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Introduction: While numerous large and complex deep learning architectures

continue to be developed for medical imaging, clinical adoption remains limited

to a small number of established models. Recent lightweight architectures,

despite showing promise in computer vision tasks, are underutilized or have

never been applied to medical imaging applications, particularly lung cancer

classification. This study evaluates the performance of recently developed

lightweight models that have received limited attention in medical imaging

tasks, establishing comprehensive baseline comparisons to guide evidence-

based selection for clinical deployment in resource-constrained environments.

Methods: Using CT images, we assessed three lightweight pre-trained models—

MobileOne-S0, FastViT-S12, and MambaOut-Femto for lung cancer

categorization. Performance measures (accuracy, AUC) and efficiency

measures (inference time, number of parameters) were contrasted. Used were

a public dataset (95 cases) and a private dataset (274 cases). Resampling and data

augmentation constituted part of image preparation. Five-fold cross-validation

helped to validate model performance.

Results: With the lowest inference time and modest parameters, MambaOut-

Femto displayed the best efficiency. While FastViT-S12 had the largest memory

usage, MobileOne-S0 used fewer parameters. On Dataset 1, MambaOut-Femto

obtained amean accuracy of 0.896 ± 0.014 and an (Area under the curve) AUC of

0.972 ± 0.004; on Dataset 2, accuracy was 0.916 ± 0.040. When compared to

traditional models like ResNet and Swin Transformer on the same datasets and

under the same hyperparameters, the lightweight models outperformed them

with significantly lower memory usage and fewer FLOPs.

Discussion: The lightweight models demonstrated superior efficiency and

comparable performance to traditional models, making them ideal for

deployment in low-resource settings where computational resources are

limited. These findings highlight the potential for practical use in clinical

workflows, overcoming barriers associated with traditional models.
KEYWORDS
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1 Introduction

Lung cancer continues to be the most common cause of cancer-

related death globally, with adenocarcinoma and squamous cell

carcinoma accounting for over 85% of cases (1, 2).

Cancer diagnosis has been radically altered by the incorporation

of artificial intelligence (AI) and computer-aided diagnosis (CAD)

systems, which represent an enormous move forward from

conventional radiomics to complex deep learning methods. Deep

learning algorithms have shown exceptional skills in automated

feature detection and multi-lesion tracking, frequently

outperforming humans in certain diagnostic tasks, thanks to these

technical advancements that have overcome several limitations in

traditional approaches (3).

However, despite these major achievements, some substantial

implementation obstacles exist in clinical practice. High processing

demands, intricate integration specifications with current systems,

restricted interpretability, and reproducibility of results are some of

these difficulties (3, 4). The broad adoption of these technologies is

further hampered by practical limitations like restricted data

availability due to privacy regulations, a lack of standardized

implementation protocols, and difficulties integrating them with

current clinical workflows (5, 6).

Recent advances in lightweight architectures have introduced

several promising solutions to address these challenges. Lightweight

Convolutional Neural Networks (CNNs) such as MobileOne,

TinyNet, LCNet, and GhostNetV2 have been designed to

optimize network scaling, efficient inference, and hardware-

specific accelerations, making them suitable for deployment in

resource-constrained environments (7–10). Similarly, efficient

transformers like EfficientFormer, RepViT, FastViT, and Mamba

have addressed memory and computational limitations, offering

high efficiency and performance gains through innovative designs

and hybrid approaches (11–15).

Previous studies have shown success with lightweight

architectures in medical imaging, specifically for lung cancer

classification and detection. For instance, Attallah et al. (2022)

proposed a framework for lung and colon cancer diagnosis using

lightweight deep learning models and transformation methods,

achieving a high accuracy of 99.6% (16). Priya and Shyamala

Bharathi (2024) demonstrated that a deep learning-based pre-

trained model called EfficientNet achieved 99.28% training

accuracy and 98.03% testing accuracy for lung cancer detection

and classification using CT images (17). Cao et al. (2023) developed

a multi-scale mobile-based model (18), the proposed model

achieves comparable or superior performance while maintaining a

more lightweight architecture. These studies highlight the potential

of lightweight models in maintaining high diagnostic accuracy

while reducing computational complexity.

Despite rapid advances in deep learning architectures, clinical

adoption in medical imaging remains limited to established models,

while recent lightweight architectures remain largely unexplored in

healthcare applications. This creates a critical gap between research

innovation and practical clinical implementation. Healthcare

institutions require evidence-based comparative data to guide
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technology adoption decisions, particularly for resource-

constrained environments where computational efficiency

is paramount.

