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Purpose: To investigate early peritumoral recurrence (EPR) after drug-eluting
bead transarterial chemoembolization (DEB-TACE) in a multicenter cohort of
patients with hepatocellular carcinoma (HCC) using deep learning radiomics
(DLR) based on preoperative multiphase magnetic resonance imaging (MRI).
Patients and methods: A total of 157 patients with HCC from two institutions
who received DEB-TACE were retrospectively enrolled and divided into a training
cohort (h=114) and an external validation cohort (n=43). A total of 960 radiomics
features were extracted from five different phases: arterial phase (AP), delayed
phase (DP), portal venous phase (PVP), peritumoral 3 mm portal venous phase
(PVP_PriZmm), and tumoral plus peritumoral portal venous phase
(PVP_Plus3mm). A total of 512 deep learning features were extracted from PVP
using ResNet34 (PVP_DLR). The features selected through the minimum
Redundancy and Maximum Relevance (MRMR) and Least Absolute Shrinkage
and Selection Operator (LASSO) methods were utilized for model construction.
The performance of the model was evaluated using area under the curve (AUC),
calibration curves, net reclassification (NRI), and decision curve analysis (DCA).
Results: PVP_Pri3mm and PVP_Plus3mm showed comparable performance to
the PVP model (P>0.05). The final deep learning radiomics and radiomics
nomogram (DLRRN) included three predictors: PVP-signature, PVP_ DLR
signature, and AFP, which showed effectively discrimination of between EPR to
DEB-TACE, with AUCs of 0.802 (95% Cl, 0.718-0.887) in the training cohort and
0.770 (95% Cl, 0.623-0.916) in the external validation cohort, demonstrating
good calibration (P>0.05). Additionally, the DLRRN model performed significantly
better than the clinical model (P<0.05). DCA confirmed that DLRRN was
clinically useful.
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Conclusion: DLRRN has good efficacy in predicting EPR after DEB-TACE, which
can provide value for preoperative treatment selection and postoperative
prognostic assessment of patients with HCC.

hepatocellular carcinoma, DEB-TACE, contrast-enhanced MRI, deep learning, radiomics

Introduction

Hepatocellular carcinoma (HCC) is primarily linked to chronic
liver disease, being the fifth most common malignant tumor
worldwide and the second highest contributor to cancer-related
deaths (1). Transarterial chemoembolization (TACE) is the main
therapy recommended for intermediate-stage HCC according to the
Barcelona Clinic Liver Cancer (BCLC) staging system. However,
recent findings have demonstrated its effectiveness across various
stages of HCC (2). Currently, following the European Association
for the Study of the Liver (EASL) guidelines, TACE is well-
recognized as a neoadjuvant treatment before liver
transplantation, playing a vital role in reducing the tumor
burden (3).

Two distinct techniques have been used for TACE.
Conventional TACE (cTACE) is the most widely practiced
modality globally, utilizing a suspension of lipiodol and
chemotherapeutic agents. Alternatively, TACE can be performed
by using drug-eluting beads (DEB-TACE) (4). Although some
studies have shown that DEB-TACE is superior to ¢TACE in
terms of local tumor control rate, systemic adverse reactions,
toxicity, and survival rate, the actual choice of treatment often
considers multiple factors due to the clinical heterogeneity of
hepatocellular carcinoma. Consequently, accurately predicting
treatment response and prognosis through imaging and other
methods before the procedure is crucial to selecting the most
appropriate treatment.

Radiomics is an emerging technology that uses high-throughput
extraction algorithms to quantify features, thereby enabling the
more comprehensive and efficient mining and exploitation of
information in medical images (5). Radiomics has been applied to
predict treatment response (6, 7), recurrence (8) and survival (9, 10)
of HCC. In several studies, radiomics has been used to predict
response to treatment in HCC, identifying radiomic features that
were significantly correlated with response to surgery,
radiofrequency ablation, chemotherapy, and TACE therapy (11-
15). However, few studies have been reported on the assessed HCC
by using radiomics after DEB-TACE. Patients with early
peritumoral recurrence have a significantly lower survival rate
and a poor therapeutic response to repeated TACE. Additionally,
DL features have enabled radiomics to obtain intricate structures
related to specific tasks, resulting in excellent results in tumor
characterization and prognostic prediction in gastric, breast,
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rectal, and nasopharyngeal cancers (16-19). In our knowledge, no
study has examined the association between deep learning
radiomics (DLR) and early peritumoral recurrence prediction in
HCC patients.

