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Objectives: This study aimed to develop and evaluate a deep learning model for
predicting molecular subtypes of breast cancer using conventional mammography
images, offering a potential alternative to invasive diagnostic techniques.
Methods: A retrospective analysis was conducted on 390 patients with
pathologically confirmed invasive breast cancer who underwent preoperative
mammography. The proposed DenseNetl21-CBAM model, integrating
Convolutional Block Attention Modules (CBAM) with DenseNet121, was trained
and validated for binary (Luminal vs. non-Luminal, HER2-positive vs. HER2-
negative, triple-negative vs. non-TN) and multiclass (Luminal A, Luminal B, HER2
+/HR+, HER2+/HR—, TN) classification tasks. Performance metrics included AUC,
accuracy, sensitivity, specificity, and interpretability via Grad-CAM heatmaps.
Results: The model achieved AUCs of 0.759 (Luminal vs. non-Luminal), 0.658
(HER2 status), and 0.668 (TN vs. non-TN) in the independent test set. For multiclass
classification, the AUC was 0.649, with superior performance in distinguishing
HER2+/HR- (AUC = 0.78) and triple-negative (AUC = 0.72) subtypes. Attention
heatmaps highlighted peritumoral regions as critical discriminative features.
Conclusion: The DenseNet121-CBAM model demonstrates promising capability
in predicting breast cancer molecular subtypes from mammography, offering a
non-invasive alternative to biopsy.

KEYWORDS
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1 Introduction

Despite the decline of death rate in recent years through earlier detection and
advancement in treatment, breast cancer remains ranking second in cancer-related
mortality among women worldwide and the leading cause of cancer death in Black and
Hispanic women (1). In order to achieve personalized precision medicine, it is essential to
crystallize molecular subtype before starting treatment, guiding physicians to tailor
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treatments and inform patients of their prognosis. Since the latest
St. Gallen International Consensus Conference (2023), the
molecular classification of invasive breast carcinoma has been
divided into four main subtypes based on the expression of
immunohistochemical markers, including estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2) and Ki-67, which is an indicator of cell
proliferation (2). Different molecular subtypes lead to disparate
prognosis, and the recommended treatment strategy for each
molecular subtype is also different. For example, patients with
Luminal A breast cancer often have a good prognosis, and
postoperative endocrine therapy alone is sufficient to inhibit
tumor recurrence and metastasis for part of them. Whereas Triple
Negative breast cancers are very aggressive, chemotherapy and
novel targeted drugs are the only means for both neoadjuvant
therapy and adjuvant therapy. Besides, HER2 positive breast
cancers have their specific targeted therapies which have been
updated over years (3).

However, the process of detecting the molecular subtypes
remains quite expensive and time-consuming at present. Firstly, a
tumor biopsy is needed, which may cause several possible
complications, such as hemorrhage, infection (4) or even needle
tract metastases with low possibility (5). In order to further describe
tumor characterization, multigenetic assay represented by Oncotype
DX, microRNA sequencing and proteomics are also necessary (6).
Even so, error on the technique procedure and the heterogeneity of
the tumor are inevitable, more tools are needed to comprehensively
and efficiently excavate the molecular feature of breast cancer.

Certain mutations, as well as the status of ER, PR, and HER?2,
are widely utilized in diagnostic practices across many countries.
These parameters hold significant prognostic value in the disease
and demonstrate correlations with mammographic findings. As a
widespread and non-invasive examination method, mammography
can display the overall characteristic information of the tumor, and
describe the tumor microenvironment which can’t be fully provided
by needle biopsy. A significant correlation was observed between
the enzymatic activities of LDH and CAT in tumor tissue and
mammographic characteristics (7). Patients exhibiting high
mammographic density demonstrated significantly elevated
pSTAT3 tumor expression levels compared to those with low
mammographic density (8). Among hormone receptor-negative/
HER2+ patients, mammography demonstrated the highest
prevalence of calcifications, predominantly manifesting as
pleomorphic or branching calcifications (9). Moreover, previous
studies had demonstrated that tumor shape, microcalcifications and
margin characteristics are strongly correlated with molecular
subtype (10, 11), suggesting the possibility of predicting breast
cancer molecular subtype by mammogram.

With advances in computer algorithms, major breakthroughs
have been made in the recognition and analysis of medical images by
artificial intelligence, turning the above assumption into reality. Zhu
et al. (12) distinguished two classifications of immunohistochemical
results using contrast-enhanced mammography (CEM) based on
selected radiomics features and support vector machine classifier.
The binary classification capability of the model in the external test
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was satisfactory with AUC between 0.69 to 0.83. Deng et al. (13)
aimed to predict HER2-positive status by manually extracting
quantitative radiomics features and using Gradient Boosting
Machine as classifier, which achieved an AUC of 0.702 in the
external validation cohort. Considering the limitation of the
radiomics approaches, which limits tumor analysis to handcrafted
features, few studies were conducted using deep learning methods.
Qian et al. (14) used an end-to-end learning convolutional neural
network to do biomarker status prediction on CEM. However, there
was no external verification, and the deep learning model performed
best in HER2 status prediction with an AUC of 0.67 while the
accuracy dropping to 60%.

