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Objectives: This study aimed to develop and evaluate a deep learning model for

predictingmolecular subtypes of breast cancer using conventional mammography

images, offering a potential alternative to invasive diagnostic techniques.

Methods: A retrospective analysis was conducted on 390 patients with

pathologically confirmed invasive breast cancer who underwent preoperative

mammography. The proposed DenseNet121-CBAM model, integrating

Convolutional Block Attention Modules (CBAM) with DenseNet121, was trained

and validated for binary (Luminal vs. non-Luminal, HER2-positive vs. HER2-

negative, triple-negative vs. non-TN) and multiclass (Luminal A, Luminal B, HER2

+/HR+, HER2+/HR−, TN) classification tasks. Performance metrics included AUC,

accuracy, sensitivity, specificity, and interpretability via Grad-CAM heatmaps.

Results: The model achieved AUCs of 0.759 (Luminal vs. non-Luminal), 0.658

(HER2 status), and 0.668 (TN vs. non-TN) in the independent test set. Formulticlass

classification, the AUC was 0.649, with superior performance in distinguishing

HER2+/HR− (AUC = 0.78) and triple-negative (AUC = 0.72) subtypes. Attention

heatmaps highlighted peritumoral regions as critical discriminative features.

Conclusion: The DenseNet121-CBAM model demonstrates promising capability

in predicting breast cancer molecular subtypes from mammography, offering a

non-invasive alternative to biopsy.
KEYWORDS

breast cancer, molecular subtypes, mammography, deep learning, DenseNet121-CBAM
1 Introduction

Despite the decline of death rate in recent years through earlier detection and

advancement in treatment, breast cancer remains ranking second in cancer-related

mortality among women worldwide and the leading cause of cancer death in Black and

Hispanic women (1). In order to achieve personalized precision medicine, it is essential to

crystallize molecular subtype before starting treatment, guiding physicians to tailor
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treatments and inform patients of their prognosis. Since the latest

St. Gallen International Consensus Conference (2023), the

molecular classification of invasive breast carcinoma has been

divided into four main subtypes based on the expression of

immunohistochemical markers, including estrogen receptor (ER),

progesterone receptor (PR), human epidermal growth factor

receptor 2 (HER2) and Ki-67, which is an indicator of cell

proliferation (2). Different molecular subtypes lead to disparate

prognosis, and the recommended treatment strategy for each

molecular subtype is also different. For example, patients with

Luminal A breast cancer often have a good prognosis, and

postoperative endocrine therapy alone is sufficient to inhibit

tumor recurrence and metastasis for part of them. Whereas Triple

Negative breast cancers are very aggressive, chemotherapy and

novel targeted drugs are the only means for both neoadjuvant

therapy and adjuvant therapy. Besides, HER2 positive breast

cancers have their specific targeted therapies which have been

updated over years (3).

However, the process of detecting the molecular subtypes

remains quite expensive and time-consuming at present. Firstly, a

tumor biopsy is needed, which may cause several possible

complications, such as hemorrhage, infection (4) or even needle

tract metastases with low possibility (5). In order to further describe

tumor characterization, multigenetic assay represented by Oncotype

DX, microRNA sequencing and proteomics are also necessary (6).

Even so, error on the technique procedure and the heterogeneity of

the tumor are inevitable, more tools are needed to comprehensively

and efficiently excavate the molecular feature of breast cancer.

Certain mutations, as well as the status of ER, PR, and HER2,

are widely utilized in diagnostic practices across many countries.

These parameters hold significant prognostic value in the disease

and demonstrate correlations with mammographic findings. As a

widespread and non-invasive examination method, mammography

can display the overall characteristic information of the tumor, and

describe the tumor microenvironment which can’t be fully provided

by needle biopsy. A significant correlation was observed between

the enzymatic activities of LDH and CAT in tumor tissue and

mammographic characteristics (7). Patients exhibiting high

mammographic density demonstrated significantly elevated

pSTAT3 tumor expression levels compared to those with low

mammographic density (8). Among hormone receptor-negative/

HER2+ patients, mammography demonstrated the highest

prevalence of calcifications, predominantly manifesting as

pleomorphic or branching calcifications (9). Moreover, previous

studies had demonstrated that tumor shape, microcalcifications and

margin characteristics are strongly correlated with molecular

subtype (10, 11), suggesting the possibility of predicting breast

cancer molecular subtype by mammogram.

With advances in computer algorithms, major breakthroughs

have been made in the recognition and analysis of medical images by

artificial intelligence, turning the above assumption into reality. Zhu

et al. (12) distinguished two classifications of immunohistochemical

results using contrast-enhanced mammography (CEM) based on

selected radiomics features and support vector machine classifier.

The binary classification capability of the model in the external test
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was satisfactory with AUC between 0.69 to 0.83. Deng et al. (13)

aimed to predict HER2-positive status by manually extracting

quantitative radiomics features and using Gradient Boosting

Machine as classifier, which achieved an AUC of 0.702 in the

external validation cohort. Considering the limitation of the

radiomics approaches, which limits tumor analysis to handcrafted

features, few studies were conducted using deep learning methods.