Therefore, accurate preoperative assessment is vital for the
choice of treatment and improvement of postoperative
recurrences. The purpose of this study was to assess early
peritumoral recurrence (EPR) after DEB-TACE in a multicenter
cohort using DLR based on preoperative multiphase
enhanced MRI.

Materials and methods
Patients population

This retrospective study was approved by the institutional
review boards of the two hospitals (2023(145)), and the need for
informed consent was waived. A total of 499 patients with
hepatocellular carcinoma (HCC) who underwent treatment with
DEB-TACE at the Second Affiliated Hospital of Chongqing Medical
University, and 235 patients from the First Affiliated Hospital of
Army Medical University between January 2019 and February 2023.
The inclusion criteria were as follows: 1) DEB-TACE as first-line
treatment except the cases that previous treatment was 1 month ago
and the target lesions treated were different from the current DEB-
TAGC; 2) Enhanced MRI within 4 weeks before DEB-TACE; 3)
Enhanced MRI or enhanced CT within 3 months after DEB-TACE;
4) Nodular or Massive HCC. First-line treatment was defined as the
initial treatment administered to a patient who had not received any
prior therapy at the time of their HCC diagnosis. The exclusion
criteria were as follows: 1) preoperative use of other examination
methods or lack of preoperative imaging; 2) lack of postoperative
imaging; 3) Diffuse HCC or lesions with a diameter <10 mm; and 4)
poor image quality or lack of clinical data. Ultimately, 114 HCC
patients from center 1 served as the training cohort, and 43 patients
from center 2 constituted an independent external validation cohort
and were included in the study (Figure 1).

Routine preoperative clinical characteristics and descriptions of
the DEB-TACE procedure are provided in the Supplementary
Material. All patients were evaluated using multiphase enhanced
MRI or CT within 1-3 months after DEB-TACE, with the follow-up
endpoint of early peritumoral recurrence, defined as the internal or
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Inclusion criteria:
(1) DEB-TACE as first-line treatment except the cases that previous
treatment was | month ago and the target lesions treated were
different from the current DEB-TAC;
(2) Enhanced MRI within 4 weeks before DEB-TACE;
(3) Enhanced MRI or enhanced CT within 1-3 months after DEB-
TACE;
(4) Nodular or Massive HCC.
! ¥
499 patients met the criteria and included from January 2019 to 235 patients met the criteria and included from January 2019 to
February 2023 at the Second Affiliated Hospital of Chongqing February 2023 at the First Affiliated Hospital of Army Military
Medical University Medical University
Exclusion criteria: Exclusion criteria:
(1) Preoperative use of other examination methods or lack of (1) ]"'1'6013‘3”“_”e se O_f other e)famination methods or lack of
preoperative imaging examination (n=236); preoperative imaging examination (n=112);
(2) Lack of postoperative imaging (n=48) () L?ka Ofposfopefatl}'e maging. (n:23)
(3) Diffuse HCC or lesions with a diameter <10mm; (n=6) 3) D1ffu§e HCC or ‘16510115 witha c?la.meter <10mm (n=4)
(4) poor image quality or lack of clinical data (n=95) (4) poor image quality or lack of clinical data (n=53)
114 patients HCC patients 43 patients HCC patients
Training cohort External test cohort
46 EPR 68 Non-EPR 23 EPR 20 Non-EPR
FIGURE 1

Flowchart of the study population selection.

marginal portion of the lesion that was enhanced in the arterial
phase and faded in the venous and delayed phases.

MRI examination and image preprocessing

All MRI examinations included arterial phase (AP), portal
venous phase (PVP), and delayed phase (DP) images, which were
obtained at 15-25 seconds, 50-60 seconds, and 150-180 seconds
after contrast injection, respectively. Details regarding the MR
acquisition parameters of the two centers are presented in
(Supplementary Table S1).

Tumor segmentation

The imaging data were collected using the picture archiving and
communication system (PACS) at the Second Affiliated Hospital of
Chongging Medical University and the First Affiliated Hospital of
the Army Military Medical University, and patients’ preoperative
multiphase enhanced MRI were exported in DICOM format. The
MRI underwent resampling through linear interpolation to achieve
a voxel size of 1x1x1 mm3, thereby standardizing the voxel spacing.
The region of interest (ROI) was delineated by two radiologists
using the 3D-Slicer software (version 4.10.2, https://
download.slicer.org), which provides a powerful function for
semi-automatic segmentation. Contrast-enhanced magnetic
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resonance imaging (AP, PVP, and DP) was performed to segment
the tumor and avoid the surrounding tumor vessels. To capture
features from the 3 mm peritumoral area (ROI-external) in the
PVP, which has a higher potential for microvascular invasion, a
dilation algorithm was applied to obtain the 3-mm wide area. The
combined intratumoral and peritumoral areas (ROI-plus) were
generated simultaneously. Importantly, non-hepatic regions
within the ROI were subtracted either semi-automatically or
manually on a slice-by-slice basis, as appropriate. Ultimately, five
ROIs were identified from these three phases after the segmentation
process for each patient. (Figure 2a).

