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Introduction: Breast cancer is the most prevalent malignancy among women

worldwide, with triple-negative breast cancer (TNBC) posing significant

therapeutic challenges due to its aggressive nature and lack of targeted

treatments. Natural compounds such as Prunus armeniaca (PA) and bee

venom (BV) have demonstrated anticancer potential.

Methods: This study evaluates the synergistic effects of PA and BV on breast

cancer cells, focusing on proliferation, apoptosis, and invasion. MCF-7 and MDA-

MB-231 breast cancer cells were treated with varying concentrations (0–500 µg/

mL) of PA, BV, and their combination. Cytotoxicity was assessed via the MTT

assay, and the IC50 values were determined using GraphPad Prism. Colony

formation, phase contrast microscopy, Acridine Orange/Ethidium Bromide (AO/

EB) staining, transwell invasion, and Western blot assays were performed to

evaluate proliferation, apoptosis, and invasion. Statistical significance was

determined using one-way ANOVA.

Result and discussion: The combination of PA and BV significantly enhanced

cytotoxicity, with IC50 values reduced to 35.148 µg/mL in MCF-7 cells and 73.80

µg/mL in MDA-MB-231 cells, suggesting a synergistic effect. Colony formation

assays revealed an 83% reduction at the highest dose (70.3 µg/mL).

Morphological assessment showed characteristic apoptotic features, including

cell shrinkage and membrane blebbing. AO/EB staining confirmed apoptosis

induction, with apoptotic cells increasing from 3.2% in controls to 65.3% at 70.3

µg/mL. Western blot analysis demonstrated Bax upregulation and Bcl-2

downregulation, supporting apoptosis activation. Transwell invasion assays

indicated a 59% reduction in cell invasion, suggesting that BV-PA effectively

suppresses metastasis. BV-PA exhibits potent antiproliferative, pro- apoptotic,

and anti-invasive effects in MCF-7 cells. These findings highlight its potential as a

natural therapeutic strategy for breast cancer treatment, particularly TNBC.

Further investigations are warranted to explore its molecular mechanisms and

in vivo.
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GRAPHICAL ABSTRACT
Introduction

Cancer remains one of the most formidable health challenges

and is the second leading cause of death worldwide, following

cardiovascular disorders (1, 2). It is characterized by uncontrolled

cell proliferation, invasion, and metastasis, all of which contribute

to disease progression and poor prognosis. Early diagnosis remains

essential for improving treatment success rates (3, 4). Although

various therapeutic strategies—including chemotherapy,

radiotherapy, gene therapy, surgery, and immunotherapy—are

widely employed, the effectiveness of these approaches is

frequently limited by systemic toxicity, drug resistance, and

tumor heterogeneity (5, 6). Consequently, there is a pressing need
Frontiers in Oncology 02
to develop novel anticancer agents, particularly from natural

sources, that offer improved efficacy with fewer adverse effects (7, 8).

Among all cancer types, breast cancer is the most frequently

diagnosed malignancy in women and remains a major public health

concern globally (9). According to GLOBOCAN 2022, there were

an estimated 20 million new cancer cases and 9.7 million deaths

worldwide. In the United States alone, 1,958,310 new cancer cases

and 609,820 cancer-related deaths were projected for 2023 (10, 11).

The high mortality rate of breast cancer is largely attributable to

late-stage diagnosis, by which time metastasis has often occurred to

critical sites such as the lymph nodes, brain, liver, lungs, or bones

(12, 13). In 2022, approximately 2.3 million women were newly

diagnosed with breast cancer, leading to 670,000 deaths worldwide
frontiersin.org
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(14). Despite advances in screening and treatment, breast cancer

remains a leading cause of cancer-related death among women.

