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Introduction: While numerous large and complex deep learning architectures
continue to be developed for medical imaging, clinical adoption remains limited
to a small number of established models. Recent lightweight architectures,
despite showing promise in computer vision tasks, are underutilized or have
never been applied to medical imaging applications, particularly lung cancer
classification. This study evaluates the performance of recently developed
lightweight models that have received limited attention in medical imaging
tasks, establishing comprehensive baseline comparisons to guide evidence-
based selection for clinical deployment in resource-constrained environments.
Methods: Using CT images, we assessed three lightweight pre-trained models—
MobileOne-S0, FastViT-S12, and MambaOut-Femto for lung cancer
categorization. Performance measures (accuracy, AUC) and efficiency
measures (inference time, number of parameters) were contrasted. Used were
a public dataset (95 cases) and a private dataset (274 cases). Resampling and data
augmentation constituted part of image preparation. Five-fold cross-validation
helped to validate model performance.

Results: With the lowest inference time and modest parameters, MambaOut-
Femto displayed the best efficiency. While FastViT-S12 had the largest memory
usage, MobileOne-S0 used fewer parameters. On Dataset 1, MambaOut-Femto
obtained a mean accuracy of 0.896 + 0.014 and an (Area under the curve) AUC of
0.972 + 0.004; on Dataset 2, accuracy was 0.916 + 0.040. When compared to
traditional models like ResNet and Swin Transformer on the same datasets and
under the same hyperparameters, the lightweight models outperformed them
with significantly lower memory usage and fewer FLOPs.

Discussion: The lightweight models demonstrated superior efficiency and
comparable performance to traditional models, making them ideal for
deployment in low-resource settings where computational resources are
limited. These findings highlight the potential for practical use in clinical
workflows, overcoming barriers associated with traditional models.
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1 Introduction

Lung cancer continues to be the most common cause of cancer-
related death globally, with adenocarcinoma and squamous cell
carcinoma accounting for over 85% of cases (1, 2).

Cancer diagnosis has been radically altered by the incorporation
of artificial intelligence (AI) and computer-aided diagnosis (CAD)
systems, which represent an enormous move forward from
conventional radiomics to complex deep learning methods. Deep
learning algorithms have shown exceptional skills in automated
feature detection and multi-lesion tracking, frequently
outperforming humans in certain diagnostic tasks, thanks to these
technical advancements that have overcome several limitations in
traditional approaches (3).

However, despite these major achievements, some substantial
implementation obstacles exist in clinical practice. High processing
demands, intricate integration specifications with current systems,
restricted interpretability, and reproducibility of results are some of
these difficulties (3, 4). The broad adoption of these technologies is
further hampered by practical limitations like restricted data
availability due to privacy regulations, a lack of standardized
implementation protocols, and difficulties integrating them with
current clinical workflows (5, 6).

Recent advances in lightweight architectures have introduced
several promising solutions to address these challenges. Lightweight
Convolutional Neural Networks (CNNs) such as MobileOne,
TinyNet, LCNet, and GhostNetV2 have been designed to
optimize network scaling, efficient inference, and hardware-
specific accelerations, making them suitable for deployment in
resource-constrained environments (7-10). Similarly, efficient
transformers like EfficientFormer, RepViT, FastViT, and Mamba
have addressed memory and computational limitations, offering
high efficiency and performance gains through innovative designs
and hybrid approaches (11-15).

Previous studies have shown success with lightweight
architectures in medical imaging, specifically for lung cancer
classification and detection. For instance, Attallah et al. (2022)
proposed a framework for lung and colon cancer diagnosis using
lightweight deep learning models and transformation methods,
achieving a high accuracy of 99.6% (16). Priya and Shyamala
Bharathi (2024) demonstrated that a deep learning-based pre-
trained model called EfficientNet achieved 99.28% training
accuracy and 98.03% testing accuracy for lung cancer detection
and classification using CT images (17). Cao et al. (2023) developed
a multi-scale mobile-based model (18), the proposed model
achieves comparable or superior performance while maintaining a
more lightweight architecture. These studies highlight the potential
of lightweight models in maintaining high diagnostic accuracy
while reducing computational complexity.

Despite rapid advances in deep learning architectures, clinical
adoption in medical imaging remains limited to established models,
while recent lightweight architectures remain largely unexplored in
healthcare applications. This creates a critical gap between research
innovation and practical clinical implementation. Healthcare
institutions require evidence-based comparative data to guide
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technology adoption decisions, particularly for resource-
constrained environments where computational efficiency
is paramount.

In this study, we aim to establish comprehensive baseline
performance metrics for three recently developed lightweight
pretrained models—MobileOne-S0, FastViT-S12, and
MambaQut-Femto (19)—that have received limited attention in
medical imaging applications. We systematically compare their
efficiency and performance for lung cancer CT scan image
classification to provide evidence-based guidance for clinical
deployment decisions.

