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Application of radiomics model
based on FDG-PET/CT for the
assessment of therapeutic
effect in patients with newly-
diagnosed multiple myeloma
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Objectives: To evaluate the prediction value of radiomics models based on FDG-
PET/CT for the therapeutic effect in patients with newly-diagnosed multiple
myeloma (MM).

Materials and methods: We retrospectively reviewed the clinical characteristics
and *®F-FDG-PET/CT imaging data of 165 MM patients. Randomly divided into a
training set (n=133) and a test set (n=32) at a ratio of 8:2. All patients underwent
whole-body PET-CT scans within one month prior to the commencement of
treatment. Overall response rate was the principal efficacy endpoint, including
stringent complete response (sCR), complete response (CR), very good partial
response (VGPR), partial response (PR), disease stabilization (SD), and disease
progression (PD). Deep response (DR) was defined as sCR, CR, and VGPR, while
non-deep response included PR, SD and PD, 74 patients attained DR. Different
models involving clinical, radiomics extracted from PET/CT, and their
combination were constructed based on multiple logistic regression and
logistic regression machine learning classifier after features selection,
respectively. The models predicting performance were evaluated by the area
under the ROC curve (AUC), sensitivity, specificity, accuracy, precision, and F1
score. Receiver Operating Characteristic (ROC) curves, decision curves,
calibration curves, and Delong’s test were applied to compare their ability.
Results: Gender was the only one of clinical characteristics found to be
independent prognosis factor for treatment evaluation, with a p-value of
0.041. The radiomics models outperformed the Clinical model significantly,
among which the PET-CT model yielded the best results with the AUC of
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0.809. The PET + CT + Clinical model achieved the optimal performance after
integrating clinical and radiomic features, with the AUC of 0.813.

Conclusions: The FDG-PET/CT-based radiomics model, particularly when
integrated with clinical features, can more effectively predict deep treatment
response in newly diagnosed MM patients, offering significant clinical utility for
early treatment stratification and personalized therapeutic guidance.

multiple myeloma, therapeutic assessment, radiomics, PET/CT, deep response

Highlights

* Radiomics with 18F-FDG PET/CT imaging to assess
treatment efficacy in newly diagnosed MM patients.

* The clinical and radiomic data to distinguish between
multiple myeloma patients demonstrating deep response
to treatment and those exhibiting non-deep response.

* Radiomics model based on PET/CT features significantly
outperformed models based solely on clinical or
PET characteristics.

1 Introduction

Multiple myeloma (MM) is an incurable malignancy
characterized by clonal plasma cell proliferation in the bone
marrow and excessive monoclonal immunoglobulin production
(1). MM constitutes 1.8% of all cancer cases, with an annual
incidence rate of 4.6 to 6 cases per 10,000 individuals, thereby
ranking as the second most prevalent hematologic malignancy (2,
3). In the past two decades, the overall survival rate for MM patients
has significantly improved due to the introduction of novel
therapeutic agents (4, 5). Concurrently, the development of
sensitive methods for measuring deep therapeutic responses has
led to the concept that sustained minimal residual disease (MRD)
negativity is associated with remarkably low progression rates (6-
8). However, despite these unprecedented treatment responses, 30-
50% of patients fail to achieve or maintain MRD negativity,
ultimately progressing to advanced stages of the disease (4).
Moreover, in clinical practice, significant disparities in survival
outcomes are observed among patients presenting with the same
disease stages (9). Current prognostic staging systems have
limitations in accurately stratifying risk, particularly for

Abbreviations: MM, multiple myeloma; FL, focal lesion; EMD, extramedullary;
MTYV, metabolic tumor volume; TLG, total lesion glycolysis; Cr, creatinine; ALB,
albumin; LDH, lactate dehydrogenase; f2M, B2-microglobulin levels; PLT,
platelet; HCRP, hypersensitive C-reactive protein; R-ISS, the revised
International Staging System; DS staging, Durie Salmon staging; SUVmax, max

standardized uptake value.
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intermediate-stage disease (10, 11). Understanding the therapeutic
effects and prognostic characteristics of patients with MM is
essential for optimizing treatment strategies.

Despite advances in the treatment of MM, relapse remains
common. Furthermore, there are no standard treatments for
patients with advanced MM following primary therapies;
complete responses are rare, with a median progression-free
survival of 3-4 months and an overall survival of 8-9 months
(10).
consuming, and difficult for some patients to undergo. Due to the

Current assessment methods are often invasive, time-

wide variability in survival among MM patients, developing a more
accurate and comprehensive therapeutic assessment system
remains a major focus and challenge in clinical practice.

