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assessment of therapeutic
effect in patients with newly-
diagnosed multiple myeloma
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Guangwen Duan1, Jiayang Yan1, Baiyang Jiang1,
Hongbiao Sun1, Shaochun Xu1, Kaili Chen3*,
Yi Xiao1* and Shiyuan Liu1*

1Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China,
2Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd.,
Shanghai, China, 3Department of Hematology, School of Medicine, Shanghai Fourth People's Hospital,
Tongji University, Shanghai, China
Objectives: To evaluate the prediction value of radiomics models based on FDG-

PET/CT for the therapeutic effect in patients with newly-diagnosed multiple

myeloma (MM).

Materials and methods: We retrospectively reviewed the clinical characteristics

and 18F-FDG-PET/CT imaging data of 165 MM patients. Randomly divided into a

training set (n=133) and a test set (n=32) at a ratio of 8:2. All patients underwent

whole-body PET-CT scans within one month prior to the commencement of

treatment. Overall response rate was the principal efficacy endpoint, including

stringent complete response (sCR), complete response (CR), very good partial

response (VGPR), partial response (PR), disease stabilization (SD), and disease

progression (PD). Deep response (DR) was defined as sCR, CR, and VGPR, while

non-deep response included PR, SD and PD, 74 patients attained DR. Different

models involving clinical, radiomics extracted from PET/CT, and their

combination were constructed based on multiple logistic regression and

logistic regression machine learning classifier after features selection,

respectively. The models predicting performance were evaluated by the area

under the ROC curve (AUC), sensitivity, specificity, accuracy, precision, and F1

score. Receiver Operating Characteristic (ROC) curves, decision curves,

calibration curves, and DeLong’s test were applied to compare their ability.

Results: Gender was the only one of clinical characteristics found to be

independent prognosis factor for treatment evaluation, with a p-value of

0.041. The radiomics models outperformed the Clinical model significantly,

among which the PET-CT model yielded the best results with the AUC of
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Abbreviations: MM, multiple myeloma; FL, focal lesion

MTV, metabolic tumor volume; TLG, total lesion glycoly

albumin; LDH, lactate dehydrogenase; b2M, b2-micr

platelet; HCRP, hypersensitive C-reactive protein

International Staging System; DS staging, Durie Salmon

standardized uptake value.
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0.809. The PET + CT + Clinical model achieved the optimal performance after

integrating clinical and radiomic features, with the AUC of 0.813.

Conclusions: The FDG-PET/CT-based radiomics model, particularly when

integrated with clinical features, can more effectively predict deep treatment

response in newly diagnosed MM patients, offering significant clinical utility for

early treatment stratification and personalized therapeutic guidance.
KEYWORDS

multiple myeloma, therapeutic assessment, radiomics, PET/CT, deep response
Highlights
• Radiomics with 18F-FDG PET/CT imaging to assess

treatment efficacy in newly diagnosed MM patients.

• The clinical and radiomic data to distinguish between

multiple myeloma patients demonstrating deep response

to treatment and those exhibiting non-deep response.

• Radiomics model based on PET/CT features significantly

outperformed models based solely on clinical or

PET characteristics.
1 Introduction

Multiple myeloma (MM) is an incurable malignancy

characterized by clonal plasma cell proliferation in the bone

marrow and excessive monoclonal immunoglobulin production

(1). MM constitutes 1.8% of all cancer cases, with an annual

incidence rate of 4.6 to 6 cases per 10,000 individuals, thereby

ranking as the second most prevalent hematologic malignancy (2,

3). In the past two decades, the overall survival rate for MM patients

has significantly improved due to the introduction of novel

therapeutic agents (4, 5). Concurrently, the development of

sensitive methods for measuring deep therapeutic responses has

led to the concept that sustained minimal residual disease (MRD)

negativity is associated with remarkably low progression rates (6–

8). However, despite these unprecedented treatment responses, 30-

50% of patients fail to achieve or maintain MRD negativity,

ultimately progressing to advanced stages of the disease (4).

Moreover, in clinical practice, significant disparities in survival

outcomes are observed among patients presenting with the same

disease stages (9). Current prognostic staging systems have

limitations in accurately stratifying risk, particularly for
; EMD, extramedullary;

sis; Cr, creatinine; ALB,

oglobulin levels; PLT,

; R-ISS, the revised

staging; SUVmax, max

02
intermediate-stage disease (10, 11). Understanding the therapeutic

effects and prognostic characteristics of patients with MM is

essential for optimizing treatment strategies.