In this study, we aim to establish comprehensive baseline

performance metrics for three recently developed lightweight

pretrained models—MobileOne-S0, FastViT-S12, and

MambaOut-Femto (19)—that have received limited attention in

medical imaging applications. We systematically compare their

efficiency and performance for lung cancer CT scan image

classification to provide evidence-based guidance for clinical

deployment decisions.
2 Materials and methods

2.1 Model selection

In this study, we conducted a comprehensive exploration of

different lightweight pretrained models that meet the criteria to be

lightweight, released in or after 2023, have pretrained weights, and

architectures that have been underutilized or not previously applied

to medical image classification, specifically for the task of lung

cancer CT scan image classification. The selection process involved

a comprehensive search of pretrained models available in various

deep learning libraries, including Keras, PyTorch’s timm,

and Huggingface.

To identify suitable candidates, we employed both manual

sorting and AI-assisted tools to compile a list of models meeting

our predefined criteria. Subsequently, we conducted an extensive

literature review using Google Scholar and PubMed incorporating

model names along with relevant keywords such as “lung cancer,”

“classification,” and “CT scans”. This thorough search process

enabled us to identify three promising lightweight architectures

for in-depth examination:

MobileOne, FastViT, and MambaOut.

For each selected architecture, we opted to utilize the smallest

recent variant, as these typically demonstrate superior performance

characteristics. Consequently, the following specific model versions

were chosen for our study: MobileOne-S0, Fastvit-s12, and

MambaOut-Femto.

We quantitatively defined “lightweight” models using two key

criteria (1): parameter count <10M and (2) activation memory < 15M.

With MobileOne-S0 included, despite slightly exceeding the activation

threshold due to its exceptional parameter efficiency, these thresholds

were established based on model card specifications and represent

practical computational constraints for deployment in resource-limited

clinical environments where memory and processing capabilities may

be constrained. This definition guided our systematic selection of the

smallest available variants within each architecture family. The selected

models met our lightweight criteria, with MobileOne-S0 containing

5.3M parameters and 15.5M activations, MambaOut-Femto with 7.3M

parameters and 8.3M activations, and FastViT-S12 with 9.5M

parameters and 13.7M activations. To contextualize these choices,

even the smallest available transformer variant (SwinV2-tiny)

contained 28M parameters and 28.5M activations, nearly double our
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lightweight threshold, demonstrating the computational efficiency

advantages of our selected architectures for clinical deployment

scenarios.
2.2 Dataset

Dataset1 is a private dataset from Institution 1 that contributed

274 cases (936 images), a non-enhanced CT dataset, which contains

119 cases (377 images) of adenocarcinoma (ADC), 93 cases (357

images) of benign lesions, and 62 cases (200 images) of squamous

cell carcinoma (SCC).

Dataset2: a public dataset from Zenodo (Jian et al., 2024)

contributed 95 cases (308 images), comprising 172 ADC images,

103 benign images, and 33 SCC images (20).

2.2.1 Cross-dataset validation design
To evaluate model generalizability across different imaging

protocols and patient populations, each dataset was acquired using

distinct CT scanner configurations and represents different

institutional practices. Dataset 1 (Institution 1) utilized Siemens

Definition AS+ (128-slice and 64-slice) scanners with standardized

protocols, while Dataset 2 (Jian dataset) incorporated multiple

manufacturers (GE, Siemens, UIH) with varying slice configurations

and convolution kernels (B70f, B60f).

2.2.2 Image processing
For dataset1, preprocessing DICOM images in 3D Slicer (21)

involved resampling the images to 1mm thickness with 512x512 pixel

resolution and adjusting window settings to lung-specific parameters

(width -600 to 1500 HU), then generating 2D images representing

different locations of each nodule saved in PNG format.

Where dataset 2 was obtained directly in BMP-format images

from the Zenodo repository.

Identical augmentation protocols were applied to both datasets to

ensure consistency, including random horizontal flips (probability =

0.5), random rotations ( ± 15 degrees), color jitter (brightness=0.2,

contrast =0.2, saturation =0.2, hue =0.1), resizing to 224×224 pixels

(256×256 for FastViT-S12), and ImageNet normalization (mean=

[0.485, 0.456, 0.406], std =[0.229, 0.224, 0.225]).
2.3 Model architectures and training

In our experiments, we employed the Mambaout femto,

mobileone-s0, and FastViT-S12 model architectures with

pretrained weights, fine-tuned for our specific task.

For data preparation, images were organized into subfolders

within the dataset directory, with each subfolder representing

a class.

Eight hyperparameter configurations were systematically

evaluated using a held-out method (70% train, 15% validation,

15% test split). The configurations varied in batch size [16, 32],

dropout rate (0.3, 0.5), optimizer (AdamW, RAdam), and weight

decay (0.01, 0.1), while maintaining a fixed learning rate (0.0001).
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Each configuration was trained independently, with validation AUC

used for early stopping and learning rate scheduling during

training. After training all eight configurations separately, the

configuration achieving the highest test set performance metrics

was selected and subsequently applied consistently across all 5-fold

cross-validation experiments without further tuning within

individual folds.

In the second experiment, we utilized stratified 5-fold cross-

validation to ensure balanced class distribution across folds, with

each fold further split into training (80%) and validation (20%) sets,

and a separate test set from the remaining fold. The best

configuration that was determined from the first experiment was

used across all folds.

