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Deep-learning radiomics and
hand-crafted radiomics utilizing
contrast-enhanced MRI to
predict early peritumoral
recurrence after DEB-TACE
with hepatocellular carcinoma:
a two-center study
Jin Wang1†, Huan Liu2†, Yiman Li3 , Xueqin Ma1, Hao Chen1,
Xiaoping Luo1, Baolin Zhou1 and Xi Liu1*

1Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University &
Chongqing Medical Imaging Artificial Intelligence Laboratory, Chongqing, China, 2GE Healthcare,
Advanced Analytics Team, Shanghai, China, 3Department of Radiology, The First Affiliated Hospital of
Army Military Medical University, Chongqing, China
Purpose: To investigate early peritumoral recurrence (EPR) after drug-eluting

bead transarterial chemoembolization (DEB-TACE) in a multicenter cohort of

patients with hepatocellular carcinoma (HCC) using deep learning radiomics

(DLR) based on preoperative multiphase magnetic resonance imaging (MRI).

Patients and methods: A total of 157 patients with HCC from two institutions

who received DEB-TACE were retrospectively enrolled and divided into a training

cohort (n=114) and an external validation cohort (n=43). A total of 960 radiomics

features were extracted from five different phases: arterial phase (AP), delayed

phase (DP), portal venous phase (PVP), peritumoral 3 mm portal venous phase

(PVP_Pri3mm), and tumoral plus peritumoral portal venous phase

(PVP_Plus3mm). A total of 512 deep learning features were extracted from PVP

using ResNet34 (PVP_DLR). The features selected through the minimum

Redundancy and Maximum Relevance (mRMR) and Least Absolute Shrinkage

and Selection Operator (LASSO) methods were utilized for model construction.

The performance of the model was evaluated using area under the curve (AUC),

calibration curves, net reclassification (NRI), and decision curve analysis (DCA).

Results: PVP_Pri3mm and PVP_Plus3mm showed comparable performance to

the PVP model (P>0.05). The final deep learning radiomics and radiomics

nomogram (DLRRN) included three predictors: PVP-signature, PVP_ DLR

signature, and AFP, which showed effectively discrimination of between EPR to

DEB-TACE, with AUCs of 0.802 (95% CI, 0.718-0.887) in the training cohort and

0.770 (95% CI, 0.623-0.916) in the external validation cohort, demonstrating

good calibration (P>0.05). Additionally, the DLRRNmodel performed significantly

better than the clinical model (P<0.05). DCA confirmed that DLRRN was

clinically useful.
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Conclusion: DLRRN has good efficacy in predicting EPR after DEB-TACE, which

can provide value for preoperative treatment selection and postoperative

prognostic assessment of patients with HCC.
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Introduction

Hepatocellular carcinoma (HCC) is primarily linked to chronic

liver disease, being the fifth most common malignant tumor

worldwide and the second highest contributor to cancer-related

deaths (1). Transarterial chemoembolization (TACE) is the main

therapy recommended for intermediate-stage HCC according to the

Barcelona Clinic Liver Cancer (BCLC) staging system. However,

recent findings have demonstrated its effectiveness across various

stages of HCC (2). Currently, following the European Association

for the Study of the Liver (EASL) guidelines, TACE is well-

recognized as a neoadjuvant trea tment before l iver

transplantation, playing a vital role in reducing the tumor

burden (3).

Two distinct techniques have been used for TACE.

Conventional TACE (cTACE) is the most widely practiced

modality globally, utilizing a suspension of lipiodol and

chemotherapeutic agents. Alternatively, TACE can be performed

by using drug-eluting beads (DEB-TACE) (4). Although some

studies have shown that DEB-TACE is superior to cTACE in

terms of local tumor control rate, systemic adverse reactions,

toxicity, and survival rate, the actual choice of treatment often

considers multiple factors due to the clinical heterogeneity of

hepatocellular carcinoma. Consequently, accurately predicting

treatment response and prognosis through imaging and other

methods before the procedure is crucial to selecting the most

appropriate treatment.

