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Background: Volumetric modulated arc therapy (VMAT) necessitates rigorous

pre-treatment patient-specific quality assurance (PSQA) to ensure dosimetric

accuracy, yet conventional manual verification methods encounter time and

labor constraints in clinical workflows. While deep learning (DL) models have

advanced PSQA by automating metrics prediction, existing approaches relying

on convolutional neural networks struggle to reconcile local feature extraction

with global contextual awareness. This study aims to develop a novel lightweight

DL framework that synergizes hierarchical spatial feature learning and

computational efficiency to enhance VMAT-delivered dose (VTDose) prediction.

Methods: We propose a hybrid architecture featuring a novel hierarchical fusion

framework that synergizes shifted-window self-attention with adaptive local-

global feature interaction. (termed “STQA”). Specially, strategic replacement of

Swin-Transformer blocks with ResNet residual modules in deep layers, coupled

with depthwise separable attention mechanisms, enables 40% parameter

reduction while preserving spatial resolution. The model was trained on

multimodal inputs and evaluated against state-of-the-art methods using

structural similarity index (SSIM), mean absolute error (MAE), root mean square

error (RMSE), and gamma passing rate (GPR).

Results: Visual evaluation of VTDose and discrepancy maps across axial, coronal,

and sagittal planes demonstrated enhanced fidelity of STQA to ground truth (GT).

Quantitative analysis revealed superior performance of STQA across all

evaluation metrics: SSIM=0.978, MAE=0.163, and RMSE= 0.416. GPR analysis
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confirmed clinical applicability, with STQA achieving 95.43%±3.41% agreement

with GT (94.63%±2.84%).

Conclusions: STQA establishes a paradigm for efficient and accurate VTDose

prediction. Its lightweight design, validated through multi-site clinical data,

addresses critical limitations in current DL-based PSQA, offering a clinically

viable solution to enhance radiotherapy PSQA workflows.
KEYWORDS

deep learning, Swin-Transformer, volumetric modulated arc therapy, pre-treatment
specific quality assurance, multimodal
1 Introduction

Volumetric modulated arc therapy (VMAT) has emerged as a

cornerstone of precision radiotherapy, achieving superior dose

conformity through synchronized dynamic multi-leaf collimator

(MLC) modulation and gantry rotation (1). While this technological

complexity enhances treatment plan quality compared to conventional

techniques, it simultaneously intensifies the demand for rigorous

verification of dose distribution authenticity and deliverability. Pre-

treatment patient-specific quality assurance (PSQA) remains an

essential clinical safeguard, strongly endorsed by the American

Association of Physicists in Medicine (AAPM) to ensure VMAT

dose accuracy and patient safety (2). Current clinical workflows

employ measurement devices such as diode arrays, ionization

chambers, and radiographic films to quantify discrepancies between

planned and delivered dose. However, conventional PSQA workflows,

which depend on physical measurements, are time-consuming and

labor-intensive. They delay treatment initiation and reduce the

efficiency of radiotherapy services (3).

Over the past decade, machine learning (ML) has driven

advancements in PSQA, particularly in gamma passing rate

(GPR) prediction. Early ML approaches, including Poisson

regression with Lasso regularization for binary classification (4,

5), regression/classification models for VMAT plans (6), artificial

neural networks (ANN) for dosimetry prediction (7), and feature-

engineered support vector machines (8, 9), demonstrated moderate

success but faced limitations in accuracy and clinical applicability

due to manual feature dependency. The emergence of deep learning

(DL) revolutionized this field through automated hierarchical
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feature extraction via convolutional neural networks (CNN). Key

innovations include CNN architectures for prostate cancer PSQA

(10, 11), transfer learning-enhanced VGG-16 models

outperforming domain-expert systems (12), fluence map-based

error detection frameworks (13), GANs for EPID-to-dose

conversion (14), and log file-informed fluence modeling (15–18).

By eliminating manual feature engineering and enabling end-to-end

prediction through raw data abstraction, DL methods have

significantly improved prediction accuracy and clinical utility

compared to traditional ML approaches, establishing a paradigm

shift in PSQA optimization.

Extensive studies have validated the potential of ML/DL models

in terms of predicting PSQA without performing real

measurements (4–18). However, critical analysis of existing

methodologies reveals three fundamental limitations requiring

attention for clinical implementation of ML/DL-based PSQA

models. Firstly, the predominant GPR evaluation paradigm fails

to establish quantitative relationships between spatial dose

distribution characteristics and validation outcomes, particularly

at anatomically complex sites. This limitation obscures detection of

subclinical dose deviations and provides insufficient spatial context

(e.g., failure point localization, clustered anomalies) for

comprehensive clinical assessment (19, 20). Secondly, most

models rely on 2D planar dose representations, inherently

incapable of capturing the 3D spatial modulation characteristics

intrinsic to VMAT’s dynamic delivery. This dimensional reduction

introduces systematic errors in dose carving pattern recognition.