Both experiments employed early stopping criteria based on

validation AUC (patience of 10 epochs, minimum delta of 0.001) and

utilized the ReduceLROnPlateau learning rate scheduler with a factor of

0.1 and a patience of 5 epochs. Training was conducted for up to 100

epochs per configuration or fold. Evaluation metrics included AUC

(primary metric), accuracy, recall, specificity, and per-class metrics. The

first experiment aimed to identify the optimal hyperparameter

configuration based on validation AUC, while the second experiment

focused on robustness evaluation through cross-validation, reporting

average metrics across folds along with standard deviations.

Visualization of results included learning curves, ROC curves, and

confusion matrices for comprehensive performance assessment.

Each dataset was trained and validated independently using the

held out method for model optimization and 5-fold cross-

validation, with performance metrics reported separately. This

approach provides a robust assessment of cross-domain

performance under different scanner vendors, acquisition

protocols, and patient demographics, demonstrating a model

generalizability beyond single-institution data.

All experiments used a random seed of 42 to ensure

reproducible results across dataset splitting, model initialization,

and training procedures.
2.4 Benchmarking to other models

Using Dataset 1, with input sizes of 224×224 for most models

and 256×256 for FastViT-S12, the dataset was split into training

(70%), validation (15%), and test (15%) sets using random splitting

with a fixed seed (1011) for reproducibility. Each configuration was

trained five times with different random seeds (42, 456, 789, 1011,

2025) across separate experimental runs, enabling statistical

analysis with 95% confidence intervals. All models were trained

with a fixed configuration to ensure a fair comparison, featuring a

batch size of 16, a dropout rate of 0.3, the AdamW optimizer with a

weight decay of 0.1, and a learning rate of 0.0001. We employed the

same early stopping criteria (patience of 10 epochs, minimum delta

of 0.001 based on validation AUC) and ReduceLROnPlateau

scheduler (factor 0.1, patience of 5 epochs). Mixed precision

training was utilized to enhance efficiency.

We compared seven architectures, including MobileOne-S0,

MambaOut-Femto, FastViT-S12, EfficientNet-B0 (22), ResNet-50
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(23), ViT-Tiny (24, 25), and SwinV2-CR-Tiny (26), all initialized

with pretrained weights and fine-tuned for the task.

2.4.1 Comprehensive efficiency metrics
To align with clinical deployment needs for portable devices, we

implemented comprehensive energy consumption profiling,

including GPU power monitoring using the pynvml library for

real-time wattage measurement, FLOPs calculation using ptflops

for computational complexity assessment with fallback

approximation methods when ptflops is unavailable, and enhanced

memory profiling with proper cache management and peak

allocation tracking.

All efficiency measurements were conducted with proper GPU

memory isolation using torch.cuda.empty_cache() and

torch.cuda.reset_peak_memory_stats() to measure true peak

allocation. Inference timing included 20-iteration warm-up

followed by 100-iteration measurement with GPU synchronization

for accurate latency assessment. Statistical analysis was performed

across all experimental runs, with metrics reported as mean ±

standard deviation with 95% confidence intervals.

Comprehensive energy profiling on Tesla T4 GPU (16GB

VRAM) on the Google Colaboratory cloud platform enables a fair

comparison of computational requirements across architectures.

The relative efficiency rankings provide guidance for model

selection in deployment scenarios with computational constraints.
2.5 Model interpretability visualization

After determining the best-performing model, additional

visualization analysis was conducted on random cases from each

class (adenocarcinoma, squamous cell carcinoma, and benign) to

demonstrate how the model makes diagnostic decisions.

Preliminary testing across multiple network layers identified

stages.1.blocks.0.conv as the optimal layer showing the strongest

correspondence between AI attention patterns and pathological

features. Custom activation extractors using PyTorch hooks capture

feature responses at this selected layer. Activation maps were

normalized to [0,1] range and visualized using a three-panel

format: original CT scan, activation heatmap, and overlay

visualization. All visualizations were generated using Matplotlib,

OpenCV, and NumPy libraries.
2.6 Software and libraries

All experiments were implemented in a Python 3 environment

using the Google Colaboratory cloud platform connected to a Tesla

T4 GPU (16GB VRAM).