Qian et al. (14) used an end-to-end learning convolutional neural

network to do biomarker status prediction on CEM. However, there

was no external verification, and the deep learning model performed

best in HER2 status prediction with an AUC of 0.67 while the

accuracy dropping to 60%.

There are three main limitations to the mentioned studies:

firstly, CEM equipment is relatively high-end which has not been

popularized in primary hospitals. Secondly, manually feature

extraction probably miss important information in the

mammogram, more deep information can be extracted by neural

networks. Thirdly, the absence of interpretability failed to visualize

the deeper features extracted by the model. In this paper, we will

take above limitations into account, building a deep learning model

to predict different molecular subtypes of breast cancer based on

conventional mammography images. Our study includes testing

classification strategies (both binary and multi-category) and

model interpretation.
2 Patients and methods

2.1 Patients

The institutional review board of Beijing Chaoyang Hospital

affiliated to Capital Medical University granted approval to this

study (approval code: 2022-4-19-1). We retrospectively analyzed

data from pathologically confirmed breast cancer (BC) patients who

received preoperative mammography from January 2018 to

December 2023. The molecular subtyping into five categories was

determined according to the St. Gallen International Consensus

Conference 2023 criteria, based on immunohistochemical analysis

of postoperative pathological specimens.

The detailed inclusion criteria were as follows: 1) they were

diagnosed with primary invasive breast cancer by histological

examination, 2) their molecular subtypes were determined by

postoperative histopathological examination (gold standard), and

3) their preoperative mammographic imaging (CC or MLO views)

exhibited a macroscopically detectable tumor mass. The exclusion

criteria included the following: 1) with inflammatory breast cancer,

bilateral or pathologically heterogeneous lesions, 2) history of

radiotherapy, chemotherapy or anti-HER2 therapy, 3) their

clinical information was incomplete, 4) they underwent invasive

procedures including biopsy or surgical resection within a week

before mammography. A total of 390 BC patients with

mammographically visible lesions were enrolled for analysis. The

patient recruitment workflow is shown in Supplementary Figure 1.

Complete clinical characteristics of all enrolled patients are

provided in Supplementary Data 1.
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2.2 Data preprocessing

The mammographic images were acquired using the Hologic

full-field digital mammography system with a spatial resolution of

7 lp/mm. All images were stored in DICOM format. In order to

reduce heterogeneity between observers, two qualified radiologists

independently examined and annotated all identifiable tumor

areas in each CC or MLO images (by ITK-SNAP Software)

while remaining unaware of patient information. We extracted

the annotated tumor regions as the regions of interest (ROIs).

Considering the potential influence of peri-tumoral background

signals on molecular subtype prediction, we expanded each ROI

outward by a specified pixel value (bound size) and subsequently

adjusted them to square dimensions(224×224 pixels). Examples of

the original and scaled images are shown in Supplementary

Figure 2. We employed simple random oversampling to address

class imbalance in the dataset. The study collected a total of 762

eligible mammography images from 390 patients. For the Luminal

binary classification (Luminal: 501 images; non-Luminal: 261

images), the oversampling rate was set at 1.3. The TNBC binary

classification (TNBC: 104 images; non-TNBC: 658 images) used

an oversampling rate of 1.7. For the HER2 binary classification

(HER2 positive: 157 images; HER2 negative: 605 images), the

oversampling rate was established at 1.5. In the five-class

classification (Luminal A: 200 images, Luminal B: 301 images,

HER2+/HR+: 107 images, HER2+/HR-: 50 images, TNBC: 104

images), we applied an oversampling rate of 1.5. Data

augmentation through geometric transformations was further

employed to increase sample diversity and improve model

generalizability, including: random horizontal flipping (with a

50% probability), vertical flipping (also with a 50% probability),

random rotation within a range of ±20°, as well as random

horizontal shearing transformations with an angular range

of ±10°.
2.3 Deep learning model development

Our proposed DenseNet-CBAM deep learning architecture was

designed to classify mammography images into breast cancer

molecular subtypes. The study comprised three binary

classification tasks (Luminal vs non-Luminal, triple-negative (TN)

vs non-TN, HER2-positive vs HER2-negative) and one multiclass

classification task (Luminal A, Luminal B, HER2-positive/hormone

receptor-positive (HER2+/HR+), HER2-positive/hormone

receptor-negative (HER2+/HR−), TNBC).

2.3.1 Feature extraction
Through comparative experiments with various convolutional

neural network (CNN) architectures—including but not limited to

Simple CNN, ResNet101, DenseNet121, MobileNetV2, MOB-

CBAM (MobileNet-V3 integrated with CBAM), and ViT-B/16—

DenseNet121 was ultimately selected as the backbone network for

our proposed algorithm. Since mainstream CNN models are
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typically pretrained on three-channel (RGB) input images

whereas mammography images are single-channel grayscale, our

algorithm proposed a channel-adaptive pretrained weight

allocation strategy to better leverage pretrained weights for

classification guidance. The channel-adaptive pretrained weight

allocation strategy adapts ImageNet (3-channel) pretrained

weights to single-channel medical images by averaging the

weights across the three input channels.