Thirdly, while CNN excel at local feature extraction, their reliance

on downsampling operations sacrifices spatial resolution and local

detail preservation. The inherent locality of convolutional kernels

further restricts global contextual awareness and long-range spatial

relationships modeling - critical capabilities for holistic dose

distribution analysis.

The remarkable success of Transformers in natural language

processing (21) has spurred their adaptation to computer vision,

leveraging global self-attention mechanisms to overcome the local

inductive bias inherent in CNNs. Pioneering this shift, Kolesnikov

et al. developed the Vision Transformer (ViT) (22), achieving state-

of-the-art image recognition through patch-based sequence
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processing. Recent work by Zeng et al. (23) demonstrates a hybrid

network integrating Transformers with modified U-Net

architectures for predicting measurement-guided volumetric dose

in PSQA, enabling quantitative analysis of spatial dose differences

between predicted and clinical dose distributions. However,

subsequent studies reveal critical limitations of pure Transformer

architectures in vision tasks, particularly their inadequate local

feature extraction capabilities for dense predictions (24–27). This

limitation has motivated hybrid architectures combining CNN and

Transformer encoders through serial (e.g., TransUNet (28)) or

parallel (e.g., TransFuse (29)) configurations to synergize global

context modeling with local feature learning. Concurrently,

enhanced variants like Swin Transformer (30) incorporate

hierarchical shifted-window mechanisms, demonstrating superior

performance in pixel-level prediction tasks and advancing the

evolution of vision-specific Transformer architectures.

To address the critical limitations in existing PSQA

methodologies, we propose STQA (Swin Transformer-based

Quality Assurance) - a novel lightweight network that synergizes

hierarchical feature learning with adaptive global-local attention for

volumetric dose prediction in VMAT-PSQA. Departing from

conventional Transformer adaptations, our architecture

introduces three key innovations: 1) A depth-aware hierarchical

encoder-decoder framework employing parameter-shared shifted

window attention across scales, enabling efficient cross-resolution

feature interaction while preserving spatial fidelity; 2) A dual-path

feature extraction mechanism combining depth-wise separable local

attention with global context modeling through lightweight

transformer blocks, effectively capturing both fine-grained dose

carving patterns and long-range anatomical dependencies; 3)

Bottleneck-adapted skip connections with channel-wise excitation

modules that dynamically recalibrate multi-scale features during

spatial resolution recovery. Extensive experiments demonstrate

STQA’s capability to predict 3D dose distributions closely

matching actual VTDose, enabling patient-specific VTDose

acquisition. Our method not only demonstrates superior overall
Frontiers in Oncology 03
prediction performance but also consistently outperforms

comparative models across multiple cancer sites (head & neck,

chest, abdomen). Significantly, STQA achieves a 40% parameter

reduction versus Swin Transformer through depth-wise separable

attention in shallow layers, hierarchical parameter-shared window

processing, and bottleneck adapters within skip connections that

strategically compress and reactivate channels, thereby maintaining

performance while eliminating architectural redundancy.
2 Methods

2.1 Data collection and preprocessing

The study cohort comprised 200 patients treated with

volumetric modulated arc therapy (VMAT) between 2020 and

2024 (Table 1) in Jiangxi Cancer Hospital. The original dataset is

split into training (160), validation (20), and test set (20), which

contain 7731, 1045 and 1105 images, respectively. All computed

tomography (CT) simulations were performed using a Somatom

Confidence RT Pro CT scanner (Philips Healthcare, Best, the

Netherlands) with 2 mm slice thickness. To ensure precise target

delineation, coregistered diagnostic magnetic resonance imaging

(MRI) and positron emission tomography (PET) images were

integrated into the planning process by board-certified radiation

oncologists with >10 years’ experience in radiotherapy. VMAT

plans were generated using clinically validated treatment planning

systems: the Monte Carlo algorithm in Monaco (version 5.11,

Elekta AB) with a dose calculation grid of 2 mm. All plans were

optimized through multi-criteria iterative optimization to ensure

optimal target coverage while adhering to strict organ-at-risk dose

constraints. Finalized plans were delivered via 6 MV flattening

filter-free beams using an Elekta Infinity linear accelerator equipped

with a 160-leaf Agility multileaf collimator (MLC). Prior to

treatment, comprehensive quality assurance was performed using

the ArcCHECK-3DVH system (Sun Nuclear Corporation,

Melbourne, FL, USA), which underwent comprehensive

calibration procedures including validation array measurements,

beam modeling verification (gamma pass rate >95% at 3%/3 mm),

and dose reconstruction accuracy assessments.