Accurate therapeutic effects and prognostic stratification are
essential for selecting appropriate treatment strategies for MM, so as
to prevent overtreatment and reduce the medical and financial burden.
The International Myeloma Working Group recommends 18F-FDG
PET/CT as one of the preferred imaging modalities for evaluating MM
and other plasma cell disorders (3, 11). PET/CT integrates both
anatomical and metabolic information, providing high sensitivity and
specificity for assessing bone damage and detecting extramedullary
disease (3). It can identify additional lesions in up to 40% of patients
with early-stage MM (12). Compared with MRI and X-ray, PET/CT
has superior capabilities for detecting extramedullary disease, making it
an indispensable tool in the diagnostic and therapeutic assessment of
MM (13). Many studies have indicated that imaging features such as
focal lesions, metabolic activity, tumor volume, and extramedullary
disease are associated with survival outcomes (14) However, most
studies focus solely on imaging features, overlooking the integration of
clinical, laboratory, and cytogenetic data for a comprehensive
assessment. Moreover, current evaluations still largely depend on
physicians’ visual interpretation and basic quantitative metrics such
as lesion count, SUVmax, metabolic tumor volume, etc., which are
subject to interobserver variability and inconsistent definitions. This
underscores the need for more robust, reproducible, and integrative
assessment methods.

Radiomics has emerged as an important field involving the
automated or semi-automated extraction of quantitative features,
including texture, intensity, and density, from medical imaging
(15). Numerous studies have demonstrated the efficacy of radiomics
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in the differential diagnosis of cancer, the prediction of treatment
response, and the prognosis of disease progression (16-18). In our
prior studies, we successfully employed radiomics models based on
MRI to differentiate between spinal MM and metastases (19, 20).
Although radiomics studies based on PET/CT are gaining attention,
their application in assessing treatment response for MM remains
limited, mainly focusing on predicting overall survival or recurrence
(21-26).

This study aimed to investigate the feasibility of utilizing radiomics
based on 18F-FDG PET/CT imaging to evaluate the therapeutic
efficacy in patients newly diagnosed with MM. Additionally, the
research sought to develop a model integrating clinical and radiomic
data to differentiate between MM patients exhibiting deep response and
those with non-deep response to treatment.

2 Materials and methods

2.1 Study population and inclusion and
exclusion criteria

This retrospective study was approved by the Ethics Committee
of Changzheng Hospital of the Navy Medical University
(N0.2016SL019A), and the informed consent was waived. From
December 2015 to December 2022, we collected clinical and PET/
CT information of MM patients. Each patient was diagnosed with
MM through comprehensive histological and hematological
examinations, in accordance with the IMWG guidelines for both
diagnosis and treatment (1). The inclusion criteria were: (1)
diagnosed according to the IMWG diagnostic criteria; (2)
complete pre-treatment and post-treatment clinical data; (3)
hospitalized and received two courses of standard induction
chemotherapy. The exclusion criteria were: (1) combined
malignant tumors or hematological diseases in other systems; (2)
concomitant cardia amyloidosis; (3) chemotherapy and radiation
therapy before the PET/CT examination; (4) poor image quality.
Full-body PET/CT examinations were conducted within one month
before the initiation of treatment for each patient.

Based on the inclusion and exclusion criteria, a total of 165
patients (90 males and 75 females) were enrolled, with a median age
of 61 years and an age range between 34 and 86 years. All patients
underwent comprehensive blood-based laboratory tests. Laboratory
indicators encompassed M protein, sFLC (free light chain),
hemoglobin, creatinine, albumin, Ca2+, lactate dehydrogenase,
B2-microglobulin levels, platelets, hypersensitive C-reactive
protein, and PET/CT quantitative parameters. Serum protein,
serum albumin, glucose filtration rate, beta-2 microglobulin,
hemoglobin, hematocrit, calcium levels, and serum lactate
dehydrogenase were additionally quantified.

2.2 Treatment and response evaluation

The treatment plans are divided into three categories:
chemotherapy regimens based on proteasome inhibitor-based
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therapy (PI-based), chemotherapy regimens based on
immunomodulatory drug-based therapy (IMiD-based), and
chemotherapy regimens based on the combination of proteasome
inhibitor-containing therapy and immunomodulatory drug-based
therapy (IMiD+PI).

The principal efficacy endpoint was the deep response rate
(DR), defined as the proportion of patients achieving at least a very
good partial response (VGPR), complete response (CR), or
stringent complete response (sCR), according to Paiva B et al.
and the International Myeloma Working Group (IMWG) criteria
(27, 28). For descriptive purposes, we also calculated the overall
response rate (ORR), defined as the proportion of patients achieving
partial response (PR) or better (PR, VGPR, CR, sCR). Patients
achieving sCR, CR, or VGPR were categorized as DR, whereas those
with PR, minimal response (MR), stable disease (SD), or progressive
disease (PD) were categorized as non-DR for subsequent binary
classification analyses.