Radiomics is an emerging technology that uses high-throughput

extraction algorithms to quantify features, thereby enabling the

more comprehensive and efficient mining and exploitation of

information in medical images (5). Radiomics has been applied to

predict treatment response (6, 7), recurrence (8) and survival (9, 10)

of HCC. In several studies, radiomics has been used to predict

response to treatment in HCC, identifying radiomic features that

were significantly correlated with response to surgery,

radiofrequency ablation, chemotherapy, and TACE therapy (11–

15). However, few studies have been reported on the assessed HCC

by using radiomics after DEB-TACE. Patients with early

peritumoral recurrence have a significantly lower survival rate

and a poor therapeutic response to repeated TACE. Additionally,

DL features have enabled radiomics to obtain intricate structures

related to specific tasks, resulting in excellent results in tumor

characterization and prognostic prediction in gastric, breast,
02
rectal, and nasopharyngeal cancers (16–19). In our knowledge, no

study has examined the association between deep learning

radiomics (DLR) and early peritumoral recurrence prediction in

HCC patients.

Therefore, accurate preoperative assessment is vital for the

choice of treatment and improvement of postoperative

recurrences. The purpose of this study was to assess early

peritumoral recurrence (EPR) after DEB-TACE in a multicenter

cohort using DLR based on preoperative mult iphase

enhanced MRI.
Materials and methods

Patients population

This retrospective study was approved by the institutional

review boards of the two hospitals (2023(145)), and the need for

informed consent was waived. A total of 499 patients with

hepatocellular carcinoma (HCC) who underwent treatment with

DEB-TACE at the Second Affiliated Hospital of Chongqing Medical

University, and 235 patients from the First Affiliated Hospital of

ArmyMedical University between January 2019 and February 2023.

The inclusion criteria were as follows: 1) DEB-TACE as first-line

treatment except the cases that previous treatment was 1 month ago

and the target lesions treated were different from the current DEB-

TAC; 2) Enhanced MRI within 4 weeks before DEB-TACE; 3)

Enhanced MRI or enhanced CT within 3 months after DEB-TACE;

4) Nodular or Massive HCC. First-line treatment was defined as the

initial treatment administered to a patient who had not received any

prior therapy at the time of their HCC diagnosis. The exclusion

criteria were as follows: 1) preoperative use of other examination

methods or lack of preoperative imaging; 2) lack of postoperative

imaging; 3) Diffuse HCC or lesions with a diameter <10 mm; and 4)

poor image quality or lack of clinical data. Ultimately, 114 HCC

patients from center 1 served as the training cohort, and 43 patients

from center 2 constituted an independent external validation cohort

and were included in the study (Figure 1).

Routine preoperative clinical characteristics and descriptions of

the DEB-TACE procedure are provided in the Supplementary

Material. All patients were evaluated using multiphase enhanced

MRI or CT within 1–3 months after DEB-TACE, with the follow-up

endpoint of early peritumoral recurrence, defined as the internal or
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marginal portion of the lesion that was enhanced in the arterial

phase and faded in the venous and delayed phases.
MRI examination and image preprocessing

All MRI examinations included arterial phase (AP), portal

venous phase (PVP), and delayed phase (DP) images, which were

obtained at 15–25 seconds, 50–60 seconds, and 150–180 seconds

after contrast injection, respectively. Details regarding the MR

acquisition parameters of the two centers are presented in

(Supplementary Table S1).
Tumor segmentation

The imaging data were collected using the picture archiving and

communication system (PACS) at the Second Affiliated Hospital of

Chongqing Medical University and the First Affiliated Hospital of

the Army Military Medical University, and patients’ preoperative

multiphase enhanced MRI were exported in DICOM format. The

MRI underwent resampling through linear interpolation to achieve

a voxel size of 1×1×1 mm3, thereby standardizing the voxel spacing.

The region of interest (ROI) was delineated by two radiologists

using the 3D-Slicer software (version 4.10.2, https://

download.slicer.org), which provides a powerful function for

semi-automatic segmentation. Contrast-enhanced magnetic
Frontiers in Oncology 03
resonance imaging (AP, PVP, and DP) was performed to segment

the tumor and avoid the surrounding tumor vessels. To capture

features from the 3 mm peritumoral area (ROI-external) in the

PVP, which has a higher potential for microvascular invasion, a

dilation algorithm was applied to obtain the 3-mm wide area. The

combined intratumoral and peritumoral areas (ROI-plus) were

generated simultaneously. Importantly, non-hepatic regions

within the ROI were subtracted either semi-automatically or

manually on a slice-by-slice basis, as appropriate. Ultimately, five

ROIs were identified from these three phases after the segmentation

process for each patient. (Figure 2a).
Hand-crafted feature extraction

All handcrafted features were extracted utilizing the

PyRadiomics package. The voxel intensity values were discretized

using a fixed bin width of 5. A total of 960 quantitative features were

calculated from each ROI in accordance with the guidelines set by

the Image Biomarker Standards initiative (IBSI) (20), including

first-order statistical features, shape features, textural features, and

transformation features. Statistics-based textural features can reflect

the homogeneity of the images and the arrangement of properties

that change slowly or periodically on the body surface, including

gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), gray-level size zone matrix (GLSZM),