2.3.2 CBAM
Inspired by MOB-CBAM’s implementation of channel

attention mechanisms, we enhanced DenseNet121 by integrating

Convolutional Block Attention Modules (CBAM) after its first three

dense blocks. CBAM, originally proposed by Woo et al. (15),

sequentially applies channel and spatial attention weights to

amplify critical features while suppressing less informative

regions. In Channel Attention Module (CAM), the input first

undergoes global average pooling to generate a channel descriptor

vector. This vector is then transformed by a multilayer perceptron

(MLP) to produce channel attention weights, which are normalized

to the range [0, 1] via a sigmoid function. Notably, in the

DenseNet121-CBAM architecture, the MLP is implemented using

two 1×1 convolutional layers, compressing the spatial dimensions

of each channel to 1×1, with ReLU as the activation function. In

Spatial Attention Module (SAM), the channel attention weights are

multiplied with the original input, and the result is processed

through a convolutional layer to generate spatial attention

weights. These weights are then normalized to [0, 1] using a

sigmoid function. In this study, a convolutional layer with a

kernel size of 7 is specifically employed in SAM. This

architectural modification yields our proposed DenseNet121-

CBAM model , which demonstrates improved feature

representation capacity and generalization performance.

2.3.3 Model training and testing
We randomly divided the mammogram ROI patches into

training cohort and independent test cohort with the ratio of 4:1.

A 5-fold cross-validation scheme was implemented on the training

cohort, wherein the training cohort were randomly partitioned into

5 mutually exclusive subsets (folds). In each iteration, 4 folds were

combined for training while the remaining fold served as validation.

Model performance was ultimately assessed by aggregating results

from all 5 validation cycles. We used the fold with the highest AUC

to represent the model’s optimal performance. During model

training, we observed that the performance peaked at a bound

size of 100. Therefore, we set the bound size to 100 in our

DenseNet121-CBAM model. We employed AdamW (16) as the

optimizer and implemented Cosine Annealing schedule (17) for

learning rate adaptation. The detailed model configuration and

hyperparameters are as follows: Initial learning rate: 0.0001; Loss

function: Cross-entropy loss; Batch size: 8; Momentum: 0.9; Weight

decay: 0.005; Dropout rate: 0.3; Number of training epochs: 300.

The structure of the proposed DenseNet121-CBAMmodel is shown

in Figure 1.
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2.4 Interpretability of deep learning model

We visualized the important regions that were more associated

withmolecular subtypes. For input images, we generated and visualized

activation maps from each convolutional layer to elucidate how the

model progressively extracts hierarchical features (such as edges,

textures and shapes). Utilizing Gradient-weighted Class Activation

Mapping (Grad-CAM) (18), we localized class-discriminative regions

by computing gradient-weighted spatial importance. The Grad-CAM

visualization was implemented using the pytorch_grad_cam library

with five key components: (1) Dynamic target layer selection via

recursive traversal of model architecture using dot-notation; (2)

Standardized image preprocessing including resizing (224×224),

ImageNet normalization, and single-to-three channel conversion; (3)

Heatmap generation through gradient-weighted class activation

mapping from specified convolutional layers; (4) Visualization by

superimposing grayscale heatmaps on original images to highlight

decision-relevant regions; (5) Systematic output generation saving

high-resolution comparative visualizations with prediction metadata.

The resulting grayscale heatmap was superimposed onto the original

image, producing an attention map that visually highlights the model’s

focal regions during classification decisions.

We have publicly released the full source code (https://github.

com/LemonWei111/molsub), including detailed documentation

(README) for replication.

Trained model weights can be seen in: https://drive.google.com/

drive/folders/1rYldK579H_BmYjJNUrBdBWUenpg89E_k?

usp=sharing.

Anonymized original data examples (https://drive.google.com/

drive/folders/1aVJjBz9f3nkS-HtQ3xevpfWhtnHUafi2?usp=

sharing) and full preprocessed datasets (https://drive.google.com/

drive/folders/1E_zJ66rPS6bFNrO_sTY7tFTXe6WZIEkn?usp=

sharing) were provided.
2.5 Statistical analysis

The SPSS software was utilized for statistical analysis in the

study. For normally distributed continuous variables, one-way

ANOVA (for normally distributed data with equal variance, e.g.

Age) or Kruskal-Wallis tests (when these assumptions were

violated, e.g. Number of lymph node metastasis) were performed

to compare means between different molecular subtype groups.

Categorical variables (e.g. Clinical stages, Nerve invasion, Vascular

invasion, Ki67) were analyzed using Pearson’s chi-square tests when

all expected cell frequencies were≥5; otherwise, likelihood ratio chi-

square tests were employed (e.g. T grade, N grade). The

implementation utilized PyCharm (Python 3.10) as the integrated

development environment and PyTorch 2.5.1 as the deep learning

framework. All computational tasks were accelerated using an

NVIDIA GeForce RTX 3090 GPU deployed on a remote server.

To evaluate the performance of DenseNet121-CBAM, we employed

accuracy (ACC) and the area under the receiver operating

characteristic curve (AUC-ROC) as primary metrics. DeLong’s
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test and McNemar ’s test were used to compare model

performance (AUCs and ACC) across tasks and architectures.