To ensure spatial consistency across all data types, both the

measured and TPS-planned dose distributions were extracted

directly from DICOM RT Dose files and converted into 32-bit

floating-point arrays (3). These dose maps were then interpolated to

align with the coordinate system of the corresponding CT images

and resampled to a uniform grid resolution. Each 3D volume—

including CT, planned dose, and measured dose—was initially

represented as a matrix of size 512 × 512 × 150 pixels. Zero-

padding was applied during interpolation to preserve spatial

dimensions. To optimize computational efficiency and memory

usage, all images were down-sampled to a resolution of 256 × 256

× 150 prior to model input. Planned dose values were normalized to

the maximum dose value within each plan to facilitate stable

network training. The model outputs, which are generated in

normalized form, are subsequently denormalized back to absolute
TABLE 1 Clinical characteristics of cancer patients enrolled in this study.

Characteristics Sample number Percentage

Gender, no. (%)

Male 120 60.0%

Female 80 40.0%

Age (years)

<20y 15 7.5%

20y-60y 100 50.0%

>60y 85 42.5%

Cancer sites

H&N 38 19.0%

Chest 116 58.0%

Abdomen 46 23.0%
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dose values in units of Gy by rescaling with the same reference

maximum dose. These final predictions are then formatted into

DICOM RT-Dose objects compatible with clinical systems,

enabling direct use in standard quality assurance procedures such

as gamma index analysis and DVH evaluation.
2.2 The overall network structure

The overall architecture of the STQA network proposed in this

study, as illustrated in Figure 1, incorporates targeted modifications

to the original Swin-UNet framework to better align with our dose

prediction objectives. To address the specific requirements of our

task and enhance computational efficiency, we implemented two

key architectural adjustments: first, replacing consecutive Swin

Transformer blocks at the bottleneck layer with final residual

network components of ResNet to capitalize on the inherent

advantage of residual blocks in maintaining feature extraction

capacity while mitigating computational complexity, while

preserving original image resolutions and feature dimensions;

second, strategically substituting both the loss function and
Frontiers in Oncology 04
optimization algorithm to facilitate stable training convergence

and improve task-specific adaptation. Crucially, STQA retains the

essential U-shaped configuration comprising four core components

- encoder, bottleneck, decoder, and skip connections - as visually

demonstrated in Figure 1, ensuring effective feature propagation

and multi-scale information integration throughout the

network architecture.
2.3 Swin-Transformer-based feature
extraction

The Swin Transformer architecture employs two distinct

attention mechanisms as its core feature extraction components:

the Window Multihead Self-Attention (W-MSA) module that

processes localized image regions through fixed window

partitioning, and the Shifted Window Multihead Self-Attention

(SW-MSA) module that enables cross-window information

exchange through strategic window shifting operations, with their

hierarchical arrangement and interaction patterns visually detailed

in Figure 2.
FIGURE 1

Flow chart of the proposed STQA.
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SwinUNet utilizes Swin-Transformer layers for feature

extraction, Patch Merging and Patch Expanding layers for

downsampling and upsampling respectively and incorporates skip

connections inspired by U-Net to fuse encoder features in the

decoder.

bz l = W −MSA LN zl−1
� �� �

+ zl−1 (1)

zl = MLP LN bz l� �� �
+ bz l (2)

bz l+1 = SW −MSA LN zl
� �� �

+ zl (3)

zl+1 = MLP LN bz l+1� �� �
+ bz l+1 (4)

Attention(Q,K ,V) = SoftMax(
QKTffiffiffi

d
p + B)V (5)

In Equations 1–4, ẑ l and zl denote the outputs of the l − th‘s (S)

W-MSA model and the MLP model respectively. In Equation 5, Q

,K ,V ∈ RM2�d represent the query matrix, key matrix, and value

matrix respectively. M2 represents the number of patches in a

window, while d denotes the dimension information of the query or

key matrix. Due to the fact that the axis values of relative positions

in the model are all within[-M+1,M+1], a smaller deviation matrix

needs to be parameterized as B̂ ∈ R(2M−1)�(2M+1), where B is the
Frontiers in Oncology 05
value fetched from B̂ . In Swin Transformer blocks, the input data

first pass through a LayerNorm (LN) layer. LN here serves a similar

role to BatchNorm (BN) commonly used in Computer Vision (CV).