neighboring gray tone difference matrix (NGTDM), and gray-
FIGURE 1

Flowchart of the study population selection.
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level dependence matrix (GLDM) features. There were advanced

filters applied using the Laplacian of Gaussian (LoG, sigma 1.0 mm)

and wavelet decompositions with all possible combinations of high

(H) or low (L) pass filters in each of the three dimensions (HHH,

HHL, HLH, LHH, LLL, LLH, LHL, and HLL). Detailed information

on these features is available in PyRadiomics (http://

PyRadiomics.readthedocs.io/en/latest/).
Deep learning feature extraction

Each slice of the tumor was bound by a cubic bounding box

during data preprocessing to ensure that the entire tumor was

contained within the bounding box. Then, an area of 224 × 224

pixels containing the tumor was cropped as the final image input for

the DL models. ResNet-34 was used to build a signature on MRI

(21). Due to the millions of learnable parameters in DL models,

training it is computationally expensive and requires a large number

of images. With transfer-learning technology, a DL model can be

trained on less data. A DL model with ResNet34 architecture was

trained using the ImageNet dataset with PyTorch (version 1.4.1;
Frontiers in Oncology 04
PyTorch. org). In the ResNet34 model, the fully connected and

softmax layers were removed, and the output values of the nodes in

the last layer were used as DL features. The bounding boxes of the

images on three adjacent MRI slices were combined into a three-

channel image as DL model input. To achieve robust prediction, all

three-channel images of each tumor were fed into the DL model

(Figure 2b). Based on the DL model, a total of 512 DL features were

extracted and selected (Figure 2). The average value of the

prediction probability of multiple tumor images was calculated as

the DL signature.
Feature selection and signature building

For the training cohort, a four-step procedure was used for

feature reduction. First, interobserver correlation coefficients (ICCs)

were calculated to explore the stability and reproducibility of

features, and only the features with both inter- and intra-ICCs >

0.80 were considered to have agreeable reproducibility and were

chosen for further analysis. The abnormal values were replaced by

the median, all features were standardized, and z-score
FIGURE 2

Overall workflow of study. (a) Tumors were manually delineated around the entire tumor outline on each axial slice of arterial phase (AP), delayed
phase (DP), portal venous phase (PVP) images, and the peritumoral expansion (PVP_Pri3mm), the tumoral plus peritumoral (PVP_Plus3mm) were
automatically generated in PVP images; total 960 radiomics features were extracted each volume of interests, respectively. (b) The detailed
architecture of ResNet34, and the 512 deep features were obtained from PVP images. (c) The workflow of feature selection, model building
and evaluation.
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normalization of MRI signal intensities was performed to eliminate

the variance of features before selection. Second, we removed

redundant and less-relevant features using minimum redundancy

and maximum relevance (mRMR). Then, the optimized feature

subsets were selected using the least absolute shrinkage and

selection operator (LASSO) method with 10-fold cross-validation

(Supplementary Figure S1). Finally, a multivariate logistic

regression analysis was performed to build the signature. The

radiomic signature was generated using a linear combination of

selected features weighted by their respective regression coefficients.

The cut-off value was then identified using Youden’s index to divide

the patients into non-EPR and EPR subgroups.
Performance evaluation

There are five radiomics models: the arterial phase model (AP),

portal venous phase model (PVP), delay phase model (DP),

peritumoral 3 mm portal venous phase model (PVP_Pri3mm),

tumor plus peritumoral portal venous model (PVP_Plus3mm), and

one deep learning radiomics model based on the portal venous

phase (PVP_DLR). Moreover, a clinical model and related

combined models, such as the deep learning radiomics and

radiomics model (PVP_DLRR), deep learning radiomics

nomogram (PVP_DLRN), and deep learning radiomics and

radiomics nomogram (PVP_DLRRN) were established. The

performance of all established models for HCC recurrence was

measured using receiver operating characteristic (ROC) analysis,

and the area under the ROC curve (AUC) was calculated and

compared among cohorts using the DeLong test. In addition,

sensitivity and specificity were measured. The net reclassification

index (NRI) was calculated to compare the performance of

the models.
Statistical analysis

Statistical analyses were performed using SPSS (version 26.0,

https://www.ibm.com/spss) and R (version 4.2.1, available at http://

www.R-project.org). The chi-square test or Fisher’s exact test was

used for nominal variables. A logistic regression analysis was

performed using the “glmnet” package. The diagnostic

performances of the models were compared using ROC analysis,

and the differences in the AUCs between these models were

compared using the Delong test. Receiver operating characteristic

(ROC) curves were plotted using the “pROC” package. All statistical

tests were two-sided, and statistical significance was set at P <0.05.
Results

Clinical characteristics

A flowchart of the study is shown in (Figure 2). The baseline

clinical characteristics and demographics of the training and
Frontiers in Oncology 05
validation groups are summarized in (Table 1). The enrolled