The other measurements like sensitivity (SENS), specificity

(SPEC), positive predictive value (PPV), and negative predictive

value (NPV) were also used to estimate the model performance.

P-value <0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics

A total of 390 BC patients with mammographically visible

lesions were enrolled for analysis, stratified by molecular subtype

as follows: Luminal A (n=102), Luminal B (n=155), HER2-positive/

HR-positive (n=54), HER2-positive/HR-negative (n=27), and TN

(n=52). Among the comparisons of the five molecular subtypes, age

(F = 4.639, Partial h2 = 0.046, p = 0.001), number of lymph node

metastases (H = 12.147, Partial h2 = 0.021, p = 0.016), vascular

invasion status (c2 = 11.968, Cramer’s V = 0.175, p=0.018), and Ki-

67 expression (c2 = 369.032, Cramer’s V = 0.688, p<0.001) showed

statistically significant differences. After Bonferroni correction for

p-values, a significant difference was only observed between the age

of Luminal A and HER2+/HR+ subtypes (adjusted p < 0.05). As for

number of lymph node metastases and vascular invasion, none of

the pairwise comparisons between molecular subtypes showed

significant differences after Bonferroni correction (all adjusted p >

0.05). Tumor T grade, N grade, clinical stages, and presence of

neural invasion were not associated with molecular subtypes.

Detailed clinical characteristics of the patients are presented in

Table 1. All patients were randomly divided into training set

(n=312) and an independent test set (n=78) at a 4:1 ratio. Five-

fold cross-validation was applied to the training set, reserving one

fold (20%) for validation.
3.2 Convolutional neural network model
selection

Evaluating the three binary classification tasks and one

five-class classification task collectively, DenseNet121-CBAM

demonstrated superior performance over both MOB-CBAM and

Simple CNN in both validation set and independent test set, as

detailed in Supplementary Figure 3. Furthermore, considering other

DenseNet121-based structure, we compared DenseNet121-CBAM

with DenseNet121-pre, DenseNet121-tcAta, and DenseNet121. The

results demonstrated that DenseNet121-CBAM achieved optimal

performance among the compared models, with the most stable

AUC outputs across different dataset partitions, and either

DeLong’s test (for AUC comparison) or McNemar’s test (for

accuracy comparison) yielding P-value <0.05 in all pairwise

comparisons. Therefore, we selected DenseNet121-CBAM as the

final model for our experiment. Detailed results are provided in

Supplementary Figure 4.
frontiersin.org

https://github.com/LemonWei111/molsub
https://github.com/LemonWei111/molsub
https://drive.google.com/drive/folders/1rYldK579H_BmYjJNUrBdBWUenpg89E_k?usp=sharing
https://drive.google.com/drive/folders/1rYldK579H_BmYjJNUrBdBWUenpg89E_k?usp=sharing
https://drive.google.com/drive/folders/1rYldK579H_BmYjJNUrBdBWUenpg89E_k?usp=sharing
https://drive.google.com/drive/folders/1aVJjBz9f3nkS-HtQ3xevpfWhtnHUafi2?usp=sharing
https://drive.google.com/drive/folders/1aVJjBz9f3nkS-HtQ3xevpfWhtnHUafi2?usp=sharing
https://drive.google.com/drive/folders/1aVJjBz9f3nkS-HtQ3xevpfWhtnHUafi2?usp=sharing
https://drive.google.com/drive/folders/1E_zJ66rPS6bFNrO_sTY7tFTXe6WZIEkn?usp=sharing
https://drive.google.com/drive/folders/1E_zJ66rPS6bFNrO_sTY7tFTXe6WZIEkn?usp=sharing
https://drive.google.com/drive/folders/1E_zJ66rPS6bFNrO_sTY7tFTXe6WZIEkn?usp=sharing
https://doi.org/10.3389/fonc.2025.1638212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2025.1638212
3.3 Prediction value of DenseNet121-CBAM
between different molecular subtypes

Our study initially performed model training and validation on

three binary classification tasks: Luminal vs non-Luminal subtypes,

HER2-positive vs HER2-negative status, and TN versus non-TN

breast cancer. Results from the independent test cohort demonstrated

that DenseNet121-CBAM achieved optimal performance in

distinguishing Luminal from non-Luminal subtypes, with an

optimal AUC of 0.7592 (Mean AUC ± standard deviation over 5-

fold cross-validation: 0.6979 ± 0.0416). The corresponding ROC

curve is presented in Figure 2A. Furthermore, the model exhibited

specificity (SPEC) and negative predictive value (NPV) exceeding

70%, along with accuracy (ACC) and sensitivity (SENS) surpassing

60%, confirming its robust discriminatory capability for Luminal-

type breast cancer classification. The detailed statistical results are

summarized in Table 2.