Hand-crafted feature extraction

All handcrafted features were extracted utilizing the
PyRadiomics package. The voxel intensity values were discretized
using a fixed bin width of 5. A total of 960 quantitative features were
calculated from each ROI in accordance with the guidelines set by
the Image Biomarker Standards initiative (IBSI) (20), including
first-order statistical features, shape features, textural features, and
transformation features. Statistics-based textural features can reflect
the homogeneity of the images and the arrangement of properties
that change slowly or periodically on the body surface, including
gray-level co-occurrence matrix (GLCM), gray-level run length
matrix (GLRLM), gray-level size zone matrix (GLSZM),
neighboring gray tone difference matrix (NGTDM), and gray-

frontiersin.org


https://download.slicer.org
https://download.slicer.org
https://doi.org/10.3389/fonc.2025.1642828
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al. 10.3389/fonc.2025.1642828
_________________________________________________________ N
__________________________________________ N
First order feature% !
1 1
i ”HI TR
: 1 1
] 1
Transform features Texture features | b
— —
— a\. K
i |
— — 1 1
O 1 :
_______ 1
:
1
56*56 28'28 14*14 ™ i
1
0 ResNet Block 1 ResNet Block 2 ResNet Block 3 ResNet Block 4 :
L 1 e ] -WQ _W _@w@ :
(b) F I \/ Y, o
9l 1
I I | [ .
v | Global Average Pool | I Global Average Pool | | Global Average Pool ‘ I Global Average Pool | :
1
04 DL Features 128 DL Features 256 DL Features 512 DL Features :
1
:
1
¥ ! i
____________ S 1
1
e ICC mRMR LASSO Logistic Regression !
. 1
1
1
1
1
1
1
1
1
:
1
U
FIGURE 2

Overall workflow of study. (a) Tumors were manually delineated around the entire tumor outline on each axial slice of arterial phase (AP), delayed
phase (DP), portal venous phase (PVP) images, and the peritumoral expansion (PVP_Pri3mm), the tumoral plus peritumoral (PVP_Plus3mm) were
automatically generated in PVP images; total 960 radiomics features were extracted each volume of interests, respectively. (b) The detailed
architecture of ResNet34, and the 512 deep features were obtained from PVP images. (c) The workflow of feature selection, model building

and evaluation.

level dependence matrix (GLDM) features. There were advanced
filters applied using the Laplacian of Gaussian (LoG, sigma 1.0 mm)
and wavelet decompositions with all possible combinations of high
(H) or low (L) pass filters in each of the three dimensions (HHH,
HHL, HLH, LHH, LLL, LLH, LHL, and HLL). Detailed information
on these features is available in PyRadiomics (http://
PyRadiomics.readthedocs.io/en/latest/).

Deep learning feature extraction

Each slice of the tumor was bound by a cubic bounding box
during data preprocessing to ensure that the entire tumor was
contained within the bounding box. Then, an area of 224 x 224
pixels containing the tumor was cropped as the final image input for
the DL models. ResNet-34 was used to build a signature on MRI
(21). Due to the millions of learnable parameters in DL models,
training it is computationally expensive and requires a large number
of images. With transfer-learning technology, a DL model can be
trained on less data. A DL model with ResNet34 architecture was
trained using the ImageNet dataset with PyTorch (version 1.4.1;
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PyTorch. org). In the ResNet34 model, the fully connected and
softmax layers were removed, and the output values of the nodes in
the last layer were used as DL features. The bounding boxes of the
images on three adjacent MRI slices were combined into a three-
channel image as DL model input. To achieve robust prediction, all
three-channel images of each tumor were fed into the DL model
(Figure 2b). Based on the DL model, a total of 512 DL features were
extracted and selected (Figure 2). The average value of the
prediction probability of multiple tumor images was calculated as
the DL signature.