patients were allocated to a training set (n=114) or an external

validation set (n=43). The efficacy of DEB-TACE was balanced for

patients in the two cohorts, with early peritumoral recurrence rates

of 40.3% (n=46) and 46.5% (n=20) for the training and independent

external validation cohorts, respectively. Images of the two patients

are shown in (Figure 3) and (Figure 4). No significant differences

were detected in sex, age, ALT, ChildPugh, HBsAg, cirrhosis, portal

hypertension, tumor number, tumor margin, rim enhancement, or

peritumoral enhancement between the recurrence and non-

recurrence groups (P>0.05). Moreover, the AFP levels (P = 0.031)

were significantly different between the two groups in the training

cohort. AST level (P = 0.015), tumor size (P = 0.002), and BCLC

stage (P = 0.016) also showed statistically significant differences in

the external validation cohort. AFP in the training cohort was

constructed for the clinical model (Table 1).
The development of radiomics signature
and DL signature

A total of 960 radiomics features were extracted from each

phase of the MRI, and ICC was used to select 922 (96% remaining)

features with high robustness (ICC>0.8). Next, mRMR and Lasso

were applied to further select features, and 1, 2, 8, 5, and 1 features

with rich information remained in the AP, DP, PVP,

PVP_Plus3mm, and PVP_Pri3mm, respectively. Multivariate

logistic regression analysis was performed using weighted

summation to obtain the radiomic signature. The selected features

and their relative coefficients are presented in (Supplementary Table

S2). The distribution of radiomic signatures has shown good

separability in early peritumoral recurrence. Moreover, the

features of the last fully connected layer of ResNet34 were

weighted to obtain a deep-learning signature (PVP_DLR). Fifteen

features were selected to construct the PVP PVP-DLR model

(Supplementary Table S2).
Radiomics and DL signatures validation

Five radiomics models and one deep learning radiomics model

were established (Figure 5), and the efficacy of each model in the

training and validation sets is tabulated in (Table 2). Among the

radiomics models, the PVP model had a higher efficacy, with an

AUC of 0.751 (95% CI, 0.659–0.843) in the training set and 0.691

(95%CI, 0.530–0.853) in the external validation cohort compared to

the AP model, with an AUC of 0.724 (95%CI, 0.625–0.823), and the

DP model with an AUC of 0.749 (95%CI, 0.659–0.839). Therefore,

PVP was selected to explore intratumoral and peritumoral

information, and the PVP_Pri3mm and PVP_Plus3mm models

were established. The PVP_Plus3mm with an AUC of 0.754 (95%

CI, 0.672–0.855) and PVP_Pri3mm model with an AUC of 0.727

(95%CI, 0.630-0.824) had comparable efficacy to the PVP model,

but no significant difference (P = 0.916, P = 0.325) remained. In

addition, the deep learning radiomics model based on the venous
frontiersin.org
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TABLE 1 Characteristics of the patients in the cohorts.

Variable
Training cohort (n=114) External cohort (n=43)

P-value
Non-EPR EPR P-value Non-EPR EPR P-value

Gender

0 14 (20.59%) 7 (15.22%) 0.468 2 (8.70%) 6 (30.00%) 0.162 0.979

1 54 (79.41%) 39 (84.78%) 21 (91.30%) 14 (70.00%)

Age

0 15 (22.06%) 11 (23.91%) 0.817 8 (34.78%) 5 (25.00%) 0.486 0.337

1 53 (77.94%) 35 (76.09%) 15 (65.22%) 15 (75.00%)

AFP

0 54 (79.41%) 28 (60.87%) 0.031* 19 (82.61%) 15 (75.00%) 0.813 0.364

1 14 (20.59%) 18 (39.13%) 4 (17.39%) 5 (25.00%)

ALT

0 55 (80.88%) 38 (82.61%) 0.816 21 (91.30%) 15 (75.00%) 0.303 0.755

1 13 (19.12%) 8 (17.39%) 2 (8.70%) 5 (25.00%)