There are three main limitations to the mentioned studies:
firstly, CEM equipment is relatively high-end which has not been
popularized in primary hospitals. Secondly, manually feature
extraction probably miss important information in the
mammogram, more deep information can be extracted by neural
networks. Thirdly, the absence of interpretability failed to visualize
the deeper features extracted by the model. In this paper, we will
take above limitations into account, building a deep learning model
to predict different molecular subtypes of breast cancer based on
conventional mammography images. Our study includes testing
classification strategies (both binary and multi-category) and
model interpretation.

2 Patients and methods

2.1 Patients

The institutional review board of Beijing Chaoyang Hospital
affiliated to Capital Medical University granted approval to this
study (approval code: 2022-4-19-1). We retrospectively analyzed
data from pathologically confirmed breast cancer (BC) patients who
received preoperative mammography from January 2018 to
December 2023. The molecular subtyping into five categories was
determined according to the St. Gallen International Consensus
Conference 2023 criteria, based on immunohistochemical analysis
of postoperative pathological specimens.

The detailed inclusion criteria were as follows: 1) they were
diagnosed with primary invasive breast cancer by histological
examination, 2) their molecular subtypes were determined by
postoperative histopathological examination (gold standard), and
3) their preoperative mammographic imaging (CC or MLO views)
exhibited a macroscopically detectable tumor mass. The exclusion
criteria included the following: 1) with inflammatory breast cancer,
bilateral or pathologically heterogeneous lesions, 2) history of
radiotherapy, chemotherapy or anti-HER2 therapy, 3) their
clinical information was incomplete, 4) they underwent invasive
procedures including biopsy or surgical resection within a week
before mammography. A total of 390 BC patients with
mammographically visible lesions were enrolled for analysis. The
patient recruitment workflow is shown in Supplementary Figure 1.
Complete clinical characteristics of all enrolled patients are
provided in Supplementary Data 1.
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2.2 Data preprocessing

The mammographic images were acquired using the Hologic
full-field digital mammography system with a spatial resolution of
7 Ip/mm. All images were stored in DICOM format. In order to
reduce heterogeneity between observers, two qualified radiologists
independently examined and annotated all identifiable tumor
areas in each CC or MLO images (by ITK-SNAP Software)
while remaining unaware of patient information. We extracted
the annotated tumor regions as the regions of interest (ROIs).
Considering the potential influence of peri-tumoral background
signals on molecular subtype prediction, we expanded each ROI
outward by a specified pixel value (bound size) and subsequently
adjusted them to square dimensions(224x224 pixels). Examples of
the original and scaled images are shown in Supplementary
Figure 2. We employed simple random oversampling to address
class imbalance in the dataset. The study collected a total of 762
eligible mammography images from 390 patients. For the Luminal
binary classification (Luminal: 501 images; non-Luminal: 261
images), the oversampling rate was set at 1.3. The TNBC binary
classification (TNBC: 104 images; non-TNBC: 658 images) used
an oversampling rate of 1.7. For the HER2 binary classification
(HER2 positive: 157 images; HER2 negative: 605 images), the
oversampling rate was established at 1.5. In the five-class
classification (Luminal A: 200 images, Luminal B: 301 images,
HER2+/HR+: 107 images, HER2+/HR-: 50 images, TNBC: 104
images), we applied an oversampling rate of 1.5. Data
augmentation through geometric transformations was further
employed to increase sample diversity and improve model
generalizability, including: random horizontal flipping (with a
50% probability), vertical flipping (also with a 50% probability),
random rotation within a range of +20° as well as random
horizontal shearing transformations with an angular range
of +10°.

2.3 Deep learning model development

Our proposed DenseNet-CBAM deep learning architecture was
designed to classify mammography images into breast cancer
molecular subtypes. The study comprised three binary
classification tasks (Luminal vs non-Luminal, triple-negative (TN)
vs non-TN, HER2-positive vs HER2-negative) and one multiclass
classification task (Luminal A, Luminal B, HER2-positive/hormone
receptor-positive (HER2+/HR+), HER2-positive/hormone
receptor-negative (HER2+/HR-), TNBC).

2.3.1 Feature extraction

Through comparative experiments with various convolutional
neural network (CNN) architectures—including but not limited to
Simple CNN, ResNet101, DenseNet121, MobileNetV2, MOB-
CBAM (MobileNet-V3 integrated with CBAM), and ViT-B/16—
DenseNet121 was ultimately selected as the backbone network for
our proposed algorithm. Since mainstream CNN models are
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typically pretrained on three-channel (RGB) input images
whereas mammography images are single-channel grayscale, our
algorithm proposed a channel-adaptive pretrained weight
allocation strategy to better leverage pretrained weights for
classification guidance. The channel-adaptive pretrained weight
allocation strategy adapts ImageNet (3-channel) pretrained
weights to single-channel medical images by averaging the
weights across the three input channels.