The implementation utilized the PyTorch framework with the

timm library for pre-trained model architectures, torchvision for

data transformations, scikit-learn for evaluation metrics, NumPy

for numerical computations, Matplotlib for visualizations, pandas
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for data management and results analysis, and Seaborn for

enhanced statistical visualizations.
3 Results

3.1 Efficiency metrics and benchmarking to
common models

Among lightweight architectures, when tested on the same

hyperparameters and dataset, MambaOut-Femto demonstrated

superior performance with an accuracy of 91.06 ± 1.85% (95% CI

[88.77-93.36%]) and AUC of 98.06 ± 1.17% (95% CI [96.61-99.51%]),

substantially outperforming traditional architectures. In contrast,

ResNet50, despite its widespread clinical adoption and 23.51M

parameters, achieved only 72.34 ± 3.65% accuracy (95% CI [67.81-

76.87%]) and 88.70 ± 2.28% AUC (95% CI [85.86-91.53%]),

representing a 18.72% accuracy deficit compared to MambaOut-

Femto. Similarly, SwinV2-CR-Tiny, with 27.57M parameters, showed

disappointing performance with 70.21 ± 9.30% accuracy (95% CI

[58.66-81.76%]) and 86.18 ± 6.11% AUC (95% CI [78.60-93.77%]).

The efficiency metrics, including inference time, number of

parameters, and memory usage, were compared across all models.

As shown in Figure 1 and detailed in Table 1,

Regarding computational efficiency of the 3 lightweight models,

MambaOut-Femto exhibited the fastest inference time (7.85 ± 1.47

ms, 95% CI [6.02-9.68 ms]) with moderate GPU power

consumption (43.43 ± 2.43 W, 95% CI [40.41-46.44 W]) and

6.15M parameters. MobileOne-S0, despite having the fewest

parameters (4.27M) and lowest memory usage (59.6 ± 0.1 MB),

required the longest inference time (29.03 ± 5.47 ms) but consumed

the least GPU power (36.16 ± 1.06 W, 95% CI [34.84-37.48 W]).

FastViT-S12 demonstrated balanced computational requirements

with an inference time of 12.32 ± 1.84 ms and GPU power

consumption of 41.03 ± 1.90 W, though it required more

parameters (8.45M) and memory (188.2 ± 1.0 MB).

Additional lightweight model comparisons revealed MambaOut-

Femto’s superiority. Compared to EfficientNet-B0, MambaOut-

Femto achieved similar accuracy (91.06 ± 1.85% vs. 90.78 ± 2.41%)

with faster inference (7.85 ± 1.47 vs. 10.19 ± 1.40 ms, 95% CI [6.02-

9.68] vs. [8.46-11.93]) but higher GPU power (43.43 ± 2.43 vs. 35.88

± 2.38 W, 95% CI [40.41-46.44] vs. [32.92-38.84]). Against ViT-Tiny,

MambaOut-Femto demonstrated superior accuracy (91.06 ± 1.85%

vs. 82.41 ± 4.06%, 95% CI [88.77-93.36] vs. [77.38-87.45]) and

comparable GPU usage (43.43 ± 2.43 vs. 42.95 ± 3.49 W).

FLOPs analysis demonstrated exceptional efficiency among

lightweight architectures. MambaOut-Femto, MobileOne-S0,

Effic ientNet-B0, and ViT-Tiny al l required minimal

computational resources at 0.010 GFLOPs, while FastViT-S12

needed 0.020 GFLOPs. Traditional architectures showed

significantly higher computational demands, with ResNet50

requiring 0.050 GFLOPs and SwinV2-CR-Tiny demanding 0.060

GFLOPs, representing 5-6x higher computational overhead

compared to lightweight models.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1647701
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mahmoud et al. 10.3389/fonc.2025.1647701
3.2 Model performance through stratified
5-fold cross validation

Performance evaluation was conducted using both single

hyperparameter configuration and optimal hyperparameter

tuning with 5-fold stratified cross-validation across two datasets.
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Under optimal configuration with stratified cross-validation,

MambaOut-Femto consistently demonstrated superior

performance across both datasets. On Dataset 1, MambaOut-

Femto achieved the highest accuracy (89.62 ± 1.38%, 95% CI

[87.90-91.33%]), precision (91.23 ± 1.12%, 95% CI [89.84-

92.62%]), recall (91.21 ± 1.16%, 95% CI [89.77-92.65%]), F1-score
FIGURE 1

Visual comparison of efficiency metrics across models on dataset1. (A) Memory usage, (B) GPU usage, and (C) Interference time.
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TABLE 1 Comparative analysis of the models’ efficiency and performance across dataset1.

Model/Metrices mobileone_s0 mambaout_femto fastvit_s12 efficientnet_b0 resnet50 vit_tiny_patch16_224 swinv2_cr_tiny_ns_224

0 ± 1.840 10.192 ± 1.397 6.991 ± 0.805 6.028 ± 0.938 15.317 ± 0.555

5, 14.606] [8.458, 11.927] [5.992, 7.990] [4.863, 7.192] [14.628, 16.006]

4.01 23.51 5.52 27.57

± 0.000 0.010 ± 0.000 0.050 ± 0.000 0.010 ± 0.000 0.060 ± 0.000

, 0.020] [0.010, 0.010] [0.050, 0.050] [0.010, 0.010] [0.060, 0.060]

± 1.0 215.8 ± 1.0 424.3 ± 1.3 443.1 ± 1.5 688.7 ± 2.3

, 189.4] [214.6, 217.0] [422.6, 425.9] [441.1, 445.0] [685.8, 691.6]