AST

0 42 (61.76%) 22 (47.83%) 0.141 13 (56.52%) 4 (20.00%) 0.015* 0.063

1 26 (38.24%) 24 (52.17%) 10 (43.48%) 16 (80.00%)

ChildPugh

1 58 (85.29%) 39 (84.78%) 0.94 22 (95.65%) 16 (80.00%) 0.263 0.597

2 10 (14.71%) 7 (15.22%) 1 (4.35%) 4 (20.00%)

HBsAg

0 13 (19.12%) 13 (28.26%) 0.254 2 (8.70%) 3 (15.00%) 0.868 0.117

1 55 (80.88%) 33 (71.74%) 21 (91.30%) 17 (85.00%)

Cirrhosis

0 28 (41.18%) 18 (39.13%) 0.827 4 (17.39%) 6 (30.00%) 0.539 0.046*

1 40 (58.82%) 28 (60.87%) 19 (82.61%) 14 (70.00%)

Portal hypertension

0 29 (42.65%) 24 (52.17%) 0.317 15 (65.22%) 10 (50.00%) 0.313 0.193

1 39 (57.35%) 22 (47.83%) 8 (34.78%) 10 (50.00%)

Tumor number

0 38 (55.88%) 24 (52.17%) 0.697 9 (39.13%) 7 (35.00%) 0.78 0.055

1 30 (44.12%) 22 (47.83%) 14 (60.87%) 13 (65.00%)

Tumor size

0 33 (48.53%) 27 (58.70%) 0.286 14 (60.87%) 3 (15.00%) 0.002* 0.143

1 35 (51.47%) 19 (41.30%) 9 (39.13%) 17 (85.00%)

BCLC

0 12 (17.65%) 2 (4.35%) 0.156 0 (0.00%) 1 (5.00%) 0.016* 0.001*

1 25 (36.76%) 16 (34.78%) 5 (21.74%) 2 (10.00%)

2 18 (26.47%) 16 (34.78%) 10 (43.48%) 2 (10.00%)

(Continued)
F
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phase (PVP_DLR) had the best and most stable efficacy in the

training set, with an AUC of 0.802 (0.717-0.887), and a higher

efficacy in the validation set, with an AUC of 0.774 (95% CI: 0.700-

0.783). The distribution of the prediction results for each model is

shown in (Supplementary Figure S2).
Performance and validation of DLRRN

In the training cohort, hand-craft based signature, DL-based

signature, and AFP level were independent factors for EPR

prediction using backward stepwise multivariable analysis.

However, only PVP_DLR was significant, so we combined the

signatures to build the PVP_DLRRN model (Table 3, Figure 6a).
Frontiers in Oncology 07
As shown in (Table 2), the performance of the combined models

PVP_DLRR (AUC, 0.804), PVP_DLRN (AUC, 0.797), and

PVP_DLRRN (AUC, 0.802) was not higher than that of

PVP_DLR (AUC, 0.802), which was further confirmed in the

external validation cohorts. There were no significant differences

between the combined models (P>0.05). Furthermore, all the

combined models showed significantly higher AUCs than the

clinical model in the two cohorts, which also outperformed the

handcrafted and DL signatures (P<0.05). NRI and IDI analyses

revealed that the integration of image signatures into the DLR

performed satisfactorily in the two cohorts, indicating an improved

classification accuracy for the EPR prediction clinical model. The

calibration curves of PVP_DLR, PVP_DLRR, PVP_DLN, and

PVP_DLRRN demonstrated that the model-predicted EPR was
TABLE 1 Continued

Variable
Training cohort (n=114) External cohort (n=43)

P-value
Non-EPR EPR P-value Non-EPR EPR P-value

BCLC

3 13 (19.12%) 12 (26.09%) 8 (34.78%) 15 (75.00%)

Tumor margin

0 45 (66.18%) 31 (67.39%) 0.893 10 (43.48%) 10 (50.00%) 0.669 0.021*

1 23 (33.82%) 15 (32.61%) 13 (56.52%) 10 (50.00%)

Rim enhancement

0 28 (41.18%) 15 (32.61%) 0.354 12 (52.17%) 12 (60.00%) 0.606 0.041*

1 40 (58.82%) 31 (67.39%) 11 (47.83%) 8 (40.00%)

Peritumoral enhancement

0 58 (85.29%) 33 (71.74%) 0.077 19 (82.61%) 15 (75%) 0.813 0.917

1 10 (14.71%) 13 (28.26%) 4 (17.39%) 5 (25%)
Chi-squared or Fisher’s exact tests, were used to compare the differences in categorical variables. *P<0.05 represents the statistical difference.
FIGURE 3