Despite advances in the treatment of MM, relapse remains

common. Furthermore, there are no standard treatments for

patients with advanced MM following primary therapies;

complete responses are rare, with a median progression-free

survival of 3–4 months and an overall survival of 8–9 months

(10). Current assessment methods are often invasive, time-

consuming, and difficult for some patients to undergo. Due to the

wide variability in survival among MM patients, developing a more

accurate and comprehensive therapeutic assessment system

remains a major focus and challenge in clinical practice.

Accurate therapeutic effects and prognostic stratification are

essential for selecting appropriate treatment strategies for MM, so as

to prevent overtreatment and reduce the medical and financial burden.

The International Myeloma Working Group recommends 18F-FDG

PET/CT as one of the preferred imaging modalities for evaluating MM

and other plasma cell disorders (3, 11). PET/CT integrates both

anatomical and metabolic information, providing high sensitivity and

specificity for assessing bone damage and detecting extramedullary

disease (3). It can identify additional lesions in up to 40% of patients

with early-stage MM (12). Compared with MRI and X-ray, PET/CT

has superior capabilities for detecting extramedullary disease, making it

an indispensable tool in the diagnostic and therapeutic assessment of

MM (13). Many studies have indicated that imaging features such as

focal lesions, metabolic activity, tumor volume, and extramedullary

disease are associated with survival outcomes (14) However, most

studies focus solely on imaging features, overlooking the integration of

clinical, laboratory, and cytogenetic data for a comprehensive

assessment. Moreover, current evaluations still largely depend on

physicians’ visual interpretation and basic quantitative metrics such

as lesion count, SUVmax, metabolic tumor volume, etc., which are

subject to interobserver variability and inconsistent definitions. This

underscores the need for more robust, reproducible, and integrative

assessment methods.

Radiomics has emerged as an important field involving the

automated or semi-automated extraction of quantitative features,

including texture, intensity, and density, from medical imaging

(15). Numerous studies have demonstrated the efficacy of radiomics
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in the differential diagnosis of cancer, the prediction of treatment

response, and the prognosis of disease progression (16–18). In our

prior studies, we successfully employed radiomics models based on

MRI to differentiate between spinal MM and metastases (19, 20).

Although radiomics studies based on PET/CT are gaining attention,

their application in assessing treatment response for MM remains

limited, mainly focusing on predicting overall survival or recurrence

(21–26).

This study aimed to investigate the feasibility of utilizing radiomics

based on 18F-FDG PET/CT imaging to evaluate the therapeutic

efficacy in patients newly diagnosed with MM. Additionally, the

research sought to develop a model integrating clinical and radiomic

data to differentiate betweenMMpatients exhibiting deep response and

those with non-deep response to treatment.
2 Materials and methods

2.1 Study population and inclusion and
exclusion criteria

This retrospective study was approved by the Ethics Committee

of Changzheng Hospital of the Navy Medical University

(No.2016SL019A), and the informed consent was waived. From

December 2015 to December 2022, we collected clinical and PET/

CT information of MM patients. Each patient was diagnosed with

MM through comprehensive histological and hematological

examinations, in accordance with the IMWG guidelines for both

diagnosis and treatment (1). The inclusion criteria were: (1)

diagnosed according to the IMWG diagnostic criteria; (2)

complete pre-treatment and post-treatment clinical data; (3)

hospitalized and received two courses of standard induction

chemotherapy. The exclusion criteria were: (1) combined

malignant tumors or hematological diseases in other systems; (2)

concomitant cardia amyloidosis; (3) chemotherapy and radiation

therapy before the PET/CT examination; (4) poor image quality.

Full-body PET/CT examinations were conducted within one month

before the initiation of treatment for each patient.

Based on the inclusion and exclusion criteria, a total of 165

patients (90 males and 75 females) were enrolled, with a median age

of 61 years and an age range between 34 and 86 years. All patients

underwent comprehensive blood-based laboratory tests. Laboratory

indicators encompassed M protein, sFLC (free light chain),

hemoglobin, creatinine, albumin, Ca2+, lactate dehydrogenase,

b2-microglobulin levels, platelets, hypersensitive C-reactive

protein, and PET/CT quantitative parameters. Serum protein,

serum albumin, glucose filtration rate, beta-2 microglobulin,

hemoglobin, hematocrit, calcium levels, and serum lactate

dehydrogenase were additionally quantified.
2.2 Treatment and response evaluation

The treatment plans are divided into three categories:

chemotherapy regimens based on proteasome inhibitor–based
Frontiers in Oncology 03
therapy (PI-based), chemotherapy regimens based on

immunomodulatory drug-based therapy (IMiD-based), and

chemotherapy regimens based on the combination of proteasome

inhibitor-containing therapy and immunomodulatory drug-based

therapy (IMiD+PI).