MRD testing was performed within two weeks of the first
confirmed CR using multiparameter flow cytometry (MFC) with
a sensitivity of 10", following IMWG recommendations. MRD
status was recorded as positive or negative. All treatment response
assessments were conducted by expert hematologists. Baseline
characteristics and treatment details are provided in Table 1, and
the study design is outlined in Figure 1.

2.3 Equipment and parameters

All images were obtained from the hospital’s Picture Archiving
and Communication System (PACS) and scanned using the
SIEMENS Biograph 64-layer PET/CT equipment. Patients
underwent a fasting period of over 6 hours before being injected
with 18F-FDG at a concentration of 0.15-0.18 mCi/kg. Typically,
the PET/CT scan commenced 60 minutes post-injection. Patients
were positioned supine with both upper arms placed above their
heads to minimize chest artifacts.

The procedure began with a body CT scan, using scanning
parameters of tube voltage of 120 kV, tube current of 150 mA, layer
thickness of 3mm, and scanning range from the top of the skull to
the middle of the femur. The body PET/CT scan was collected for
5-6 beds, with a conventional collection time of two minutes per
bed. Subsequently, CT data was utilized for attenuation correction
and PET image enhancement, followed by image reconstruction
and fusion.

2.4 PET image delineation and registration
between PET and CT images

Two experienced radiologists, with 6 and 7 years of expertise
respectively, conducted blind segmentation of lesions exhibiting the
highest uptake on PET scans. In cases of discrepancies concerning
PET/CT findings, a consensus was reached through a collaborative
review involving a senior nuclear medicine physician with over 10
years of experience. The interpretation of PET images adhered to
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TABLE 1 Basic patient information of training set and testing set.

10.3389/fonc.2025.1647730

Variables Training set (n=133) Testing set (n=32) P-values
Age (meanzsd) 58.722 +8.847 61.062 +8.810 0.181
Gender (0/1) ‘
Male 72 18
0.829
Female 61 14
Initial treatment plan ‘
PI-based 97 25
IMiD-based 8 2
0.725
PI+IMiD 28 5
Bone marrow plasma cell (>60%) ‘
Yes 28 2
0.051
No 105 30
FL(=3)
Yes 109 28
0.453
No 24 4
EMD ‘
Yes 60 14
0.889
No 73 18
HB (<100g/L) ‘
Yes 60 15
0.96
No 73 17
Cr (>177umol/L) ‘
Yes 24 6
0.926
No 109 26
ALB (>35g/L) ‘
Yes 65 12
0.247
No 68 20
LDH(>250U/L) ‘
Yes 16 5
0.584
No 117 27
B2-MG (>5.5mg/L) ‘
Yes 33 7
0.728
No 100 25
PLT (<100*1079/L) ‘
Yes 13 2
0.534
No 120 30
HCRP (>10mg/L) ‘
Yes 30 4
0.207
No 103 28
Ca2+ (>2.55mmol/L) ‘
Yes 31 5 0.345
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TABLE 1 Continued

10.3389/fonc.2025.1647730

Variables Training set (n=133) Testing set (n=32) P-values
Ca2+ (>2.55mmol/L)
No 102 27
DS.staging (1/2/3)
I 12 3
i 26 8 0.77
i 95 21
ISS.staging
I 34 4
i 42 15 0.167
i 57 13
R-1SS.staging (1/2/3)
I 27 5
i 18 18 0.494
11 25 9
Liver SUVmax 2.09[1.82,2.40] 2,085 [1.740,2.620] 0.995
(Median[Q1~Q3])
SUVmax(Median[Q1~Q3]) 5500 [4.200,7.480] 5335 [3.72,7.33] 0.688
TLG(Median[Q1~Q3]) 39.0 [20.0,78.0] 44.5 [13.8,143.3] 0.493
MTV(Median[Q1~Q3]) 12.0 [6.0,24.0] 13.0 [5.75,32.25] 0.462

PI-based, Proteasome inhibitor-based; IMiD-basedimmunomodulatory drug-based; FL, focal lesion; EMD, extramedullary; HB, hemoglobin; Cr, creatinine; ALB, albumin; LDH, lactate
dehydrogenase; B2-MG, B2-microglobulin; PLT, platelet; HCRP, hypersensitive C-reactive protein; DS staging, Durie Salmon staging; ISS, International Staging System; R-ISS, the revised
International Staging System; SUVmax, max standardized uptake value; TLG, total lesion glycolysis; MTV, metabolic tumor volume.

