diagnostic marker

distinguishing NSCLC from benign lung disease (63, 68).
3.5 Circulating tumor DNA

Tumor-released ctDNA, genetically mirroring its tissue origin,

offers a non-invasive biomarker for early detection, treatment

monitoring, and prognosis of cancer (69). Cell death, active

secretion through Extracellular Vesicles (EVs) and lipoprotein

complexes, CTC disruption, chromosomal instability, and external

factors like anti-tumor therapies, all contribute to the increased

release of ctDNA (70, 71). Current methodologies for extracting

ctDNA from blood samples include magnetic bead-based, in silico

column-based, and liquid-phase extraction techniques. Several

studies have demonstrated the potential of ctDNA (Tumor Protein

p53 [TP53], Retinoblastoma 1 [RB1]) as a valuable tool for the

diagnosis and prognosis of SCLC (72, 73). Oncogenic driver gene

alterations within ctDNA are typically identified using single-gene

PCR and NGS technologies (74). ctDNA can be classified into various

types according to its characteristics, commonly including

methylated ctDNA, mutated ctDNA, and copy number variant

ctDNA (75).

Tumor-derived ctDNA carries cytosine phosphodiester bond

guanine-island (CpG-island) 5-methylcytosine (5-mC), a chemical

modification that can be detected in blood (76). Hypermethylation

of the CpG islands in promoter regions of tumor-suppressor genes
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has been shown to contribute to carcinogenesis (77). Several studies

have reported the potential of investigating tumor-specific

methylations in blood for screening and diagnosis of lung cancer.

For example, various gene promoters were found to be differentially

methylated in ctDNA between patients with lung cancer and

controls, including short stature homeobox 2 (SHOX2) (78, 79),

doublecortin like kinase 1 (DCLK1) (80), septin9 (SEPT9) (81), ras

association domain family 1 isoform A (RASSF1A), and retinoic

acid receptor B2 (RARB2) (82).

In a multicenter observational trial of 10,560 patients with 0.5–3

cm non-calcified nodules, a ctDNA methylation model

distinguished benign from malignant disease with 82.5%

sensitivity and 83.3% specificity (83). Similarly, fusing ctDNA

methylation (Prostaglandin E Receptor 4 [PTGER4]/RASSF1A/

SHOX2) with imaging lifted lung-nodule classification to AUC

0.951, outperforming image-only or traditional Mayo-type models

and validating the “epigenetics-plus-imaging” paradigm (84). In

addition, A SHOX2/Secretin (SCT)/Homeobox A7 (HOXA7)

ctDNA methylation panel plus clinical variables yielded AUC

0.87, reinforcing the robustness of methylation-based models for

benign–malignant nodule discrimination (85). Prior work centered

on ctDNA methylation, while mutation-bearing ctDNA fragments

are likewise being explored for early cancer detection (86). In a

study analyzing mutant ctDNA in blood of patients, it was found to

exhibit good diagnostic performance as a biomarker for lung cancer

diagnosis (87). It showed high specificity (89%), sensitivity (75%)

and PPV (98%), underscoring its utility for flagging malignancy.

Moreover, DNA Evaluation of Fragments for Early Interception

(DELFI), a machine-learning tool that profiles ctDNA

fragmentation, distinguished lung cancer from non-cancer in 781

symptomatic individuals (AUC = 0.90); adding clinical variables

and CEA lifted the AUC to 0.93 (88).
3.6 Tumor-associated autoantibodies

Tumor-associated autoantibodies are host immunoglobulins

directed against aberrantly expressed or mutation-generated

antigens (89). These autoantibodies enable early detection of lung

cancer, guide therapy monitoring, and support prognostic

assessment (90).