The principal efficacy endpoint was the deep response rate

(DR), defined as the proportion of patients achieving at least a very

good partial response (VGPR), complete response (CR), or

stringent complete response (sCR), according to Paiva B et al.

and the International Myeloma Working Group (IMWG) criteria

(27, 28). For descriptive purposes, we also calculated the overall

response rate (ORR), defined as the proportion of patients achieving

partial response (PR) or better (PR, VGPR, CR, sCR). Patients

achieving sCR, CR, or VGPR were categorized as DR, whereas those

with PR, minimal response (MR), stable disease (SD), or progressive

disease (PD) were categorized as non-DR for subsequent binary

classification analyses.

MRD testing was performed within two weeks of the first

confirmed CR using multiparameter flow cytometry (MFC) with

a sensitivity of 10^-4, following IMWG recommendations. MRD

status was recorded as positive or negative. All treatment response

assessments were conducted by expert hematologists. Baseline

characteristics and treatment details are provided in Table 1, and

the study design is outlined in Figure 1.
2.3 Equipment and parameters

All images were obtained from the hospital’s Picture Archiving

and Communication System (PACS) and scanned using the

SIEMENS Biograph 64-layer PET/CT equipment. Patients

underwent a fasting period of over 6 hours before being injected

with 18F-FDG at a concentration of 0.15-0.18 mCi/kg. Typically,

the PET/CT scan commenced 60 minutes post-injection. Patients

were positioned supine with both upper arms placed above their

heads to minimize chest artifacts.

The procedure began with a body CT scan, using scanning

parameters of tube voltage of 120 kV, tube current of 150 mA, layer

thickness of 3mm, and scanning range from the top of the skull to

the middle of the femur. The body PET/CT scan was collected for

5–6 beds, with a conventional collection time of two minutes per

bed. Subsequently, CT data was utilized for attenuation correction

and PET image enhancement, followed by image reconstruction

and fusion.
2.4 PET image delineation and registration
between PET and CT images

Two experienced radiologists, with 6 and 7 years of expertise

respectively, conducted blind segmentation of lesions exhibiting the

highest uptake on PET scans. In cases of discrepancies concerning

PET/CT findings, a consensus was reached through a collaborative

review involving a senior nuclear medicine physician with over 10

years of experience. The interpretation of PET images adhered to
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TABLE 1 Basic patient information of training set and testing set.

Variables Training set (n=133) Testing set (n=32) P-values

Age (mean±sd) 58.722 ±8.847 61.062 ±8.810 0.181

Gender (0/1)

Male 72 18
0.829

Female 61 14

Initial treatment plan

PI-based 97 25

IMiD-based 8 2
0.725

PI+IMiD 28 5

Bone marrow plasma cell (≥60%)

Yes 28 2
0.051

No 105 30

FL(≥3)

Yes 109 28
0.453

No 24 4

EMD

Yes 60 14
0.889

No 73 18

HB (≤100g/L)

Yes 60 15
0.96

No 73 17

Cr (≥177umol/L)

Yes 24 6
0.926

No 109 26

ALB (≥35g/L)

Yes 65 12
0.247

No 68 20

LDH(≥250U/L)

Yes 16 5
0.584

No 117 27

b2-MG (≥5.5mg/L)

Yes 33 7
0.728

No 100 25

PLT (<100*10^9/L)

Yes 13 2
0.534

No 120 30

HCRP (>10mg/L)

Yes 30 4
0.207

No 103 28

Ca2+ (≥2.55mmol/L)

Yes 31 5 0.345

(Continued)
F
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IMWG standards, defining focal lesions as those exhibiting higher

uptake than the hematopoietic bone marrow background (BM) or

liver, with a minimum diameter of 5 mm. Diffuse uptake was

defined as uptake above that of the liver (29).

Evaluation of images was carried out by a team of experienced

nuclear medicine physicians. following established criteria for

assessing myeloma lesions. Briefly, positive areas were indicated

by the presence of focal areas with increased tracer uptake within

bones (SUV ≥2.5), with or without any underlying lesions identified

on CT or osteolytic CT areas >0.5 cm (11). The Metabolic Tumor

Volume (MTV) MTV was calculated from PET data of the

delineated volume. To enhance segmentation consistency, two

radiologists randomly selected 20 patients for intra- and inter-

observer consistency tests. Intra-group and inter-group consistency

coefficients (ICC) between features were computed to identify and

retain features demonstrating robust repeatability (ICC>0.70).