2.3.2 CBAM

Inspired by MOB-CBAM’s implementation of channel
attention mechanisms, we enhanced DenseNetl121 by integrating
Convolutional Block Attention Modules (CBAM) after its first three
dense blocks. CBAM, originally proposed by Woo et al. (15),
sequentially applies channel and spatial attention weights to
amplify critical features while suppressing less informative
regions. In Channel Attention Module (CAM), the input first
undergoes global average pooling to generate a channel descriptor
vector. This vector is then transformed by a multilayer perceptron
(MLP) to produce channel attention weights, which are normalized
to the range [0, 1] via a sigmoid function. Notably, in the
DenseNet121-CBAM architecture, the MLP is implemented using
two 1x1 convolutional layers, compressing the spatial dimensions
of each channel to 1x1, with ReLU as the activation function. In
Spatial Attention Module (SAM), the channel attention weights are
multiplied with the original input, and the result is processed
through a convolutional layer to generate spatial attention
weights. These weights are then normalized to [0, 1] using a
sigmoid function. In this study, a convolutional layer with a
kernel size of 7 is specifically employed in SAM. This
architectural modification yields our proposed DenseNetl21-
CBAM model, which demonstrates improved feature
representation capacity and generalization performance.

2.3.3 Model training and testing

We randomly divided the mammogram ROI patches into
training cohort and independent test cohort with the ratio of 4:1.
A 5-fold cross-validation scheme was implemented on the training
cohort, wherein the training cohort were randomly partitioned into
5 mutually exclusive subsets (folds). In each iteration, 4 folds were
combined for training while the remaining fold served as validation.
Model performance was ultimately assessed by aggregating results
from all 5 validation cycles. We used the fold with the highest AUC
to represent the model’s optimal performance. During model
training, we observed that the performance peaked at a bound
size of 100. Therefore, we set the bound size to 100 in our
DenseNet121-CBAM model. We employed AdamW (16) as the
optimizer and implemented Cosine Annealing schedule (17) for
learning rate adaptation. The detailed model configuration and
hyperparameters are as follows: Initial learning rate: 0.0001; Loss
function: Cross-entropy loss; Batch size: 8; Momentum: 0.9; Weight
decay: 0.005; Dropout rate: 0.3; Number of training epochs: 300.
The structure of the proposed DenseNet121-CBAM model is shown
in Figure 1.
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2.4 Interpretability of deep learning model

We visualized the important regions that were more associated
with molecular subtypes. For input images, we generated and visualized
activation maps from each convolutional layer to elucidate how the
model progressively extracts hierarchical features (such as edges,
textures and shapes). Utilizing Gradient-weighted Class Activation
Mapping (Grad-CAM) (18), we localized class-discriminative regions
by computing gradient-weighted spatial importance. The Grad-CAM
visualization was implemented using the pytorch_grad_cam library
with five key components: (1) Dynamic target layer selection via
recursive traversal of model architecture using dot-notation; (2)
Standardized image preprocessing including resizing (224x224),
ImageNet normalization, and single-to-three channel conversion; (3)
Heatmap generation through gradient-weighted class activation
mapping from specified convolutional layers; (4) Visualization by
superimposing grayscale heatmaps on original images to highlight
decision-relevant regions; (5) Systematic output generation saving
high-resolution comparative visualizations with prediction metadata.
The resulting grayscale heatmap was superimposed onto the original
image, producing an attention map that visually highlights the model’s
focal regions during classification decisions.

We have publicly released the full source code (https://github.
com/LemonWeilll/molsub), including detailed documentation
(README) for replication.

Trained model weights can be seen in: https://drive.google.com/
drive/folders/1rY1IdK579H_BmYjJNUrBdBW Uenpg89E_k?
usp=sharing.

Anonymized original data examples (https://drive.google.com/
drive/folders/1aV]jBz9f3nkS-HtQ3xevpfWhtnHUafi2?usp=
sharing) and full preprocessed datasets (https://drive.google.com/
drive/folders/1E_zJ66rPS6bFNrO_sTY7tFTXe6 WZIEkn?usp=
sharing) were provided.

