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Background: Volumetric modulated arc therapy (VMAT) necessitates rigorous
pre-treatment patient-specific quality assurance (PSQA) to ensure dosimetric
accuracy, yet conventional manual verification methods encounter time and
labor constraints in clinical workflows. While deep learning (DL) models have
advanced PSQA by automating metrics prediction, existing approaches relying
on convolutional neural networks struggle to reconcile local feature extraction
with global contextual awareness. This study aims to develop a novel lightweight
DL framework that synergizes hierarchical spatial feature learning and
computational efficiency to enhance VMAT-delivered dose (VTDose) prediction.
Methods: We propose a hybrid architecture featuring a novel hierarchical fusion
framework that synergizes shifted-window self-attention with adaptive local-
global feature interaction. (termed "STQA"). Specially, strategic replacement of
Swin-Transformer blocks with ResNet residual modules in deep layers, coupled
with depthwise separable attention mechanisms, enables 40% parameter
reduction while preserving spatial resolution. The model was trained on
multimodal inputs and evaluated against state-of-the-art methods using
structural similarity index (SSIM), mean absolute error (MAE), root mean square
error (RMSE), and gamma passing rate (GPR).

Results: Visual evaluation of VTDose and discrepancy maps across axial, coronal,
and sagittal planes demonstrated enhanced fidelity of STQA to ground truth (GT).
Quantitative analysis revealed superior performance of STQA across all
evaluation metrics: SSIM=0.978, MAE=0.163, and RMSE= 0.416. GPR analysis

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2025.1640685/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1640685/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1640685/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1640685/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1640685/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1640685&domain=pdf&date_stamp=2025-09-18
mailto:zhangyun_1983@sohu.com
https://doi.org/10.3389/fonc.2025.1640685
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1640685
https://www.frontiersin.org/journals/oncology

Zhou et al.

10.3389/fonc.2025.1640685

confirmed clinical applicability, with STQA achieving 95.43%+3.41% agreement
with GT (94.63%+2.84%).

Conclusions: STQA establishes a paradigm for efficient and accurate VTDose
prediction. Its lightweight design, validated through multi-site clinical data,
addresses critical limitations in current DL-based PSQA, offering a clinically
viable solution to enhance radiotherapy PSQA workflows.

deep learning, Swin-Transformer, volumetric modulated arc therapy, pre-treatment
specific quality assurance, multimodal

1 Introduction

Volumetric modulated arc therapy (VMAT) has emerged as a
cornerstone of precision radiotherapy, achieving superior dose
conformity through synchronized dynamic multi-leaf collimator
(MLC) modulation and gantry rotation (1). While this technological
complexity enhances treatment plan quality compared to conventional
techniques, it simultaneously intensifies the demand for rigorous
verification of dose distribution authenticity and deliverability. Pre-
treatment patient-specific quality assurance (PSQA) remains an
essential clinical safeguard, strongly endorsed by the American
Association of Physicists in Medicine (AAPM) to ensure VMAT
dose accuracy and patient safety (2). Current clinical workflows
employ measurement devices such as diode arrays, ionization
chambers, and radiographic films to quantify discrepancies between
planned and delivered dose. However, conventional PSQA workflows,
which depend on physical measurements, are time-consuming and
labor-intensive. They delay treatment initiation and reduce the
efficiency of radiotherapy services (3).

Over the past decade, machine learning (ML) has driven
advancements in PSQA, particularly in gamma passing rate
(GPR) prediction. Early ML approaches, including Poisson
regression with Lasso regularization for binary classification (4,
5), regression/classification models for VMAT plans (6), artificial
neural networks (ANN) for dosimetry prediction (7), and feature-
engineered support vector machines (8, 9), demonstrated moderate
success but faced limitations in accuracy and clinical applicability
due to manual feature dependency. The emergence of deep learning
(DL) revolutionized this field through automated hierarchical

Abbreviations: VMAT, Volumetric modulated arc therapy; MLC, multi-leaf
collimator; PSQA, Patient-specific quality assurance; ML, Machine learning; DL,
Deep learning; VIDose, VMAT-delivered dose; CT, Computed tomography;
MRI, Magnetic resonance imaging; PET, Positron emission tomography; W-
MSA, Window Multihead Self-Attention; SW-MSA, Shifted Window Multihead
Self-Attention; LN, LayerNorm; BN, BatchNorm; CV, Computer Vision; CGAN,
CycleGAN; TrQA, TransQA; SWNet, Swin-UNet; SSIM, structural similarity
index; MAE, mean absolute error; RMSE, Root-mean-square error; GT,

Ground truth.
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feature extraction via convolutional neural networks (CNN). Key
innovations include CNN architectures for prostate cancer PSQA
(10, 11), transfer learning-enhanced VGG-16 models
outperforming domain-expert systems (12), fluence map-based
error detection frameworks (13), GANs for EPID-to-dose
conversion (14), and log file-informed fluence modeling (15-18).
By eliminating manual feature engineering and enabling end-to-end
prediction through raw data abstraction, DL methods have
significantly improved prediction accuracy and clinical utility
compared to traditional ML approaches, establishing a paradigm
shift in PSQA optimization.