We employed the PET/CT registration method available on the

platform (https://www.uii-ai.com/research.html) for the automated

alignment of PET and CT images. Subsequently, a senior medical

radiologist reviewed the registered images to confirm the precise
Frontiers in Oncology 05
alignment of major organ boundaries, such as the skin, skeletal

structures, and liver. A registration matrix was generated to

quantify this alignment. Ultimately, the regions of interest (ROI)

identified from the PET images were overlaid onto corresponding

locations within CT images (Figure 2).
2.5 Radiomics extraction and selection

Radiomics analysis was performed by a clinical research

platform (uAI Research Portal, United Imaging Intelligence Co.,

Ltd, China). Radiomics features were extracted from these images

using the PyRadiomics toolbox in Python 3.7. The flowchart of the

radiomics analysis is shown in Figure 3. Initially, all parametric

maps underwent normalization using maximum and minimum

truncation processing. Subsequently, 14 image filters were used to

generate derived images, from which first-order statistics and

texture features were extracted, resulting in a total of 2,160

derived features. From the largest focal area of myeloma in each

patient, 2,264 radiomics features were automatically extracted. All
TABLE 1 Continued

Variables Training set (n=133) Testing set (n=32) P-values

Ca2+ (≥2.55mmol/L)

No 102 27

DS.staging (1/2/3)

I 12 3

0.77II 26 8

III 95 21

ISS.staging

I 34 4

0.167II 42 15

III 57 13

R-ISS.staging (1/2/3)

I 27 5

0.494II 18 18

III 25 9

Liver SUVmax
(Median[Q1~Q3])

2.09[1.82,2.40] 2.085 [1.740,2.620] 0.995

SUVmax(Median[Q1~Q3]) 5.500 [4.200,7.480] 5.335 [3.72,7.33] 0.688

TLG(Median[Q1~Q3]) 39.0 [20.0,78.0] 44.5 [13.8,143.3] 0.493

MTV(Median[Q1~Q3]) 12.0 [6.0,24.0] 13.0 [5.75,32.25] 0.462
PI-based, Proteasome inhibitor-based; IMiD-basedimmunomodulatory drug-based; FL, focal lesion; EMD, extramedullary; HB, hemoglobin; Cr, creatinine; ALB, albumin; LDH, lactate
dehydrogenase; b2-MG, b2-microglobulin; PLT, platelet; HCRP, hypersensitive C-reactive protein; DS staging, Durie Salmon staging; ISS, International Staging System; R-ISS, the revised
International Staging System; SUVmax, max standardized uptake value; TLG, total lesion glycolysis; MTV, metabolic tumor volume.
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FIGURE 2

PET-CT registration process flowchart.
FIGURE 1

Flowchart summarizing patient enrolment process and study cohorts.
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radiomics features were standardized using Z-score normalization

to mitigate dimensional disparities.
2.6 Prognosis model

2.6.1 Predictive task
Our predictive task aimed to accurately differentiate MM

patients with deep response from those with non-deep response.

To mitigate risks of bias and overfitting, we employed two methods.

Firstly, we filtered features by employing the intraclass correlation

coefficient (ICC) within and between observers, establishing a

threshold of ICC > 0.70. Secondly, we applied the least absolute

shrinkage and selection operator (LASSO) to the training dataset,

using a five-fold cross-validation approach to identify the

most predictive features. These strategies were employed to

identify the most informative features while ensuring optimal

predictive performance.

2.6.2 Development and validation of the
predictive model

We developed three models: the Clinical Model, the Radiomics

Model, and the Combined Model. In the Clinical Model, using

univariate logistic regression to analyze clinical data, combined with

the actual clinical situation and the results of univariate logistic
Frontiers in Oncology 07
regression analysis, potential factors related to prognosis were

included in the multiple logistic regression model. Clinical

variables that may affect the evaluation of multiple myeloma

treatment effectiveness were selected and used to construct the

clinical model. All continuous features were normalized by Z score

normalization. For clinical features, univariate (p < 0.1) and

multivariate (p < 0.05) logistic regression were used to identify

independent risk factors. Features with a p value lower than 0.05

were selected for inclusion in the corresponding clinical model.

Regarding the radiomics model, the features were extracted

from CT and PET images, followed by Z-score standardization to

reduce dimensional differences between different features, and

cleaning of radiomics features to reduce the impact of outliers

and missing values. To reduce bias and overfitting risks, feature

selection steps included: first selecting features with intraclass

correlation coefficients (ICC) greater than 0.70; then randomly

selecting 20% of the dataset as independent test data, using Least

Absolute Shrinkage and Selection Operator (LASSO) on the

remaining data to select features with optimal predictive

performance, used for constructing CT radiomics model and PET

radiomics model. To maximize the recognition rate of radiomics

algorithms, Logistic Regression (LR) machine learning classifier was

used to build models with features selected by LASSO algorithm.