A four-autoantibody panel (tumor protein 53 [p53]/Sex-

Determining Region Y-Box Transcription Factor 2 [SOX2]/G

antigen 7 [GAGE7]/Glycosylated b-subunit 4–5 [GBU4-5])

detected by enzyme-linked immunosorbent assay (ELISA)

distinguished early-stage lung cancer from benign nodules with

AUC 0.764, outperforming single-marker tests and establishing a

multiplexed model that balances sensitivity (0.478) and specificity

(0.814) (91). Similarly, integrating seven-autoantibody (P53,

protein gene product 9.5 [PGP9.5], SOX2, GAGE7, GUB4-5,

melanoma-associated antigen A 1 [MAGEA1], and cancer antigen

gene [CAGE]) signatures with clinical and imaging data raised

early-stage lung-nodule diagnosis to 59.7% sensitivity and 81.1%

specificity, lifting the ROC-AUC from 0.748 to 0.96 (92). Another

study that adds plasma IgA to IgG against TIF1g raised the AUC
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from single-IgG levels to 0.734, capturing mucosal immunity and

yielding clinically useful early-lung-cancer detection (93). The Early

Cancer Detection Test-Lung (EarlyCDT-Lung) test a prospective

autoantibody panel for lung-cancer detection, yielded 9–16% six-

month PPV in 1613 high-risk patients, depending on six-

autoantibody (p53, New York Esophageal Squamous Cell

Carcinoma 1 [NY-ESO-1], CAGE, GBU4-5, SOX2, Human

Neuronal Protein D [HuD]) versus seven-autoantibody (p53, NY-

ESO-1, CAGE, GBU4-5, SOX2, HuD, Melanoma-associated

antigen 4 [MAGE A4]) model (94).

In summary, these findings underscore the potential of

integrating autoantibody signatures with clinical-imaging data

enables accurate, non-invasive early diagnosis of lung cancer.
3.7 Lung cancer-related metabolites

During the development of tumors, metabolites in the body

change. More recently, researchers have turned to metabolomics to

analyze specific metabolic markers for the early diagnosis of lung

cancer (95). Metabolomics offers a novel perspective in this context

and can provide real-time reflections of cellular status (96).

A plasma metabolomics–eXtreme Gradient Boosting (XGBoost)

model built from 478 cancers and 370 benign nodules distilled 16

features (demographics, six amino acids, eight acyl-carnitines) to

yield 0.81 AUC, 74% sensitivity and 75% specificity, pinpointing

ornithine and palmitoyl-carnitine as non-invasive early markers and

validating metabolomics-guided risk stratification of pulmonary

nodules (97). Additionally, integration of chest CT features

(location, lobulation, spiculation, vascular convergence), elevated

serum CEA/CYFRA21-1, and a plasma fatty-acid signature

(palmitate, stearate, docosahexaenoic acid [DHA], a-linolenic acid

[ALA], etc.) accurately discriminated 72 malignant pulmonary

nodule (MPN) from 38 benign pulmonary nodule (BPN),

underscoring the added value of multi-modal imaging–metabolite–

marker synergy for non-invasive nodule characterization (98). A

clinical study of 65 non-smoking female NSCLC patients, 6 benign

lung-tumor cases and 65 healthy controls identified the cysteine/

serine/1-monooleoylglycerol panel as a biomarker signature for

diagnosing non-smoking female NSCLC (99).

Moreover, numerous studies have identified metabolites associated

with lung cancer. Gas Chromatography–Mass Spectrometry (GC-MS)

plasma profiling by Musharraf et al. showed lung-cancer patients had

elevated fatty acids and glucose versus Chronic Obstructive Pulmonary

Disease (COPD), healthy smoker and non-smoker controls (100).