Feature selection and signature building

For the training cohort, a four-step procedure was used for
feature reduction. First, interobserver correlation coefficients (ICCs)
were calculated to explore the stability and reproducibility of
features, and only the features with both inter- and intra-ICCs >
0.80 were considered to have agreeable reproducibility and were
chosen for further analysis. The abnormal values were replaced by
the median, all features were standardized, and z-score
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normalization of MRI signal intensities was performed to eliminate
the variance of features before selection. Second, we removed
redundant and less-relevant features using minimum redundancy
and maximum relevance (mRMR). Then, the optimized feature
subsets were selected using the least absolute shrinkage and
selection operator (LASSO) method with 10-fold cross-validation
(Supplementary Figure S1). Finally, a multivariate logistic
regression analysis was performed to build the signature. The
radiomic signature was generated using a linear combination of
selected features weighted by their respective regression coefficients.
The cut-off value was then identified using Youden’s index to divide
the patients into non-EPR and EPR subgroups.

Performance evaluation

There are five radiomics models: the arterial phase model (AP),
portal venous phase model (PVP), delay phase model (DP),
peritumoral 3 mm portal venous phase model (PVP_Pri3mm),
tumor plus peritumoral portal venous model (PVP_Plus3mm), and
one deep learning radiomics model based on the portal venous
phase (PVP_DLR). Moreover, a clinical model and related
combined models, such as the deep learning radiomics and
radiomics model (PVP_DLRR), deep learning radiomics
nomogram (PVP_DLRN), and deep learning radiomics and
radiomics nomogram (PVP_DLRRN) were established. The
performance of all established models for HCC recurrence was
measured using receiver operating characteristic (ROC) analysis,
and the area under the ROC curve (AUC) was calculated and
compared among cohorts using the DeLong test. In addition,
sensitivity and specificity were measured. The net reclassification
index (NRI) was calculated to compare the performance of
the models.

Statistical analysis

Statistical analyses were performed using SPSS (version 26.0,
https://www.ibm.com/spss) and R (version 4.2.1, available at http://
www.R-project.org). The chi-square test or Fisher’s exact test was
used for nominal variables. A logistic regression analysis was
performed using the “glmnet” package. The diagnostic
performances of the models were compared using ROC analysis,
and the differences in the AUCs between these models were
compared using the Delong test. Receiver operating characteristic
(ROC) curves were plotted using the “pROC” package. All statistical
tests were two-sided, and statistical significance was set at P <0.05.

Results
Clinical characteristics

A flowchart of the study is shown in (Figure 2). The baseline
clinical characteristics and demographics of the training and
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validation groups are summarized in (Table 1). The enrolled
patients were allocated to a training set (n=114) or an external
validation set (n=43). The efficacy of DEB-TACE was balanced for
patients in the two cohorts, with early peritumoral recurrence rates
0f40.3% (n=46) and 46.5% (n=20) for the training and independent
external validation cohorts, respectively. Images of the two patients
are shown in (Figure 3) and (Figure 4). No significant differences
were detected in sex, age, ALT, ChildPugh, HBsAg, cirrhosis, portal
hypertension, tumor number, tumor margin, rim enhancement, or
peritumoral enhancement between the recurrence and non-
recurrence groups (P>0.05). Moreover, the AFP levels (P = 0.031)
were significantly different between the two groups in the training
cohort. AST level (P = 0.015), tumor size (P = 0.002), and BCLC
stage (P = 0.016) also showed statistically significant differences in
the external validation cohort. AFP in the training cohort was
constructed for the clinical model (Table 1).

The development of radiomics signature
and DL signature

A total of 960 radiomics features were extracted from each
phase of the MRI, and ICC was used to select 922 (96% remaining)
features with high robustness (ICC>0.8). Next, mRMR and Lasso
were applied to further select features, and 1, 2, 8, 5, and 1 features
with rich information remained in the AP, DP, PVP,
PVP_Plus3mm, and PVP_Pri3mm, respectively. Multivariate
logistic regression analysis was performed using weighted
summation to obtain the radiomic signature. The selected features
and their relative coefficients are presented in (Supplementary Table
S2). The distribution of radiomic signatures has shown good
separability in early peritumoral recurrence. Moreover, the
features of the last fully connected layer of ResNet34 were
weighted to obtain a deep-learning signature (PVP_DLR). Fifteen
features were selected to construct the PVP PVP-DLR model
(Supplementary Table S2).