Both are designed to normalize the activations of the previous layer

to some extent to avoid the vanishing gradient problem. The

difference between LN and BN lies in the dimensions over which

normalization is computed. LN computes normalization across the

layer dimension, whereas BN computes it across the batch

dimension. In the field of NLP, the batch size of networks is

typically smaller than in CV, making BN less effective compared

to LN. Therefore, LN layers are commonly used in Transformers.

The formula for LN is shown in Equation 6.

y =
x − E½x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x� + e

p *g + b (6)

Where E½x� represents the mean of x and Var½x� represents the
variance of x. e is a very small number to avoid the possibility of

zero denominator, g and b are learnable parameters.

After passing through the LN layer, it is input into the W-MSA

or SW-MSA layer. Compared to multi-head self-attention (MSA),

W-MSA saves a significant amount of computation by

independently computing each window. For an input image of

size (h,w), assuming each window contains patches of size M×M,

the computational complexity formulas for MSA and W-MSA are

given by Equations 7, 8 respectively.

W(MSA) = 4hwC2 + 2(hw)2C (7)
FIGURE 2

(A) Structure of the standard transformer block. (B) Two consecutive Swin transformer blocks (renamed W-Trans block and SW-Trans block).
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W(W −MSA) = 4hwC2 + 2M2hwC (8)

W-MSA reduces computation but leads to a lack of information

communication between windows. To address this issue, SW-MSA

must be computed in subsequent blocks. Information interaction

between windows is achieved by shifting the windows down and to

the right by half the window size and then computing W-MSA

again for the shifted windows. Therefore, W-MSA and SW-MSA

need to appear in pairs. It is for this reason that the number of

blocks in Swin Transformer is typically even. In Swin-UNet, the

number of blocks in Swin Transformer is 2, comprising one W-

MSA block and one SW-MSA block. After passing through the W-

MSA layer or SW-MSA layer, followed by a BN layer, and finally a

multi-layer perceptron (MLP) for feature mapping, the final output

is obtained.
2.4 The proposed STQA

Swin-UNet demonstrates powerful capabilities in extracting

contextual information and restoring spatial resolution; however,

the convergence of transformer modules for image feature

computation in deep bottleneck sections remains suboptimal.

Considering the challenges of network parameterization as depth

increases, this paper proposes enhancements to the deep bottleneck

of Swin-UNet. Since the design of residual blocks in ResNet does

not reduce feature extraction capacity with increased network

depth, replacing two consecutive Swin Transformer blocks in the

bottleneck position with ResNet layers is a viable solution. ResNet

networks, primarily composed of multiple residual modules—a

popular structure in modern neural networks—address the

degradation issues caused by deepening layers, thus enabling
Frontiers in Oncology 06
parameter computation even in thousand-layer networks. After

optimization and comparison, we adopt the final layer of the deep

ResNet network as the bottleneck of Swin-UNet to improve the

model’s predictive accuracy in quality assurance of preprocessing

patient-specific data, as illustrated in Figure 3; additionally, to

reduce parameter computation, 1×1 convolutions are employed

for dimensionality reduction on feature vectors.

As data features pass through the last layer of the ResNet deep

network, both image resolution and feature dimensions remain

unchanged. As shown in Figure 3, this layer comprises three

residual blocks, with each residual module consisting of a residual

block layer that includes two convolutional blocks, two BN layers,

and one ReLU activation. The improved Swin-UNet network

maintains the same encoder, bottleneck, and decoder components

as the original, but it replaces the Swin-UNet bottleneck with the last

layer of the ResNet network—resulting in nearly a 40% reduction in

network parameters while achieving better performance.

In the encoder, the image is first divided into patches using a

Patch Partition layer, and a linear embedding layer tokenizes the

data to produce a C-dimensional representation of size H/4 × W/4.