Breast cancer comprises various molecular subtypes, each differing

in prognosis and treatment response. While triple-negative breast

cancer (TNBC), which lacks ER, PR, and HER-2 expression, is

known for its aggressive clinical course, the majority of

experimental validation in this study was conducted on MCF-7

cells, which are estrogen receptor-positive (ER+) (11–13). Current

therapeutic regimens for breast cancer include chemotherapeutic

drugs such as doxorubicin, targeted agents like selective estrogen

receptor modulators (e.g., raloxifene), monoclonal antibodies, and

poly(ADP-ribose) polymerase (PARP) inhibitors such as olaparib

(15, 16). However, these therapies often fail to provide lasting

clinical benefit, necessitating the exploration of alternative or

adjunct treatments (17).

Apoptosis, or programmed cell death, plays a vital role in

maintaining tissue homeostasis by eliminating damaged or

potentially malignant cells (18). Dysregulation of apoptotic

signaling is a hallmark of cancer and commonly involves the

overexpression of anti-apoptotic proteins such as Bcl-2 and the

suppression of pro-apoptotic factors like Bax (19). The Bcl-2/Bax

ratio is considered critical in determining a cell’s susceptibility to

apoptosis, particularly in response to stress or chemotherapy (20).

Natural products have gained attention for their potential role in

cancer therapy due to their bioactivity, accessibility, and lower

toxicity compared to conventional drugs (21). Apricot extract,

derived from Prunus armeniaca (PA), has been reported to exert

anticancer effects by downregulating anti-apoptotic genes and

promoting apoptosis in various tumor cell lines (22–24).

Similarly, bee venom (BV), traditionally used to treat ailments

such as arthritis, asthma, and skin conditions, has shown promise

in oncology research (25). BV contains a variety of bioactive

components including melittin, apamin, and phospholipase A2,

which have demonstrated selective cytotoxicity against cancer cells.

Melittin, the principal peptide of BV, is known to disrupt cancer cell

membranes and interfere with signaling pathways such as NF-kB
and PI3K/AKT that are crucial for tumor cell survival and

proliferation (26). In this study, we evaluated the cytotoxic effects

of PA, BV, and their combination on breast cancer cells.

Additionally, we assessed their synergistic effect on impact on

apoptosis and cell invasion in TNBC cells.
Materials and methods

Cell culture

MCF-7 breast cancer cells (ATCC® HTB22™) were obtained

from VACSERA, Egypt. Cells were cultured in RPMI-1640 medium

(Gibco, Invitrogen) supplemented with 10% fetal bovine serum

(FBS) and antibiotics (100 U/mL penicillin, 100 mg/mL

streptomycin). Chemicals, including PA extract (Prunus
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armeniaca) and bee venom (BV), were sourced from Sigma-

Aldrich (USA) and VACSERA (Egypt), respectively.
MTT assay

The antiproliferative effects of PA, BV, and their combination

were assessed using the MTT assay. MCF- 7 and MDA-MB-231

cells were seeded in 96-well plates (4 × 10³ cells/well) and incubated

for 24 hours before treatment with increasing concentrations (0–

500 mg/mL) of PA, BV, and their mixture. After 72 hours, cell

viability was evaluated using MTT reagent, and absorbance was

measured at 570 nm using a microplate reader (BMGLABTECH

FLUOstar Omega, Germany). IC50 values were calculated using

GraphPad Prism.
Colony formation assay

MCF-7 cells (500 cells/well) were seeded in six-well plates and

treated with PA-BV (0, 70.3, 35.15, and 17.57 μg/mL) for 24 hours.

The medium was replaced, and cells were incubated for 10–14 days.