Besides, Ding et al. linked lung cancer to dysregulated glucose

metabolism, citing elevated glycerol-3-phosphate, lactate, acetyl-CoA

and 3-phosphoglycerate (101). Lung-cancer sera display increased

glycerophospholipids and hypoxanthine alongside divergent gut-

microbiome and metabolome profiles relative to healthy subjects

(102). In addition, a seven-metabolite microbiota-derived panel

(uracil [Ura], histamine [His], cysteine [Cys], 3-hydroxypicolinic acid

[HPA], uric acid [UA], indoleacrylic acid [IA], and fatty acid [FA])

reliably distinguishes early-stage lung adenocarcinoma from healthy

controls (103).
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Ultimately, metabolomics-anchored, multidimensional models

merging metabolic, imaging and clinical data promise accurate,

non-invasive triage of pulmonary nodules for early lung-cancer

care. However, Low metabolite identification accuracy hampers

discovery of effective lung-cancer biomarkers.
4 Artificial intelligence based
predictive models

Against the backdrop of numerous data points, AI excels at

extracting features from large-scale lung-nodule imaging data and

building robust predictive models that help clinicians rapidly and

accurately distinguish benign from malignant nodules, markedly

improving diagnostic precision and efficiency (104). AI-based lung-

nodule predictors fall into two streams: classical machine-learning

models that rely on hand-crafted features (Logistic Regression [LR],

Linear Discriminant Analysis [LDA], Support Vector Machine

[SVM], Decision Tree [DT], Random Forest [RF], Gradient

Boosting Tree [GBT], K-Nearest Neighbors [KNN], etc.) and

deep-learning models (CNN, DBN, etc.) that autonomously learn

hierarchical patterns via multi-layer neural nets (105).

In recent years, the integration of AI tools with medical imaging

has enabled a new generation of models to detect cancer,

representing a significant leap in precision diagnostics. For

example, an AI-radiomics logistic model integrating age and CT

features (–350 Hounsfield Unit [HU] Consolidation-to-Tumor

Ratio [CTR] ≥ 50%) showed stable malignancy prediction for

subsolid nodules, achieving AUCs of 0.721 (training) and 0.757

(validation) in 370 nodules (106). This study confirmed that AI-

radiomics model delivers individualized, non-invasive malignancy

risk estimates for central pulmonary nodules. Similarly, a study

implemented Grid-tuned hyper-parameter optimization lifted SVM

to 99.2% accuracy on a small Kaggle lung-cancer set, outperforming

optimized XGBoost, DT and LR, yet larger multi-disease and

prospective data remain essential for clinical translation (107).

As manually engineered features plateaued, the field naturally

turned to deep learning, where convolutional networks automatically

discover hierarchical imaging patterns and now dominate pulmonary-

nodule classification. A deep-learning Lung Cancer Prediction-

Convolutional Neural Network (LCP-CNN) model outperformed the

Brock model (AUC 0.896 vs 0.868), offering a non-invasive, accurate

alternative for pulmonary nodule malignancy prediction (108). Going

deeper, an M-ResNet combining residual blocks and pyramid pooling

captured multi-scale CT features of complex lung nodules on Lung

Image Database Consortium and Image Database Resource Initiative

(LIDC-IDRI), delivering AUC 0.928 (95% CI: 0.917–0.938) to classify

benign and malignant pulmonary nodules, and setting a robust

baseline for nodule characterization (109). Besides, a prospective 260-

nodule ZhongshanHospital cohort (2018–2021) demonstrated that the

AI-assisted diagnostic platform s-Discover/Lung V1.0.2—an

integrated deep-learning framework that probabilistically classifies

pulmonary nodule benignity or malignancy from clinical CT

imaging—achieved 75.8% accuracy, 89.6% sensitivity, 48.3%

specificity and AUC 0.755, corroborating its practical utility in
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routine lung-nodule management (110). Moreover, novel dense

architectures D1/D2 attained 99.96% mean 10-fold accuracy on

colon/lung histopathology and CT (Lung and Colon Cancer

Histopathological Image Dataset [LC25000], National Clinical Trial-

Colorectal Cancer [NCT-CRC], etc.), outperforming ResNet50,

Xception and seven other baselines with only 10% of the data,

offering a robust, multimodal boost to cancer imaging (111). These

studies presented the key characteristics of the AI-based predictive

models for lung cancer (Table 3).