IMWG standards, defining focal lesions as those exhibiting higher
uptake than the hematopoietic bone marrow background (BM) or
liver, with a minimum diameter of 5 mm. Diffuse uptake was
defined as uptake above that of the liver (29).

Evaluation of images was carried out by a team of experienced
nuclear medicine physicians. following established criteria for
assessing myeloma lesions. Briefly, positive areas were indicated
by the presence of focal areas with increased tracer uptake within
bones (SUV >2.5), with or without any underlying lesions identified
on CT or osteolytic CT areas >0.5 cm (11). The Metabolic Tumor
Volume (MTV) MTV was calculated from PET data of the
delineated volume. To enhance segmentation consistency, two
radiologists randomly selected 20 patients for intra- and inter-
observer consistency tests. Intra-group and inter-group consistency
coefficients (ICC) between features were computed to identify and
retain features demonstrating robust repeatability (ICC>0.70).

We employed the PET/CT registration method available on the
platform (https://www.uii-ai.com/research.html) for the automated
alignment of PET and CT images. Subsequently, a senior medical
radiologist reviewed the registered images to confirm the precise

Frontiers in Oncology

alignment of major organ boundaries, such as the skin, skeletal
structures, and liver. A registration matrix was generated to
quantify this alignment. Ultimately, the regions of interest (ROI)
identified from the PET images were overlaid onto corresponding
locations within CT images (Figure 2).

2.5 Radiomics extraction and selection

Radiomics analysis was performed by a clinical research
platform (uAI Research Portal, United Imaging Intelligence Co.,
Ltd, China). Radiomics features were extracted from these images
using the PyRadiomics toolbox in Python 3.7. The flowchart of the
radiomics analysis is shown in Figure 3. Initially, all parametric
maps underwent normalization using maximum and minimum
truncation processing. Subsequently, 14 image filters were used to
generate derived images, from which first-order statistics and
texture features were extracted, resulting in a total of 2,160
derived features. From the largest focal area of myeloma in each
patient, 2,264 radiomics features were automatically extracted. All
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170 NDMM patients who underwent 69 MM patients who underwent PET/CT
PET/CT examination between December examination between December 2015 and
2015 and December 2022 from institution I December 2022 from institution Il

Exclusion criteria:

(a) patients with combined malignan
tumors or hematological diseases in
other systems (n=27)

(b) patients with concomitant cardia
amyloidosis (n=26)

(c) chemotherapy and radiationtherapy
before the examination (n=3)

(d) poor image quality (n=18)

Inclusion criteria:

(a) was diagnosed according to the
IMWG diagnostic criteria

(b) with complete pre-treatment and
post-treatment clinical data

(c) hospitalized and received two

courses of standard induction
chemotherapy

Y

(Patient with spinal MM who met the inclusion criteria for this study(n=1 65))

\ \
The training set The test set
(n=133) (n=32)
FIGURE 1

Flowchart summarizing patient enrolment process and study cohorts

PET —

CT(NO ROI) PET/CT CT(ROI)

FIGURE 2
PET-CT registration process flowchart
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Image registration Feature extraction Feature selection Model construction
Shape feature Lasso w
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CT features
= ROC (Test)
+ Intensity feature — .
Histogram of el Intensties PET features £
il
B
Clinic features .
- Model evaluation
‘ Texture feature Calibration Curve Decision Curve
Decision curves of internal test set
' o o Ihruc;lvold pmh:l:my o N
FIGURE 3

Radiomics workchart for response evaluation in MM.

radiomics features were standardized using Z-score normalization

to mitigate dimensional disparities.

2.6 Prognosis model

2.6.1 Predictive task

Our predictive task aimed to accurately differentiate MM
patients with deep response from those with non-deep response.
To mitigate risks of bias and overfitting, we employed two methods.
Firstly, we filtered features by employing the intraclass correlation
coefficient (ICC) within and between observers, establishing a
threshold of ICC > 0.70. Secondly, we applied the least absolute
shrinkage and selection operator (LASSO) to the training dataset,
using a five-fold cross-validation approach to identify the
most predictive features. These strategies were employed to
identify the most informative features while ensuring optimal
predictive performance.