2 Materials and methods
2.1 Model selection

In this study, we conducted a comprehensive exploration of
different lightweight pretrained models that meet the criteria to be
lightweight, released in or after 2023, have pretrained weights, and
architectures that have been underutilized or not previously applied
to medical image classification, specifically for the task of lung
cancer CT scan image classification. The selection process involved
a comprehensive search of pretrained models available in various
deep learning libraries, including Keras, PyTorch’s timm,
and Huggingface.

To identify suitable candidates, we employed both manual
sorting and Al-assisted tools to compile a list of models meeting
our predefined criteria. Subsequently, we conducted an extensive
literature review using Google Scholar and PubMed incorporating
model names along with relevant keywords such as “lung cancer,”
“classification,” and “CT scans”. This thorough search process
enabled us to identify three promising lightweight architectures
for in-depth examination:

MobileOne, FastViT, and MambaOut.

For each selected architecture, we opted to utilize the smallest
recent variant, as these typically demonstrate superior performance
characteristics. Consequently, the following specific model versions
were chosen for our study: MobileOne-S0, Fastvit-s12, and
MambaOut-Femto.

We quantitatively defined “lightweight” models using two key
criteria (1): parameter count <10M and (2) activation memory < 15M.
With MobileOne-S0 included, despite slightly exceeding the activation
threshold due to its exceptional parameter efficiency, these thresholds
were established based on model card specifications and represent
practical computational constraints for deployment in resource-limited
clinical environments where memory and processing capabilities may
be constrained. This definition guided our systematic selection of the
smallest available variants within each architecture family. The selected
models met our lightweight criteria, with MobileOne-SO containing
5.3M parameters and 15.5M activations, MambaOut-Femto with 7.3M
parameters and 8.3M activations, and FastViT-S12 with 9.5M
parameters and 13.7M activations. To contextualize these choices,
even the smallest available transformer variant (SwinV2-tiny)
contained 28M parameters and 28.5M activations, nearly double our
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lightweight threshold, demonstrating the computational efficiency
advantages of our selected architectures for clinical deployment

scenarios.

2.2 Dataset

Datasetl is a private dataset from Institution 1 that contributed
274 cases (936 images), a non-enhanced CT dataset, which contains
119 cases (377 images) of adenocarcinoma (ADC), 93 cases (357
images) of benign lesions, and 62 cases (200 images) of squamous
cell carcinoma (SCC).

Dataset2: a public dataset from Zenodo (Jian et al., 2024)
contributed 95 cases (308 images), comprising 172 ADC images,
103 benign images, and 33 SCC images (20).

2.2.1 Cross-dataset validation design

To evaluate model generalizability across different imaging
protocols and patient populations, each dataset was acquired using
distinct CT scanner configurations and represents different
institutional practices. Dataset 1 (Institution 1) utilized Siemens
Definition AS+ (128-slice and 64-slice) scanners with standardized
protocols, while Dataset 2 (Jian dataset) incorporated multiple
manufacturers (GE, Siemens, UIH) with varying slice configurations
and convolution kernels (B70f, B60f).

2.2.2 Image processing

For datasetl, preprocessing DICOM images in 3D Slicer (21)
involved resampling the images to 1mm thickness with 512x512 pixel
resolution and adjusting window settings to lung-specific parameters
(width -600 to 1500 HU), then generating 2D images representing
different locations of each nodule saved in PNG format.

Where dataset 2 was obtained directly in BMP-format images
from the Zenodo repository.

Identical augmentation protocols were applied to both datasets to
ensure consistency, including random horizontal flips (probability =
0.5), random rotations ( + 15 degrees), color jitter (brightness=0.2,
contrast =0.2, saturation =0.2, hue =0.1), resizing to 224x224 pixels
(256x256 for FastViT-S12), and ImageNet normalization (mean=
[0.485, 0.456, 0.406], std =[0.229, 0.224, 0.225]).

2.3 Model architectures and training

In our experiments, we employed the Mambaout femto,
mobileone-s0, and FastViT-S12 model architectures with
pretrained weights, fine-tuned for our specific task.

For data preparation, images were organized into subfolders
within the dataset directory, with each subfolder representing
a class.

Eight hyperparameter configurations were systematically
evaluated using a held-out method (70% train, 15% validation,
15% test split). The configurations varied in batch size [16, 32],
dropout rate (0.3, 0.5), optimizer (AdamW, RAdam), and weight
decay (0.01, 0.1), while maintaining a fixed learning rate (0.0001).
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Each configuration was trained independently, with validation AUC
used for early stopping and learning rate scheduling during
training. After training all eight configurations separately, the
configuration achieving the highest test set performance metrics
was selected and subsequently applied consistently across all 5-fold
cross-validation experiments without further tuning within
individual folds.