In the two binary classification tasks of TN vs non-TN and

HER2-positive vs HER2-negative breast cancer, the model achieved

optimal AUC values exceeding 0.65 in the independent test cohort

(Mean AUC ± standard deviation over 5-fold cross-validation:

0.6209 ± 0.0588 and 0.6344 ± 0.0383), with corresponding ACC

of 0.769 and 0.697, respectively. The corresponding ROC curves are

presented in Figures 2B, C. Furthermore, we evaluated the

performance of the DenseNet121-CBAM model in a five-class

classification task encompassing the following molecular subtypes

of breast cancer: Luminal A, Luminal B, HER2+/HR+, HER2+/HR−

and TN. The detailed statistical results are summarized in Table 3.

The results demonstrated that the model attained an optimal AUC

of 0.6494 in the independent test set (Mean AUC ± standard

deviation over 5-fold cross-validation: 0.6219 ± 0.0236),

indicating moderate discriminative capability among these

subtypes. The ROC curves for each molecular subtype are

collectively presented in Figure 3. The model demonstrated

relatively poor discrimination for Luminal subtypes, while
Frontiers in Oncology 05
showing better performance in distinguishing HER2+/HR− and

TN subtypes, with AUC values of 0.78 and 0.72, respectively.
3.4 Interpretability of DenseNet121-CBAM
model

We employ visual attention heatmaps to highlight the most

salient regions in each convolutional layer, demonstrating how our

DL model progressively focuses on the tumor from the original

input image. As shown in Figure 4, the heatmap identifies critical

regions with red patches, while blue areas indicate non-salient

regions. Notably, in the five-category classification task, the model

demonstrated superior discriminative performance for TNBC and

HER2+/HR− subtypes. Attention heatmap analysis of select TNBC

and HER2+/HR−mammograms revealed predominant activation at

the tumor periphery (peritumoral stroma), suggesting the potential

existence of subvisual tumor-associated characteristics, including

peritumoral immune microenvironment alterations. This

observation merits further histopathological validation.

Comparative visualization for each binary classification task is

provided in Supplementary Figure 5. As shown in Supplementary

Figures 5A, B, the model’s attention for TN subtypes appears more

dispersed compared to non-TN cases, which aligns with clinical

observations of TN tumors—typically exhibiting irregular

morphology, crab-like infiltration, and spiculated margins. This

suggests that the key discriminative features for TN classification

may reside primarily in the tumor periphery rather than the core

region. Supplementary Figures 5C, D shows Luminal cases exhibit

centripetal attention patterns (model’s attention originates from edge

to core), implying central tumor features may drive Luminal

classification, unlike TN’s edge-dependent signatures. Discrepancies

in model attention localization between CC and MLO projections for

HER2+ cases (vs. TN’s consistent edge-predominant pattern) may

indicate HER2 tumor heterogeneity (Supplementary Figures 5E, F).
FIGURE 1

Architecture of the DenseNet121-CBAM model for predicting molecular subtypes from mammography images.
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TABLE 1 Patients clinical characteristics.

Clinical features
LuminalA LuminalB

HER2
+(HR+)

HER2
+(HR-)

Triple-
negative
breast
cancer
(TN)

Statistical value and
effect size

p

(n=102) (n=155) (n=54) (n=27) (n=52)

Age (mean ± SD) 65.12 ± 12.38 61.52 ± 11.44 56.85 ± 12.56 63.33 ± 10.56 60.42 ± 12.09
F=4.639

Partial h2 = 0.046
0.001

T grade (%)
c2 = 9.390

df=12
Cramer’s V = 0.09

0.669

1 53 (52.0) 63 (40.6) 19 (35.2) 11 (40.7) 24 (46.2)

2 45 (44.1) 82 (52.9) 32 (59.3) 15 (55.6) 26 (50.0)

3 3 (2.9) 10 (6.5) 3 (5.6) 1 (3.7) 2 (3.8)

4 1 (1.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

N grade (%)
c2 = 14.545

df=12
Cramer’s V = 0.11

0.267

0 63 (61.8) 75 (48.4) 27 (50.0) 17 (63.0) 35 (67.3)

1 24 (23.5) 45 (29.0) 12 (22.2) 5 (18.5) 11 (21.2)

2 11 (10.8) 19 (12.3) 10 (18.5) 2 (7.4) 4 (7.7)

3 4 (3.9) 16 (10.3) 5 (9.3) 3 (11.1) 2 (3.8)

Clinical stages (%)
c2 = 12.980

df=8
Cramer’s V = 0.129

0.113

1 39 (38.2) 36 (23.2) 12 (22.2) 10 (37.0) 18 (34.6)

2 46 (45.1) 81 (52.3) 27 (50.0) 12 (44.4) 28 (53.8)

3 17 (16.7) 38 (24.5) 15 (27.8) 5 (18.5) 6 (11.5)

Number of lymph node
metastasis Median M (P25, P75)

0.000(0.0,2.0) 1.000(0.0,3.0) 0.500(0.0,5.3) 0.000(0.0,2.0) 0.000(0.0,1.0)
H=12.147

Partial h2 = 0.021
0.016

Nerve invasion (%)
c2 = 9.083

df=4
Cramer’s V = 0.153

0.059

No 80 (78.4) 120 (77.4) 48 (88.9) 20 (74.1) 48 (92.3)

Yes 22 (21.6) 35 (22.6) 6 (11.1) 7 (25.9) 4 (7.7)