2.6.2 Development and validation of the
predictive model

We developed three models: the Clinical Model, the Radiomics
Model, and the Combined Model. In the Clinical Model, using
univariate logistic regression to analyze clinical data, combined with
the actual clinical situation and the results of univariate logistic

Frontiers in Oncology

regression analysis, potential factors related to prognosis were
included in the multiple logistic regression model. Clinical
variables that may affect the evaluation of multiple myeloma
treatment effectiveness were selected and used to construct the
clinical model. All continuous features were normalized by Z score
normalization. For clinical features, univariate (p < 0.1) and
multivariate (p < 0.05) logistic regression were used to identify
independent risk factors. Features with a p value lower than 0.05
were selected for inclusion in the corresponding clinical model.
Regarding the radiomics model, the features were extracted
from CT and PET images, followed by Z-score standardization to
reduce dimensional differences between different features, and
cleaning of radiomics features to reduce the impact of outliers
and missing values. To reduce bias and overfitting risks, feature
selection steps included: first selecting features with intraclass
correlation coefficients (ICC) greater than 0.70; then randomly
selecting 20% of the dataset as independent test data, using Least
Absolute Shrinkage and Selection Operator (LASSO) on the
remaining data to select features with optimal predictive
performance, used for constructing CT radiomics model and PET
radiomics model. To maximize the recognition rate of radiomics
algorithms, Logistic Regression (LR) machine learning classifier was
used to build models with features selected by LASSO algorithm.
Finally, combining CT and PET radiomics features selected by
LASSO together, repeated the above process to build a joint
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radiomics model. Combine clinically selected risk factors with
radiomics features to jointly build a comprehensive model for
further evaluation of treatment efficacy in patients with MM.

To assess discrimination, we compared these models using six
metrics: the area under the ROC curve (AUC), sensitivity,
specificity, accuracy, precision, and F1 score on the test set. The
calibration curve was assessed using the Hosmer-Lemeshow test by
plotting the predicted ER probabilities against actual ER rates. The
clinical utility of the models was evaluated using Decision Curve
Analysis (DCA), which involves analyzing the net benefit of a range
of threshold probabilities across the entire retrospective cohort. The
performance of DCA is obtained by assessing the net benefit at
various threshold probabilities. The best model was determined by
comprehensive evaluation using Receiver Operating Characteristic
(ROC) curves, decision curves, and calibration curves. Differences
between the three models were compared using DeLong’s test, with
a p-value less than 0.05 indicating significant differences between
them. In summary, through comprehensive evaluation from both
discrimination and calibration perspectives, we identified the
optimal predictive model among the Radiomics Model, Clinical
Model, and Combined Model for predicting postoperative
outcomes in patients with MM.

2.7 Statistical analysis

To assess the normality of continuous features, we employed
the Kolmogorov-Smirnov test. The T-test was used to compare
variables with a normal distribution, which are represented as mean
+ SD (standard deviation). For non-normally distributed data, the
Mann-Whitney U test was used, and the data was represented using
the median (inter-quartile range). Categorical variables were
analyzed using either the chi-square test or Fisher’s exact test.
The data was represented as counts (%). A p-value lower than
0.05 was considered statistically significant. The R software package
(version 4.0.3) was used to process the demographic data for
evaluating significant differences in the variables between the
training and the validation set. Python (version 3.6) was
employed for programming model training, validating the
prediction model, as well as conducting statistical analysis.

3 Results
3.1 Assessment of clinic features

This study included a total of 165 patients (90 males: with a
median age of 61 years). Patients had undergone two courses of
treatment. Among them, 74 patients achieved DR. The treatment
plan involved 133 patients within the training set and 32 patients
within the test set. The baseline clinical characteristics, presented in
Table 1, demonstrate consistency and comparability between the
training and testing datasets. No statistically significant difference
(p>0.05) was found in basic variables between the training set and
the test set, including general characteristics (gender and age),
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medical history (hypertension, diabetes), and laboratory tests
(BNP, etc). Table 2 presents the outcomes of univariate and
multivariate regression analyses assessing the association between
various clinical features and the likelihood of achieving DR in
patients with MM. After univariate analysis, Gender, Ca2+, and FL
were significantly associated with the efficacy of treatment courses
(p < 0.1); multivariate analysis revealed that Gender was an
independent predictor of treatment efficacy, with a p-value of
0.041, and the risk ratio for males to females was 0.713(Using
males as the reference category).

3.2 Assessment of radiomic features

Based on the labeled ROYJ, a total of 2264 features were extracted
from each image of the two imaging modalities, namely PET and
CT. Further refinement was conducted through consistency testing,
resulting in 2034 and 2103 robust features for PET and CT,
respectively. Following LASSO feature selection, 10 features were
identified by the PET model, including 3 first-order features and 7
texture features, while 16 features were identified by the CT model,
including 2 first-order features and 14 texture features. Utilizing
these identified features, the PET-CT Radiomics Model was
developed, incorporating 15 features in total, including 2 first-
order features and 13 texture features. Figure 4 present the
selected features and their respective coefficients, which reflect
each feature’s contribution to the model’s predictive performance.
Specifically, the features comprise both intensity-based (first-order)
and texture-based parameters from PET and CT images, collectively
enabling accurate discrimination of patients with different
therapeutic responses.