In the second experiment, we utilized stratified 5-fold cross-
validation to ensure balanced class distribution across folds, with
each fold further split into training (80%) and validation (20%) sets,
and a separate test set from the remaining fold. The best
configuration that was determined from the first experiment was
used across all folds.

Both experiments employed early stopping criteria based on
validation AUC (patience of 10 epochs, minimum delta of 0.001) and
utilized the ReduceLROnPlateau learning rate scheduler with a factor of
0.1 and a patience of 5 epochs. Training was conducted for up to 100
epochs per configuration or fold. Evaluation metrics included AUC
(primary metric), accuracy, recall, specificity, and per-class metrics. The
first experiment aimed to identify the optimal hyperparameter
configuration based on validation AUC, while the second experiment
focused on robustness evaluation through cross-validation, reporting
average metrics across folds along with standard deviations.
Visualization of results included learning curves, ROC curves, and
confusion matrices for comprehensive performance assessment.

Each dataset was trained and validated independently using the
held out method for model optimization and 5-fold cross-
validation, with performance metrics reported separately. This
approach provides a robust assessment of cross-domain
performance under different scanner vendors, acquisition
protocols, and patient demographics, demonstrating a model
generalizability beyond single-institution data.

All experiments used a random seed of 42 to ensure
reproducible results across dataset splitting, model initialization,
and training procedures.

2.4 Benchmarking to other models

Using Dataset 1, with input sizes of 224x224 for most models
and 256x256 for FastViT-S12, the dataset was split into training
(70%), validation (15%), and test (15%) sets using random splitting
with a fixed seed (1011) for reproducibility. Each configuration was
trained five times with different random seeds (42, 456, 789, 1011,
2025) across separate experimental runs, enabling statistical
analysis with 95% confidence intervals. All models were trained
with a fixed configuration to ensure a fair comparison, featuring a
batch size of 16, a dropout rate of 0.3, the AdamW optimizer with a
weight decay of 0.1, and a learning rate of 0.0001. We employed the
same early stopping criteria (patience of 10 epochs, minimum delta
of 0.001 based on validation AUC) and ReduceLROnPlateau
scheduler (factor 0.1, patience of 5 epochs). Mixed precision
training was utilized to enhance efficiency.

We compared seven architectures, including MobileOne-S0,
MambaOut-Femto, FastViT-S12, EfficientNet-BO (22), ResNet-50
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(23), ViT-Tiny (24, 25), and SwinV2-CR-Tiny (26), all initialized
with pretrained weights and fine-tuned for the task.

2.4.1 Comprehensive efficiency metrics

To align with clinical deployment needs for portable devices, we
implemented comprehensive energy consumption profiling,
including GPU power monitoring using the pynvml library for
real-time wattage measurement, FLOPs calculation using ptflops
for computational complexity assessment with fallback
approximation methods when ptflops is unavailable, and enhanced
memory profiling with proper cache management and peak
allocation tracking.

All efficiency measurements were conducted with proper GPU
memory isolation using torch.cuda.empty_cache() and
torch.cuda.reset_peak_memory_stats() to measure true peak
allocation. Inference timing included 20-iteration warm-up
followed by 100-iteration measurement with GPU synchronization
for accurate latency assessment. Statistical analysis was performed
across all experimental runs, with metrics reported as mean +
standard deviation with 95% confidence intervals.

Comprehensive energy profiling on Tesla T4 GPU (16GB
VRAM) on the Google Colaboratory cloud platform enables a fair
comparison of computational requirements across architectures.
The relative efficiency rankings provide guidance for model
selection in deployment scenarios with computational constraints.

2.5 Model interpretability visualization

After determining the best-performing model, additional
visualization analysis was conducted on random cases from each
class (adenocarcinoma, squamous cell carcinoma, and benign) to
demonstrate how the model makes diagnostic decisions.
Preliminary testing across multiple network layers identified
stages.1.blocks.0.conv as the optimal layer showing the strongest
correspondence between Al attention patterns and pathological
features. Custom activation extractors using PyTorch hooks capture
feature responses at this selected layer. Activation maps were
normalized to [0,1] range and visualized using a three-panel
format: original CT scan, activation heatmap, and overlay
visualization. All visualizations were generated using Matplotlib,
OpenCV, and NumPy libraries.

2.6 Software and libraries

All experiments were implemented in a Python 3 environment
using the Google Colaboratory cloud platform connected to a Tesla
T4 GPU (16GB VRAM).

The implementation utilized the PyTorch framework with the
timm library for pre-trained model architectures, torchvision for
data transformations, scikit-learn for evaluation metrics, NumPy
for numerical computations, Matplotlib for visualizations, pandas
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for data management and results analysis, and Seaborn for
enhanced statistical visualizations.