The divided blocks are then concatenated via a Patch Merging layer,

which reduces the patch resolution to half of the original; although

the merged features are initially four times the original dimension,

an additional linear layer is applied to unify the dimension to twice

the original. At the bottleneck, leveraging the advantage of ResNet’s

residual blocks that do not degrade in performance as the network

deepens, the fifth layer structure of ResNet is employed to overcome

the convergence issues of transformer blocks in deep networks, with

the input feature resolution set at W/32 × H/16 and remaining

unchanged. Finally, the Patch Expanding layer upsamples the

features by doubling the resolution while halving the feature

dimension until full-size resolution is restored, and the skip
FIGURE 3

The proposed STQA network.
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connections fuse multi-scale features from the encoder with the

upsampled features to mitigate spatial information loss caused by

downsampling. The algorithm flow of STQA is as follows: (see

Algorithm 1)
Fron
1: Data input

2: while e has not converged do

3: for t=0,1,…n do

4: Sample R tdoseif gm , CTif gm,   Edoseif gm → Pdata(H,W, 2) a

batch from the dataset

5: Pdata(H,W) → Pdata(H,W,C)

6: Patch partition(Pdata)

7: Linear embedding(Pdata)

8: Swin transformer(Pdata)

9: Patch merging(Pdata)

10: Conv(Pdata)

11: Patch exanding(Pdata)

12: Linear projection(Pdata)

13: A(L1)
e ←mwLossL1(Pdata)

14: e← e + xA(L1)
e

15: end for

16: end while

17: Output predicted VTDose distribution.
Algorithm 1. STQA.
2.5 Experiment setup

To validate the effectiveness of STQA predictions, we compared

our method with three established prediction networks using the

same test set: U-Net (31), CycleGAN (CGAN) (30), TransQA

(TrQA) (23), and Swin-UNet (SWNet) (30). The compared

methodologies are summarized as follows: (1) U-Net: A classical

encoder-decoder architecture recently adapted for dose prediction

tasks (31), demonstrating strong performance in medical image

analysis. (2) CGAN: An unsupervised framework proposed by Zhu

et al. (32) that employs dual generative adversarial networks with

cycle consistency, eliminating the requirement for paired training

data. (3) TrQA: A hybrid architecture integrating Transformer’s

self-attention mechanisms with enhanced U-Net structures,

specifically designed for VTDose prediction in PSQA (23). (4)

SWNet: A pioneering U-shaped network developed by Lin et al.

(30) that incorporates hierarchical Swin Transformer blocks in both

encoder and decoder pathways to improve medica l

image segmentation.

For quantitative evaluation, we adopted three established

metrics: structural similarity index (SSIM), mean absolute error

(MAE), and root mean square error (RMSE). The experimental

dataset comprised paired radiotherapy planning data including CT

images, Planned dose distributions, and corresponding VTDose

ground truth (GT) maps, collected from multiple cancer patients.

To leverage multimodal information, we concatenated CT and

Planned dose images along the channel dimension as dual-
tiers in Oncology 07
channel inputs, preserving their dist inct information

characteristics while providing complementary anatomical and

dosimetric features to the network. In addition, GPR analysis

serves as the most widely adopted methodology for comparing

measured and calculated dose distributions in PSQA for VMAT,

where the agreement level is typically quantified through GPR

metrics. To further evaluate the prediction accuracy across

different methods, we additionally compared the three-

dimensional GPR (3%/2mm criterion with a 10% threshold) of

various prediction approaches.

The proposed STQA architecture was implemented in PyTorch

and trained/tested on an NVIDIA GeForce RTX 3090 GPU with

16GB memory using CUDA-accelerated computation. We

employed the Adam optimizer with L1 loss as the primary

objective function, setting the initial learning rate to 1e-5 and

training for 200 epochs. To ensure fair comparison, all baseline

models were re-implemented using identical training protocols and

hardware configurations. The total training time for each model was

recorded as follows: U-Net: 28 hours, CGAN: 34 hours, TrQA: 41

hours, SWNet: 44 hours, and STQA: 38 hours. After training, each

model can generate a full 3D dose distribution within

approximately 5–7 seconds, demonstrating compelling inference

speed suitable for time-sensitive clinical settings.

Ablation studies were conducted to systematically evaluate key

architectural components and parameter settings in our framework.

The investigation comprised two main aspects: (1) Performance

comparison among three architectural variants: baseline Swin-

UNet, our full STQA model, and a hybrid Swin-UNet+ResNet

(SURNet) configuration with ResNet blocks directly cascaded at the

bottleneck layer. (2) Quantitative analysis of skip connection

configurations in STQA, where different numbers of cross-scale

connections (0-3) were tested. Specifically, 3 skip connections

represent full connections at 1/16, 1/8, and 1/4 resolution levels; 2

connections utilize 1/16 and 1/8 levels; 1 connection employs only

the 1/16 level, while 0 connections indicate complete removal of

skip connect ions . This systematic evaluation enables

comprehensive understanding of feature propagation mechanisms

in our proposed architecture.
3 Results

Table 2 presents the quantitative evaluation results across all

test cases. As demonstrated in Table 2, STQA achieves statistically
TABLE 2 Comparison of experiments based on STQA and other
prediction network models.