3.3 Comparison between different models

A radiomics model and a clinical model were constructed using
logistic regression, utilizing radiomic features selected via LASSO
and clinical features chosen through univariate and multivariate
regression analyses, respectively. Furthermore, variables from both
models were integrated to establish a combined model using
logistic regression.

Table 3; Figure 5 show the performance of different models in
predicting DR in MM patients. Compared with the clinical model,
the three models based on radiomics features demonstrated better
predictive performance. In contrast to the PET model and the CT
model, the PET-CT model yielded the best results with the AUC
(95% CI), sensitivity, specificity, accuracy, and F1 score of 0.881
(0.82-0.94), 0.750, 0.822, 0.789, and 0.763 in the training set, and
0.809 (0.66-0.96), 0.714, 0.778, 0.75, and 0.714 in the test
set, respectively.

Notably, the performance of the integrated model was further
improved with the combination of clinical features and radiomic
features with the AUC (95% CI), sensitivity, specificity, accuracy,
and F1 score of 0.892 (0.84-0.95), 0.750, 0.836, 0.797, and 0.769 in
the training set, and 0.814 (0.67-0.96), 0.714, 0.778, 0.750, and 0.714

frontiersin.org


https://doi.org/10.3389/fonc.2025.1647730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al. 10.3389/fonc.2025.1647730

TABLE 2 Univariate and multivariate regression analysis of association between various clinical features and the likelihood of achieving DR in MM's
patients.

Parameters Un_ivariate Odds ratio (95% Cl) Mul_tivariate Oddf ratic
analysis (p value) analysis (p value) (95% CI)
Age 0.547 1.099(0.807-1.496)
Gender 0.093 0.767(0.563-1.044) 0.041 0.713(0.515-0.986)
Bone Marrow Plasma Cell 0.825 1.035(0.762-1.406)
FL 0.062 1.372(0.984-1.914) 0.098 1.331(0.948-1.870)
EMD 0.491 0.898(0.660-1.221)
HB 0535 0.907(0.667-1.234)
Cr 0.825 1.035(0.762-1.406)
ALB 0.631 0.927(0.682-1.261)
LDH 0.785 1.043(0.769-1.417)
$2-MG 0.699 1.062(0.782-1.442)
PLT 0.183 1.237(0.905-1.691)
HCRP 0.545 1.101(0.807-1.503)
Ca2+ 0.077 1.335(0.970-1.838) 0.058 1.383(0.989-1.935)
DS-staging 0.514 1.109(0.813-1.513)
1SS-staging 0.897 1.020(0.751-1.387)
RISS-staging 0.603 1.085(0.798-1.475)
Liver SUVmax 0475 1.119(0.823-1.521)
SUVmax 0.438 0.883(0.644-1.210)
TLG 0.332 1.295(0.768-2.183)
MTV 0.599 1.088(0.795-1.488)

FL, focal lesion; EMD, extramedullary; HB, hemoglobin; Cr, creatinine; ALB, albumin; LDH, lactate dehydrogenase; B2-MG, B2-microglobulin; PLT, platelet; HCRP, hypersensitive C-reactive
protein; DS staging, Durie Salmon staging; ISS, International Staging System; R-ISS, the revised International Staging System; SUVmax, max standardized uptake value; TLG, total lesion
glycolysis; MTV, metabolic tumor volume.

in the test set, respectively (Table 3). From the results, the PET + CT
radiomics model and the PET + CT + Clinical integrated model
exhibited superior performance across all metrics. The calibration
curves is shown in Figure 6. Upon comprehensive comparison of
their decision curves (Figure 7), the PET + CT radiomics model’s
calibration curve was closer to the diagonal, and it also had the
largest area under the decision curve, indicating the overall
optimal performance.

Furthermore, Table 4 presents the pairwise comparison of
prediction performances for different models by DeLong’s test.
Both the PET + CT + Clinical model and the PET + CT model
significantly outperformed the Clinical model and the PET model,
indicating that the integration of multiple data sources could
potentially enhance predictive performance although no
significant difference was observed between the groups of PET +
CT vs. PET model in the testing cohort, PET + CT + Clinical vs. CT,
and PET + CT vs. CT, respectively.

Frontiers in Oncology

4 Discussion

The precise prediction of MM patients who achieve deep
responses holds considerable importance for directing treatment,
monitoring disease progression, evaluating prognosis, and
enhancing the quality of life of patients. In this investigation, we
developed radiomics models that leveraged PET/CT features to
assess therapeutic responses in individuals newly diagnosed with
MM. The principal findings indicated that the radiomics model,
which incorporated PET/CT features, significantly surpassed
models based solely on clinical or PET characteristics.
Furthermore, the amalgamation of multimodal data within the
PET + CT and PET + CT + Clinical models yielded optimal
predictive performance, achieving area under the curve (AUC)
values of 0.809 and 0.813, respectively. These findings highlight
the advantages of integrating multimodal data to enhance
prediction accuracy.
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Bar plot of the selected features with non-zero coefficients, showing their relative contributions to the model.