± 1.90 35.88 ± 2.38 58.44 ± 3.10 42.95 ± 3.49 65.65 ± 4.16

, 43.38] [32.92, 38.84] [54.59, 62.28] [38.62, 47.28] [60.48, 70.81]

8 ± 0.0112 0.9078 ± 0.0241 0.7234 ± 0.0365 0.8241 ± 0.0406 0.7021 ± 0.0930

9, 0.9217] [0.8779, 0.9377] [0.6781, 0.7687] [0.7738, 0.8745] [0.5866, 0.8176]

1 ± 0.0094 0.9789 ± 0.0056 0.8870 ± 0.0228 0.9406 ± 0.0232 0.8618 ± 0.0611

3, 0.9888] [0.9719, 0.9858] [0.8586, 0.9153] [0.9117, 0.9694] [0.7860, 0.9377]

8 ± 0.0112 0.9078 ± 0.0241 0.7234 ± 0.0365 0.8241 ± 0.0406 0.7021 ± 0.0930

9, 0.9217] [0.8779, 0.9377] [0.6781, 0.7687] [0.7738, 0.8745] [0.5866, 0.8176]

4 ± 0.0069 0.9496 ± 0.0124 0.8482 ± 0.0193 0.9038 ± 0.0234 0.8346 ± 0.0534

9, 0.9580] [0.9342, 0.9651] [0.8242, 0.8722] [0.8747, 0.9329] [0.7682, 0.9009]

M
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Inference Time (Mean ± Std) [ms] 29.029 ± 5.474 7.851 ± 1.473 12.32

Inference Time 95% CI [ms] [22.231, 35.826] [6.023, 9.680] [10.03

Parameters [M] 4.27 6.15 8.45

FLOPs (Mean ± Std) [G] 0.010 ± 0.000 0.010 ± 0.000 0.020

FLOPs 95% CI [G] [0.010, 0.010] [0.010, 0.010] [0.020

Memory (Mean ± Std) [MB] 59.6 ± 0.1 112.1 ± 0.4 188.2

Memory 95% CI [MB] [59.5, 59.7] [111.6, 112.5] [187.0

GPU Power (Mean ± Std) [W] 36.16 ± 1.06 43.43 ± 2.43 41.03

GPU Power 95% CI [W] [34.84, 37.48] [40.41, 46.44] [38.67

Accuracy (Mean ± Std) 0.8752 ± 0.0282 0.9106 ± 0.0185 0.907

Accuracy 95% CI [0.8402, 0.9102] [0.8877, 0.9336] [0.893

AUC (Mean ± Std) 0.9720 ± 0.0085 0.9806 ± 0.0117 0.977

AUC 95% CI [0.9615, 0.9826] [0.9661, 0.9951] [0.965

Sensitivity (Mean ± Std) 0.8752 ± 0.0282 0.9106 ± 0.0185 0.907

Sensitivity 95% CI [0.8402, 0.9102] [0.8877, 0.9336] [0.893

Specificity (Mean ± Std) 0.9318 ± 0.0150 0.9511 ± 0.0096 0.949

Specificity 95% CI [0.9132, 0.9505] [0.9392, 0.9630] [0.940
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(91.19 ± 1.17%, 95% CI [89.74-92.64%]), specificity (94.31 ± 0.76%,

95% CI [93.37-95.25%]), and AUC (97.20 ± 0.49%, 95% CI [96.59-

97.82%]), while maintaining the lowest loss (0.2784 ± 0.0373, 95%

CI [0.2321-0.3248]).

On Dataset 2, MambaOut-Femto maintained its superior

performance with an accuracy of 91.57 ± 4.45% (95% CI [86.04-

97.10%]), precision of 91.86 ± 5.07% (95% CI [85.56-98.16%]), and

AUC of 96.80 ± 1.88% (95% CI [94.47-99.13%]). MobileOne-S0

showed consistent but slightly lower performance across both

datasets, while FastViT-S12 demonstrated comparable results

with slightly higher variability.

Table 2 summarizes the mean, standard deviations, and 95%

confidence intervals of five-fold cross-validation performance

metrics for the final test set using the three models averaged

across all folds for both datasets. MambaOut-Femto consistently

outperformed the other models in terms of accuracy, precision,

recall, F1-score, specificity, and AUC.

The micro-average ROC curves from 5-fold cross-validation

test sets for both datasets are shown in Figure 2. The results indicate
Frontiers in Oncology 07
that MambaOut-Femto achieved the highest AUC, followed by

MobileOne-S0 and FastViT-S12.

Figure 3 presents the average confusion matrices from 5-fold

cross-validation test sets for MambaOut-Femto, MobileOne-S0,

and FastViT-S12. The matrices highlight the models ’

performance in classifying ADC, benign lesions, and SCC,

w i t h MambaOu t - F em t o s how in g t h e b e s t o v e r a l l

classification performance.