Radiomics and DL signatures validation

Five radiomics models and one deep learning radiomics model
were established (Figure 5), and the efficacy of each model in the
training and validation sets is tabulated in (Table 2). Among the
radiomics models, the PVP model had a higher efficacy, with an
AUC of 0.751 (95% CI, 0.659-0.843) in the training set and 0.691
(95%ClI, 0.530-0.853) in the external validation cohort compared to
the AP model, with an AUC of 0.724 (95%ClI, 0.625-0.823), and the
DP model with an AUC of 0.749 (95%CI, 0.659-0.839). Therefore,
PVP was selected to explore intratumoral and peritumoral
information, and the PVP_Pri3mm and PVP_Plus3mm models
were established. The PVP_Plus3mm with an AUC of 0.754 (95%
CI, 0.672-0.855) and PVP_Pri3mm model with an AUC of 0.727
(95%CI, 0.630-0.824) had comparable efficacy to the PVP model,
but no significant difference (P = 0.916, P = 0.325) remained. In
addition, the deep learning radiomics model based on the venous

frontiersin.org


https://www.ibm.com/spss
http://www.R-project.org
http://www.R-project.org
https://doi.org/10.3389/fonc.2025.1642828
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al. 10.3389/fonc.2025.1642828

TABLE 1 Characteristics of the patients in the cohorts.

Training cohort (n=114) External cohort (n=43)
Variable P-value
Non-EPR EPR P-value Non-EPR EPR P-value
Gender
0 14 (20.59%) 7 (15.22%) 0.468 2 (8.70%) 6 (30.00%) 0.162 0.979
1 54 (79.41%) 39 (84.78%) 21 (91.30%) 14 (70.00%)
‘ Age
0 15 (22.06%) 11 (23.91%) 0.817 8 (34.78%) 5 (25.00%) 0.486 0.337
1 53 (77.94%) 35 (76.09%) 15 (65.22%) 15 (75.00%)
‘ AFP
0 54 (79.41%) 28 (60.87%) 0.031* 19 (82.61%) 15 (75.00%) 0.813 0.364
1 14 (20.59%) 18 (39.13%) 4 (17.39%) 5 (25.00%)
‘ ALT
0 55 (80.88%) 38 (82.61%) 0.816 21 (91.30%) 15 (75.00%) 0.303 0.755
1 13 (19.12%) 8 (17.39%) 2 (8.70%) 5 (25.00%)
AST
0 42 (61.76%) 22 (47.83%) 0.141 13 (56.52%) 4 (20.00%) 0.015* 0.063
1 26 (38.24%) 24 (52.17%) 10 (43.48%) 16 (80.00%)
‘ ChildPugh
1 58 (85.29%) 39 (84.78%) 0.94 22 (95.65%) 16 (80.00%) 0.263 0.597
2 10 (14.71%) 7 (15.22%) 1 (4.35%) 4 (20.00%)
‘ HBsAg
0 13 (19.12%) 13 (28.26%) 0.254 2 (8.70%) 3 (15.00%) 0.868 0.117
1 55 (80.88%) 33 (71.74%) 21 (91.30%) 17 (85.00%)
‘ Cirrhosis
0 28 (41.18%) 18 (39.13%) 0.827 4 (17.39%) 6 (30.00%) 0.539 0.046*
1 40 (58.82%) 28 (60.87%) 19 (82.61%) 14 (70.00%)
‘ Portal hypertension
0 29 (42.65%) 24 (52.17%) 0.317 15 (65.22%) 10 (50.00%) 0.313 0.193
1 39 (57.35%) 22 (47.83%) 8 (34.78%) 10 (50.00%)
‘ Tumor number
0 38 (55.88%) 24 (52.17%) 0.697 9 (39.13%) 7 (35.00%) 0.78 0.055
1 30 (44.12%) 22 (47.83%) 14 (60.87%) 13 (65.00%)
‘ Tumor size
0 33 (48.53%) 27 (58.70%) 0.286 14 (60.87%) 3 (15.00%) 0.002* 0.143
1 35 (51.47%) 19 (41.30%) 9 (39.13%) 17 (85.00%)
‘ BCLC
0 12 (17.65%) 2 (4.35%) 0.156 0 (0.00%) 1 (5.00%) 0.016* 0.001*
1 25 (36.76%) 16 (34.78%) 5 (21.74%) 2 (10.00%)
2 18 (26.47%) 16 (34.78%) 10 (43.48%) 2 (10.00%)

(Continued)
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TABLE 1 Continued

Training cohort (n=114)

Variable

Non-EPR EPR

P-value

10.3389/fonc.2025.1642828

External cohort (n=43)

EPR

P-value

Non-EPR P-value

BCLC
3 13 (19.12%) 12 (26.09%)