3 Results

3.1 Efficiency metrics and benchmarking to
common models

Among lightweight architectures, when tested on the same
hyperparameters and dataset, MambaOut-Femto demonstrated
superior performance with an accuracy of 91.06 + 1.85% (95% CI
[88.77-93.36%]) and AUC of 98.06 + 1.17% (95% CI [96.61-99.51%]),
substantially outperforming traditional architectures. In contrast,
ResNet50, despite its widespread clinical adoption and 23.51M
parameters, achieved only 72.34 + 3.65% accuracy (95% CI [67.81-
76.87%]) and 88.70 + 2.28% AUC (95% CI [85.86-91.53%]),
representing a 18.72% accuracy deficit compared to MambaOut-
Femto. Similarly, SwinV2-CR-Tiny, with 27.57M parameters, showed
disappointing performance with 70.21 + 9.30% accuracy (95% CI
[58.66-81.76%]) and 86.18 + 6.11% AUC (95% CI [78.60-93.77%]).

The efficiency metrics, including inference time, number of
parameters, and memory usage, were compared across all models.
As shown in Figure 1 and detailed in Table 1,

Regarding computational efficiency of the 3 lightweight models,
MambaOut-Femto exhibited the fastest inference time (7.85 + 1.47
ms, 95% CI [6.02-9.68 ms]) with moderate GPU power
consumption (43.43 + 2.43 W, 95% CI [40.41-46.44 W]) and
6.15M parameters. MobileOne-S0, despite having the fewest
parameters (4.27M) and lowest memory usage (59.6 + 0.1 MB),
required the longest inference time (29.03 + 5.47 ms) but consumed
the least GPU power (36.16 + 1.06 W, 95% CI [34.84-37.48 W]).
FastViT-S12 demonstrated balanced computational requirements
with an inference time of 12.32 + 1.84 ms and GPU power
consumption of 41.03 + 1.90 W, though it required more
parameters (8.45M) and memory (188.2 + 1.0 MB).

Additional lightweight model comparisons revealed MambaOut-
Femto’s superiority. Compared to EfficientNet-B0, MambaOut-
Femto achieved similar accuracy (91.06 + 1.85% vs. 90.78 + 2.41%)
with faster inference (7.85 + 1.47 vs. 10.19 + 1.40 ms, 95% CI [6.02-
9.68] vs. [8.46-11.93]) but higher GPU power (43.43 + 2.43 vs. 35.88
+2.38 W, 95% CI [40.41-46.44] vs. [32.92-38.84]). Against ViT-Tiny,
MambaOut-Femto demonstrated superior accuracy (91.06 + 1.85%
vs. 8241 * 4.06%, 95% CI [88.77-93.36] vs. [77.38-87.45]) and
comparable GPU usage (43.43 + 2.43 vs. 42.95 + 349 W).

FLOPs analysis demonstrated exceptional efficiency among
lightweight architectures. MambaOut-Femto, MobileOne-S0,
EfficientNet-B0, and ViT-Tiny all required minimal
computational resources at 0.010 GFLOPs, while FastViT-S12
needed 0.020 GFLOPs. Traditional architectures showed
significantly higher computational demands, with ResNet50
requiring 0.050 GFLOPs and SwinV2-CR-Tiny demanding 0.060
GFLOPs, representing 5-6x higher computational overhead
compared to lightweight models.
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FIGURE 1

Visual comparison of efficiency metrics across models on datasetl. (A) Memory usage, (B) GPU usage, and (C) Interference time.

3.2 Model performance through stratified

5-fold cross validation

Performance evaluation was conducted using both single
hyperparameter configuration and optimal hyperparameter
tuning with 5-fold stratified cross-validation across two datasets.
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Under optimal configuration with stratified cross-validation,

MambaOut-Femto consistently demonstrated superior

performance across both datasets. On Dataset 1, MambaOut-

05

Femto achieved the highest accuracy (89.62 + 1.38%, 95% CI
[87.90-91.33%]), precision (91.23 +
92.62%]), recall (91.21 + 1.16%, 95% CI [89.77-92.65%]), F1-score

1.12%, 95% CI [89.84-
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TABLE 1 Comparative analysis of the models’ efficiency and performance across datasetl.