Finally, combining CT and PET radiomics features selected by

LASSO together, repeated the above process to build a joint
FIGURE 3

Radiomics workchart for response evaluation in MM.
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radiomics model. Combine clinically selected risk factors with

radiomics features to jointly build a comprehensive model for

further evaluation of treatment efficacy in patients with MM.

To assess discrimination, we compared these models using six

metrics: the area under the ROC curve (AUC), sensitivity,

specificity, accuracy, precision, and F1 score on the test set. The

calibration curve was assessed using the Hosmer-Lemeshow test by

plotting the predicted ER probabilities against actual ER rates. The

clinical utility of the models was evaluated using Decision Curve

Analysis (DCA), which involves analyzing the net benefit of a range

of threshold probabilities across the entire retrospective cohort. The

performance of DCA is obtained by assessing the net benefit at

various threshold probabilities. The best model was determined by

comprehensive evaluation using Receiver Operating Characteristic

(ROC) curves, decision curves, and calibration curves. Differences

between the three models were compared using DeLong’s test, with

a p-value less than 0.05 indicating significant differences between

them. In summary, through comprehensive evaluation from both

discrimination and calibration perspectives, we identified the

optimal predictive model among the Radiomics Model, Clinical

Model, and Combined Model for predicting postoperative

outcomes in patients with MM.
2.7 Statistical analysis

To assess the normality of continuous features, we employed

the Kolmogorov-Smirnov test. The T-test was used to compare

variables with a normal distribution, which are represented as mean

± SD (standard deviation). For non-normally distributed data, the

Mann-Whitney U test was used, and the data was represented using

the median (inter-quartile range). Categorical variables were

analyzed using either the chi-square test or Fisher’s exact test.

The data was represented as counts (%). A p-value lower than

0.05 was considered statistically significant. The R software package

(version 4.0.3) was used to process the demographic data for

evaluating significant differences in the variables between the

training and the validation set. Python (version 3.6) was

employed for programming model training, validating the

prediction model, as well as conducting statistical analysis.
3 Results

3.1 Assessment of clinic features

This study included a total of 165 patients (90 males: with a

median age of 61 years). Patients had undergone two courses of

treatment. Among them, 74 patients achieved DR. The treatment

plan involved 133 patients within the training set and 32 patients

within the test set. The baseline clinical characteristics, presented in

Table 1, demonstrate consistency and comparability between the

training and testing datasets. No statistically significant difference

(p>0.05) was found in basic variables between the training set and

the test set, including general characteristics (gender and age),
Frontiers in Oncology 08
medical history (hypertension, diabetes), and laboratory tests

(BNP, etc). Table 2 presents the outcomes of univariate and

multivariate regression analyses assessing the association between

various clinical features and the likelihood of achieving DR in

patients with MM. After univariate analysis, Gender, Ca2+, and FL

were significantly associated with the efficacy of treatment courses

(p < 0.1); multivariate analysis revealed that Gender was an

independent predictor of treatment efficacy, with a p-value of

0.041, and the risk ratio for males to females was 0.713(Using

males as the reference category).
3.2 Assessment of radiomic features

Based on the labeled ROI, a total of 2264 features were extracted

from each image of the two imaging modalities, namely PET and

CT. Further refinement was conducted through consistency testing,

resulting in 2034 and 2103 robust features for PET and CT,

respectively. Following LASSO feature selection, 10 features were

identified by the PET model, including 3 first-order features and 7

texture features, while 16 features were identified by the CT model,

including 2 first-order features and 14 texture features. Utilizing

these identified features, the PET-CT Radiomics Model was

developed, incorporating 15 features in total, including 2 first-

order features and 13 texture features. Figure 4 present the

selected features and their respective coefficients, which reflect

each feature’s contribution to the model’s predictive performance.

Specifically, the features comprise both intensity-based (first-order)

and texture-based parameters from PET and CT images, collectively

enabling accurate discrimination of patients with different

therapeutic responses.
3.3 Comparison between different models

A radiomics model and a clinical model were constructed using

logistic regression, utilizing radiomic features selected via LASSO

and clinical features chosen through univariate and multivariate

regression analyses, respectively. Furthermore, variables from both

models were integrated to establish a combined model using

logistic regression.