In addition, other emerging AI techniques also facilitate disease

diagnosis which are promising in the application of lung nodules

prediction. For example, Multi-Strategy Parrot Optimizer (MSOP)

refines breast-cancer imaging. Deep learning sharpens forensic bone-

age assessment (112). Besides, Inception-V4 paired with Dynamic

Snow Leopard boosts diabetic-retinopathy grading (113). As the

development of conversational AI in healthcare, ChatGPT helps

children with Down syndrome enhance emotional recognition (114).

To conclude, AI-based predictive models for lung cancer have

evolved decisively from classical algorithms to advanced deep learning,

establishing themselves as powerful tools for precision diagnostics.

Their successful application in prospective studies underscores a

tangible path toward broader clinical implementation, heralding a

new era in oncological care. Looking forward, the critical next steps

involve transcending pure performance metrics to address the

challenges of real-world integration——including model

interpretability, multi-center data standardization, and seamless

workflow adoption—to fully realize the promise of AI in routine

pulmonary nodule management and beyond.
5 Multimodal predictive model

Recent advances in AI, especially deep learning, have significantly

improved the differentiation of pulmonary nodules in medical imaging.

Studies show that clinical phenotypes (like age and smoking history)

and biomarkers (such as serum tumor markers and gene mutations)

are linked to whether nodules are benign or malignant. By combining

clinical, imaging, and biomarker data with AI through multimodal

approaches, more accurate models for predicting the malignancy risk

of pulmonary nodules can be developed.

A study created a multimodal deep learning model (clinical-

biomarker-combined deep radiomics [CB-DR]) combining clinical

data, CT radiomics, and biomarkers TPI-1 and miR-206, validated

externally (115). The model showed excellent diagnostic performance

with an AUC of 0.90, 90% accuracy, 90% sensitivity, and 82%

specificity. Besides, by adding adipose-tissue radiomics that mirror

the tumor micro-environment, the deep-learning radiomics clinical

nomogram (DLRCN) lifted CT discrimination of 6–30 mm nodules to

AUCs ≥ 0.946 in both internal and external cohorts, outperforming

clinical-only (AUC 0.80), intranodular-plus-perinodular (0.80), fat-

only (0.86), Mayo (0.56) and Brock (0.59) models, while Decision

Curve Analysis (DCA) and significant Net Reclassification

Improvement (NRI)/Integrated Discrimination Improvement (IDI)

gains (p < 0.05) confirmed the added value of fat-derived imaging

biomarkers (116). Moreover, in a study Fusing CT morphology, AI
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TABLE 3 key characteristics of AI-based diagnostic models for lung cancer.

Authors (year) Study design Population Data source Predictors used Calibration AUC* (95%Cl) Sensitivity Specificity Reference

Age, solid component volume, nodule
mean CT value

Excellent 0.757(0.632-0.881) 82.0% 82.6% (106)

r

Gender, Age, Wheezing, Swallowing
difficulty, yellow fingers, Chronic
Disease, Anxiety, Coughing, Alcohol.
Chest pain, Allergy, Smoking, Peer
pressure, Shortness of breath, Fatigue

Not calibrated 0.992 100% Not reported (107)

LCP-CNN AI Model: Extracts solely
CT nodule image features (deep
learning) *

Not calibrated 0.896(87.6-91.5) 99.57% 28.0% (108)

r Bone X-ray images Not calibrated 0.928(0.917–0.938) 99.98% 99.95% (109)

r
CT imaging characteristics (density,
position, size, etc.)