Model/Metrices

Inference Time (Mean + Std) [ms]

mobileone_s0

29.029 + 5474

mambaout_femto

7.851 + 1.473

fastvit_s12

12.320 + 1.840

efficientnet_b0

10.192 + 1.397

resnet50

6.991 + 0.805

vit_tiny_patchl16_224

6.028 + 0.938

swinv2_

15317 + 0.555

tiny_ns_224

Inference Time 95% CI [ms]

[22.231, 35.826]

[6.023, 9.680]

[10.035, 14.606]

[8.458, 11.927]

[5.992, 7.990]

[4.863, 7.192]

[14.628, 16.006]

Parameters [M]

427

6.15

8.45

4.01

23.51

5.52

27.57

FLOPs (Mean + Std) [G]

FLOPs 95% CI [G]

0.010 + 0.000

[0.010, 0.010]

0.010 + 0.000

[0.010, 0.010]

0.020 + 0.000

[0.020, 0.020]

0.010 + 0.000

[0.010, 0.010]

0.050 + 0.000

[0.050, 0.050]

0.010 + 0.000

[0.010, 0.010]

0.060 + 0.000

[0.060, 0.060]

Memory (Mean + Std) [MB] 59.6 + 0.1 112.1 £ 0.4 188.2 + 1.0 2158 + 1.0 4243 +13 443.1 + 1.5 688.7 2.3
Memory 95% CI [MB] [59.5, 59.7] [111.6, 112.5] [187.0, 189.4] [214.6, 217.0] [422.6, 425.9] [441.1, 445.0] [685.8, 691.6]
GPU Power (Mean * Std) [W] 36.16 + 1.06 4343 £2.43 41.03 £ 1.90 35.88 +2.38 58.44 + 3.10 42.95 + 3.49 65.65 + 4.16

GPU Power 95% CI [W]

[34.84, 37.48]

[40.41, 46.44]

[38.67, 43.38]

[32.92, 38.84]

[54.59, 62.28]

[38.62, 47.28]

[60.48, 70.81]

Accuracy (Mean + Std)
Accuracy 95% CI

AUC (Mean + Std)

0.8752 + 0.0282
[0.8402, 0.9102]

0.9720 + 0.0085

0.9106 + 0.0185
[0.8877, 0.9336]

0.9806 + 0.0117

0.9078 + 0.0112
[0.8939, 0.9217]

0.9771 + 0.0094

0.9078 + 0.0241
[0.8779, 0.9377]

0.9789 + 0.0056

0.7234 + 0.0365
[0.6781, 0.7687]

0.8870 + 0.0228

0.8241 + 0.0406
[0.7738, 0.8745]

0.9406 + 0.0232

0.7021 + 0.0930
[0.5866, 0.8176]

0.8618 + 0.0611

AUC 95% CI

[0.9615, 0.9826]

[0.9661, 0.9951]

[0.9653, 0.9888]

[0.9719, 0.9858]

[0.8586, 0.9153]

[0.9117, 0.9694]

[0.7860, 0.9377]

Sensitivity (Mean + Std)

0.8752 + 0.0282

0.9106 + 0.0185

0.9078 + 0.0112

0.9078 + 0.0241

0.7234 + 0.0365

0.8241 + 0.0406

0.7021 + 0.0930

Sensitivity 95% CI

[0.8402, 0.9102]

[0.8877, 0.9336]

[0.8939, 0.9217]

[0.8779, 0.9377]

[0.6781, 0.7687]

[0.7738, 0.8745]

[0.5866, 0.8176]

Specificity (Mean + Std)

Specificity 95% CI

0.9318 + 0.0150

[0.9132, 0.9505]

0.9511 + 0.0096

[0.9392, 0.9630]

0.9494 + 0.0069

[0.9409, 0.9580]

0.9496 + 0.0124

[0.9342, 0.9651]

0.8482 + 0.0193

[0.8242, 0.8722]

0.9038 + 0.0234

[0.8747, 0.9329]

0.8346 + 0.0534

[0.7682, 0.9009]
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(91.19 + 1.17%, 95% CI [89.74-92.64%)), specificity (94.31 + 0.76%,
95% CI [93.37-95.25%]), and AUC (97.20 + 0.49%, 95% CI [96.59-
97.82%]), while maintaining the lowest loss (0.2784 + 0.0373, 95%
CI [0.2321-0.3248]).

On Dataset 2, MambaOut-Femto maintained its superior
performance with an accuracy of 91.57 + 4.45% (95% CI [86.04-
97.10%]), precision of 91.86 + 5.07% (95% CI [85.56-98.16%]), and
AUC of 96.80 £ 1.88% (95% CI [94.47-99.13%]). MobileOne-SO
showed consistent but slightly lower performance across both
datasets, while FastViT-S12 demonstrated comparable results
with slightly higher variability.

Table 2 summarizes the mean, standard deviations, and 95%
confidence intervals of five-fold cross-validation performance
metrics for the final test set using the three models averaged
across all folds for both datasets. MambaOut-Femto consistently
outperformed the other models in terms of accuracy, precision,
recall, F1-score, specificity, and AUC.

The micro-average ROC curves from 5-fold cross-validation
test sets for both datasets are shown in Figure 2. The results indicate

10.3389/fonc.2025.1647701

that MambaOut-Femto achieved the highest AUC, followed by
MobileOne-S0 and FastViT-S12.