The confusion matrices demonstrate balanced classification

performance across all three classes (ADC, SCC, benign) with no

evidence of majority class bias.

The results indicate that MambaOut-Femto is the most

promising lightweight architecture for lung cancer CT scan image

classification, offering a balance between performance and

efficiency. MobileOne-S0 and FastViT-S12 also demonstrated

strong performance, highlighting their potential for medical

image classification tasks. MambaOut-Femto’s superior efficiency

and performance metrics make it a suitable choice for real-world

applications in medical imaging.
TABLE 2 Mean and standard deviations of five-fold cross-validation performance metrics for the final test set using the 3 models averaged across all
folds for the two datasets.

Dataset Metric Mamba MobileOne FastViT

Dataset1 LOSS
0.2784 ± 0.0373 (95% CI
[0.2321-0.3248])

0.3013 ± 0.0788 (95% CI
[0.2034-0.3991])

0.3009 ± 0.0881 (95% CI
[0.1915-0.410])

Dataset1 ACCURACY
0.8962 ± 0.0138 (95% CI
[0.8790-0.9133])

0.8705 ± 0.0323 (95% CI
[0.8304-0.9106])

0.8587 ± 0.0387 (95% CI
[0.8106-0.9067])

Dataset1 PRECISION
0.9123 ± 0.0112 (95% CI
[0.8984-0.9262])

0.8944 ± 0.0271 (95% CI
[0.8607-0.9281])

0.8853 ± 0.0313 (95% CI
[0.8465-0.9241])

Dataset1 RECALL
0.9121 ± 0.0116 (95% CI
[0.8977-0.9265])

0.8908 ± 0.0272 (95% CI
[0.8570-0.9246])

0.8814 ± 0.0326 (95% CI
[0.8409-0.9218])

Dataset1 F1_SCORE
0.9119 ± 0.0117 (95% CI
[0.8974-0.9264])

0.8897 ± 0.0274 (95% CI
[0.8557-0.9238])

0.8796 ± 0.0331 (95% CI
[0.8385-0.9208])

Dataset1 SPECIFICITY
0.9431 ± 0.0076 (95% CI
[0.9337-0.9525])

0.9292 ± 0.0177 (95% CI
[0.9072-0.9511])

0.9229 ± 0.0212 (95% CI
[0.8967-0.9492])

Dataset1 AUC
0.9720 ± 0.0049 (95% CI
[0.9659-0.9782])

0.9643 ± 0.0159 (95% CI
[0.9446-0.9841])

0.9581 ± 0.0237 (95% CI
[0.9287-0.9874])

Dataset2 Loss
0.3085 ± 0.1407 (95% CI:
[0.1338, 0.4832])

0.3982 ± 0.0611 (95% CI:
[0.3224, 0.4741])

0.3953 ± 0.2001 (95% CI:
[0.1468, 0.6438])

Dataset2 Accuracy
0.9157 ± 0.0445 (95% CI:
[0.8604, 0.9710])

0.8961 ± 0.0181 (95% CI:
[0.8736, 0.9187])

0.8865 ± 0.0495 (95% CI:
[0.8250, 0.9479])

Dataset2 Precision
0.9186 ± 0.0507 (95% CI:
[0.8556, 0.9816])

0.9039 ± 0.0143 (95% CI:
[0.8861, 0.9217])

0.9072 ± 0.0333 (95% CI:
[0.8658, 0.9485])

Dataset2 Recall
0.9178 ± 0.0490 (95% CI:
[0.8569, 0.9786])

0.9015 ± 0.0393 (95% CI:
[0.8527, 0.9503])

0.9013 ± 0.0615 (95% CI:
[0.8249, 0.9777])

Dataset2 F1 Score
0.9167 ± 0.0495 (95% CI:
[0.8553, 0.9782])

0.8996 ± 0.0219 (95% CI:
[0.8725, 0.9268])

0.9006 ± 0.0475 (95% CI:
[0.8417, 0.9595])

Dataset2 Specificity
0.9499 ± 0.0254 (95% CI:
[0.9184, 0.9813])

0.9359 ± 0.0170 (95% CI:
[0.9147, 0.9570])

0.9288 ± 0.0366 (95% CI:
[0.8834, 0.9742])

Dataset2 AUC
0.9680 ± 0.0188 (95% CI:
[0.9447, 0.9913])

0.9573 ± 0.0161 (95% CI:
[0.9373, 0.9774])

0.9565 ± 0.0317 (95% CI:
[0.9172, 0.9958])
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3.3 Best model visualization analysis