Tumor margin

0 45 (66.18%) 31 (67.39%) 0.893
1 23 (33.82%) 15 (32.61%)
Rim enhancement
0 28 (41.18%) 15 (32.61%) 0.354
1 40 (58.82%) 31 (67.39%)
Peritumoral enhancement
0 58 (85.29%) 33 (71.74%) 0.077
1 10 (14.71%) 13 (28.26%)

8 (34.78%) 15 (75.00%)

10 (43.48%) 10 (50.00%) 0.669 0.021*
13 (56.52%) 10 (50.00%)

12 (52.17%) 12 (60.00%) 0.606 0.041%
11 (47.83%) 8 (40.00%)

19 (82.61%) 15 (75%) 0.813 0917
4 (17.39%) 5 (25%)

Chi-squared or Fisher’s exact tests, were used to compare the differences in categorical variables. *P<0.05 represents the statistical difference.

phase (PVP_DLR) had the best and most stable efficacy in the
training set, with an AUC of 0.802 (0.717-0.887), and a higher
efficacy in the validation set, with an AUC of 0.774 (95% CI: 0.700-
0.783). The distribution of the prediction results for each model is
shown in (Supplementary Figure S2).

Performance and validation of DLRRN

In the training cohort, hand-craft based signature, DL-based
signature, and AFP level were independent factors for EPR
prediction using backward stepwise multivariable analysis.
However, only PVP_DLR was significant, so we combined the
signatures to build the PVP_DLRRN model (Table 3, Figure 6a).

As shown in (Table 2), the performance of the combined models
PVP_DLRR (AUC, 0.804), PVP_DLRN (AUC, 0.797), and
PVP_DLRRN (AUC, 0.802) was not higher than that of
PVP_DLR (AUC, 0.802), which was further confirmed in the
external validation cohorts. There were no significant differences
between the combined models (P>0.05). Furthermore, all the
combined models showed significantly higher AUCs than the
clinical model in the two cohorts, which also outperformed the
handcrafted and DL signatures (P<0.05). NRI and IDI analyses
revealed that the integration of image signatures into the DLR
performed satisfactorily in the two cohorts, indicating an improved
classification accuracy for the EPR prediction clinical model. The
calibration curves of PVP_DLR, PVP_DLRR, PVP_DLN, and
PVP_DLRRN demonstrated that the model-predicted EPR was

FIGURE 3

A 53-year-old man with HCC was treated with DEB-TACE. (a—e) MR examination revealed that the tumor was located in the segment 4 of the liver.
(f) The tumor supplying artery was the hepatic arteria 4. (g) The tumor supplying artery was embolized by 300-500 um pirarubicin-loaded beads. (h)
No abnormal enhancement was found in enhanced MR Lesions after 3 month follow-up.
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FIGURE 4

A 41-year-old man with HCC was treated with DEB-TACE. (a—e) MR examination revealed that the tumor was located in the segment 7 of the liver.
(f) The tumor supplying artery was the hepatic arteria 7. (g) The tumor supplying artery was embolized by 300-500 um pirarubicin-loaded beads. (h)
One months later, MR Enhanced follow-up examination showed abnormal enhanced tumor recurrence.

well-calibrated with the actual observations in the cohorts(P>0.05)
(Figure 6b). Additionally, DCA graphically indicated that the
DLRRN provided a net benefit over other models over the
relevant threshold range in the entire cohort (Figure 6c¢).
(Figures 5, 6) shows correctly classified examples from the EPR
and non-EPR, respectively.

Discussion

In this study, we constructed various radiomics models of
intratumoral, peritumoral, and intratumoral combined
peritumoral derived from CE-MR images and deep learning
radiomics models derived from the venous phase to predict the

early peritumoral recurrence of DEB-TACE in patients. We
confirmed that the performance of PVP was comparable to that
of PVP_Pri3mm and PVP_Plus3mm. Furthermore, a combined
nomogram incorporating the clinical factors AFP, PVP rad-score,
and DLR rad-score exhibited excellent and stable performance in
recurrence prediction compared to the clinical model.

Few studies have predicted the response to DEB-TACE in
patients with HCC. Some textural features, such as entropy and
skewness, were found to be able to identify responders (22). In
terms of radiomics, a limited number of previous studies have
focused on the application of CT-based features prior to DEB-
TACE overall survival, displaying moderate performance with
AUCs of 0.70-0.76 (23, 24). Nevertheless, the current two
radiomics studies both focused on CT images and survival
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FIGURE 5

Receiver operating characteristic (ROC) curves of different models. ROC curves of AP, DP, PVP, PVP_Pri3mm, PVP_Plus3mm, clinical model,
PVP_DLR, PVP_DLRR, PVP_DLRN and PVP_DLRRN model, for predicting early peritumoral recurrence (EPR) in the (a) Training cohort, (b) External

validation cohort, respectively.
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TABLE 2 Performances of the models.