Colonies were fixed with 4% paraformaldehyde, stained with 0.5%

crystal violet, and counted using ImageJ software.
Phase contrast microscopy

Morphological alterations in MCF-7 cells following treatment

with the PA-BV combination (0, 17.57, 35.15, and 70.3 μg/mL) were

examined using an inverted phase contrast microscope (Olympus

CKX53, Japan). Images were captured at 20× magnification to

assess characteristic apoptotic features such as cell shrinkage,

rounding, and detachment from the culture surface.
Acridine Orange/Ethidium Bromide staining

Apoptotic changes were analyzed by AO/EB staining. MCF-7

cells were treated with PA-BV (0, 70.3, 35.15, and 17.57 μg/mL) for

24 hours, washed, and stained with AO/EB (1:1, 10 μg/mL). Cells

were visualized under a fluorescence microscope (Olympus BX51,

Japan) to distinguish live (green), early apoptotic (bright green),

and late apoptotic (orange/red) cells.
Transwell migration assay

Cell migration was evaluated using transwell inserts with an 8

mm pore size (Corning, USA). MCF-7 cells (5 × 104 cells/well) were

seeded in serum-free DMEM in the upper chamber, while DMEM

supplemented with 10% FBS was placed in the lower chamber as a

chemoattractant. Cells were treated with the PA-BV combination at

concentrations of 0, 17.57, 35.15, and 70.3 μg/mL for 24 hours. After
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incubation, migrated cells on the lower surface of the membrane

were fixed with methanol, stained with 0.5% crystal violet, and

counted under an inverted microscope.
Western blotting

MCF-7 cells were treated with PA-BV (0, 70.3, 35.15, and 17.57

μg/mL) for 24 hours, lysed using RIPA buffer with protease

inhibitors, and centrifuged (13,000 rpm, 20 min, 4°C). Protein

concentration was determined via the Bradford assay. Proteins

(40 μg) were resolved on a 10% SDS-PAGE gel, transferred to a

nitrocellulose membrane, and blocked with 5% skim milk in TBST.

Membranes were incubated overnight at 4°C with primary

antibodies against Bax, Bcl-2, and b-actin, followed by HRP-

conjugated secondary antibodies. Protein bands were detected

using an ECL detection system (Bio-Rad, USA), and

densitometric analysis was performed using ImageJ software.
Statistical analysis

All experiments were conducted in triplicate (n = 3) and results

are presented as mean ± standard deviation (SD). Statistical

analyses were performed using GraphPad Prism 8 (GraphPad

Software Inc., USA). For comparisons between two groups, an

unpaired two-tailed Student’s t-test was used. For experiments

involving more than two groups, one-way analysis of variance
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(ANOVA) followed by Dunnett’s post hoc test was applied to

determine statistical significance compared to the control group.

A p-value of less than 0.05 was considered statistically significant.

The number of independent biological replicates (n) for each assay

is indicated in the corresponding figure legends.
Results

Synergistic antiproliferative effects of PA
and BV in TNBC cells

The antiproliferative effects of Prunus armeniaca (PA), bee

venom (BV), and their combination were evaluated in MCF-7

and MDA-MB-231 breast cancer cells using the MTT assay. The

IC50 values for PA alone were 357.3 μg/mL in MDA-MB-231 and

281.56 μg/mL in MCF-7 cells, while BV alone exhibited IC50 values

of 171.56 μg/mL in MDA-MB-231 cells and 119.071 μg/mL in

MCF-7 cells (Figures 1A–D). Notably, the combination of PA and

BV significantly enhanced cytotoxicity, reducing the IC50 values to

73.80 μg/mL in MDA-MB-231 cells 35.148 μg/mL in MCF-7 cells

(Figures 2A, B). These findings suggest a synergistic interaction

between PA and BV, leading to increased antiproliferative activity

in TNBC cells, particularly in the highly invasive MDA-MB-231

cell line.

Since the combination of Prunus armeniaca (PA) and bee

venom (BV) exhibited the lowest IC50 value of 35.148 μg/mL in

MCF-7 cells, further experiments were conducted exclusively on
FIGURE 1

Antiproliferative effects of PA and BV on breast cancer cells. Effects of PA on (A) MDA-MB231 and (B) MCF-7 cells. Effects of BV on (C) MDA-MB231
and (D) MCF-7 cells. Experiments were conducted in triplicate and data is shown as mean ± SD (*P < 0.05).
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this cell line to investigate its potential mechanistic effects on

proliferation, apoptosis, migration, and protein expression.