Figure 4 demonstrates the interpretability of the best-

performing MambaOut-Femto model through activation

visualizations for each diagnostic class. The state-space model

shows distinct activation patterns: malignant lesions (ADC and

SCC) exhibit focused, high-intensity activation regions, while

benign cases display distributed, lower-intensity patterns,

confirming clinically relevant feature learning.
4 Discussion

Recent deep learning, especially using transformer-based

models, has shown superior performance for the lung cancer

classification task, as recent studies like Chen et al. (2024) (27)

demonstrated significant progress using a volumetric SWIN

Transformer, achieving 98.88% accuracy in distinguishing

between benign nodules, adenocarcinoma, and squamous cell

carcinoma. However, this approach requires substantial

computational resources due to its 3D volumetric processing

nature. When compared to recent transformer-based approaches

like Huang et al.’s TBFE model (28) and Cao et al.’s multi-scale

MobileViT (18), the proposed model achieves comparable or

superior performance while maintaining a more lightweight

architecture. This balance between performance and efficiency is

particularly relevant for clinical integration, where computational

resources may be limited.
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The results of this study demonstrate the potential of

lightweight pretrained models for lung cancer CT scan image

classification. Among the evaluated models, MambaOut-Femto

emerged as the most promising architecture, offering a balance

between performance and efficiency. This section discusses the

implications of these findings in the context of recent

advancements and challenges in the field.

MobileOne-S0 and FastViT-S12 also demonstrated strong

performance, highlighting their potential for medical image

classification tasks. However, FastViT-S12 has the highest

memory usage and a relatively higher inference time, which may

limit its applicability in resource-constrained environments.

When compared to other studies in the field, the performance of

these models is competitive. For instance, Attallah et al. (16)

proposed a framework using ShuffleNet, MobileNet, and

SqueezeNet models combined with feature reduction techniques,

achieving a high accuracy of 99.6%. Similarly, Priya A & Shyamala

Bharathi P (17). achieved 99.28% training accuracy and 98.03%

testing accuracy using the EfficientNet model. The current study’s

findings align with these results, indicating that lightweight models

can indeed achieve high diagnostic accuracy.

The efficiency metrics of the models evaluated in this study are

particularly noteworthy. MambaOut-Femto demonstrated the

highest efficiency with a low inference time and a small number

of parameters. This is advantageous for real-time applications and

large datasets. In comparison, Klangbunrueang et al. (29) found that

while VGG16 achieved a test accuracy of 98.18%, it required more

computational resources than lighter models like MobileNetV2.
FIGURE 2

Micro-average AUC performance comparison of lightweight models across datasets. Results show mean AUC ± 95% confidence intervals from 5-
fold cross-validation. Dataset 1, and Dataset 2.
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The current study’s focus on efficiency highlights the potential for

deploying these models in resource-constrained environments.

In our study, FastViT demonstrated superior performance in

lung cancer CT scan image classification compared to SwinV2-tiny

and ViT-tiny. This is consistent with the findings of Ko et al. (30),

who evaluated FastViT alongside other vision transformer models

for lung disease detection in chest X-ray images.

In the study by Ko et al. (30), FastViT achieved an accuracy of

97.63% with the NAdam optimizer on an imbalanced dataset.

When compared directly to SwinV2-tiny and ViT-tiny in our

study, FastViT showed higher test accuracy (0.9078 ± 0.0112)

than SwinV2-tiny (0.7021 ± 0.0930) and ViT-tiny (0.8241 ±

0.0406). FastViT also demonstrated a better balance between

performance and efficiency metrics, such as inference time and

memory usage.

In the current study, MobileOne demonstrated impressive

performance in lung cancer CT scan image classification,

achieving a test accuracy of 0.8752 ± 0.0282 and AUC. While this

is slightly lower than EfficientNet-B0’s 0.9078 ± 0.0241, MobileOne

significantly outperformed traditional CNN models like ResNet-50,

which achieved only 0.7234 ± 0.0365. What sets MobileOne apart is

its ability to achieve this performance with a parameter count, and

GPU power usage comparable to EfficientNet-B0 (4.27M vs.

4.01M), (36.16 ± 1.06, 35.88 ± 2.38 W) but with substantially
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lower memory usage (59.6 ± 0.1 vs. 215.8 ± 1.0 MB). This makes

MobileOne a powerful choice when balancing performance and

efficiency in CNN tasks, particularly in scenarios where memory

resources are constrained. The model’s original design for mobile

and edge devices translates well to medical imaging tasks, offering a

viable alternative to traditional CNN architectures.

The Mamba model, introduced in late 2023 (15), has shown

great potential in medical imaging for lung cancer detection. Since

then, several variants have been developed:
-MedMamba (31) demonstrated high accuracy and low

computational complexity for lung cancer detection in

chest CT images, even without extensive pre-training.

- CT-Mamba (32) effectively reduced noise in low-dose CT

images while enhancing detail preservation.

- Mamba network (33) improved pulmonary nodule detection

by incorporating techniques such as deep separable

convolution and spatial pyramid pooling.
The MambaOut model used in the current study offers a key

advantage over these variants: it benefits from pretrained weights on

the large ImageNet dataset. This allows it to be fine-tuned for

specific medical tasks without training from scratch, saving
FIGURE 3

Average confusion matrices from 5-fold cross-validation test sets for MobileOne (I1), MambaOut, and FastViT.
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computational resources and time. The pretrained weights enable

MambaOut to generalize better and adapt more quickly to the

features in lung cancer CT scans, making it highly suitable for

clinical integration where efficiency and accuracy are crucial.