A 53-year-old man with HCC was treated with DEB-TACE. (a–e) MR examination revealed that the tumor was located in the segment 4 of the liver.
(f) The tumor supplying artery was the hepatic arteria 4. (g) The tumor supplying artery was embolized by 300-500 mm pirarubicin-loaded beads. (h)
No abnormal enhancement was found in enhanced MR Lesions after 3 month follow-up.
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well-calibrated with the actual observations in the cohorts(P>0.05)

(Figure 6b). Additionally, DCA graphically indicated that the

DLRRN provided a net benefit over other models over the

relevant threshold range in the entire cohort (Figure 6c).

(Figures 5, 6) shows correctly classified examples from the EPR

and non-EPR, respectively.
Discussion

In this study, we constructed various radiomics models of

intratumoral, peritumoral, and intratumoral combined

peritumoral derived from CE-MR images and deep learning

radiomics models derived from the venous phase to predict the
Frontiers in Oncology 08
early peritumoral recurrence of DEB-TACE in patients. We

confirmed that the performance of PVP was comparable to that

of PVP_Pri3mm and PVP_Plus3mm. Furthermore, a combined

nomogram incorporating the clinical factors AFP, PVP rad-score,

and DLR rad-score exhibited excellent and stable performance in

recurrence prediction compared to the clinical model.

Few studies have predicted the response to DEB-TACE in

patients with HCC. Some textural features, such as entropy and

skewness, were found to be able to identify responders (22). In

terms of radiomics, a limited number of previous studies have

focused on the application of CT-based features prior to DEB-

TACE overall survival, displaying moderate performance with

AUCs of 0.70-0.76 (23, 24). Nevertheless, the current two

radiomics studies both focused on CT images and survival
FIGURE 4

A 41-year-old man with HCC was treated with DEB-TACE. (a–e) MR examination revealed that the tumor was located in the segment 7 of the liver.
(f) The tumor supplying artery was the hepatic arteria 7. (g) The tumor supplying artery was embolized by 300-500 mm pirarubicin-loaded beads. (h)
One months later, MR Enhanced follow-up examination showed abnormal enhanced tumor recurrence.
FIGURE 5

Receiver operating characteristic (ROC) curves of different models. ROC curves of AP, DP, PVP, PVP_Pri3mm, PVP_Plus3mm, clinical model,
PVP_DLR, PVP_DLRR, PVP_DLRN and PVP_DLRRN model, for predicting early peritumoral recurrence (EPR) in the (a) Training cohort, (b) External
validation cohort, respectively.
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outcomes, which could not achieve an earlier prediction to guide

DEB-TACE. However, the findings were of limited clinical

relevance because of the relatively small sample size and lack of

validation in multicenter cohorts. Intriguingly, most of the features

selected in the radiomics signature were transformation factors in

the current study, especially the Laplacian of Gaussian (LoG) and

wavelet-based features, providing more detailed information about

tumor heterogeneity.

The PVP model with an AUC of 0.751 (95%CI, 0.659-0.839)

showed better efficacy than the AP and DP models with AUC of

0.724 (95%CI, 0.625-0.823), 0.749 (95%CI,0.659-0.839). Several

recent studies have investigated the efficacy of CT radiomic

models for early and late recurrence after hepatocellular

carcinoma resection, with moderate to good results and AUCs of

0.749-0.870 (25), respectively. However, 3D-ROI segmentation and

independent external validation may result in a statistical danger. In

addition, the AP performed better in the external validation set

(AUC = 0.780), which is consistent with the findings of Li et al (26).

Normal liver parenchyma derives its main blood supply from the

portal vein, whereas typical HCC is mainly supplied by the hepatic

artery, and this difference in blood supply contributes to the

imaging characteristics of HCC on enhanced MRI.

Furthermore , to capture re levant features of the

microenvironment surrounding the tumor and explore potential
Frontiers in Oncology 09
links between this and tumor biological behavior, the

PVP_Plus3mm and PVP_Pri3mm models were established, and

their performance was comparable to that of the PVP model

(P>0.05), consistent with the results of Song and Kim et al (27, 28).