Table 3; Figure 5 show the performance of different models in

predicting DR in MM patients. Compared with the clinical model,

the three models based on radiomics features demonstrated better

predictive performance. In contrast to the PET model and the CT

model, the PET-CT model yielded the best results with the AUC

(95% CI), sensitivity, specificity, accuracy, and F1 score of 0.881

(0.82-0.94), 0.750, 0.822, 0.789, and 0.763 in the training set, and

0.809 (0.66-0.96), 0.714, 0.778, 0.75, and 0.714 in the test

set, respectively.

Notably, the performance of the integrated model was further

improved with the combination of clinical features and radiomic

features with the AUC (95% CI), sensitivity, specificity, accuracy,

and F1 score of 0.892 (0.84-0.95), 0.750, 0.836, 0.797, and 0.769 in

the training set, and 0.814 (0.67-0.96), 0.714, 0.778, 0.750, and 0.714
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in the test set, respectively (Table 3). From the results, the PET + CT

radiomics model and the PET + CT + Clinical integrated model

exhibited superior performance across all metrics. The calibration

curves is shown in Figure 6. Upon comprehensive comparison of

their decision curves (Figure 7), the PET + CT radiomics model’s

calibration curve was closer to the diagonal, and it also had the

largest area under the decision curve, indicating the overall

optimal performance.

Furthermore, Table 4 presents the pairwise comparison of

prediction performances for different models by DeLong’s test.

Both the PET + CT + Clinical model and the PET + CT model

significantly outperformed the Clinical model and the PET model,

indicating that the integration of multiple data sources could

potentially enhance predictive performance although no

significant difference was observed between the groups of PET +

CT vs. PET model in the testing cohort, PET + CT + Clinical vs. CT,

and PET + CT vs. CT, respectively.
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4 Discussion

The precise prediction of MM patients who achieve deep

responses holds considerable importance for directing treatment,

monitoring disease progression, evaluating prognosis, and

enhancing the quality of life of patients. In this investigation, we

developed radiomics models that leveraged PET/CT features to

assess therapeutic responses in individuals newly diagnosed with

MM. The principal findings indicated that the radiomics model,

which incorporated PET/CT features, significantly surpassed

models based solely on clinical or PET characteristics.

Furthermore, the amalgamation of multimodal data within the

PET + CT and PET + CT + Clinical models yielded optimal

predictive performance, achieving area under the curve (AUC)

values of 0.809 and 0.813, respectively. These findings highlight

the advantages of integrating multimodal data to enhance

prediction accuracy.
TABLE 2 Univariate and multivariate regression analysis of association between various clinical features and the likelihood of achieving DR in MM’s
patients.

Parameters
Univariate

analysis (p value)
Odds ratio (95% CI)

Multivariate
analysis (p value)

Odds ratio
(95% CI)

Age 0.547 1.099(0.807-1.496)

Gender 0.093 0.767(0.563-1.044) 0.041 0.713(0.515-0.986)

Bone Marrow Plasma Cell 0.825 1.035(0.762-1.406)

FL 0.062 1.372(0.984-1.914) 0.098 1.331(0.948-1.870)

EMD 0.491 0.898(0.660-1.221)

HB 0.535 0.907(0.667-1.234)

Cr 0.825 1.035(0.762-1.406)

ALB 0.631 0.927(0.682-1.261)

LDH 0.785 1.043(0.769-1.417)

b2-MG 0.699 1.062(0.782-1.442)

PLT 0.183 1.237(0.905-1.691)

HCRP 0.545 1.101(0.807-1.503)

Ca2+ 0.077 1.335(0.970-1.838) 0.058 1.383(0.989-1.935)

DS-staging 0.514 1.109(0.813-1.513)

ISS-staging 0.897 1.020(0.751-1.387)

RISS-staging 0.603 1.085(0.798-1.475)

Liver SUVmax 0.475 1.119(0.823-1.521)

SUVmax 0.438 0.883(0.644-1.210)

TLG 0.332 1.295(0.768-2.183)

MTV 0.599 1.088(0.795-1.488)
FL, focal lesion; EMD, extramedullary; HB, hemoglobin; Cr, creatinine; ALB, albumin; LDH, lactate dehydrogenase; b2-MG, b2-microglobulin; PLT, platelet; HCRP, hypersensitive C-reactive
protein; DS staging, Durie Salmon staging; ISS, International Staging System; R-ISS, the revised International Staging System; SUVmax, max standardized uptake value; TLG, total lesion
glycolysis; MTV, metabolic tumor volume.
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In this study, we examined the influence of clinical

characteristics on the prediction of patients with DR in MM.