Extensive studies have validated the potential of ML/DL models
in terms of predicting PSQA without performing real
measurements (4-18). However, critical analysis of existing
methodologies reveals three fundamental limitations requiring
attention for clinical implementation of ML/DL-based PSQA
models. Firstly, the predominant GPR evaluation paradigm fails
to establish quantitative relationships between spatial dose
distribution characteristics and validation outcomes, particularly
at anatomically complex sites. This limitation obscures detection of
subclinical dose deviations and provides insufficient spatial context
(e.g., failure point localization, clustered anomalies) for
comprehensive clinical assessment (19, 20). Secondly, most
models rely on 2D planar dose representations, inherently
incapable of capturing the 3D spatial modulation characteristics
intrinsic to VMAT’s dynamic delivery. This dimensional reduction
introduces systematic errors in dose carving pattern recognition.
Thirdly, while CNN excel at local feature extraction, their reliance
on downsampling operations sacrifices spatial resolution and local
detail preservation. The inherent locality of convolutional kernels
further restricts global contextual awareness and long-range spatial
relationships modeling - critical capabilities for holistic dose
distribution analysis.

The remarkable success of Transformers in natural language
processing (21) has spurred their adaptation to computer vision,
leveraging global self-attention mechanisms to overcome the local
inductive bias inherent in CNNs. Pioneering this shift, Kolesnikov
et al. developed the Vision Transformer (ViT) (22), achieving state-
of-the-art image recognition through patch-based sequence
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TABLE 1 Clinical characteristics of cancer patients enrolled in this study.

Characteristics Sample number  Percentage
Gender, no. (%)

Male 120 60.0%
Female 80 40.0%
Age (years)

<20y 15 7.5%
20y-60y 100 50.0%
>60y 85 42.5%
Cancer sites

H&N 38 19.0%
Chest 116 58.0%
Abdomen 46 23.0%

processing. Recent work by Zeng et al. (23) demonstrates a hybrid
network integrating Transformers with modified U-Net
architectures for predicting measurement-guided volumetric dose
in PSQA, enabling quantitative analysis of spatial dose differences
between predicted and clinical dose distributions. However,
subsequent studies reveal critical limitations of pure Transformer
architectures in vision tasks, particularly their inadequate local
feature extraction capabilities for dense predictions (24-27). This
limitation has motivated hybrid architectures combining CNN and
Transformer encoders through serial (e.g., TransUNet (28)) or
parallel (e.g., TransFuse (29)) configurations to synergize global
context modeling with local feature learning. Concurrently,
enhanced variants like Swin Transformer (30) incorporate
hierarchical shifted-window mechanisms, demonstrating superior
performance in pixel-level prediction tasks and advancing the
evolution of vision-specific Transformer architectures.

To address the critical limitations in existing PSQA
methodologies, we propose STQA (Swin Transformer-based
Quality Assurance) - a novel lightweight network that synergizes
hierarchical feature learning with adaptive global-local attention for
volumetric dose prediction in VMAT-PSQA. Departing from
conventional Transformer adaptations, our architecture
introduces three key innovations: 1) A depth-aware hierarchical
encoder-decoder framework employing parameter-shared shifted
window attention across scales, enabling efficient cross-resolution
feature interaction while preserving spatial fidelity; 2) A dual-path
feature extraction mechanism combining depth-wise separable local
attention with global context modeling through lightweight
transformer blocks, effectively capturing both fine-grained dose
carving patterns and long-range anatomical dependencies; 3)
Bottleneck-adapted skip connections with channel-wise excitation
modules that dynamically recalibrate multi-scale features during
spatial resolution recovery. Extensive experiments demonstrate
STQA’s capability to predict 3D dose distributions closely
matching actual VTDose, enabling patient-specific VTDose
acquisition. Our method not only demonstrates superior overall
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prediction performance but also consistently outperforms
comparative models across multiple cancer sites (head & neck,
chest, abdomen). Significantly, STQA achieves a 40% parameter
reduction versus Swin Transformer through depth-wise separable
attention in shallow layers, hierarchical parameter-shared window
processing, and bottleneck adapters within skip connections that
strategically compress and reactivate channels, thereby maintaining
performance while eliminating architectural redundancy.