Vascular invasion (%)
c2 = 11.968

df=4
Cramer’s V = 0.175

0.018

No 80 (78.4) 96 (61.9) 33 (61.1) 21 (77.8) 40 (76.9)

Yes 22 (21.6) 59 (38.1) 21 (38.9) 6 (22.2) 12 (23.1)

Ki67 (%)
c2 = 369.032

df=8
Cramer’s V = 0.688

<0.001

≤15% 100 (98.0) 0 (0.0) 7 (13.0) 1 (3.7) 5 (9.6)

15-30% 2 (2.0) 104 (67.1) 21 (38.9) 11 (40.7) 10 (19.2)

>30% 0 (0.0) 51 (32.9) 26 (48.1) 15 (55.6) 37 (71.2)
F
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Bold values indicate a significant overall difference across the five groups (p < 0.05).
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4 Discussion

We investigated the application of deep learning for predicting

breast cancer molecular subtypes directly from mammographic

images. Our methodology employed a pre-trained DenseNet121-

CBAM architecture and evaluated its performance through both

binary and multiclass classification paradigms.

As early as 2019, Ma et al. employed radiomics approaches to

perform binary classification of molecular subtypes using

mammographic images. The researchers extracted 39 quantitative

radiomic features from segmented lesion areas, achieving AUC values

over 0.78 across three binary classification tasks with accuracy rates

exceeding 0.74 (19). Subsequent studies have further validated that

manually extracted radiomic features from mammograms can

accurately predict TNBC subtypes, achieving an AUC of 0.84 (20).

However, in 2024, Duan et al. also employed radiomics analysis of

mammograms for ER status prediction, yet achieved substantially

inferior performance (AUC/accuracy: 0.61/0.57) (21). The limitations

of radiomics stem from its dependence on manual feature extraction,

which introduces excessive subjectivity. Their reliance on expert-

defined features means they may not represent the optimal feature

quantification method for the imminent differentiated tasks (22).

Given these constraints, we elected to utilize CNNs as the

backbone of our predictive model, thereby eliminating human-
Frontiers in Oncology 07
intervened feature selection. In the context of model architecture

selection, we systematically evaluated various CNNs as feature

extraction modules, among which DenseNet121 exhibited

superior performance. The DenseNet architecture, initially

developed by Huang Gao and colleagues in 2016, was specifically

engineered to optimize feature reuse and propagation efficiency

through its innovative connectivity pattern (23). In practical

applications, Adedigba et al. achieved breast cancer diagnosis

using deep learning models with a smal l dataset of

mammographic images, where the DenseNet model demonstrated

optimal performance with an accuracy of 0.998 (24). In 2024, Nissar

et al. developed a lightweight dual-channel attention-based deep

learning model named MOB-CBAM, which integrates MobileNet-

V3 architecture with convolutional block attention modules

(CBAM). Through comprehensive validation on the CMMD

mammography dataset, the model demonstrated exceptional

efficacy in classifying masses and calcifications in mammograms,

achieving a remarkable accuracy rate of 98% (25). Building upon

these previous experimental outcomes, we integrated DenseNet121

with CBAM, thereby proposing the DenseNet121-CBAM

architecture. Our results demonstrated that this hybrid model

exhibits superior performance relative to other DenseNet121-

based structures.

In image preprocessing part, due to the varying sizes of the

annotated regions across samples, different scaling ratios were

applied during the resizing step to achieve a uniform input size

(224×224). This variation in scaling may introduce geometric

distortions—such as blurring from up-sampling or detail loss

from down-sampling—which could potentially affect model

predictions, especially for samples with extreme aspect ratios or

small object sizes. To mitigate such effects, we employed standard

normalization and comprehensive data augmentation (including

random cropping, flipping, and color jittering), which help improve

the model’s robustness to scale variations. Furthermore, the use of

deep architectures with strong feature abstraction capabilities

contributes to learning scale-invariant representations to some

extent. Moreover, our clinical data indicate no statistically

significant differences in tumor size across molecular subtypes
FIGURE 2

Receiver operating characteristic (ROC) curves of the DenseNet121-CBAM model for molecular subtype discrimination. Three binary classification
tasks: (A) Luminal vs. non-Luminal, (B) TN vs. non-TN, and (C) HER2 vs. non-HER2.
TABLE 2 Model performance for Luminal subtype classification.

Evaluation
index

Validation set Test set

AUC 0.7666 0.7592

ACC (%) 0.626 (0.534, 0.717) 0.669 (0.635, 0.704)

SENS (%) 0.508 (0.347, 0.669) 0.604 (0.380, 0.828)

SPEC (%) 0.697 (0.531, 0.862) 0.700 (0.595, 0.805)

PPV (%) 0.486 (0.313, 0.658) 0.486 (0.448, 0.524)

NPV (%) 0.727 (0.649, 0.805) 0.798 (0.721, 0.874)
95% confidence intervals are included in brackets.
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(Table 1; T grade: c²=9.390, p=0.669), suggesting that tumor size

(and thus scaling ratio) is unlikely to significantly impact molecular

subtype prediction. We acknowledge that scale-aware or adaptive

resizing strategies (e.g., multi-scale training or adaptive pooling)

could be explored in future work to further reduce bias introduced

by non-uniform scaling.