Surprisingly, only gender emerged as a significant predictor of

therapeutic efficacy following multivariate logistic regression

analysis, with a notably better prognosis for females. Indeed, there

exists controversy regarding the impact of gender on the prognosis

of MM. The majority of studies suggest that female patients with

MM generally experience better prognoses compared to their male

counterparts (30–33), which aligns with our observations. Potential

explanations may include healthier attitudes and behaviors among

women, resulting in greater participation in health-promoting

activities post-treatment (34). Additionally, men often present

with more comorbidities at the time of MM diagnosis, which

could adversely affect survival rates. Biological factors may also

play a role in these gender disparities in MM outcomes. For

instance, hormone-related pharmacokinetic variations in
Frontiers in Oncology 10
lymphoma indicate that elevated rituximab serum levels in

females correlate with improved progression-free survival (35).

Moreover, a greater presence of regulatory T cells (Tregs) in

males may contribute to their less favorable outcomes (36).

Nonetheless, other studies have reported no significant influence

of gender on prognosis (36). Our findings emphasize the necessity

of accounting for gender differences in the management of MM and

suggest that future research should delve deeper into the underlying

biological and behavioral mechanisms to refine personalized

treatment strategies.

To date, both ISS and RISS are widely utilized for risk

stratification in MM. However, due to the heterogeneity of this

disease, a singular system may not adequately capture the nuances

applicable to all patients. For those with non-secretory or low-

secretory MM, where the tumor burden is elevated alongside low

serum 2-MG levels, ISS staging may prove inadequate. Additionally,
FIGURE 4

Bar plot of the selected features with non-zero coefficients, showing their relative contributions to the model.
TABLE 3 Predictive performance of different models for therapeutic effect in newly-diagnosed MM patients in training set and testing set.

Models AUC* Sensitivity Specificity Accuracy F1 score

Train Test Train Test Train Test Train Test Train Test

Clinical 0.568 (0.47-0.67) 0.556 (0.35-0.76) 0.533 0.500 0.603 0.611 0.571 0.562 0.529 0.500

PET 0.775 (0.70-0.85) 0.568 (0.37-0.77) 0.733 0.643 0.630 0.556 0.677 0.594 0.672 0.581

CT 0.837 (0.77-0.91) 0.742 (0.57-0.91) 0.733 0.643 0.767 0.833 0.752 0.750 0.727 0.692

PET + CT 0.881 (0.82-0.94) 0.809 (0.66-0.96) 0.750 0.714 0.822 0.778 0.789 0.750 0.763 0.714

PET + CT + Clinical 0.892 (0.84-0.95) 0.814 (0.67-0.96) 0.750 0.714 0.836 0.778 0.797 0.750 0.769 0.714
fron
MM, Multiple Myeloma.
*AUC, area under the receiver operating characteristic curve.
tiersin.org

https://doi.org/10.3389/fonc.2025.1647730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1647730
TABLE 4 Comparison of model differences (DeLong test).

Models Clinical PET CT PET + CT PET + CT + Clinical

Train Test Train Test Train Test Train Test Train Test

Clinical >0.999 >0.999 0.0014 0.9275 <0.0001 0.1983 <0.0001 0.0368 <0.0001 0.0131

PET 0.0014 0.9275 >0.999 >0.999 0.1328 0.3169 0.0003 0.0565 <0.0001 0.0451

CT <0.0001 0.1983 0.1328 0.3169 >0.999 >0.999 0.1803 0.1817 0.1004 0.1789

PET + CT <0.0001 0.0368 0.0003 0.0565 0.1803 0.1817 >0.999 >0.999 0.3116 0.9036

PET + CT + Clinical <0.0001 0.0131 <0.0001 0.0451 0.1004 0.1789 0.3116 0.9036 >0.999 >0.999
F
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FIGURE 5

ROC curves in both the training set and internal test cohorts. (A) ROC curves of training set; (B) ROC curves of internal test set.
FIGURE 6

Calibration curves in both the training set and internal test cohorts. (A) Calibration curves of training set; (B) Calibration curves of internal test set.
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certain patients displaying low serum b2-MG levels during early

disease stages may present with chromosomal translocation t(4;14)

and other cytogenetic anomalies associated with poor prognosis.

Zhou H et al. demonstrated in their study that both RISS and ISS

failed to significantly differentiate early relapse risk (37). Our

multivariate analysis revealed that neither ISS nor RISS effectively

distinguished patients with deep responses, indicating that

conventional staging systems may not accurately reflect the

intricate biological complexities of MM. A more holistic approach

is warranted for evaluating tumor burden in patients diagnosed

with MM.