2 Methods
2.1 Data collection and preprocessing

The study cohort comprised 200 patients treated with
volumetric modulated arc therapy (VMAT) between 2020 and
2024 (Table 1) in Jiangxi Cancer Hospital. The original dataset is
split into training (160), validation (20), and test set (20), which
contain 7731, 1045 and 1105 images, respectively. All computed
tomography (CT) simulations were performed using a Somatom
Confidence RT Pro CT scanner (Philips Healthcare, Best, the
Netherlands) with 2 mm slice thickness. To ensure precise target
delineation, coregistered diagnostic magnetic resonance imaging
(MRI) and positron emission tomography (PET) images were
integrated into the planning process by board-certified radiation
oncologists with >10 years’ experience in radiotherapy. VMAT
plans were generated using clinically validated treatment planning
systems: the Monte Carlo algorithm in Monaco (version 5.11,
Elekta AB) with a dose calculation grid of 2 mm. All plans were
optimized through multi-criteria iterative optimization to ensure
optimal target coverage while adhering to strict organ-at-risk dose
constraints. Finalized plans were delivered via 6 MV flattening
filter-free beams using an Elekta Infinity linear accelerator equipped
with a 160-leaf Agility multileaf collimator (MLC). Prior to
treatment, comprehensive quality assurance was performed using
the ArcCHECK-3DVH system (Sun Nuclear Corporation,
Melbourne, FL, USA), which underwent comprehensive
calibration procedures including validation array measurements,
beam modeling verification (gamma pass rate >95% at 3%/3 mm),
and dose reconstruction accuracy assessments.

To ensure spatial consistency across all data types, both the
measured and TPS-planned dose distributions were extracted
directly from DICOM RT Dose files and converted into 32-bit
floating-point arrays (3). These dose maps were then interpolated to
align with the coordinate system of the corresponding CT images
and resampled to a uniform grid resolution. Each 3D volume—
including CT, planned dose, and measured dose—was initially
represented as a matrix of size 512 x 512 x 150 pixels. Zero-
padding was applied during interpolation to preserve spatial
dimensions. To optimize computational efficiency and memory
usage, all images were down-sampled to a resolution of 256 x 256
x 150 prior to model input. Planned dose values were normalized to
the maximum dose value within each plan to facilitate stable
network training. The model outputs, which are generated in
normalized form, are subsequently denormalized back to absolute
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dose values in units of Gy by rescaling with the same reference
maximum dose. These final predictions are then formatted into
DICOM RT-Dose objects compatible with clinical systems,
enabling direct use in standard quality assurance procedures such
as gamma index analysis and DVH evaluation.

2.2 The overall network structure

The overall architecture of the STQA network proposed in this
study, as illustrated in Figure 1, incorporates targeted modifications
to the original Swin-UNet framework to better align with our dose
prediction objectives. To address the specific requirements of our
task and enhance computational efficiency, we implemented two
key architectural adjustments: first, replacing consecutive Swin
Transformer blocks at the bottleneck layer with final residual
network components of ResNet to capitalize on the inherent
advantage of residual blocks in maintaining feature extraction
capacity while mitigating computational complexity, while
preserving original image resolutions and feature dimensions;
second, strategically substituting both the loss function and

Planed VMAT dose

N

Patch Partition

10.3389/fonc.2025.1640685

optimization algorithm to facilitate stable training convergence
and improve task-specific adaptation. Crucially, STQA retains the
essential U-shaped configuration comprising four core components
- encoder, bottleneck, decoder, and skip connections - as visually
demonstrated in Figure 1, ensuring effective feature propagation
and multi-scale information integration throughout the
network architecture.

2.3 Swin-Transformer-based feature
extraction

The Swin Transformer architecture employs two distinct
attention mechanisms as its core feature extraction components:
the Window Multihead Self-Attention (W-MSA) module that
processes localized image regions through fixed window
partitioning, and the Shifted Window Multihead Self-Attention
(SW-MSA) module that enables cross-window information
exchange through strategic window shifting operations, with their
hierarchical arrangement and interaction patterns visually detailed
in Figure 2.
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FIGURE 1
Flow chart of the proposed STQA.
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SwinUNet utilizes Swin-Transformer layers for feature
extraction, Patch Merging and Patch Expanding layers for
downsampling and upsampling respectively and incorporates skip
connections inspired by U-Net to fuse encoder features in the
decoder.