Not calibrated 0.755 89.6% 48.3% (110)

Multimodal images Not calibrated 0.99 99.96% 99.99% (111)

D
u
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.16

4
8
5
4
8

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

12
Shi et al. (2025)
Retrospective cohort
study

China (2018.01-2023.12)
n=259(Training set)
n=111(Validation set)

Multicenter

Syed et al. (2024)
Retrospective cohort
study

No specific quantity has
been explicitly stated

Single cente

Baldwin et al. (2020)
Retrospective cohort
study

UK (2018.01-2019.08)
No reported training set
n=1397(Validation set)

Multicenter

Batool et al. (2025)
Retrospective cohort
study

Pakistan
No specific quantity has
been explicitly stated

Single cente

Zhang et al. (2023)
Retrospective cohort
study

China (2018.1-2021.4)
n=260
No specific quantity has
been explicitly stated

Single cente

Uddin et al. (2024)
Retrospective cohort
study

No specific quantity has
been explicitly stated

Multicenter

AUC, area under curve; LCP-CNN, Lung Cancer Prediction Convolutional Neural Network.
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probability, serum Vascular Endothelial Growth Factor (VEGF) and a

7-autoantibody panel for 176 histology-proven nodules, a logistic

model reached AUC 0.946 (training) and 0.856 (external validation,

80% sensitivity, 86% specificity), outperforming imaging-only, AI-only

and any single-biomarker approach, with significant NRI/IDI (p <

0.05) and superior DCA net benefit, underscoring the value of

multimodal biomarker integration for early lung-cancer diagnosis

(117). It summarizes the key characteristics of the multimodal

predictive models that have been applied to lung cancer, including

their study design, sample size, predictors and reported performance

metrics (Table 4).

In summary, multimodal predictive models that incorporate

clinical data, imaging characteristics, biomarkers, and artificial

intelligence have the potential to improve the accuracy of

differentiating between benign and malignant pulmonary nodules.

Future research should prioritize the ongoing optimization of

algorithmic performance and the validation of its stability and

generalizability across diverse populations. This will support the

broader integration of this technology into clinical practice.
6 Discussion

The rapid evolution of predictive models for lung nodule

malignancy reflects a paradigm shift from relying on single-modal

data to integrating multimodal approaches (118). While classical

clinical-imaging models like the Mayo (13), VA (15), and Brock (16)

models laid the foundational groundwork, they exhibit limitations in

generalizability across diverse populations and ethnicities, as seen in the

suboptimal performance of the Mayo model in Chinese cohorts. This

underscores the critical need for extensive, multi-center, and cross-

population validation to ensure that predictive tools are robust and

equitable. Models developed from specific demographics, such as the

VA model’s focus on elderly male veterans, risk significant

performance decay when applied to the general population,

including women and younger individuals. Future model

development must prioritize prospective, multinational cohorts that

capture global demographic and genetic diversity to build truly

generalizable and clinically reliable tools.

There are a few studies validated their models across-populations.

For example, Artificial Neural Network (ANN) and support vector

machine with least absolute shrinkage and selection operator (SVM-

LASSO)models were trained on 113 Italian Continuous Observation of

Smoking Subjects (COSMOS) nodules. External validation on 72 the

United States-Image Database Resource Initiative (US-LIDC) nodules

dropped AUC only modestly (ANN 0.89→0.82; SVM-LASSO

0.90→0.86), and both still significantly outperformed Lung-RADS

(0.76), with Delong/McNemar tests indicating stable cross-center

performance (119). In addition, a separate investigation employed

the XGBoost-based PKU-M model, trained on 1,739 Chinese MPNs

(AUC 0.91, Brier 0.122), retained 0.89 across six Chinese plus one

Korean center (n=583) and 0.87 prospectively (n = 200),

outperforming Brock, Mayo, VA and clinicians while boosting

sensitivity +14% and specificity +8% (120). The aforementioned

studies demonstrate that radiomics models retain discriminative
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power across cohorts, yet true multi-ethnic, multicenter trials remain

scarce. Future work must couple multi-site validation with ensemble

learning to reconcile population-specific biomarker heterogeneity and

harden model robustness.