Radiomics is an emerging and rapidly advancing domain within

the realm of medical imaging, focusing on the analysis of medical

images to extract high-dimensional quantitative data that unveils

concealed information not readily apparent to the naked eye (15,

17). A range of medical imaging modalities can facilitate radiomic

analysis in patients with MM, with MRI being the most extensively

utilized, followed by CT and PET (38). In comparison to MRI and

CT, PET provides a more insightful approach for assessing the

metabolic activity of MM lesions, thereby offering distinct

advantages in evaluating patient responses to therapy. This

rationale underpins the IMWG recommendation of 18F-FDG

PET/CT as the current “gold standard” for assessing and

monitoring responses to anti-myeloma treatment (1, 2). However,

differentiating between focal and diffuse patterns remains a

considerable challenge. Consequently, several studies have turned

their focus to radiomics methodologies, illustrating the potential

applications of radiomics derived from PET/CT in differential

diagnosis, MRD detection, and prognosis prediction for MM (21).

Reports on the application of radiomics in predicting therapeutic

efficacy for patients with newly diagnosed MM are notably scarce.

In our investigation, models predicated on radiomic features

demonstrated a substantial advantage over clinical models in

identifying newly diagnosed patients with deep responses,
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exhibiting significantly higher values of AUC, sensitivity,

specificity, accuracy, and F1 score (Table 3). This superiority is

likely attributable to radiomics’ capacity to capture intricate details

of tumor heterogeneity, offering insights that transcend traditional

clinical features. Given the high heterogeneity of MM,

quantitatively characterizing its inter- and intra-tumoral

variations could significantly enhance prognostic assessments.

Importantly, our findings indicate that the integration of multiple

data modalities yielded the most robust predictive performance, as

exemplified by the PET+CT and PET+CT+Clinical models. These

models achieved superior accuracy in distinguishing between

patients with deep responses and those without, suggesting their

potential utility for risk stratification in MM. While our results do

not directly evaluate treatment outcomes, they imply that such

stratification may inform personalized therapeutic strategies in the

future. For instance, patients exhibiting a deep response might be

spared from unnecessary intensive treatment, whereas those

without could benefit from closer monitoring and timely

adjustments to their therapy. Furthermore, this study underscored

prospective trends in merging radiomics with other data types, with

the goal of comprehensively elucidating MM through the unveiling

of complex connections between imaging phenotypes and the

molecular mechanisms driving disease progression (38).

At present, the commonly used first-line regimens may include

bortezomib, lenalidomide and dasatuzumab. For patients with poor

efficacy after 2 courses of treatment, a new chemotherapy

combination can be selected according to the patient’s drug

resistance. For lenalidomide-resistant patients, proteasome

inhibitors bortezomib, ixazomib or a new generation of

proteasome inhibitors carfilzomib, a new generation of

immunomodulators pomalidomide and CD38 monoclonal

antibody-based regimens can be used. For bortezomib-resistant

patients, regimens based on carfilzomib, pomalidomide, and

CD38 monoclonal antibodies can be used. For patients with triple
frontiersin.o
FIGURE 7

Decision curve analysis for the training set and internal test set. (A) Decision curves of training set; (B) Decision curves of internal test set.
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drug resistance, a regimen consisting of carfilzomib, pomalidomide,

and celinesol can be used. If the patient’s age and physical condition

allow, autologous hematopoietic stem cell transplantation can also

be considered (39–42).

This study does possess certain limitations that warrant

attention. First, the sample size is relatively small, necessitating

validation through larger, multi-center datasets to ascertain the

generalizability of our findings. Second, although cytogenetic

testing was conducted for all patients, as our study was explicitly

designed to concentrate on radiomics-based prediction. The

prognostic significance of genetic alterations will be explored in a

subsequent investigation. Third, the methodology was reliant on

traditional radiomics techniques involving manual or semi-

automatic feature extraction, which may introduce a degree of

subjectivity. Future endeavors will investigate the integration of

deep learning methodologies to facilitate automated feature

learning, potentially enhancing predictive accuracy and thereby

broadening the clinical applicability of radiomics in MM.
5 Conclusions

In conclusion, the radiomics model derived from FDG-PET/CT

exhibits considerable promise for clinical implementation in

forecasting profound treatment responses in patients newly

diagnosed with MM. By non-invasively capturing tumor

heterogeneity and metabolic attributes, this model serves as an

objective and reproducible instrument for stratifying patients based

on their probability of attaining a deep response. The amalgamation

of radiomic characteristics with pivotal clinical factors, such as sex,

further bolsters predictive precision, underscoring its applicability

in personalized therapeutic strategies.

This model has the potential to facilitate early treatment

assessment, inform adjustments, prevent overtreatment in

responders, and pinpoint patients who require closer surveillance.

Future multicenter validation and the incorporation of genetic

markers may enhance its clinical relevance in the realm of

precision medicine for MM.
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