2= w-MsA(IN()) + 2 ()
Z=MLP(IN(2)) +2' )

2 = sw-MsA(IN(2)) + 2 3)
= Mp(IN(271)) + 2 @)
Attention(@K,V) = sofivtax( v By (9

Vd

In Equations 1-4, 2" and 7' denote the outputs of the [ — th's (S)
W-MSA model and the MLP model respectively. In Equation 5, Q
KV e RMxd represent the query matrix, key matrix, and value
matrix respectively. M? represents the number of patches in a
window, while d denotes the dimension information of the query or
key matrix. Due to the fact that the axis values of relative positions

in the model are all within[-M+1,M+1], a smaller deviation matrix
(2M-1)x(2M+1)

, where B is the

needs to be parameterized as B € R

10.3389/fonc.2025.1640685

value fetched from B. In Swin Transformer blocks, the input data
first pass through a LayerNorm (LN) layer. LN here serves a similar
role to BatchNorm (BN) commonly used in Computer Vision (CV).
Both are designed to normalize the activations of the previous layer
to some extent to avoid the vanishing gradient problem. The
difference between LN and BN lies in the dimensions over which
normalization is computed. LN computes normalization across the
layer dimension, whereas BN computes it across the batch
dimension. In the field of NLP, the batch size of networks is
typically smaller than in CV, making BN less effective compared
to LN. Therefore, LN layers are commonly used in Transformers.
The formula for LN is shown in Equation 6.

x—E[x]
\/Var[x] + € 7

Where E[x] represents the mean of x and Var[x] represents the

+B (6)

variance of x. € is a very small number to avoid the possibility of
zero denominator, ¥ and f are learnable parameters.

After passing through the LN layer, it is input into the W-MSA
or SW-MSA layer. Compared to multi-head self-attention (MSA),
W-MSA saves a significant amount of computation by
independently computing each window. For an input image of
size (h,w), assuming each window contains patches of size MxM,
the computational complexity formulas for MSA and W-MSA are
given by Equations 7, 8 respectively.

Q(MSA) = 4hwC? + 2(hw)*C (7)

~Al+1

Y/

FIGURE 2

LN

MLP

I+1
z

(A) Structure of the standard transformer block. (B) Two consecutive Swin transformer blocks (renamed W-Trans block and SW-Trans block).
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Q(W — MSA) = 4hwC? + 2M*hwC (8)

W-MSA reduces computation but leads to a lack of information
communication between windows. To address this issue, SW-MSA
must be computed in subsequent blocks. Information interaction
between windows is achieved by shifting the windows down and to
the right by half the window size and then computing W-MSA
again for the shifted windows. Therefore, W-MSA and SW-MSA
need to appear in pairs. It is for this reason that the number of
blocks in Swin Transformer is typically even. In Swin-UNet, the
number of blocks in Swin Transformer is 2, comprising one W-
MSA block and one SW-MSA block. After passing through the W-
MSA layer or SW-MSA layer, followed by a BN layer, and finally a
multi-layer perceptron (MLP) for feature mapping, the final output
is obtained.

2.4 The proposed STQA

Swin-UNet demonstrates powerful capabilities in extracting
contextual information and restoring spatial resolution; however,
the convergence of transformer modules for image feature
computation in deep bottleneck sections remains suboptimal.
Considering the challenges of network parameterization as depth
increases, this paper proposes enhancements to the deep bottleneck
of Swin-UNet. Since the design of residual blocks in ResNet does
not reduce feature extraction capacity with increased network
depth, replacing two consecutive Swin Transformer blocks in the
bottleneck position with ResNet layers is a viable solution. ResNet
networks, primarily composed of multiple residual modules—a
popular structure in modern neural networks—address the
degradation issues caused by deepening layers, thus enabling

10.3389/fonc.2025.1640685

parameter computation even in thousand-layer networks. After
optimization and comparison, we adopt the final layer of the deep
ResNet network as the bottleneck of Swin-UNet to improve the
model’s predictive accuracy in quality assurance of preprocessing
patient-specific data, as illustrated in Figure 3; additionally, to
reduce parameter computation, 1x1 convolutions are employed
for dimensionality reduction on feature vectors.

As data features pass through the last layer of the ResNet deep
network, both image resolution and feature dimensions remain
unchanged. As shown in Figure 3, this layer comprises three
residual blocks, with each residual module consisting of a residual
block layer that includes two convolutional blocks, two BN layers,
and one ReLU activation. The improved Swin-UNet network
maintains the same encoder, bottleneck, and decoder components
as the original, but it replaces the Swin-UNet bottleneck with the last
layer of the ResNet network—resulting in nearly a 40% reduction in
network parameters while achieving better performance.