Training set (n=114)

10.3389/fonc.2025.1642828

External validation set (n=43)

AUC Sensitivity Specificity AUC Sensitivity Specificity
AP 0.724 (0.625-0.823) | 0.717 0.721 0.780 (0.631-0.929)  0.700 0.870
DP 0.749 (0.659-0.839) | 0.761 0.676 0.722 (0.566-0.878) | 0.750 0.652
PVP 0.751 (0.659-0.843) | 0.739 0.676 0.691 (0.530-0.853) | 0.850 0522
PVP_Plus3mm 0.754 (0.672-0.855) | 0.565 0.868 0.667 (0.501-0.834) | 0.500 0.826
PVP_Pri3mm 0.727 (0.630-0.824) | 0.739 0.691 0.709 (0.550-0.868) | 0.750 0.609
PVP_DLR 0.802 (0.717-0.887) | 0.848 0.662 0.774 (0.627-0.920) | 0.700 0.783
Clinical 0.574 (0.488-0.661) | 0370 0.779 0538 (0.413-0.664) | 0.250 0.826
PVP_DLRR 0.804 (0.720-0.888) | 0.870 0.618 0.767 (0.620-0.915) | 0.700 0.739
PVP_DLRN 0.797 (0.711-0.882) | 0.870 0.632 0.774 (0.627-0.920) | 0.700 0.783
PVP_DLRRN 0.802 (0.718-0.887) | 0.870 0.632 0.770 (0.623-0.916) | 0.700 0.783

AP, arterial phase; DP, delay phase; PVP, portal venous phase; PVP_Plus3mm, the tumor plus peritumoral of portal venous phase; PVP_Pri3mm, the peritumoral of portal venous phase; DLR,
deep learning radiomics; DLRR, deep learning radiomics and radiomics; DLRN, deep learning radiomics nomogram; DLRRN, deep learning radiomics and radiomics nomogram.

outcomes, which could not achieve an earlier prediction to guide
DEB-TACE. However, the findings were of limited clinical
relevance because of the relatively small sample size and lack of
validation in multicenter cohorts. Intriguingly, most of the features
selected in the radiomics signature were transformation factors in
the current study, especially the Laplacian of Gaussian (LoG) and
wavelet-based features, providing more detailed information about
tumor heterogeneity.

The PVP model with an AUC of 0.751 (95%CI, 0.659-0.839)
showed better efficacy than the AP and DP models with AUC of
0.724 (95%CI, 0.625-0.823), 0.749 (95%CI,0.659-0.839). Several
recent studies have investigated the efficacy of CT radiomic
models for early and late recurrence after hepatocellular
carcinoma resection, with moderate to good results and AUCs of
0.749-0.870 (25), respectively. However, 3D-ROI segmentation and
independent external validation may result in a statistical danger. In
addition, the AP performed better in the external validation set
(AUC = 0.780), which is consistent with the findings of Li et al (26).
Normal liver parenchyma derives its main blood supply from the
portal vein, whereas typical HCC is mainly supplied by the hepatic
artery, and this difference in blood supply contributes to the
imaging characteristics of HCC on enhanced MRI.

Furthermore, to capture relevant features of the
microenvironment surrounding the tumor and explore potential

TABLE 3 Related factors for EPR prediction in HCC.

OR (95%Cl)

Intercept and variable 3

Intercept 0.08493 - 0.7811
AFP -0.00971 ‘ 0.907 (0.326-2.530) 0.853
PVP 0.43748 ‘ 1.549 (0.831-2.888) 0.168
PVP_DLR 1.19241 ‘ 3.295 (1.377-7.886) 0.007*

is the regression coefficient. *p<0.05.
g P
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links between this and tumor biological behavior, the
PVP_Plus3mm and PVP_Pri3mm models were established, and
their performance was comparable to that of the PVP model
(P>0.05), consistent with the results of Song and Kim et al (27, 28).
Microvascular invasion (MVI) is a histopathological diagnosis used
to characterize cancerous thrombus formation within tiny blood
vessels surrounding a tumor. MVI in HCC is mostly found in the
tiny branches of the portal vein in the tissues surrounding the tumor,
which is one of the important manifestations of tumor microinvasion
and micrometastasis, and is closely related to early recurrence after
HCC treatment. Zhang et al. found that a radiomics model based on
preoperative 5 mm T1WI-MR images of the surrounding tumor
performed poorly in predicting HCC recurrence after radiofrequency
ablation (29). In contrast, our study showed that the efficacy of
PVP_Pri3mm is comparable to that of PVP and PVP_Plus3mm,
suggesting that the 3 mm peritumor radiomic profile may include
abundant information related to the microenvironment surrounding
the tumor. A possible reason for this may be that 60.47% of the
tumors had a diameter greater than 50 mm.