2.5 Statistical analysis

The SPSS software was utilized for statistical analysis in the
study. For normally distributed continuous variables, one-way
ANOVA (for normally distributed data with equal variance, e.g.
Age) or Kruskal-Wallis tests (when these assumptions were
violated, e.g. Number of lymph node metastasis) were performed
to compare means between different molecular subtype groups.
Categorical variables (e.g. Clinical stages, Nerve invasion, Vascular
invasion, Ki67) were analyzed using Pearson’s chi-square tests when
all expected cell frequencies were>5; otherwise, likelihood ratio chi-
square tests were employed (e.g. T grade, N grade). The
implementation utilized PyCharm (Python 3.10) as the integrated
development environment and PyTorch 2.5.1 as the deep learning
framework. All computational tasks were accelerated using an
NVIDIA GeForce RTX 3090 GPU deployed on a remote server.
To evaluate the performance of DenseNet121-CBAM, we employed
accuracy (ACC) and the area under the receiver operating
characteristic curve (AUC-ROC) as primary metrics. DeLong’s
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test and McNemar’s test were used to compare model
performance (AUCs and ACC) across tasks and architectures.
The other measurements like sensitivity (SENS), specificity
(SPEC), positive predictive value (PPV), and negative predictive
value (NPV) were also used to estimate the model performance.
P-value <0.05 was considered statistically significant.

3 Results
3.1 Clinical characteristics

A total of 390 BC patients with mammographically visible
lesions were enrolled for analysis, stratified by molecular subtype
as follows: Luminal A (n=102), Luminal B (n=155), HER2-positive/
HR-positive (n=54), HER2-positive/HR-negative (n=27), and TN
(n=52). Among the comparisons of the five molecular subtypes, age
(F = 4.639, Partial ° = 0.046, p = 0.001), number of lymph node
metastases (H = 12.147, Partial n° = 0.021, p = 0.016), vascular
invasion status (¥2 = 11.968, Cramer’s V = 0.175, p=0.018), and Ki-
67 expression (y2 = 369.032, Cramer’s V = 0.688, p<0.001) showed
statistically significant differences. After Bonferroni correction for
p-values, a significant difference was only observed between the age
of Luminal A and HER2+/HR+ subtypes (adjusted p < 0.05). As for
number of lymph node metastases and vascular invasion, none of
the pairwise comparisons between molecular subtypes showed
significant differences after Bonferroni correction (all adjusted p >
0.05). Tumor T grade, N grade, clinical stages, and presence of
neural invasion were not associated with molecular subtypes.
Detailed clinical characteristics of the patients are presented in
Table 1. All patients were randomly divided into training set
(n=312) and an independent test set (n=78) at a 4:1 ratio. Five-
fold cross-validation was applied to the training set, reserving one
fold (20%) for validation.

3.2 Convolutional neural network model
selection

Evaluating the three binary classification tasks and one
five-class classification task collectively, DenseNet121-CBAM
demonstrated superior performance over both MOB-CBAM and
Simple CNN in both validation set and independent test set, as
detailed in Supplementary Figure 3. Furthermore, considering other
DenseNet121-based structure, we compared DenseNet121-CBAM
with DenseNet121-pre, DenseNet121-tcAta, and DenseNet121. The
results demonstrated that DenseNet121-CBAM achieved optimal
performance among the compared models, with the most stable
AUC outputs across different dataset partitions, and either
DeLong’s test (for AUC comparison) or McNemar’s test (for
accuracy comparison) yielding P-value <0.05 in all pairwise
comparisons. Therefore, we selected DenseNet121-CBAM as the
final model for our experiment. Detailed results are provided in
Supplementary Figure 4.
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Architecture of the DenseNet121-CBAM model for predicting molecular subtypes from mammography images.

3.3 Prediction value of DenseNet121-CBAM
between different molecular subtypes

Our study initially performed model training and validation on
three binary classification tasks: Luminal vs non-Luminal subtypes,
HER2-positive vs HER2-negative status, and TN versus non-TN
breast cancer. Results from the independent test cohort demonstrated
that DenseNet121-CBAM achieved optimal performance in
distinguishing Luminal from non-Luminal subtypes, with an
optimal AUC of 0.7592 (Mean AUC + standard deviation over 5-
fold cross-validation: 0.6979 + 0.0416). The corresponding ROC
curve is presented in Figure 2A. Furthermore, the model exhibited
specificity (SPEC) and negative predictive value (NPV) exceeding
70%, along with accuracy (ACC) and sensitivity (SENS) surpassing
60%, confirming its robust discriminatory capability for Luminal-
type breast cancer classification. The detailed statistical results are
summarized in Table 2.

In the two binary classification tasks of TN vs non-TN and
HER2-positive vs HER2-negative breast cancer, the model achieved
optimal AUC values exceeding 0.65 in the independent test cohort
(Mean AUC + standard deviation over 5-fold cross-validation:
0.6209 + 0.0588 and 0.6344 * 0.0383), with corresponding ACC
0f 0.769 and 0.697, respectively. The corresponding ROC curves are
presented in Figures 2B, C. Furthermore, we evaluated the
performance of the DenseNet121-CBAM model in a five-class
classification task encompassing the following molecular subtypes
of breast cancer: Luminal A, Luminal B, HER2+/HR+, HER2+/HR—
and TN. The detailed statistical results are summarized in Table 3.
The results demonstrated that the model attained an optimal AUC
of 0.6494 in the independent test set (Mean AUC * standard
deviation over 5-fold cross-validation: 0.6219 + 0.0236),
indicating moderate discriminative capability among these
subtypes. The ROC curves for each molecular subtype are
collectively presented in Figure 3. The model demonstrated
relatively poor discrimination for Luminal subtypes, while
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showing better performance in distinguishing HER2+/HR- and
TN subtypes, with AUC values of 0.78 and 0.72, respectively.