In the encoder, the image is first divided into patches using a
Patch Partition layer, and a linear embedding layer tokenizes the
data to produce a C-dimensional representation of size H/4 x W/4.
The divided blocks are then concatenated via a Patch Merging layer,
which reduces the patch resolution to half of the original; although
the merged features are initially four times the original dimension,
an additional linear layer is applied to unify the dimension to twice
the original. At the bottleneck, leveraging the advantage of ResNet’s
residual blocks that do not degrade in performance as the network
deepens, the fifth layer structure of ResNet is employed to overcome
the convergence issues of transformer blocks in deep networks, with
the input feature resolution set at W/32 x H/16 and remaining
unchanged. Finally, the Patch Expanding layer upsamples the
features by doubling the resolution while halving the feature
dimension until full-size resolution is restored, and the skip

Skip connection
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The proposed STQA network
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connections fuse multi-scale features from the encoder with the
upsampled features to mitigate spatial information loss caused by
downsampling. The algorithm flow of STQA is as follows: (see
Algorithm 1)

1: Data input

2: while ghas not converged do

3: fort=0,1,.ndo

4: Sample {R tdose;}",{CT;}", {Edose;}m — Pyta(H,W,2) a
batch from the dataset

5 Paata(H, W) — Pyara(H, W, C)

6: Patch partition(Pyata)

7: Linear embedding(Pyata)

8: Swin transformer (Pgata)

9: Patch merging(Pyata)

10: Conv(Pyata)

11: Patch exanding(Pyata)

12: Linear projection(Pyata)

13: ALY VL0851 (Pgata)

14: e—e+EptY

15: end for

16: endwhile
17: Output predicted VTDose distribution.

Algorithm 1. STQA.

2.5 Experiment setup

To validate the effectiveness of STQA predictions, we compared
our method with three established prediction networks using the
same test set: U-Net (31), CycleGAN (CGAN) (30), TransQA
(TrQA) (23), and Swin-UNet (SWNet) (30). The compared
methodologies are summarized as follows: (1) U-Net: A classical
encoder-decoder architecture recently adapted for dose prediction
tasks (31), demonstrating strong performance in medical image
analysis. (2) CGAN: An unsupervised framework proposed by Zhu
et al. (32) that employs dual generative adversarial networks with
cycle consistency, eliminating the requirement for paired training
data. (3) TrQA: A hybrid architecture integrating Transformer’s
self-attention mechanisms with enhanced U-Net structures,
specifically designed for VIDose prediction in PSQA (23). (4)
SWNet: A pioneering U-shaped network developed by Lin et al.
(30) that incorporates hierarchical Swin Transformer blocks in both
encoder and decoder pathways to improve medical
image segmentation.

For quantitative evaluation, we adopted three established
metrics: structural similarity index (SSIM), mean absolute error
(MAE), and root mean square error (RMSE). The experimental
dataset comprised paired radiotherapy planning data including CT
images, Planned dose distributions, and corresponding VIDose
ground truth (GT) maps, collected from multiple cancer patients.
To leverage multimodal information, we concatenated CT and
Planned dose images along the channel dimension as dual-
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channel inputs, preserving their distinct information
characteristics while providing complementary anatomical and
dosimetric features to the network. In addition, GPR analysis
serves as the most widely adopted methodology for comparing
measured and calculated dose distributions in PSQA for VMAT,
where the agreement level is typically quantified through GPR
metrics. To further evaluate the prediction accuracy across
different methods, we additionally compared the three-
dimensional GPR (3%/2mm criterion with a 10% threshold) of
various prediction approaches.

The proposed STQA architecture was implemented in PyTorch
and trained/tested on an NVIDIA GeForce RTX 3090 GPU with
16GB memory using CUDA-accelerated computation. We
employed the Adam optimizer with L1 loss as the primary
objective function, setting the initial learning rate to le-5 and
training for 200 epochs. To ensure fair comparison, all baseline
models were re-implemented using identical training protocols and
hardware configurations. The total training time for each model was
recorded as follows: U-Net: 28 hours, CGAN: 34 hours, TrQA: 41
hours, SWNet: 44 hours, and STQA: 38 hours. After training, each
model can generate a full 3D dose distribution within
approximately 5-7 seconds, demonstrating compelling inference
speed suitable for time-sensitive clinical settings.

Ablation studies were conducted to systematically evaluate key
architectural components and parameter settings in our framework.
The investigation comprised two main aspects: (1) Performance
comparison among three architectural variants: baseline Swin-
UNet, our full STQA model, and a hybrid Swin-UNet+ResNet
(SURNet) configuration with ResNet blocks directly cascaded at the
bottleneck layer. (2) Quantitative analysis of skip connection
configurations in STQA, where different numbers of cross-scale
connections (0-3) were tested. Specifically, 3 skip connections
represent full connections at 1/16, 1/8, and 1/4 resolution levels; 2
connections utilize 1/16 and 1/8 levels; 1 connection employs only
the 1/16 level, while 0 connections indicate complete removal of
skip connections. This systematic evaluation enables
comprehensive understanding of feature propagation mechanisms
in our proposed architecture.