Among binary classification tasks, the differentiation between

Luminal and non-Luminal subtypes demonstrated superior

performance (AUC = 0.759), suggesting distinct imaging

characteristics detectable by our deep learning model, while

HER2-positive versus HER2-negative classification yielded the

lowest discriminative capacity (AUC = 0.658). However, our

results diverge from those reported by Mota et al. in the

OPTIMAM mammography public database, where their ResNet-

101 architecture achieved optimal discriminative performance for
Frontiers in Oncology 08
HER2 status (AUC = 0.733) but limited efficacy in Luminal subtype

classification (AUC = 0.531) (26). The discrepancy may be

attributed to either (1) inherent differences in data distribution

between the public database and our institutional cohort, or (2)

variations in ROI feature extraction capabilities across different

convolutional neural network (CNN) architectures. Regarding the

relatively poorer performance of the HER2 classification task, we

attribute this to the following factors. Firstly, HER2-positive tumors

can co-express HR (HER2+/HR+) or lack HR (HER2+/HR−),

leading to tumor heterogeneity and divergent imaging phenotypes

(27). For instance, HER2+/HR+ tumors often resemble Luminal

subtypes in mammographic features, while HER2+/HR− tumors

may display aggressive features like pleomorphic calcifications or

irregular margins (9). This heterogeneity could dilute the model’s

ability to generalize HER2-specific features. Secondly, HER2-
TABLE 3 Model performance in classifying TN (binary), HER2 status (binary), and five molecular subtypes (5-category).

Evaluation
index

TN HER2 Five molecular subtypes

V-set T-set V-set T-set V-set T-set

AUC 0.7164 0.6679 0.7402 0.6584 0.6542 0.6494

ACC (%) 0.754 (0.704, 0.803) 0.769 (0.697, 0.841) 0.708 (0.644, 0.771) 0.697 (0.629, 0.764) 0.287 (0.217, 0.358) 0.325 (0.294, 0.357)

SENS (%) 0.364 (0.208, 0.521) 0.300 (0.157, 0.443) 0.800 (0.671, 0.928) 0.797 (0.688, 0.905) 0.429 (0.213, 0.646) 0.455 (0.289, 0.621)

SPEC (%) 0.819 (0.758, 0.879) 0.831 (0.741, 0.922) 0.390 (0.240, 0.540) 0.303 (0.169, 0.438) 0.607 (0.446, 0.768) 0.584 (0.499, 0.669)

PPV (%) 0.249 (0.174, 0.323) 0.198 (0.137, 0.260) 0.834 (0.772, 0.895) 0.818 (0.799, 0.838) 0.548 (0.376, 0.719) 0.599 (0.545, 0.653)

NPV (%) 0.887 (0.852, 0.921) 0.899 (0.883, 0.915) 0.362 (0.187, 0.538) 0.281 (0.229, 0.333) 0.489 (0.393, 0.584) 0.439 (0.378, 0.501)
95% confidence intervals are included in brackets.
TN, Triple-negative breast cancer; V-set, Validation set; T-set, Test set.
FIGURE 3

ROC curves for each class in the DenseNet121-CBAM model’s five-class molecular subtype classification task.
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positive cases constituted only 20.8% (81/390) of our dataset, with

HER2+/HR− being particularly rare (6.9%, 27/390). This relatively

limited sample size may explain the observed performance

differences, while deep learning typically requires large datasets

for stable training, radiomics can construct effective models with

smaller samples (28). This sample size constraint likely accounts for

the superior performance of radiomics in previous studies (19, 20).

Thirdly, Zhu et al. (12) demonstrated superior HER2 prediction

(AUC = 0.83) using CEM, suggesting that iodine-based contrast

enhancement may better capture HER2-related angiogenic features.

The superior performance of CEMmay be attributed to its ability to

provide more distinct imaging features associated with HER2 status

(29). Our use of conventional mammography (without contrast)

likely contributed to the performance gap.

In the domain offive-categorymolecular subtype prediction, only

two research teams to date have conducted multiclass classification

tasks on public mammography datasets using deep learning models.

Mota et al., as noted above, utilized the OPTIMAM database to

classify tumors into five subtypes (Luminal A, Luminal B1, Luminal

B2, HER2-enriched, TNBC), achieved an average AUC of 0.606 (26).

Ben Rabah et al. utilized the Chinese Mammography Database

(CMMD) for five-category breast lesion classification (benign,

Luminal A, Luminal B, HER2+, TNBC). Model performance

demonstrated substantial dependence on clinical data integration,

with AUC dropping from 0.88 (mammography combined with

clinical data) to 0.61 (mammography only) (30). Our model

achieved an AUC of 0.65 for five-category molecular subtypes

classification, demonstrating superior performance compared to
Frontiers in Oncology 09
existing deep learning models trained on public mammography

databases. However, the ACC remained suboptimal in both

validation and test cohorts, which we attribute to class imbalance

in our dataset—a common challenge in clinically collected samples.