TABLE 3 Predictive performance of different models for therapeutic effect in newly-diagnosed MM patients in training set and testing set.

Models AUC* Sensitivity Specificity Accuracy F1 score
Train Test Train Test Train Test Train Test Train Test
Clinical 0.568 (0.47-0.67) 0.556 (0.35-0.76) 0.533 0.500 0.603 0.611 0.571 0.562 0.529 0.500
PET 0.775 (0.70-0.85) 0.568 (0.37-0.77) 0.733 0.643 0.630 0.556 0.677 0.594 0.672 0.581
CT 0.837 (0.77-0.91) 0.742 (0.57-0.91) 0.733 0.643 0.767 0.833 0.752 0.750 0.727 0.692
PET + CT 0.881 (0.82-0.94) 0.809 (0.66-0.96) 0.750 0.714 0.822 0.778 0.789 0.750 0.763 0.714
PET + CT + Clinical 0.892 (0.84-0.95) 0.814 (0.67-0.96) 0.750 0.714 0.836 0.778 0.797 0.750 0.769 0.714

MM, Multiple Myeloma.
*AUC, area under the receiver operating characteristic curve.

In this study, we examined the influence of clinical
characteristics on the prediction of patients with DR in MM.
Surprisingly, only gender emerged as a significant predictor of
therapeutic efficacy following multivariate logistic regression
analysis, with a notably better prognosis for females. Indeed, there
exists controversy regarding the impact of gender on the prognosis
of MM. The majority of studies suggest that female patients with
MM generally experience better prognoses compared to their male
counterparts (30-33), which aligns with our observations. Potential
explanations may include healthier attitudes and behaviors among
women, resulting in greater participation in health-promoting
activities post-treatment (34). Additionally, men often present
with more comorbidities at the time of MM diagnosis, which
could adversely affect survival rates. Biological factors may also
play a role in these gender disparities in MM outcomes. For
instance, hormone-related pharmacokinetic variations in
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lymphoma indicate that elevated rituximab serum levels in
females correlate with improved progression-free survival (35).
Moreover, a greater presence of regulatory T cells (Tregs) in
males may contribute to their less favorable outcomes (36).
Nonetheless, other studies have reported no significant influence
of gender on prognosis (36). Our findings emphasize the necessity
of accounting for gender differences in the management of MM and
suggest that future research should delve deeper into the underlying
biological and behavioral mechanisms to refine personalized
treatment strategies.

To date, both ISS and RISS are widely utilized for risk
stratification in MM. However, due to the heterogeneity of this
disease, a singular system may not adequately capture the nuances
applicable to all patients. For those with non-secretory or low-
secretory MM, where the tumor burden is elevated alongside low
serum 2-MG levels, ISS staging may prove inadequate. Additionally,
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ROC curves in both the training set and internal test cohorts. (A) ROC curves of training set; (B) ROC curves of internal test set.
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TABLE 4 Comparison of model differences (DeLong test).

Models Clinical PET + CT PET + CT + Clinical
Train Test Train Test Train Test
Clinical >0.999 >0.999 0.0014 0.9275 <0.0001 0.1983 <0.0001 0.0368 <0.0001 0.0131
PET 0.0014 0.9275 >0.999 >0.999 0.1328 0.3169 0.0003 0.0565 <0.0001 0.0451
CT <0.0001 0.1983 0.1328 0.3169 >0.999 >0.999 0.1803 0.1817 0.1004 0.1789
PET + CT <0.0001 0.0368 0.0003 0.0565 0.1803 0.1817 >0.999 >0.999 0.3116 0.9036
PET + CT + Clinical <0.0001 0.0131 <0.0001 0.0451 0.1004 0.1789 03116 0.9036 >0.999 >0.999
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Decision curve analysis for the training set and internal test set. (A) Decision curves of training set; (B) Decision curves of internal test set.

certain patients displaying low serum (2-MG levels during early
disease stages may present with chromosomal translocation t(4;14)
and other cytogenetic anomalies associated with poor prognosis.
Zhou H et al. demonstrated in their study that both RISS and ISS
failed to significantly differentiate early relapse risk (37). Our
multivariate analysis revealed that neither ISS nor RISS effectively
distinguished patients with deep responses, indicating that
conventional staging systems may not accurately reflect the
intricate biological complexities of MM. A more holistic approach
is warranted for evaluating tumor burden in patients diagnosed
with MM.