Figure 3 presents the average confusion matrices from 5-fold
cross-validation test sets for MambaQut-Femto, MobileOne-SO0,
and FastViT-S12. The matrices highlight the models’
performance in classifying ADC, benign lesions, and SCC,
with MambaOut-Femto showing the best overall
classification performance.

The confusion matrices demonstrate balanced classification
performance across all three classes (ADC, SCC, benign) with no
evidence of majority class bias.

The results indicate that MambaOut-Femto is the most
promising lightweight architecture for lung cancer CT scan image
classification, offering a balance between performance and
efficiency. MobileOne-S0 and FastViT-S12 also demonstrated
strong performance, highlighting their potential for medical
image classification tasks. MambaOut-Femto’s superior efficiency
and performance metrics make it a suitable choice for real-world
applications in medical imaging.

TABLE 2 Mean and standard deviations of five-fold cross-validation performance metrics for the final test set using the 3 models averaged across all

folds for the two datasets.

Dataset Metric Mamba MobileOne FastViT
Datasetl LOSS 0.2784 + 0.0373 (95% CI 0.3013 + 0.0788 (95% CI 0.3009 + 0.0881 (95% CI
[0.2321-0.3248]) [0.2034-0.3991]) [0.1915-0.410])
0.8962 + 0.0138 (95% CI 0.8705 + 0.0323 (95% CI 0.8587 + 0.0387 (95% CI
Datasetl ACCURACY
[0.8790-0.9133]) [0.8304-0.9106]) [0.8106-0.9067])
0.9123 + 0.0112 (95% CI 0.8944 + 0.0271 (95% CI 0.8853 + 0.0313 (95% CI
Dataset1 PRECISION
[0.8984-0.9262]) [0.8607-0.9281]) [0.8465-0.9241])
Dataset] RECALL 0.9121 + 0.0116 (95% CI 0.8908 + 0.0272 (95% CI 0.8814 + 0.0326 (95% CI
[0.8977-0.9265]) [0.8570-0.9246]) [0.8409-0.9218])
0.9119 + 0.0117 (95% CI 0.8897 + 0.0274 (95% CI 0.8796 + 0.0331 (95% CI
Datasetl F1_SCORE
atase
- [0.8974-0.9264]) [0.8557-0.9238]) [0.8385-0.9208])
Datasetl SPECIFICITY 0.9431 + 0.0076 (95% CI 0.9292 + 0.0177 (95% CI 0.9229 + 0.0212 (95% CI
[0.9337-0.9525]) [0.9072-0.9511]) [0.8967-0.9492])
0.9720 + 0.0049 (95% CI 0.9643 + 0.0159 (95% CI 0.9581 + 0.0237 (95% CI
Dataset1 AUC
[0.9659-0.9782]) [0.9446-0.9841]) [0.9287-0.9874])
0.3085 + 0.1407 (95% CI: 0.3982 + 0.0611 (95% CI: 0.3953 + 0.2001 (95% CI:
Dataset2 Loss
[0.1338, 0.4832]) [0.3224, 0.4741]) [0.1468, 0.6438])
Dataset2 Accura 0.9157 + 0.0445 (95% CI: 0.8961 + 0.0181 (95% CI: 0.8865 + 0.0495 (95% CI:
¥ [0.8604, 0.9710]) [0.8736, 0.9187]) [0.8250, 0.9479])
Dataset2 Precisi 0.9186 + 0.0507 (95% CI: 0.9039 + 0.0143 (95% CI: 0.9072 + 0.0333 (95% CI:
atase recision
[0.8556, 0.9816]) [0.8861, 0.9217]) [0.8658, 0.9485])
Dataset? Recall 0.9178 + 0.0490 (95% CI: 0.9015 + 0.0393 (95% CI: 0.9013 + 0.0615 (95% CI:
[0.8569, 0.9786]) [0.8527, 0.9503]) [0.8249, 0.9777])
Dataset? F1 Score 0.9167 + 0.0495 (95% CI: 0.8996 + 0.0219 (95% CI: 0.9006 + 0.0475 (95% CI:
[0.8553, 0.9782]) [0.8725, 0.9268]) [0.8417, 0.9595])
Dataset2 Specifici 0.9499 + 0.0254 (95% CIL: 0.9359 + 0.0170 (95% CI: 0.9288 + 0.0366 (95% CI:
P ty [0.9184, 0.9813]) [0.9147, 0.9570]) [0.8834, 0.9742])
0.9680 + 0.0188 (95% CI: 0.9573 £ 0.0161 (95% CI: 0.9565 + 0.0317 (95% CI:
Dataset2 AUC
[0.9447, 0.9913]) [0.9373, 0.9774]) [0.9172, 0.9958])
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Model Performance Comparison with 95% Confidence Intervals
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3.3 Best model visualization analysis

Figure 4 demonstrates the interpretability of the best-
performing MambaOut-Femto model through activation
visualizations for each diagnostic class. The state-space model
shows distinct activation patterns: malignant lesions (ADC and
SCC) exhibit focused, high-intensity activation regions, while
benign cases display distributed, lower-intensity patterns,
confirming clinically relevant feature learning.