3 Results

Table 2 presents the quantitative evaluation results across all
test cases. As demonstrated in Table 2, STQA achieves statistically

TABLE 2 Comparison of experiments based on STQA and other
prediction network models.

Method SSIM MAE(%) RMSE(%)
U-Net 0.788 0.608 0931
CGAN 0.891 0.419 0.867
TrQA 0.944 0251 0.646
SWNet 0.958 0.198 0.597
STQA 0978 0.163 0416
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significant improvements over U-Net and CGAN across all metrics.
When comparing STQA with the state-of-the-art methods TrQA
and SWNet, our method exhibits superior performance, particularly
in the RMSE metric, where STQA reduces the error to 0.416
compared to 0.646 for TrQA and 0.597 for SWNet. In terms of
structural similarity, STQA achieves an SSIM value of 0.978,
outperforming TrQA (0.958) and SWNet (0.944) by margins of
0.034 and 0.020, respectively.

For enhanced visual comparison across methodologies, Figure 4
presents representative predicted dose distributions spanning three
anatomical regions (head & neck, chest, abdomen) in axial, coronal,
and sagittal orientations. Visual inspection of Figure 4 demonstrates

10.3389/fonc.2025.1640685

that U-Net and CGAN underperform relative to the comparative
methodologies, with U-Net exhibiting the most pronounced
prediction inaccuracies. The VTDose maps indicate that STQA
generates predictions with enhanced dose fidelity, a finding further
supported by comprehensive analysis of dose difference maps.
Comparative evaluation of discrepancy distributions reveals that
Transformer-based models (TrQA, SWNet, and STQA) exhibit
significantly reduced deviations compared to conventional
approaches. Notably, STQA achieves minimal dose discrepancies
across all clinical cases, outperforming other Transformer-based
counterparts in maintaining alignment with GT dose distributions.
To assess local dose accuracy, we computed mean absolute errors

GT

U-Net

CGAN

e ™
. 3

TrQA

SWNet

ﬂ-E! BERT
BEORONERE

BERBRERT

20 15 10

FIGURE 4

-5 -15 -20

Quialitative analysis of predicted VTDose distributions (in Gy) across methodologies. Dose distributions are visualized for head & neck (columns 1-3),
chest (columns 4-6), and abdominal (columns 7-9) cases. Rows 3, 5, 7, 9, and 11 demonstrate dose discrepancy maps between GT and predicted
results. Anatomical plane assignments follow: columns 1/4/7 display axial dose distributions, columns 2/5/8 depict coronal plane mappings, and

columns 3/6/9 correspond to sagittal plane patterns
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for Dmean and Dmax in critical OARs including the spinal cord
and parotid glands. STQA achieved errors of 1.08 + 1.21 Gy and
1.14 *+ 0.67 Gy, respectively, outperforming all baselines, followed
by SWNet and TrQA, UNet has the worst. This performance
advantage suggests STQA’s superior capability in preserving
dosimetric details while ensuring spatial consistency with GT.

To evaluate the predictive performance of each network for
specific cancer sites, tests were conducted separately based on three
major cancer sites (head & neck, chest, abdomen), and the results of
each method were compared as shown in Table 3. From the
comparison across the three metrics, all methods exhibited better
dose prediction results for the chest than the other two sites. This
may be due to the simpler structure of the thorax compared to the
other two sites and the fact that chest patients accounted for the
largest number (116, 58%), making it easier for the network to
extract features. Additionally, the prediction accuracy of abdominal
patients is slightly better than that of head and neck patients, which
is likely due to the small number of head and neck patients and the
complex anatomical structure. Despite the imbalanced distribution
of cancer sites, stratified sampling during data splitting helped
mitigate bias, and STQA consistently outperformed baselines
across all sites. Overall, STQA achieved the best predictive
accuracy across all three cancer sites. This indicates that the
STQA network demonstrates the best performance across various
shapes and texture differences. Furthermore, the GPR analysis
revealed distinct performance differences among models: The U-
Net model achieved suboptimal GPR results (98.54 + 3.42%),
showing statistically inferior performance compared to other
methods. In contrast, STQA demonstrated the closest agreement
with GT measurements, yielding GPR values of 95.43 + 3.41%
versus the GT baseline of 94.63 + 2.84%. Intermediate performance
was observed for CGAN (98.22 + 2.74%), TrQA (96.91 + 4.16%),
and SWNet (96.20 + 3.65%), all showing comparable GPR
outcomes. The mean errors between the GPR of the VI Dose and
the predictions were 4.24% for the U-Net, and 3.42%, 2.52%, 1.77%,
1.1% for CGAN, TrQA and STQA, respectively.