Recent lightweight architectures from computer vision have

shown remarkable efficiency gains, yet their potential in medical

imaging remains largely untapped. This study demonstrates that

recently developed models offer distinct advantages for clinical

deployment: MambaOut-Femto achieves superior accuracy with

optimal inference speed, MobileOne-S0 provides the most

parameter-efficient solution, while FastViT-S12 delivers balanced
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performance across metrics. By establishing these baseline

comparisons, we provide healthcare decision-makers with empirical

evidence for selecting appropriate models based on their specific

computational constraints and performance requirements.

However, overlapping confidence intervals between

configurations for several models highlight the importance of

statistical validation before claiming clinical superiority. While

improvements are consistent, they often fall within seed-induced

variability ranges identified by Picard (2021) (34), emphasizing the

need for rigorous statistical analysis in medical imaging applications

where false conclusions carry high stakes.
FIGURE 4

MambaOut-Femto activation patterns for lung cancer classification showing (A) adenocarcinoma, (B) squamous cell carcinoma, and (C) benign
cases. Each panel displays the original CT scan, activation heatmap, and overlay visualization demonstrating class-specific attention patterns and
correspondence between model focus and pathological features.
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This study has several limitations that warrant consideration.

First, the generalizability of the models to other medical imaging

datasets or different types of cancer is uncertain, as the study focused

solely on lung cancer CT scans. Further validation on diverse medical

imaging data is necessary to assess the models’ broader applicability.

Second, while the models demonstrated strong performance metrics,

their clinical applicability in real-world settings requires further

investigation. Integrating these models into existing clinical

workflows and evaluating their impact on diagnostic outcomes in

practical scenarios is essential. Third, the interpretability analysis

presented in this study is primarily qualitative, relying on visual

inspection of activation patterns from randomly selected cases

without quantitative validation metrics. While the Grad-CAM

visualizations provide insights into model attention patterns, we did

not perform quantitative localization assessments such as pointing-

game scores or intersection-over-union calculations against expert

annotations. Fourth, while radiologist annotations were available for

the selected cases, quantitative correlation analysis between model

attention patterns and expert annotations was not performed. Fifth,

the relatively small sample sizes (n=95 for the public dataset, n=274

for the private dataset) may limit generalizability and pose a potential

risk of overfitting despite cross-validation measures. Finally, the slice-

level data partitioning may lead to optimistic performance estimates

due to potential correlation between adjacent slices from the same

patient, as slices from the same patient could appear in both training

and test sets. While this approach follows established field practices

and affects all compared models equally, it may limit the

generalizability of absolute performance metrics to completely

independent patient populations.

Future research should focus on enhancing the interpretability

of these models through techniques such as saliency mapping or

attention mechanisms, and quantitative correlation metrics

between model attention and expert annotations with inter-rater

agreement assessment. Implementation of quantitative localization

metrics such as pointing-game scores, intersection-over-union

calculations, and sensitivity/specificity measures for attention

localization accuracy. This requires establishing ground truth

through expert radiologist annotations with formal inter-rater

agreement assessments using multiple readers and standardized

annotation protocols.

Additionally, exploring the integration of these lightweight

models with advanced technologies, such as federated learning or

edge computing, could further enhance their performance and

applicability in resource-constrained environments. Expanding

the study to include multimodal imaging data and validating

these findings on larger cohorts, such as the National Lung

Screening Trial (NLST) and Lung Image Database Consortium

(LIDC) datasets, to ensure robust generalization. Implementation of

patient-level splitting when datasets provide patient-level

annotations to ensure complete independence between training

and test sets. Additionally, validation on larger, more diverse

datasets with patient-level partitioning would provide more

robust estimates of model performance in clinical settings.
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Furthermore, assessing the models’ performance on different

types of cancer and medical imaging modalities would broaden

their potential impact in the medical field.
5 Conclusions

In conclusion, this work indicates the efficiency of lightweight pre-

trained models for lung cancer CT scan image classification.

MambaOut-Femto emerged as the most promising design, delivering

a superior mix of performance and efficiency. This makes it a great

alternative for real-world applications in medical imaging, particularly

in circumstances with restricted processing resources. MobileOne-S0

and FastViT-S12 also showed strong performance, demonstrating their

potential for medical image classification tasks. The results align with

earlier research, demonstrating that lightweight models can achieve

excellent diagnostic accuracy while minimizing computational

complexity. Overall, these findings imply that lightweight models

have the potential to greatly impact medical imaging, delivering

efficient and accurate solutions for lung cancer diagnosis. Further

study and clinical validation are needed to fully understand their

benefits in practical applications.
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