Radiomics is an emerging and rapidly advancing domain within
the realm of medical imaging, focusing on the analysis of medical
images to extract high-dimensional quantitative data that unveils
concealed information not readily apparent to the naked eye (15,
17). A range of medical imaging modalities can facilitate radiomic
analysis in patients with MM, with MRI being the most extensively
utilized, followed by CT and PET (38). In comparison to MRI and
CT, PET provides a more insightful approach for assessing the
metabolic activity of MM lesions, thereby offering distinct
advantages in evaluating patient responses to therapy. This
rationale underpins the IMWG recommendation of 18F-FDG
PET/CT as the current “gold standard” for assessing and
monitoring responses to anti-myeloma treatment (1, 2). However,
differentiating between focal and diffuse patterns remains a
considerable challenge. Consequently, several studies have turned
their focus to radiomics methodologies, illustrating the potential
applications of radiomics derived from PET/CT in differential
diagnosis, MRD detection, and prognosis prediction for MM (21).
Reports on the application of radiomics in predicting therapeutic
efficacy for patients with newly diagnosed MM are notably scarce.
In our investigation, models predicated on radiomic features
demonstrated a substantial advantage over clinical models in
identifying newly diagnosed patients with deep responses,
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exhibiting significantly higher values of AUC, sensitivity,
specificity, accuracy, and F1 score (Table 3). This superiority is
likely attributable to radiomics’ capacity to capture intricate details
of tumor heterogeneity, offering insights that transcend traditional
clinical features. Given the high heterogeneity of MM,
quantitatively characterizing its inter- and intra-tumoral
variations could significantly enhance prognostic assessments.
Importantly, our findings indicate that the integration of multiple
data modalities yielded the most robust predictive performance, as
exemplified by the PET+CT and PET+CT+Clinical models. These
models achieved superior accuracy in distinguishing between
patients with deep responses and those without, suggesting their
potential utility for risk stratification in MM. While our results do
not directly evaluate treatment outcomes, they imply that such
stratification may inform personalized therapeutic strategies in the
future. For instance, patients exhibiting a deep response might be
spared from unnecessary intensive treatment, whereas those
without could benefit from closer monitoring and timely
adjustments to their therapy. Furthermore, this study underscored
prospective trends in merging radiomics with other data types, with
the goal of comprehensively elucidating MM through the unveiling
of complex connections between imaging phenotypes and the
molecular mechanisms driving disease progression (38).

At present, the commonly used first-line regimens may include
bortezomib, lenalidomide and dasatuzumab. For patients with poor
efficacy after 2 courses of treatment, a new chemotherapy
combination can be selected according to the patient’s drug
resistance. For lenalidomide-resistant patients, proteasome
inhibitors bortezomib, ixazomib or a new generation of
proteasome inhibitors carfilzomib, a new generation of
immunomodulators pomalidomide and CD38 monoclonal
antibody-based regimens can be used. For bortezomib-resistant
patients, regimens based on carfilzomib, pomalidomide, and
CD38 monoclonal antibodies can be used. For patients with triple
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drug resistance, a regimen consisting of carfilzomib, pomalidomide,
and celinesol can be used. If the patient’s age and physical condition
allow, autologous hematopoietic stem cell transplantation can also
be considered (39-42).

This study does possess certain limitations that warrant
attention. First, the sample size is relatively small, necessitating
validation through larger, multi-center datasets to ascertain the
generalizability of our findings. Second, although cytogenetic
testing was conducted for all patients, as our study was explicitly
designed to concentrate on radiomics-based prediction. The
prognostic significance of genetic alterations will be explored in a
subsequent investigation. Third, the methodology was reliant on
traditional radiomics techniques involving manual or semi-
automatic feature extraction, which may introduce a degree of
subjectivity. Future endeavors will investigate the integration of
deep learning methodologies to facilitate automated feature
learning, potentially enhancing predictive accuracy and thereby
broadening the clinical applicability of radiomics in MM.

5 Conclusions

In conclusion, the radiomics model derived from FDG-PET/CT
exhibits considerable promise for clinical implementation in
forecasting profound treatment responses in patients newly
diagnosed with MM. By non-invasively capturing tumor
heterogeneity and metabolic attributes, this model serves as an
objective and reproducible instrument for stratifying patients based
on their probability of attaining a deep response. The amalgamation
of radiomic characteristics with pivotal clinical factors, such as sex,
further bolsters predictive precision, underscoring its applicability
in personalized therapeutic strategies.

This model has the potential to facilitate early treatment
assessment, inform adjustments, prevent overtreatment in
responders, and pinpoint patients who require closer surveillance.
Future multicenter validation and the incorporation of genetic
markers may enhance its clinical relevance in the realm of
precision medicine for MM.
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