Method SSIM MAE(%) RMSE(%)

U-Net 0.788 0.608 0.931

CGAN 0.891 0.419 0.867

TrQA 0.944 0.251 0.646

SWNet 0.958 0.198 0.597

STQA 0.978 0.163 0.416
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significant improvements over U-Net and CGAN across all metrics.

When comparing STQA with the state-of-the-art methods TrQA

and SWNet, our method exhibits superior performance, particularly

in the RMSE metric, where STQA reduces the error to 0.416

compared to 0.646 for TrQA and 0.597 for SWNet. In terms of

structural similarity, STQA achieves an SSIM value of 0.978,

outperforming TrQA (0.958) and SWNet (0.944) by margins of

0.034 and 0.020, respectively.

For enhanced visual comparison across methodologies, Figure 4

presents representative predicted dose distributions spanning three

anatomical regions (head & neck, chest, abdomen) in axial, coronal,

and sagittal orientations. Visual inspection of Figure 4 demonstrates
Frontiers in Oncology 08
that U-Net and CGAN underperform relative to the comparative

methodologies, with U-Net exhibiting the most pronounced

prediction inaccuracies. The VTDose maps indicate that STQA

generates predictions with enhanced dose fidelity, a finding further

supported by comprehensive analysis of dose difference maps.

Comparative evaluation of discrepancy distributions reveals that

Transformer-based models (TrQA, SWNet, and STQA) exhibit

significantly reduced deviations compared to conventional

approaches. Notably, STQA achieves minimal dose discrepancies

across all clinical cases, outperforming other Transformer-based

counterparts in maintaining alignment with GT dose distributions.

To assess local dose accuracy, we computed mean absolute errors
FIGURE 4

Qualitative analysis of predicted VTDose distributions (in Gy) across methodologies. Dose distributions are visualized for head & neck (columns 1-3),
chest (columns 4-6), and abdominal (columns 7-9) cases. Rows 3, 5, 7, 9, and 11 demonstrate dose discrepancy maps between GT and predicted
results. Anatomical plane assignments follow: columns 1/4/7 display axial dose distributions, columns 2/5/8 depict coronal plane mappings, and
columns 3/6/9 correspond to sagittal plane patterns.
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for Dmean and Dmax in critical OARs including the spinal cord

and parotid glands. STQA achieved errors of 1.08 ± 1.21 Gy and

1.14 ± 0.67 Gy, respectively, outperforming all baselines, followed

by SWNet and TrQA, UNet has the worst. This performance

advantage suggests STQA’s superior capability in preserving

dosimetric details while ensuring spatial consistency with GT.

To evaluate the predictive performance of each network for

specific cancer sites, tests were conducted separately based on three

major cancer sites (head & neck, chest, abdomen), and the results of

each method were compared as shown in Table 3. From the

comparison across the three metrics, all methods exhibited better

dose prediction results for the chest than the other two sites. This

may be due to the simpler structure of the thorax compared to the

other two sites and the fact that chest patients accounted for the

largest number (116, 58%), making it easier for the network to

extract features. Additionally, the prediction accuracy of abdominal

patients is slightly better than that of head and neck patients, which

is likely due to the small number of head and neck patients and the

complex anatomical structure. Despite the imbalanced distribution

of cancer sites, stratified sampling during data splitting helped

mitigate bias, and STQA consistently outperformed baselines

across all sites. Overall, STQA achieved the best predictive

accuracy across all three cancer sites. This indicates that the

STQA network demonstrates the best performance across various

shapes and texture differences. Furthermore, the GPR analysis

revealed distinct performance differences among models: The U-

Net model achieved suboptimal GPR results (98.54 ± 3.42%),

showing statistically inferior performance compared to other

methods. In contrast, STQA demonstrated the closest agreement

with GT measurements, yielding GPR values of 95.43 ± 3.41%

versus the GT baseline of 94.63 ± 2.84%. Intermediate performance

was observed for CGAN (98.22 ± 2.74%), TrQA (96.91 ± 4.16%),

and SWNet (96.20 ± 3.65%), all showing comparable GPR

outcomes. The mean errors between the GPR of the VTDose and

the predictions were 4.24% for the U-Net, and 3.42%, 2.52%, 1.77%,

1.1% for CGAN, TrQA and STQA, respectively.

Table 4 illustrates the ablation experiment of the performance

differences among different model architectures. In the comparison

of parameter quantities among the three structural models, we

observed that replacing the bottleneck of the original Swin-UNet

with ResNet’s network layers (STQA) resulted in a reduction of
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nearly 40% in the memory footprint of the trained model files.