Table 4 illustrates the ablation experiment of the performance
differences among different model architectures. In the comparison
of parameter quantities among the three structural models, we
observed that replacing the bottleneck of the original Swin-UNet
with ResNet’s network layers (STQA) resulted in a reduction of

TABLE 3 Comparison of model performance across different cancer
sites.

SSIM
H&nN/

MAE(%)

H&N/
abdomen/

RMSE(%)

H&n/
abdomen/

Method
abdomen/

10.3389/fonc.2025.1640685

TABLE 4 Comparison of performance and parameters among different
model architectures.

Method SSIM MAE(%) RMSE(%) Model_size
SWNet | 0951+0.5e-3  0.188+0.05 ‘ 0.587+0.24 98.1MB
STQA 0982+0.5¢-3  0.1600.04 ‘ 0.418+0.31 452MB
SURNet | 0.988+0.4e3  0.155+0.02 ‘ 0.394+0.14 105.4MB

nearly 40% in the memory footprint of the trained model files.
Additionally, STQA exhibited a reduction of almost 50% in model
file memory compared to SWNet. This indicates that the STQA
architecture not only reduces redundant parameters and has a
smaller time complexity but also slightly improves performance.
While the SURNet model exhibits the best performance, its deeper
network structure leads to larger model parameter quantities and
higher time complexity. Therefore, considering all factors, we
believe that the STQA structure demonstrates the optimal
performance. Table 5 demonstrates the impact of the number of
skip connections in the network on its performance (ablation
experiment 2). We observed that the neural network exhibited the
highest predictive accuracy when having 3 skip connections. This is
likely because an appropriate number of skip connections can
effectively integrate features from different layers, enhancing the
network’s ability to capture multi-scale information. Too few skip
connections may not fully utilize the feature hierarchy, while too
many could introduce unnecessary complexity and potential
overfitting. Therefore, in this study, we default the number of
skip connections to be 3, as it strikes a balance between feature
integration and model complexity, leading to optimal performance.

4 Discussion

Artificial intelligence, particularly deep learning (DL)
techniques, has found extensive application in multiple facets of
radiotherapy treatment planning and delivery, such as tumor target
delineation (33), adaptive radiotherapy plans (34), 3D dose
prediction (23), and PSQA (35). Accurate and rapid
implementation of quality assurance processes for patients’
radiotherapy treatments can assist physicists in patient care. In
terms of methods, compared to CNN networks, DL networks based
on Transformers lack some important inductive biases (e.g., locality
and translation equivariance), making their training heavily reliant
on large-scale datasets and pre-trained models. However, due to the

TABLE 5 Impact of the number of skip connections on network
performance.

chest chest chest
U-Net | 0.782/0.816/0.821 0.522/0.513/0.505 0.865/0.841/0.822 Skip connection MAE(%) RMSE(%)
CGAN  0.892/0.898/0.901 0.419/0.400/0.381  0.848/0.826/0.805 0 0.815 3256 8.032
TrQA 0.948/0.954/0.966  0.250/0.245/0.225 | 0.637/0.632/0.5724 1 0.641 1.577 ‘ 3412
SWNet  0.964/0.967/0.971  0.195/0.186/0.162 | 0.583/0.577/0.468 2 0.957 0.193 ‘ 0543
STQA  0.980/0.984/0.985  0.159/0.152/0.145  0.411/0.408/0.365 3 0977 0.168 ‘ 0.444
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lack of large-scale and well-annotated datasets, the development of
DL in the field of medical imaging lags behind that of natural image
processing. In particular, there have been few studies applying
Transformers to the field of radiotherapy quality assurance.
Recently, Hu et al., proposed a U-shaped network called
TrDosePred (36), which consists of convolutional patch
embedding and several Transformer blocks based on local self-
attention. This network aims to generate dose distributions from
contour CT images. The dose score on the test dataset was 2.426 Gy,
and the DVH score was 1.592 Gy. The results demonstrate that the
performance of TrDosePred is comparable to or even better than
previous state-of-the-art methods, proving the potential of
Transformers in improving treatment planning processes.

In this paper, we aim to obtain global contextual information
from radiotherapy volume images to improve the accuracy of
VMAT quality assurance. We innovatively improved the Swin-
UNet architecture to construct the STQA network, making the
network suitable for handling radiotherapy planning data.
Specifically, we modified the loss function and optimizer for
training the network to L1 loss and Adam, respectively.
Moreover, to explore optimal network training, we attempted to
train the network using a combination of two loss functions, L1 and
L2, with weighted allocation. Most importantly, we replaced two
consecutive Swin Transformer modules between the downsampling
and upsampling layers of the Swin-UNet network with ResNet
layers to overcome the problem of feature extraction degradation
due to network depth, thereby improving performance. The
inherent properties of Transformers allow them to handle feature
representations at a stable and relatively high resolution, accurately
meeting the demands for finer-grained and globally consistent
predictions in dense prediction tasks. Compared to other state of
the art models, we applied Transformer-based DL methods to the
VTDose prediction task and achieved better accuracy. This further
demonstrates the outstanding achievements of Transformers in
medical imaging compared to traditional CNN networks, helping
to narrow the development gap between medical imaging DL and
natural image processing.