Microvascular invasion (MVI) is a histopathological diagnosis used

to characterize cancerous thrombus formation within tiny blood

vessels surrounding a tumor. MVI in HCC is mostly found in the

tiny branches of the portal vein in the tissues surrounding the tumor,

which is one of the important manifestations of tumor microinvasion

and micrometastasis, and is closely related to early recurrence after

HCC treatment. Zhang et al. found that a radiomics model based on

preoperative 5 mm T1WI-MR images of the surrounding tumor

performed poorly in predicting HCC recurrence after radiofrequency

ablation (29). In contrast, our study showed that the efficacy of

PVP_Pri3mm is comparable to that of PVP and PVP_Plus3mm,

suggesting that the 3 mm peritumor radiomic profile may include

abundant information related to the microenvironment surrounding

the tumor. A possible reason for this may be that 60.47% of the

tumors had a diameter greater than 50 mm.

In this study, a DL method based on the ResNet-34 architecture

was applied for DL feature extraction. Notably, unlike handcrafted

features, the DL method does not require slice-by-slice

segmentation, which not only reduces the contour variability of

manual segmentations but also enhances efficiency. Moreover, DL

provides in-depth information, including specific tasks in the neural

network hidden layers without predefined features. The features

captured by the DL algorithm can predict lymph node metastasis

(30, 31), neoadjuvant chemotherapy response in gastric cancer (16).

The DL signature in our study presented a promising performance

in EPR prediction with AUCs of 0.802 and 0.774, higher than that in

the previous study predicting early recurrence after HCC surgery

based on preoperative CT images using DL features with an AUC of

0.723 (32). Moreover, the DL prediction model outperformed the

handcrafted signature and clinical models in terms of
TABLE 2 Performances of the models.

Training set (n=114) External validation set (n=43)

AUC Sensitivity Specificity AUC Sensitivity Specificity

AP 0.724 (0.625-0.823) 0.717 0.721 0.780 (0.631-0.929) 0.700 0.870

DP 0.749 (0.659-0.839) 0.761 0.676 0.722 (0.566-0.878) 0.750 0.652

PVP 0.751 (0.659-0.843) 0.739 0.676 0.691 (0.530-0.853) 0.850 0.522

PVP_Plus3mm 0.754 (0.672-0.855) 0.565 0.868 0.667 (0.501-0.834) 0.500 0.826

PVP_Pri3mm 0.727 (0.630-0.824) 0.739 0.691 0.709 (0.550-0.868) 0.750 0.609

PVP_DLR 0.802 (0.717-0.887) 0.848 0.662 0.774 (0.627-0.920) 0.700 0.783

Clinical 0.574 (0.488-0.661) 0.370 0.779 0.538 (0.413-0.664) 0.250 0.826

PVP_DLRR 0.804 (0.720-0.888) 0.870 0.618 0.767 (0.620-0.915) 0.700 0.739

PVP_DLRN 0.797 (0.711-0.882) 0.870 0.632 0.774 (0.627-0.920) 0.700 0.783

PVP_DLRRN 0.802 (0.718-0.887) 0.870 0.632 0.770 (0.623-0.916) 0.700 0.783
AP, arterial phase; DP, delay phase; PVP, portal venous phase; PVP_Plus3mm, the tumor plus peritumoral of portal venous phase; PVP_Pri3mm, the peritumoral of portal venous phase; DLR,
deep learning radiomics; DLRR, deep learning radiomics and radiomics; DLRN, deep learning radiomics nomogram; DLRRN, deep learning radiomics and radiomics nomogram.
TABLE 3 Related factors for EPR prediction in HCC.

Intercept and variable b OR (95%CI) P

Intercept 0.08493 – 0.7811

AFP -0.00971 0.907 (0.326-2.530) 0.853

PVP 0.43748 1.549 (0.831-2.888) 0.168

PVP_DLR 1.19241 3.295 (1.377-7.886) 0.007*
b is the regression coefficient. *p<0.05.
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discrimination ability in both training and validation cohorts. These

results indicate that DL offers a wealth of information that reflects

the spatial heterogeneity of tumors.

Furthermore, the combined PVP_DLRR, PVP_DLRN, and

PVP_DLRRN models were established in this study, and the

prediction ability of the models was far better than that of the

clinical model in the cohorts (P<0.05). Previous studies have

indicated that various clinical or molecular risk factors are

associated with TACE response. However, these metrics were

inconsistent across all studies. The BCLC and tumor size were

significant in the validation cohort, but no significance was found in

the training cohort. Considering that the small sample size may have

resulted in statistical bias, the AFP, which is significantly different in

the training cohort, was incorporated into our clinical model.

Specifically, the AUC of the clinical model was only 0.538 in the

external cohort, which was significantly lower than those of the other

models. Additionally, clinical factors are specific aspects of tumors.