Moreover, concentrations of 17.57, 35.15, and 70.3 μg/mL were

used in the subsequent assays correspond to approximately ½X, 1X,

and 2X of the IC50 value in MCF-7 cells and were selected to

represent a gradient of subtoxic to highly active doses for

downstream assays.
Effects of BV-PA on colony formation of
MCF-7 cells

The ability of MCF-7 cells to form colonies following treatment

with the BV-PA mixture was assessed at concentrations of 17.57,

35.15, and 70.3 μg/mL. A concentration-dependent reduction in
Frontiers in Oncology 05
colony formation was observed, with the highest tested dose (70.3

μg/mL) resulting in an 83% inhibition compared to the control

(Figure 3). These findings indicate that BV-PA effectively

suppresses the long- term proliferative potential of MCF-7 cells.
Effects of BV-PA on cell morphology of
MCF-7 cells

To evaluate the morphological alterations induced by BV-PA,

MCF-7 cells were treated with 17.57, 35.15, and 70.3 μg/mL of the

mixture and visualized using phase contrast microscopy. The

treated cells exhibited signs of apoptosis, including cell shrinkage,

membrane blebbing, and detachment from the culture surface

(Figure 4). These morphological changes were more pronounced
FIGURE 2

Antiproliferative effects of PA-BV mixture. MTT assay showing effects of PA-BV on (A) MDA-MB-231 cells and (B) MCF-7 cells. Experiments were
conducted in triplicate and data is shown as mean ± SD (*P < 0.05).
FIGURE 3

Effects of PA-BV on colony formation of MCF-7 cells. Experiments were conducted in triplicate and data is shown as mean ± SD (*P < 0.05).
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at higher concentrations, suggesting a dose-dependent apoptotic

response induced by BV-PA in MCF-7 cells.
BV-PA mixture induces apoptosis in MCF-7
cells

To determine the apoptotic effects of BV-PA on MCF-7 cells,

Acridine Orange/Ethidium Bromide (AO/EB) staining was performed.

Fluorescence microscopy revealed distinct nuclear changes indicative of

apoptosis. Live cells emitted green fluorescence due to intact

membranes, while early apoptotic cells exhibited bright green

fluorescence with condensed chromatin. Late apoptotic cells were

distinguished by orange/red fluorescence, indicating membrane

permeabilization and nuclear fragmentation. Treatment with BV-PA

induced a significant increase in apoptotic cell populations, with

apoptosis levels rising from 3.2% in the control to 65.3% at 70.3 μg/

mL in a dose-dependent manner (Figures 5A, B). Additionally, Western

blot analysis confirmed apoptosis by assessing Bax and Bcl-2 expression.

Bax (pro-apoptotic protein) was upregulated, while Bcl-2 (anti-

apoptotic protein) was downregulated, leading to a significant

increase in the Bax/Bcl-2 ratio (Figures 5C–E). These results suggest

that BV-PA promotes apoptosis in MCF-7 cells by activating pro-

apoptotic signaling and inhibiting survival pathways.
Frontiers in Oncology 06
BV-PA inhibited invasion of MCF-7 cells

To assess the anti-metastatic potential of BV-PA, transwell

invasion assays were performed on MCF-7 cells treated with 17.57,

35.15, and 70.3 μg/mL of the mixture. The results demonstrated a

significant reduction in invasive capacity, with 59% inhibition at 70.3

μg/mL. This suggests that BV-PA effectively suppresses MCF-7 cell

migration and invasion, highlighting its potential role in preventing

breast cancer metastasis (Figure 6). These findings collectively

underscore the potent antiproliferative, pro- apoptotic, and anti-

invasive effects of the BV-PA mixture, demonstrating its promising

therapeutic potential against breast cancer.
Discussion

Breast cancer remains one of the leading causes of cancer-

related mortality worldwide, with triple- negative breast cancer

(TNBC) posing a particular challenge due to its aggressive nature

and lack of targeted therapies (14). Current treatment options,

including chemotherapy, radiotherapy, and immunotherapy, often

exhibit limited efficacy due to tumor resistance and severe side

effects (27). As a result, there is a growing interest in identifying
FIGURE 4

Phase contrast microscopy showing the effects of PA-BV on the cellular morphology of MCF-7 cells. Experiments were conducted in triplicate.
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alternative therapeutic approaches, particularly from natural