3.4 Interpretability of DenseNet121-CBAM
model

We employ visual attention heatmaps to highlight the most
salient regions in each convolutional layer, demonstrating how our
DL model progressively focuses on the tumor from the original
input image. As shown in Figure 4, the heatmap identifies critical
regions with red patches, while blue areas indicate non-salient
regions. Notably, in the five-category classification task, the model
demonstrated superior discriminative performance for TNBC and
HER2+/HR- subtypes. Attention heatmap analysis of select TNBC
and HER2+/HR-mammograms revealed predominant activation at
the tumor periphery (peritumoral stroma), suggesting the potential
existence of subvisual tumor-associated characteristics, including
peritumoral immune microenvironment alterations. This
observation merits further histopathological validation.

Comparative visualization for each binary classification task is
provided in Supplementary Figure 5. As shown in Supplementary
Figures 5A, B, the model’s attention for TN subtypes appears more
dispersed compared to non-TN cases, which aligns with clinical
observations of TN tumors—typically exhibiting irregular
morphology, crab-like infiltration, and spiculated margins. This
suggests that the key discriminative features for TN classification
may reside primarily in the tumor periphery rather than the core
region. Supplementary Figures 5C, D shows Luminal cases exhibit
centripetal attention patterns (model’s attention originates from edge
to core), implying central tumor features may drive Luminal
classification, unlike TN’s edge-dependent signatures. Discrepancies
in model attention localization between CC and MLO projections for
HER2+ cases (vs. TN’s consistent edge-predominant pattern) may
indicate HER2 tumor heterogeneity (Supplementary Figures 5E, F).
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TABLE 1 Patients clinical characteristics.
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Triple-
o umina umina isti
Clinical features +(HR+) cancer Statistical va'lue and
effect size
(TN)
(n=102) (n=155) (n=54) (n=52)
Age (mean + SD) 65.12 + 1238 61.52 + 11.44 | 56.85 + 1256 = 63.33 + 10.56 = 60.42 + 12.09 F=4.639 0.001
8 * SeEs PEE A R o E AEE Partial 17 = 0.046 -
x2 = 9.390
T grade (%) df=12 0.669
Cramer's V = 0.09
1 53 (52.0) 63 (40.6) 19 (35.2) 11 (40.7) 24 (46.2)
2 45 (44.1) 82 (52.9) 32 (59.3) 15 (55.6) 26 (50.0)
3 3(29) 10 (6.5) 3 (5.6) 1(37) 2(3.8)
4 1(1.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
x2 = 14.545
N grade (%) df=12 0.267
Cramer's V = 0.11
0 63 (61.8) 75 (48.4) 27 (50.0) 17 (63.0) 35 (67.3)
1 24 (23.5) 45 (29.0) 12 (222) 5 (18.5) 11 (212)
2 11 (10.8) 19 (12.3) 10 (18.5) 2(7.4) 4(77)
3 4(3.9) 16 (10.3) 5(9.3) 3 (11.1) 2(3.8)
x2 = 12.980
Clinical stages (%) df=8 0.113
Cramer's V = 0.129
1 39 (38.2) 36 (23.2) 12 (22.2) 10 (37.0) 18 (34.6)
2 46 (45.1) 81 (52.3) 27 (50.0) 12 (44.4) 28 (53.8)
3 17 (16.7) 38 (24.5) 15 (27.8) 5 (18.5) 6 (11.5)
Number of lymph node 0.000(0.02.0)  1.000(0.03.0) = 0.500(0.053) = 0.000(0.02.0)  0.000(0.0,1.0) H=12.147 0.016
metastasis Median M (P25, P75) : T ’ o : o : o ’ o Partial ° = 0.021 :
%2 = 9.083
Nerve invasion (%) df=4 0.059
Cramer’s V = 0.153
No 80 (78.4) 120 (77.4) 48 (88.9) 20 (74.1) 48 (92.3)
Yes 22 (21.6) 35 (22.6) 6 (11.1) 7 (25.9) 4(77)
x2 = 11.968
Vascular invasion (%) df=4 0.018
Cramer's V = 0.175
No 80 (78.4) 96 (61.9) 33 (61.1) 21 (77.8) 40 (76.9)
Yes 22 (21.6) 59 (38.1) 21 (38.9) 6 (22.2) 12 (23.1)
%2 = 369.032
Ki67 (%) df=8 <0.001
Cramer's V = 0.688
<15% 100 (98.0) 0 (0.0) 7 (13.0) 1(37) 5 (9.6)
15-30% 2(2.0) 104 (67.1) 21 (38.9) 11 (40.7) 10 (19.2)
>30% 0 (0.0) 51 (32.9) 26 (48.1) 15 (55.6) 37 (71.2)

Bold values indicate a significant overall difference across the five groups (p < 0.05).
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FIGURE 2

Receiver operating characteristic (ROC) curves of the DenseNet121-CBAM model for molecular subtype discrimination. Three binary classification
tasks: (A) Luminal vs. non-Luminal, (B) TN vs. non-TN, and (C) HER2 vs. non-HER2.