4 Discussion

Recent deep learning, especially using transformer-based
models, has shown superior performance for the lung cancer
classification task, as recent studies like Chen et al. (2024) (27)
demonstrated significant progress using a volumetric SWIN
Transformer, achieving 98.88% accuracy in distinguishing
between benign nodules, adenocarcinoma, and squamous cell
carcinoma. However, this approach requires substantial
computational resources due to its 3D volumetric processing
nature. When compared to recent transformer-based approaches
like Huang et al’s TBFE model (28) and Cao et al.’s multi-scale
MobileViT (18), the proposed model achieves comparable or
superior performance while maintaining a more lightweight
architecture. This balance between performance and efficiency is
particularly relevant for clinical integration, where computational
resources may be limited.

Frontiers in Oncology

The results of this study demonstrate the potential of
lightweight pretrained models for lung cancer CT scan image
classification. Among the evaluated models, MambaOut-Femto
emerged as the most promising architecture, offering a balance
between performance and efficiency. This section discusses the
implications of these findings in the context of recent
advancements and challenges in the field.

MobileOne-S0 and FastViT-S12 also demonstrated strong
performance, highlighting their potential for medical image
classification tasks. However, FastViT-S12 has the highest
memory usage and a relatively higher inference time, which may
limit its applicability in resource-constrained environments.

When compared to other studies in the field, the performance of
these models is competitive. For instance, Attallah et al. (16)
proposed a framework using ShuffleNet, MobileNet, and
SqueezeNet models combined with feature reduction techniques,
achieving a high accuracy of 99.6%. Similarly, Priya A & Shyamala
Bharathi P (17). achieved 99.28% training accuracy and 98.03%
testing accuracy using the EfficientNet model. The current study’s
findings align with these results, indicating that lightweight models
can indeed achieve high diagnostic accuracy.

The efficiency metrics of the models evaluated in this study are
particularly noteworthy. MambaOut-Femto demonstrated the
highest efficiency with a low inference time and a small number
of parameters. This is advantageous for real-time applications and
large datasets. In comparison, Klangbunrueang et al. (29) found that
while VGG16 achieved a test accuracy of 98.18%, it required more
computational resources than lighter models like MobileNetV2.
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The current study’s focus on efficiency highlights the potential for
deploying these models in resource-constrained environments.

In our study, FastViT demonstrated superior performance in
lung cancer CT scan image classification compared to SwinV2-tiny
and ViT-tiny. This is consistent with the findings of Ko et al. (30),
who evaluated FastViT alongside other vision transformer models
for lung disease detection in chest X-ray images.

In the study by Ko et al. (30), FastViT achieved an accuracy of
97.63% with the NAdam optimizer on an imbalanced dataset.
When compared directly to SwinV2-tiny and ViT-tiny in our
study, FastViT showed higher test accuracy (0.9078 + 0.0112)
than SwinV2-tiny (0.7021 + 0.0930) and ViT-tiny (0.8241 +
0.0406). FastViT also demonstrated a better balance between
performance and efficiency metrics, such as inference time and
memory usage.

In the current study, MobileOne demonstrated impressive
performance in lung cancer CT scan image classification,
achieving a test accuracy of 0.8752 + 0.0282 and AUC. While this
is slightly lower than EfficientNet-B0’s 0.9078 + 0.0241, MobileOne
significantly outperformed traditional CNN models like ResNet-50,
which achieved only 0.7234 + 0.0365. What sets MobileOne apart is
its ability to achieve this performance with a parameter count, and
GPU power usage comparable to EfficientNet-BO (4.27M vs.
4.01M), (36.16 + 1.06, 35.88 + 2.38 W) but with substantially

Frontiers in Oncology

lower memory usage (59.6 £ 0.1 vs. 215.8 = 1.0 MB). This makes
MobileOne a powerful choice when balancing performance and
efficiency in CNN tasks, particularly in scenarios where memory
resources are constrained. The model’s original design for mobile
and edge devices translates well to medical imaging tasks, offering a
viable alternative to traditional CNN architectures.

The Mamba model, introduced in late 2023 (15), has shown
great potential in medical imaging for lung cancer detection. Since
then, several variants have been developed:

-MedMamba (31) demonstrated high accuracy and low
computational complexity for lung cancer detection in
chest CT images, even without extensive pre-training.

- CT-Mamba (32) effectively reduced noise in low-dose CT
images while enhancing detail preservation.