compounds with potent anticancer properties. Prunus armeniaca

(PA) and bee venom (BV) have been widely studied for their

antitumor potential (22–27), with accumulating evidence
Frontiers in Oncology 07
suggesting that they can selectively target cancer cells while

minimizing harm to normal tissues.

The present study demonstrated that PA and BV exerted a

synergistic cytotoxic effect on MCF-7 cells, as evidenced by the
FIGURE 5

Figure X. PA-BV combination induces apoptosis in MCF-7 cells. (A) AO/EB staining shows increased apoptosis in MCF-7 cells treated with PA-BV
(17.57–70.3 µg/mL) for 24 (h) (B) Bar graph showing quantification of apoptotic cells (%) (C) Western blot showing Bax, Bcl-2, and b-actin expression
(D) Densitometric analysis of Bax and (E) Densitometric analysis of Bcl-2 normalized to b-actin shown in arbitrary units (AU). Data are mean ± SD (n
= 3); *p < 0.05 vs. control.
FIGURE 6

PA-BV inhibits invasion of breast cancer cells. Transwell assay showing effects of PA-BV on invasion of MCF-7 cells. Experiments were conducted in
triplicate and data is shown as mean ± SD (*P < 0.05).
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significant reduction in IC50 values when used in combination. This

enhanced cytotoxicity can be attributed to their complementary

mechanisms of action. PA has been reported to induce apoptosis

through mitochondrial-mediated pathways, while BV disrupts

membrane integrity and modulates key apoptotic proteins such as

p53, Bax, and Bcl-2 (28). The results of this study align with

previous reports highlighting the ability of PA to suppress tumor

growth by downregulating anti- apoptotic proteins and

upregulating pro-apoptotic markers. Similarly, BV has been

shown to activate apoptotic pathways via reactive oxygen species

(ROS) generation and p53 activation, ultimately leading to cell cycle

arrest and programmed cell death (25–27).

The inhibition of colony formation in MCF-7 cells further

supports the long-term efficacy of PA-BV treatment in reducing

the proliferative capacity of breast cancer cells. Notably, treatment

with PA-BV led to an 83% decrease in colony formation at the

highest concentration tested, suggesting that this combination

therapy not only inhibits immediate cell growth but also prevents

cancer cell survival and expansion over time. These findings are

consistent with previous studies demonstrating that PA extract

reduces colony-forming ability in various cancer cell lines (29).

Apoptosis, a key mechanism underlying the anticancer effects of

PA and BV, was confirmed through AO/EB staining and Western

blot analysis. The fluorescence-based AO/EB assay revealed a dose-

dependent increase in apoptotic cells, with late-stage apoptosis

reaching 65.3% at the highest concentration. Western blot results

showed a marked upregulation of Bax and downregulation of Bcl- 2,

leading to an increased Bax/Bcl-2 ratio, which is a well-established

indicator of apoptosis induction (30). These results align with

previous findings demonstrating that PA and BV modulate

key apoptotic.

regulators in various cancer models. PA has been reported to

activate the intrinsic apoptotic pathway by promoting cytochrome c

release from mitochondria (28), while BV has been shown to

enhance apoptosis by targeting TNF-a and disrupting cancer cell

membrane integrity (31).

The observed synergistic effects of PA and BV may result from

their complementary mechanisms of action at the molecular level.