4 Discussion

We investigated the application of deep learning for predicting
breast cancer molecular subtypes directly from mammographic
images. Our methodology employed a pre-trained DenseNet121-
CBAM architecture and evaluated its performance through both
binary and multiclass classification paradigms.

As early as 2019, Ma et al. employed radiomics approaches to
perform binary classification of molecular subtypes using
mammographic images. The researchers extracted 39 quantitative
radiomic features from segmented lesion areas, achieving AUC values
over 0.78 across three binary classification tasks with accuracy rates
exceeding 0.74 (19). Subsequent studies have further validated that
manually extracted radiomic features from mammograms can
accurately predict TNBC subtypes, achieving an AUC of 0.84 (20).
However, in 2024, Duan et al. also employed radiomics analysis of
mammograms for ER status prediction, yet achieved substantially
inferior performance (AUC/accuracy: 0.61/0.57) (21). The limitations
of radiomics stem from its dependence on manual feature extraction,
which introduces excessive subjectivity. Their reliance on expert-
defined features means they may not represent the optimal feature
quantification method for the imminent differentiated tasks (22).

Given these constraints, we elected to utilize CNNs as the
backbone of our predictive model, thereby eliminating human-

TABLE 2 Model performance for Luminal subtype classification.

Eviargléaet;ion Validation set
AUC 0.7666 0.7592
ACC (%) 0.626 (0.534, 0.717) 0.669 (0.635, 0.704)
SENS (%) 0.508 (0.347, 0.669) 0.604 (0.380, 0.828)
SPEC (%) 0.697 (0.531, 0.862) 0.700 (0.595, 0.805)
PPV (%) 0.486 (0.313, 0.658) 0.486 (0.448, 0.524)
NPV (%) 0.727 (0.649, 0.805) 0.798 (0.721, 0.874)

95% confidence intervals are included in brackets.
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intervened feature selection. In the context of model architecture
selection, we systematically evaluated various CNNs as feature
extraction modules, among which DenseNetl21 exhibited
superior performance. The DenseNet architecture, initially
developed by Huang Gao and colleagues in 2016, was specifically
engineered to optimize feature reuse and propagation efficiency
through its innovative connectivity pattern (23). In practical
applications, Adedigba et al. achieved breast cancer diagnosis
using deep learning models with a small dataset of
mammographic images, where the DenseNet model demonstrated
optimal performance with an accuracy of 0.998 (24). In 2024, Nissar
et al. developed a lightweight dual-channel attention-based deep
learning model named MOB-CBAM, which integrates MobileNet-
V3 architecture with convolutional block attention modules
(CBAM). Through comprehensive validation on the CMMD
mammography dataset, the model demonstrated exceptional
efficacy in classifying masses and calcifications in mammograms,
achieving a remarkable accuracy rate of 98% (25). Building upon
these previous experimental outcomes, we integrated DenseNet121
with CBAM, thereby proposing the DenseNet121-CBAM
architecture. Our results demonstrated that this hybrid model
exhibits superior performance relative to other DenseNetl121-
based structures.

In image preprocessing part, due to the varying sizes of the
annotated regions across samples, different scaling ratios were
applied during the resizing step to achieve a uniform input size
(224%224). This variation in scaling may introduce geometric
distortions—such as blurring from up-sampling or detail loss
from down-sampling—which could potentially affect model
predictions, especially for samples with extreme aspect ratios or
small object sizes. To mitigate such effects, we employed standard
normalization and comprehensive data augmentation (including
random cropping, flipping, and color jittering), which help improve
the model’s robustness to scale variations. Furthermore, the use of
deep architectures with strong feature abstraction capabilities
contributes to learning scale-invariant representations to some
extent. Moreover, our clinical data indicate no statistically
significant differences in tumor size across molecular subtypes
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TABLE 3 Model performance in classifying TN (binary), HER2 status (binary), and five molecular subtypes (5-category).