In this study, a DL method based on the ResNet-34 architecture
was applied for DL feature extraction. Notably, unlike handcrafted
features, the DL method does not require slice-by-slice
segmentation, which not only reduces the contour variability of
manual segmentations but also enhances efficiency. Moreover, DL
provides in-depth information, including specific tasks in the neural
network hidden layers without predefined features. The features
captured by the DL algorithm can predict lymph node metastasis
(30, 31), neoadjuvant chemotherapy response in gastric cancer (16).
The DL signature in our study presented a promising performance
in EPR prediction with AUCs of 0.802 and 0.774, higher than that in
the previous study predicting early recurrence after HCC surgery
based on preoperative CT images using DL features with an AUC of
0.723 (32). Moreover, the DL prediction model outperformed the
handcrafted signature and clinical models in terms of
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FIGURE 6

Deep learning radiomics and handcrafted nomogram (DLRRN) and their performance. (a) DLRRN with the handcrafted and deep learning signatures
and AFP. (b) Calibration curves of different models with Clinical, PVP, PVP_DLR, PVP_DLRN, PVP_DLR and PVP_DLRRN in the cohorts. (c) Decision
curve analysis for Clinical, PVP, PVP_DLR, PVP_DLRN, PVP_DLRR and PVP_DLRRN models.

discrimination ability in both training and validation cohorts. These
results indicate that DL offers a wealth of information that reflects
the spatial heterogeneity of tumors.

Furthermore, the combined PVP_DLRR, PVP_DLRN, and
PVP_DLRRN models were established in this study, and the
prediction ability of the models was far better than that of the
clinical model in the cohorts (P<0.05). Previous studies have
indicated that various clinical or molecular risk factors are
associated with TACE response. However, these metrics were
inconsistent across all studies. The BCLC and tumor size were
significant in the validation cohort, but no significance was found in
the training cohort. Considering that the small sample size may have
resulted in statistical bias, the AFP, which is significantly different in
the training cohort, was incorporated into our clinical model.
Specifically, the AUC of the clinical model was only 0.538 in the
external cohort, which was significantly lower than those of the other
models. Additionally, clinical factors are specific aspects of tumors.
The patients with similar features exhibited different responses. This
may explain the poor performance of the clinical model in different
patient distributions. DLRN mines high-dimensional imaging
features, followed by the comprehensive quantification of
intratumor heterogeneity, thereby improving performance.

Frontiers in Oncology 10

This study has several limitations. First, due to its retrospective
design, the sample size was limited, and pathological results were
unavailable, potentially introducing selection bias and uneven
distribution of patients’ clinical data. However, we mitigated this by
incorporating a multicenter cohort and applying strict inclusion
criteria. Future work should involve well-designed prospective
studies, larger datasets, and robust regularization methods to
validate the model’s generalizability and clinical utility. Second,
because deep learning (DL) features are abstract “black-box”
features, our interpretability analysis remains insufficient. In follow-
up studies, we plan to employ visualization tools (e.g., Grad-CAM and
LIME) to identify tumor regions of model focus and correlate DL
features with pathological mechanisms, thereby enhancing the
model’s clinical trustworthiness and applicability. Additionally,
although we evaluated intraclass correlation coefficients (ICCs),
discrepancies persist due to the time-intensive process and inherent
inter-observer variability in manual, layer-by-layer tumor delineation.
Future clinical applications will require automated and reliable
segmentation methods, such as those described in the literature (33,
34). In subsequent studies, we intend to integrate these automated
techniques to boost efficiency, reproducibility, and minimize biases.
Nevertheless, our research pioneered a deep learning radiomics model

frontiersin.org


https://doi.org/10.3389/fonc.2025.1642828
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al.

for predicting early peritumoral recurrence after DEB-TACE,
demonstrating superior efficacy.

Conclusion

In conclusion, the DLR based on preoperative MRI could be a
new prognostic hallmark of HCC in patients undergoing DEB-
TACE. The prognostic model DLRRN based on DLR-score and
handcraft-score nomogram may accurately predict EPR, which may
improve the assessment of preoperative treatment selection and
postoperative prognosis of HCC patients.
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