Visual comparisons through representative predicted VTDose
distributions reinforce these quantitative findings. STQA’s VIDose
maps show superior fidelity. The dose difference maps further
substantiate this, with STQA exhibiting minimal discrepancies
across all cases, especially in high-dose regions and critical
anatomical structures. This is particularly important as these
areas are often the most challenging to predict accurately due to
their complexity and the potential consequences of dosing errors.
Tables 2-4 demonstrate that our proposed STQA framework
achieves state-of-the-art performance in VTDose prediction
across multiple evaluation dimensions. Compared to existing
Transformer-based methods (TrQA and SWNet), STQA reduces
RMSE by 35.6% and 30.3%, respectively, while improving SSIM by
3.6% and 2.1% over these benchmarks. These advancements almost
align with the performance gains reported in recent studies utilizing
hybrid architectures for medical image analysis (30). The 16.6-
25.3% improvement in SSIM and 18.5-69.5% reduction in MAE for
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these challenging cases suggests that our multi-scale skip
connection strategy and hybrid bottleneck design effectively
capture both global contextual relationships and local texture
details—a capability not fully realized in pure Transformer
architectures (23). The ablation studies further validate STQA’s
architectural innovations. The 40-50% reduction in model memory
footprint compared to SWNet, while maintaining competitive
accuracy, resolves a key practical limitation of Transformer-based
models. Although SURNet achieved marginally higher SSIM values
(0.988 vs. STQA’s 0.982), its 2.3x greater parameter count and
longer inference time render it clinically impractical. Our results
thus suggest that STQA successfully balances computational
efficiency with prediction accuracy.

Due to the inherent constraints associated with patient data and
DL networks, certain discrepancies between predicted and
measured results are unavoidable. Addressing these discrepancies
in the future involves augmenting the dataset size or refining DL
networks through optimization. The patients in the dataset used in
this work come from multiple sites, but they are mixed for both
training and testing, rather than having one set for training and
another for external testing. Since data from different centers may
exhibit significant differences, it can affect the effectiveness of
training. In the future, balancing data processing or increasing
patient data volume will further improve prediction accuracy.
However, it is worth noting that while incorporating multi-
institutional data could further improve the model’s
generalizability by capturing a broader range of anatomical and
dosimetric variations, the present study utilized data from a single
institution to ensure consistency in imaging and treatment
protocols. The inherent rarity and heterogeneity of medical data
pose significant challenges to assembling large, diverse multi-center
datasets. The predominance of chest cases may introduce a bias
toward simpler anatomies, though our model still performed well
on more complex sites. Future work will aim to collect a more
balanced dataset across cancer sites and institutions. While we did
not separately compute voxel-level sensitivity/specificity for
gamma-fail classification, operating directly on volumetric
VTDose provides the spatial observability required for fail-voxel
localization and post-hoc gamma-map synthesis; we plan to report a
dedicated voxel-wise gamma-fail analysis in future work. Finally,
the model still suffers from time complexity, and we will strive to
reduce the model’s time complexity in future work.

In conclusion, this study proposes a new framework termed
STQA for VMAT quality assurance, demonstrating superior
performance compared to existing models. To strengthen the
model’s generalization capacity and convergence properties, we
innovatively integrated a ResNet layer into the network’s
bottleneck to enhance feature extraction capabilities while
adopting advanced loss functions and optimization strategies.
Comprehensive validation conducted on VMAT-treated cancer
patient datasets revealed that STQA achieves state-of-the-art
performance in both global dose distribution prediction and edge
dose accuracy across various tumor sites. This successful
implementation not only addresses critical challenges in VMAT
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quality assurance but also paves the way for effective integration of
deep learning across medical domains, potentially inspiring novel
methodological developments in medical artificial intelligence.
From a clinical integration perspective, STQA demonstrates
practical feasibility. The average inference time for a full 3D dose
prediction is approximately 5-7 seconds on an NVIDIA RTX 3090
GPU, which is compatible with routine QA workflows. The model
can be deployed as a standalone application or integrated into
existing treatment planning systems via a standardized DICOM RT
Dose interface. Future work will focus on user interface
development and real-time validation in clinical settings.
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