Five molecular subtypes

V-set

T-set

0.7402
0.708 (0.644, 0.771)

0.800 (0.671, 0.928)

0.6584
0.697 (0.629, 0.764)

0.797 (0.688, 0.905)

0.6542
0.287 (0.217, 0.358)

0.429 (0.213, 0.646)

0.6494
0.325 (0.294, 0.357)

0.455 (0.289, 0.621)

0.390 (0.240, 0.540)

0.303 (0.169, 0.438)

0.607 (0.446, 0.768)

0.584 (0.499, 0.669)

Evaluation
index
AUC 0.7164 0.6679
ACC (%) 0.754 (0.704, 0.803) 0.769 (0.697, 0.841)
SENS (%) 0.364 (0.208, 0.521) 0.300 (0.157, 0.443)
SPEC (%) 0.819 (0.758, 0.879) 0.831 (0.741, 0.922)
PPV (%) 0.249 (0.174, 0.323) 0.198 (0.137, 0.260)
NPV (%) 0.887 (0.852, 0.921) 0.899 (0.883, 0.915)

0.834 (0.772, 0.895)

0.362 (0.187, 0.538)

0.818 (0.799, 0.838)

0.281 (0.229, 0.333)

0.548 (0.376, 0.719)

0.489 (0.393, 0.584)

0.599 (0.545, 0.653)

0.439 (0.378, 0.501)

95% confidence intervals are included in brackets.
TN, Triple-negative breast cancer; V-set, Validation set; T-set, Test set.

(Table 1; T grade: *=9.390, p=0.669), suggesting that tumor size
(and thus scaling ratio) is unlikely to significantly impact molecular
subtype prediction. We acknowledge that scale-aware or adaptive
resizing strategies (e.g., multi-scale training or adaptive pooling)
could be explored in future work to further reduce bias introduced
by non-uniform scaling.

Among binary classification tasks, the differentiation between
Luminal and non-Luminal subtypes demonstrated superior
performance (AUC = 0.759), suggesting distinct imaging
characteristics detectable by our deep learning model, while
HER2-positive versus HER2-negative classification yielded the
lowest discriminative capacity (AUC = 0.658). However, our
results diverge from those reported by Mota et al. in the
OPTIMAM mammography public database, where their ResNet-
101 architecture achieved optimal discriminative performance for

HER?2 status (AUC = 0.733) but limited efficacy in Luminal subtype
classification (AUC = 0.531) (26). The discrepancy may be
attributed to either (1) inherent differences in data distribution
between the public database and our institutional cohort, or (2)
variations in ROI feature extraction capabilities across different
convolutional neural network (CNN) architectures. Regarding the
relatively poorer performance of the HER2 classification task, we
attribute this to the following factors. Firstly, HER2-positive tumors
can co-express HR (HER2+/HR+) or lack HR (HER2+/HR-),
leading to tumor heterogeneity and divergent imaging phenotypes
(27). For instance, HER2+/HR+ tumors often resemble Luminal
subtypes in mammographic features, while HER2+/HR- tumors
may display aggressive features like pleomorphic calcifications or
irregular margins (9). This heterogeneity could dilute the model’s
ability to generalize HER2-specific features. Secondly, HER2-
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FIGURE 3

ROC curves for each class in the DenseNet121-CBAM model's five-class molecular subtype classification task.
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positive cases constituted only 20.8% (81/390) of our dataset, with
HER2+/HR- being particularly rare (6.9%, 27/390). This relatively
limited sample size may explain the observed performance
differences, while deep learning typically requires large datasets
for stable training, radiomics can construct effective models with
smaller samples (28). This sample size constraint likely accounts for
the superior performance of radiomics in previous studies (19, 20).
Thirdly, Zhu et al. (12) demonstrated superior HER2 prediction
(AUC = 0.83) using CEM, suggesting that iodine-based contrast
enhancement may better capture HER2-related angiogenic features.
The superior performance of CEM may be attributed to its ability to
provide more distinct imaging features associated with HER2 status
(29). Our use of conventional mammography (without contrast)
likely contributed to the performance gap.

In the domain of five-category molecular subtype prediction, only
two research teams to date have conducted multiclass classification
tasks on public mammography datasets using deep learning models.
Mota et al, as noted above, utilized the OPTIMAM database to
classify tumors into five subtypes (Luminal A, Luminal B1, Luminal
B2, HER2-enriched, TNBC), achieved an average AUC of 0.606 (26).
Ben Rabah et al. utilized the Chinese Mammography Database
(CMMD) for five-category breast lesion classification (benign,
Luminal A, Luminal B, HER2+, TNBC). Model performance
demonstrated substantial dependence on clinical data integration,
with AUC dropping from 0.88 (mammography combined with
clinical data) to 0.61 (mammography only) (30). Our model
achieved an AUC of 0.65 for five-category molecular subtypes
classification, demonstrating superior performance compared to
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existing deep learning models trained on public mammography
databases. However, the ACC remained suboptimal in both
validation and test cohorts, which we attribute to class imbalance
in our dataset—a common challenge in clinically collected samples.
Specifically, the overrepresentation of Luminal A/B (26.2%/39.7%)
versus the underrepresentation of HER2+/HR- (6.9%) likely
contributed to this performance discrepancy.