Additionally, STQA exhibited a reduction of almost 50% in model

file memory compared to SWNet. This indicates that the STQA

architecture not only reduces redundant parameters and has a

smaller time complexity but also slightly improves performance.

While the SURNet model exhibits the best performance, its deeper

network structure leads to larger model parameter quantities and

higher time complexity. Therefore, considering all factors, we

believe that the STQA structure demonstrates the optimal

performance. Table 5 demonstrates the impact of the number of

skip connections in the network on its performance (ablation

experiment 2). We observed that the neural network exhibited the

highest predictive accuracy when having 3 skip connections. This is

likely because an appropriate number of skip connections can

effectively integrate features from different layers, enhancing the

network’s ability to capture multi-scale information. Too few skip

connections may not fully utilize the feature hierarchy, while too

many could introduce unnecessary complexity and potential

overfitting. Therefore, in this study, we default the number of

skip connections to be 3, as it strikes a balance between feature

integration and model complexity, leading to optimal performance.
4 Discussion

Artificial intelligence, particularly deep learning (DL)

techniques, has found extensive application in multiple facets of

radiotherapy treatment planning and delivery, such as tumor target

delineation (33), adaptive radiotherapy plans (34), 3D dose

prediction (23), and PSQA (35). Accurate and rapid

implementation of quality assurance processes for patients’

radiotherapy treatments can assist physicists in patient care. In

terms of methods, compared to CNN networks, DL networks based

on Transformers lack some important inductive biases (e.g., locality

and translation equivariance), making their training heavily reliant

on large-scale datasets and pre-trained models. However, due to the
TABLE 5 Impact of the number of skip connections on network
performance.

Skip connection SSIM MAE(%) RMSE(%)

0 0.815 3.256 8.032

1 0.641 1.577 3.412

2 0.957 0.193 0.543

3 0.977 0.168 0.444
TABLE 3 Comparison of model performance across different cancer
sites.

Method

SSIM MAE(%) RMSE(%)

H&n/
abdomen/
chest

H&n/
abdomen/
chest

H&n/
abdomen/
chest

U-Net 0.782/0.816/0.821 0.522/0.513/0.505 0.865/0.841/0.822

CGAN 0.892/0.898/0.901 0.419/0.400/0.381 0.848/0.826/0.805

TrQA 0.948/0.954/0.966 0.250/0.245/0.225 0.637/0.632/0.5724

SWNet 0.964/0.967/0.971 0.195/0.186/0.162 0.583/0.577/0.468

STQA 0.980/0.984/0.985 0.159/0.152/0.145 0.411/0.408/0.365
TABLE 4 Comparison of performance and parameters among different
model architectures.

Method SSIM MAE(%) RMSE(%) Model_size

SWNet 0.951±0.5e-3 0.188±0.05 0.587±0.24 98.1MB

STQA 0.982±0.5e-3 0.160±0.04 0.418±0.31 45.2MB

SURNet 0.988±0.4e-3 0.155±0.02 0.394±0.14 105.4MB
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lack of large-scale and well-annotated datasets, the development of

DL in the field of medical imaging lags behind that of natural image

processing. In particular, there have been few studies applying

Transformers to the field of radiotherapy quality assurance.

Recently, Hu et al., proposed a U-shaped network called

TrDosePred (36), which consists of convolutional patch

embedding and several Transformer blocks based on local self-

attention. This network aims to generate dose distributions from

contour CT images. The dose score on the test dataset was 2.426 Gy,

and the DVH score was 1.592 Gy. The results demonstrate that the

performance of TrDosePred is comparable to or even better than

previous state-of-the-art methods, proving the potential of

Transformers in improving treatment planning processes.

In this paper, we aim to obtain global contextual information

from radiotherapy volume images to improve the accuracy of

VMAT quality assurance. We innovatively improved the Swin-

UNet architecture to construct the STQA network, making the

network suitable for handling radiotherapy planning data.

Specifically, we modified the loss function and optimizer for

training the network to L1 loss and Adam, respectively.

Moreover, to explore optimal network training, we attempted to

train the network using a combination of two loss functions, L1 and

L2, with weighted allocation. Most importantly, we replaced two

consecutive Swin Transformer modules between the downsampling

and upsampling layers of the Swin-UNet network with ResNet

layers to overcome the problem of feature extraction degradation

due to network depth, thereby improving performance. The

inherent properties of Transformers allow them to handle feature

representations at a stable and relatively high resolution, accurately

meeting the demands for finer-grained and globally consistent

predictions in dense prediction tasks. Compared to other state of

the art models, we applied Transformer-based DL methods to the

VTDose prediction task and achieved better accuracy. This further

demonstrates the outstanding achievements of Transformers in

medical imaging compared to traditional CNN networks, helping

to narrow the development gap between medical imaging DL and

natural image processing.