The exploration of novel biomarkers, including CTCs, CACs,

ctDNA (especially methylation patterns), and various RNA species,

holds immense promise for enhancing diagnostic precision (121).

However, the journey from discovery to clinical application is

fraught with challenges. Key among these is the development of

standardized, cost-effective, and highly specific detection methods.

For instance, while charge-based CTC isolation offers a promising

solution to tumor heterogeneity, and NGS unlocks the potential of

ctDNA methylation signatures, these technologies require further

refinement and simplification for routine clinical use. The

inconsistency in miRNA evaluation methodologies also highlights

a broader issue in the biomarker field: a lack of standardized

protocols for sample processing, analysis, and validation (122).

The future of biomarker discovery likely lies in high-throughput

multi-omics approaches, but this necessitates large-scale,

collaborative studies to identify and validate signatures with high

specificity and clinical utility.

AI, particularly deep learning, has revolutionized the analysis of

complex imaging data, often surpassing human interpretation and
Frontiers in Oncology 14
traditional models like Brock (123). AI’s ability to autonomously

extract subtle radiographic features has significantly improved

nodule characterization. Nevertheless, its application raises two

significant concerns: data dependency and security. AI models are

often hampered by limited generalizability when trained on non-

diverse, single-source datasets, leading to biases (124). Furthermore,

the use of large-scale, multi-institutional datasets for training

necessitates robust data security frameworks, including federated

learning, to protect patient privacy while enabling collaborative

model improvement. A concise diagram illustrating the

classification of various models (Figure 1).

Data security is a cornerstone in the development of big data

and AI-based diagnostic models. robust security measures are not

merely a regulatory compliance issue but a fundamental ethical and

clinical necessity for building reliable and trustworthy AI tools in

medicine. To meet data security requirements for 3D models, a

dual-layer encryption and steganography mechanism utilizing

memristive coupled neural networks has been developed (125).

This mechanism establishes a highly secure data protection system,

resistant to brute-force attacks, statistical analysis, and linear and

differential attacks. It accomplishes this through hyperchaotic key

generation, dual-layer encryption, an ultra-large key space, NIST

randomness verification, secure S-box design, and a fusion
FIGURE 1

The evolving landscape of predictive models. Classical clinical-imaging models (Mayo, VA, Brock and PKUPH) rely on logistic regression of
demographic and CT variables. Biomarker-based approaches incorporate CTCs, CACs, circulating tumor DNA/RNA, proteins, autoantibodies and
metabolites, either alone or in combination with clinical features. AI-based models progress from conventional machine learning algorithms (SVM,
Random Forest, XGBoost, etc.) to deep-learning networks (CNN, DBN, MLP, etc.). Contemporary multimodal integration fuses clinical, imaging,
biomarker and AI algorithms, offering a non-invasive pipeline for personalized early lung cancer detection.
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mechanism for encryption and steganography. The presented

algorithm can reliably ensure privacy for sensitive digital data

transmissions and storage applications. Future work should focus

on integrating such hardware-efficient security layers directly into

AI diagnostic pipelines to ensure end-to-end privacy from data

acquisition to clinical decision-making.

Looking forward, the most promising application lies in

multimodal models that seamlessly integrate clinical parameters,

AI-enhanced imaging, and liquid biopsy biomarkers. Studies

combining CT radiomics with adipose-tissue features, serum

autoantibodies, or protein panels have consistently demonstrated

superior performance (AUCs >0.90) compared to any single-

modality approach. The primary challenge for clinical translation

is the transition of these sophisticated models from research settings

to routine practice. This requires the development of user-friendly

interfaces, validation in real-world clinical workflows, and clear

evidence of cost-effectiveness. Ultimately, the future of lung nodule

management will be guided by these integrated, data-driven tools,

enabling more personalized and precise patient care, reducing

unnecessary invasive procedures, and improving early detection

rates of lung cancer.
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