For model visualization, we illustrate the progressive localization
of tumor-associated discriminative regions across consecutive
convolutional layers. Notably, in the five-class classification task,
the attention heatmaps of TNBC and HER2+/HR- subtypes—
exhibiting superior interclass discriminability—predominantly
highlighted peritumoral stromal regions rather than the tumor
parenchyma itself. Regarding the heterogeneity in discriminative
region distribution, prior studies have demonstrated that different
deep learning architectures exhibit distinct attention patterns in
mammographic classification tasks. For instance, baseline CNNs
and AGN4V predominantly focus on local features (e.g., lesion
regions), whereas Transformer-based MaMVT tend to prioritize
1). Within an
identical deep learning architecture, the observed divergence in

global contextual features (e.g., entire breast tissue) (3

attention regions across molecular subtypes may be attributed to
intrinsic tumor biology and tumor-immune microenvironment
heterogeneity. Immunosuppressive cell populations (e.g., Tregs,
MDSCs, Th2 cells, M2 macrophages) demonstrate higher
infiltration in ER-negative and TN subtypes, whereas NK cells and
cytotoxic T lymphocytes—cell types associated with antitumor
activity—are more abundant in ER-positive breast carcinomas (32).
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The latest research showed that peritumor breast adipose-derived
secretome from obesity patients is a strong inducer of TNBC cell
invasiveness and JAGI expression (33). Relevant studies have further
revealed that TNBC promotes the transdifferentiation of adipocyte
stem cells into myofibroblasts through zinc-a-2-glycoprotein
secretion, suggesting the existence of a unique peritumoral adipose
microenvironment in TNBC (34). Whether the observed differences
in attention regions across molecular subtypes truly result from
peritumoral cell distribution heterogeneity requires future
validation through immunohistochemical analysis and peritumoral
tissue single-cell RNA sequencing.

Our deep learning model enables molecular subtype
prediction from mammographic images, which could be
integrated into existing diagnostic workflows as a pre-biopsy
classification tool. Patients will receive a molecular subtype
prediction along with their mammography report, providing
them with psychological preparedness for future diagnostics and
treatment. Aggressive subtype predictions will prompt patient
attention to necessary invasive biopsy procedures. Furthermore,
the model’s classification output serves as an adjunctive tool
for pathological assessment by pathologists. Notably, the
model-identified regions of interest surrounding TNBC and
HER2+/HR- tumors may serve as critical imaging biomarkers for
assessing tumor aggressiveness. However, there are also some
limitations in our study. First, the retrospective design lacks
prospective and external validation cohorts to rigorously assess
model generalizability. Second, we treated each patient’s CC and
MLO views as independent inputs, missing opportunities to
improve model performance through view-integrated prediction.
Finally, the observed concentration of heatmap-activated regions in
peritumoral areas warrants further mechanistic investigation. To
address the limitations of retrospective design and strengthen
generalizability, we propose a three-step validation strategy: (1)
Collaborating with two additional medical centers to compile an
independent external validation cohort, ensuring diversity in
demographics and imaging protocols; (2) Designing a multicenter
prospective trial to compare model predictions against
postoperative pathology in real-time; and (3) Benchmarking
performance on public datasets (OPTIMAM and CMMD) to
assess cross-institutional robustness. These efforts will validate
clinical applicability and will be completed in our future work.
Moreover, mammography presents inherent limitations compared
to MRI and ultrasound, particularly in the Chinese population
where breasts typically exhibit lower fat content and higher
glandular tissue density. This dense tissue composition reduces
mammographic sensitivity, making ultrasound a more suitable
primary imaging modality for many Chinese women. Relevant
studies have confirmed that radiomics analysis of breast
ultrasound images in Chinese women demonstrates predictive
efficacy for ER, PR, HER2, and Ki-67 status, with AUC values all
exceeding 0.7 (35). And the combination with contrast-enhanced
ultrasound significantly improves the accuracy and AUC of
radiomics-based prediction for molecular subtypes (36, 37).
Regarding our model’s suboptimal HER2 status discrimination,
multiparametric MRI may offer enhanced predictive value for
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HER2 expression assessment (38, 39). Future studies should
investigate multimodal approaches combining mammographic
patterns with ultrasound and multiparametric MRI features.

5 Conclusion

Our study developed a DenseNet121-CBAM model that
demonstrates promising capability in predicting breast cancer
molecular subtypes from mammography, providing a non-
invasive alternative to biopsy and optimizing clinical workflows.
In binary classification tasks, the model showed optimal
performance in distinguishing Luminal subtypes, achieving an
AUC of 0.7592 on the independent test set. For five-category
classification, the model exhibited particularly strong predictive
performance for HER2+/HR- and TNBC subtypes. Attention
heatmaps revealed that the model’s discriminative regions were
primarily located at tumor margins, suggesting HER2+/HR—- and
TNBC molecular subtypes may be associated with peritumoral
cellular microenvironments.
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