Visual comparisons through representative predicted VTDose

distributions reinforce these quantitative findings. STQA’s VTDose

maps show superior fidelity. The dose difference maps further

substantiate this, with STQA exhibiting minimal discrepancies

across all cases, especially in high-dose regions and critical

anatomical structures. This is particularly important as these

areas are often the most challenging to predict accurately due to

their complexity and the potential consequences of dosing errors.

Tables 2–4 demonstrate that our proposed STQA framework

achieves state-of-the-art performance in VTDose prediction

across multiple evaluation dimensions. Compared to existing

Transformer-based methods (TrQA and SWNet), STQA reduces

RMSE by 35.6% and 30.3%, respectively, while improving SSIM by

3.6% and 2.1% over these benchmarks. These advancements almost

align with the performance gains reported in recent studies utilizing

hybrid architectures for medical image analysis (30). The 16.6-

25.3% improvement in SSIM and 18.5–69.5% reduction in MAE for
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these challenging cases suggests that our multi-scale skip

connection strategy and hybrid bottleneck design effectively

capture both global contextual relationships and local texture

details—a capability not fully realized in pure Transformer

architectures (23). The ablation studies further validate STQA’s

architectural innovations. The 40–50% reduction in model memory

footprint compared to SWNet, while maintaining competitive

accuracy, resolves a key practical limitation of Transformer-based

models. Although SURNet achieved marginally higher SSIM values

(0.988 vs. STQA’s 0.982), its 2.3× greater parameter count and

longer inference time render it clinically impractical. Our results

thus suggest that STQA successfully balances computational

efficiency with prediction accuracy.

Due to the inherent constraints associated with patient data and

DL networks, certain discrepancies between predicted and

measured results are unavoidable. Addressing these discrepancies

in the future involves augmenting the dataset size or refining DL

networks through optimization. The patients in the dataset used in

this work come from multiple sites, but they are mixed for both

training and testing, rather than having one set for training and

another for external testing. Since data from different centers may

exhibit significant differences, it can affect the effectiveness of

training. In the future, balancing data processing or increasing

patient data volume will further improve prediction accuracy.

However, it is worth noting that while incorporating multi-

inst itut ional data could further improve the model ’s

generalizability by capturing a broader range of anatomical and

dosimetric variations, the present study utilized data from a single

institution to ensure consistency in imaging and treatment

protocols. The inherent rarity and heterogeneity of medical data

pose significant challenges to assembling large, diverse multi-center

datasets. The predominance of chest cases may introduce a bias

toward simpler anatomies, though our model still performed well

on more complex sites. Future work will aim to collect a more

balanced dataset across cancer sites and institutions. While we did

not separately compute voxel-level sensitivity/specificity for

gamma-fail classification, operating directly on volumetric

VTDose provides the spatial observability required for fail-voxel

localization and post-hoc gamma-map synthesis; we plan to report a

dedicated voxel-wise gamma-fail analysis in future work. Finally,

the model still suffers from time complexity, and we will strive to

reduce the model’s time complexity in future work.

In conclusion, this study proposes a new framework termed

STQA for VMAT quality assurance, demonstrating superior

performance compared to existing models. To strengthen the

model’s generalization capacity and convergence properties, we

innovatively integrated a ResNet layer into the network’s

bottleneck to enhance feature extraction capabilities while

adopting advanced loss functions and optimization strategies.

Comprehensive validation conducted on VMAT-treated cancer

patient datasets revealed that STQA achieves state-of-the-art

performance in both global dose distribution prediction and edge

dose accuracy across various tumor sites. This successful

implementation not only addresses critical challenges in VMAT
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quality assurance but also paves the way for effective integration of

deep learning across medical domains, potentially inspiring novel

methodological developments in medical artificial intelligence.

From a clinical integration perspective, STQA demonstrates

practical feasibility. The average inference time for a full 3D dose

prediction is approximately 5–7 seconds on an NVIDIA RTX 3090

GPU, which is compatible with routine QA workflows. The model

can be deployed as a standalone application or integrated into

existing treatment planning systems via a standardized DICOM RT

Dose interface. Future work will focus on user interface

development and real-time validation in clinical settings.
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