The patients with similar features exhibited different responses. This

may explain the poor performance of the clinical model in different

patient distributions. DLRN mines high-dimensional imaging

features, followed by the comprehensive quantification of

intratumor heterogeneity, thereby improving performance.
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This study has several limitations. First, due to its retrospective

design, the sample size was limited, and pathological results were

unavailable, potentially introducing selection bias and uneven

distribution of patients’ clinical data. However, we mitigated this by

incorporating a multicenter cohort and applying strict inclusion

criteria. Future work should involve well-designed prospective

studies, larger datasets, and robust regularization methods to

validate the model’s generalizability and clinical utility. Second,

because deep learning (DL) features are abstract “black-box”

features, our interpretability analysis remains insufficient. In follow-

up studies, we plan to employ visualization tools (e.g., Grad-CAM and

LIME) to identify tumor regions of model focus and correlate DL

features with pathological mechanisms, thereby enhancing the

model’s clinical trustworthiness and applicability. Additionally,

although we evaluated intraclass correlation coefficients (ICCs),

discrepancies persist due to the time-intensive process and inherent

inter-observer variability in manual, layer-by-layer tumor delineation.

Future clinical applications will require automated and reliable

segmentation methods, such as those described in the literature (33,

34). In subsequent studies, we intend to integrate these automated

techniques to boost efficiency, reproducibility, and minimize biases.

Nevertheless, our research pioneered a deep learning radiomics model
FIGURE 6

Deep learning radiomics and handcrafted nomogram (DLRRN) and their performance. (a) DLRRN with the handcrafted and deep learning signatures
and AFP. (b) Calibration curves of different models with Clinical, PVP, PVP_DLR, PVP_DLRN, PVP_DLR and PVP_DLRRN in the cohorts. (c) Decision
curve analysis for Clinical, PVP, PVP_DLR, PVP_DLRN, PVP_DLRR and PVP_DLRRN models.
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for predicting early peritumoral recurrence after DEB-TACE,

demonstrating superior efficacy.
Conclusion

In conclusion, the DLR based on preoperative MRI could be a

new prognostic hallmark of HCC in patients undergoing DEB-

TACE. The prognostic model DLRRN based on DLR-score and

handcraft-score nomogrammay accurately predict EPR, which may

improve the assessment of preoperative treatment selection and

postoperative prognosis of HCC patients.
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BCLC strategy for prognosis prediction and treatment recommendation: The 2022
update. J Hepatol. (2022) 76:681–93. doi: 10.1016/j.jhep.2021.11.018

3. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al.
AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatol Baltim Md.
(2018) 67:358–80. doi: 10.1002/hep.29086

4. Cao WZ, Zhou ZQ, Jiang S, Li H, Niu W, Gao P, et al. Efficacy and safety of drug-
eluting beads for transarterial chemoembolization in patients with advanced
hepatocellular carcinoma. Exp Ther Med. (2019) 18:4625–30. doi: 10.3892/
etm.2019.8163

5. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

6. Niu X-K, He X-F. Development of a computed tomography-based radiomics
nomogram for prediction of transarterial chemoembolization refractoriness in
hepatocellular carcinoma. World J Gastroenterol. (2021) 27:189–207. doi: 10.3748/
wjg.v27.i2.189

7. Chen M, Cao J, Hu J, Topatana W, Li S, Juengpanich S, et al. Clinical-radiomic
analysis for pretreatment prediction of objective response to first transarterial
chemoembolization in hepatocellular carcinoma. Liver Cancer. (2021) 10:38–51.
doi: 10.1159/000512028

8. Wang F, Chen Q, Zhang Y, Chen Y, Zhu Y, ZhouW, et al. CT-based radiomics for
the recurrence prediction of hepatocellular carcinoma after surgical resection. J
Hepatocell Carcinoma. (2022) 9:453–65. doi: 10.2147/JHC.S362772

9. Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting survival using pretreatment
CT for patients with hepatocellular carcinoma treated with transarterial
chemoembolization: comparison of models using radiomics. AJR Am J Roentgenol.
(2018) 211:1026–34. doi: 10.2214/AJR.18.19507

10. Sun Y, Bai H, Xia W, Wang D, Zhou B, Zhao X, et al. Predicting the outcome of
transcatheter arterial embolization therapy for unresectable hepatocellular carcinoma
based on radiomics of preoperative multiparameter MRI. J Magn Reson Imaging JMRI.
(2020) 52:1083–90. doi: 10.1002/jmri.27143
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