PA is rich in amygdalin and polyphenolic compounds, which can

induce mitochondrial dysfunction, increase reactive oxygen species

(ROS) generation, and promote cytochrome c release, leading to

intrinsic apoptosis activation (22, 23, 28). BV, on the other hand,

contains melittin and phospholipase A2, which disrupt cancer cell

membranes, enhance cellular permeability, and initiate apoptotic

signaling through activation of the p53 pathway and inhibition of

PI3K/AKT/mTOR and NF-kB survival pathways (25, 26, 31–35).

When used in combination, BV may enhance the intracellular

uptake of PA by increasing membrane permeability, while

concurrently inducing oxidative stress and mitochondrial

destabilization. This dual assault on cancer cells—through both

membrane disruption and mitochondrial targeting—may lead to

amplified activation of apoptosis. Additionally, the simultaneous

modulation of death receptor-mediated and mitochondrial

pathways may overwhelm the cellular defense mechanisms and

explain the pronounced synergistic effect observed.
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Beyond apoptosis, this study also revealed that PA-BV

treatment effectively inhibited the invasive potential of MCF-7

cells. Transwell migration assays demonstrated a 59% reduction

in invasion following treatment, suggesting that PA and BV

interfere with key molecular pathways involved in tumor

metastasis. Previous research has indicated that BV inhibits

epithelial-mesenchymal transition (EMT) by downregulating

mesenchymal markers such as N-cadherin and vimentin, thereby

reducing metastatic potential (36–38). Similarly, PA has been

shown to suppress metastasis of cancer cells (39). The growing

resistance to standard chemotherapy highlights the need for novel

therapeutic strategies that can effectively target cancer cells while

minimizing adverse effects (40). The findings of this study suggest

that PA and BV may serve as promising candidates for

complementary breast cancer therapy. Although, this study

provides important preliminary evidence of the synergistic

antiproliferative and pro-apoptotic effects of PA and BV on breast

cancer cells. However, several limitations must be acknowledged.

First, while both ER-positive (MCF-7) and triple-negative (MDA-

MB-231) breast cancer cell lines were screened for cytotoxicity,

subsequent mechanistic assays were conducted exclusively on

MCF-7 cells. This choice was based on the lower IC50 observed

in MCF-7 cells and their better morphological adherence for

imaging-based assays. Nonetheless, the omission of mechanistic

validation in MDA-MB-231 cells limits the generalizability of our

findings to more aggressive TNBC models (41). Second, although

the combination of PA and BV showed enhanced cytotoxicity

compared to individual treatments, a formal synergy analysis

(e.g., Chou–Talalay combination index) was not performed due

to the experimental design constraints. Hence, the inference of

synergism is based primarily on the reduction in IC50 values and

should be interpreted cautiously. Third, all experiments were

conducted in vitro, which does not fully capture the complexity of

tumor–host interactions, systemic toxicity, or pharmacokinetics.

The effects observed in MCF-7 cells may differ in vivo due to

metabolic, immune, and stromal factors. Lastly, only a limited

number of molecular markers (Bax and Bcl-2) were evaluated to

assess apoptosis. Broader profiling of signaling would further

enhance mechanistic understanding. Future studies are warranted

to include additional cell lines, formal synergy modeling, and in vivo

validation to confirm the therapeutic potential and safety of the PA-

BV combination in breast cancer models.
Conclusion

In conclusion, this study demonstrates that the combination of

Prunus armeniaca (PA) and bee venom (BV) exerts potent

antiproliferative, pro-apoptotic, and anti-invasive effects in MCF-

7 breast cancer cells. These findings suggest that the PA-BV

combination holds promise as a natural therapeutic strategy for

breast cancer, including the challenging triple-negative subtype

(TNBC), where treatment options remain limited. However, the

mechanistic investigations were limited to MCF-7 cells, and further

studies are needed to validate these effects in more aggressive TNBC
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models such as MDA-MB-231. Future research should focus on

elucidating the molecular mechanisms involved—particularly the

PI3K/AKT/mTOR and p53-mediated apoptotic pathways—and

evaluating the efficacy and safety of this combination in in vivo

breast cancer models to better understand its clinical relevance.
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