- Mamba network (33) improved pulmonary nodule detection
by incorporating techniques such as deep separable
convolution and spatial pyramid pooling.

The MambaOut model used in the current study offers a key
advantage over these variants: it benefits from pretrained weights on
the large ImageNet dataset. This allows it to be fine-tuned for
specific medical tasks without training from scratch, saving
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computational resources and time. The pretrained weights enable
MambaOut to generalize better and adapt more quickly to the
features in lung cancer CT scans, making it highly suitable for
clinical integration where efficiency and accuracy are crucial.
Recent lightweight architectures from computer vision have
shown remarkable efficiency gains, yet their potential in medical
imaging remains largely untapped. This study demonstrates that
recently developed models offer distinct advantages for clinical
deployment: MambaOut-Femto achieves superior accuracy with
optimal inference speed, MobileOne-SO provides the most
parameter-efficient solution, while FastViT-S12 delivers balanced

Frontiers in Oncology

performance across metrics. By establishing these baseline
comparisons, we provide healthcare decision-makers with empirical
evidence for selecting appropriate models based on their specific
computational constraints and performance requirements.

However, overlapping confidence intervals between
configurations for several models highlight the importance of
statistical validation before claiming clinical superiority. While
improvements are consistent, they often fall within seed-induced
variability ranges identified by Picard (2021) (34), emphasizing the
need for rigorous statistical analysis in medical imaging applications
where false conclusions carry high stakes.
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This study has several limitations that warrant consideration.
First, the generalizability of the models to other medical imaging
datasets or different types of cancer is uncertain, as the study focused
solely on lung cancer CT scans. Further validation on diverse medical
imaging data is necessary to assess the models’ broader applicability.
Second, while the models demonstrated strong performance metrics,
their clinical applicability in real-world settings requires further
investigation. Integrating these models into existing clinical
workflows and evaluating their impact on diagnostic outcomes in
practical scenarios is essential. Third, the interpretability analysis
presented in this study is primarily qualitative, relying on visual
inspection of activation patterns from randomly selected cases
without quantitative validation metrics. While the Grad-CAM
visualizations provide insights into model attention patterns, we did
not perform quantitative localization assessments such as pointing-
game scores or intersection-over-union calculations against expert
annotations. Fourth, while radiologist annotations were available for
the selected cases, quantitative correlation analysis between model
attention patterns and expert annotations was not performed. Fifth,
the relatively small sample sizes (n=95 for the public dataset, n=274
for the private dataset) may limit generalizability and pose a potential
risk of overfitting despite cross-validation measures. Finally, the slice-
level data partitioning may lead to optimistic performance estimates
due to potential correlation between adjacent slices from the same
patient, as slices from the same patient could appear in both training
and test sets. While this approach follows established field practices
and affects all compared models equally, it may limit the
generalizability of absolute performance metrics to completely
independent patient populations.

Future research should focus on enhancing the interpretability
of these models through techniques such as saliency mapping or
attention mechanisms, and quantitative correlation metrics
between model attention and expert annotations with inter-rater
agreement assessment. Implementation of quantitative localization
metrics such as pointing-game scores, intersection-over-union
calculations, and sensitivity/specificity measures for attention
localization accuracy. This requires establishing ground truth
through expert radiologist annotations with formal inter-rater
agreement assessments using multiple readers and standardized
annotation protocols.

Additionally, exploring the integration of these lightweight
models with advanced technologies, such as federated learning or
edge computing, could further enhance their performance and
applicability in resource-constrained environments. Expanding
the study to include multimodal imaging data and validating
these findings on larger cohorts, such as the National Lung
Screening Trial (NLST) and Lung Image Database Consortium
(LIDC) datasets, to ensure robust generalization. Implementation of
patient-level splitting when datasets provide patient-level
annotations to ensure complete independence between training
and test sets. Additionally, validation on larger, more diverse
datasets with patient-level partitioning would provide more
robust estimates of model performance in clinical settings.
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Furthermore, assessing the models’ performance on different
types of cancer and medical imaging modalities would broaden
their potential impact in the medical field.

5 Conclusions

In conclusion, this work indicates the efficiency of lightweight pre-
trained models for lung cancer CT scan image classification.
MambaOut-Femto emerged as the most promising design, delivering
a superior mix of performance and efficiency. This makes it a great
alternative for real-world applications in medical imaging, particularly
in circumstances with restricted processing resources. MobileOne-SO
and FastViT-S12 also showed strong performance, demonstrating their
potential for medical image classification tasks. The results align with
earlier research, demonstrating that lightweight models can achieve
excellent diagnostic accuracy while minimizing computational
complexity. Overall, these findings imply that lightweight models
have the potential to greatly impact medical imaging, delivering
efficient and accurate solutions for lung cancer diagnosis. Further
study and clinical validation are needed to fully understand their
benefits in practical applications.
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