Specifically, the overrepresentation of Luminal A/B (26.2%/39.7%)

versus the underrepresentation of HER2+/HR− (6.9%) likely

contributed to this performance discrepancy.

For model visualization, we illustrate the progressive localization

of tumor-associated discriminative regions across consecutive

convolutional layers. Notably, in the five-class classification task,

the attention heatmaps of TNBC and HER2+/HR− subtypes—

exhibiting superior interclass discriminability—predominantly

highlighted peritumoral stromal regions rather than the tumor

parenchyma itself. Regarding the heterogeneity in discriminative

region distribution, prior studies have demonstrated that different

deep learning architectures exhibit distinct attention patterns in

mammographic classification tasks. For instance, baseline CNNs

and AGN4V predominantly focus on local features (e.g., lesion

regions), whereas Transformer-based MaMVT tend to prioritize

global contextual features (e.g., entire breast tissue) (31). Within an

identical deep learning architecture, the observed divergence in

attention regions across molecular subtypes may be attributed to

intrinsic tumor biology and tumor-immune microenvironment

heterogeneity. Immunosuppressive cell populations (e.g., Tregs,

MDSCs, Th2 cells, M2 macrophages) demonstrate higher

infiltration in ER-negative and TN subtypes, whereas NK cells and

cytotoxic T lymphocytes—cell types associated with antitumor

activity—are more abundant in ER-positive breast carcinomas (32).
FIGURE 4

Visualization of representative images with correct classification across different molecular subtypes. The red regions show greater contribution to
the final classification.
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The latest research showed that peritumor breast adipose-derived

secretome from obesity patients is a strong inducer of TNBC cell

invasiveness and JAG1 expression (33). Relevant studies have further

revealed that TNBC promotes the transdifferentiation of adipocyte

stem cells into myofibroblasts through zinc-a-2-glycoprotein
secretion, suggesting the existence of a unique peritumoral adipose

microenvironment in TNBC (34). Whether the observed differences

in attention regions across molecular subtypes truly result from

peritumoral cell distribution heterogeneity requires future

validation through immunohistochemical analysis and peritumoral

tissue single-cell RNA sequencing.

Our deep learning model enables molecular subtype

prediction from mammographic images, which could be

integrated into existing diagnostic workflows as a pre-biopsy

classification tool. Patients will receive a molecular subtype

prediction along with their mammography report, providing

them with psychological preparedness for future diagnostics and

treatment. Aggressive subtype predictions will prompt patient

attention to necessary invasive biopsy procedures. Furthermore,

the model’s classification output serves as an adjunctive tool

for pathological assessment by pathologists. Notably, the

model-identified regions of interest surrounding TNBC and

HER2+/HR− tumors may serve as critical imaging biomarkers for

assessing tumor aggressiveness. However, there are also some

limitations in our study. First, the retrospective design lacks

prospective and external validation cohorts to rigorously assess

model generalizability. Second, we treated each patient’s CC and

MLO views as independent inputs, missing opportunities to

improve model performance through view-integrated prediction.

Finally, the observed concentration of heatmap-activated regions in

peritumoral areas warrants further mechanistic investigation. To

address the limitations of retrospective design and strengthen

generalizability, we propose a three-step validation strategy: (1)

Collaborating with two additional medical centers to compile an

independent external validation cohort, ensuring diversity in

demographics and imaging protocols; (2) Designing a multicenter

prospective trial to compare model predictions against

postoperative pathology in real-time; and (3) Benchmarking

performance on public datasets (OPTIMAM and CMMD) to

assess cross-institutional robustness. These efforts will validate

clinical applicability and will be completed in our future work.

Moreover, mammography presents inherent limitations compared

to MRI and ultrasound, particularly in the Chinese population

where breasts typically exhibit lower fat content and higher

glandular tissue density. This dense tissue composition reduces

mammographic sensitivity, making ultrasound a more suitable

primary imaging modality for many Chinese women. Relevant

studies have confirmed that radiomics analysis of breast

ultrasound images in Chinese women demonstrates predictive

efficacy for ER, PR, HER2, and Ki-67 status, with AUC values all

exceeding 0.7 (35). And the combination with contrast-enhanced

ultrasound significantly improves the accuracy and AUC of

radiomics-based prediction for molecular subtypes (36, 37).

Regarding our model’s suboptimal HER2 status discrimination,

multiparametric MRI may offer enhanced predictive value for
Frontiers in Oncology 10
HER2 expression assessment (38, 39). Future studies should

investigate multimodal approaches combining mammographic

patterns with ultrasound and multiparametric MRI features.
5 Conclusion

Our study developed a DenseNet121-CBAM model that

demonstrates promising capability in predicting breast cancer

molecular subtypes from mammography, providing a non-

invasive alternative to biopsy and optimizing clinical workflows.

In binary classification tasks, the model showed optimal

performance in distinguishing Luminal subtypes, achieving an

AUC of 0.7592 on the independent test set. For five-category

classification, the model exhibited particularly strong predictive

performance for HER2+/HR− and TNBC subtypes. Attention

heatmaps revealed that the model’s discriminative regions were

primarily located at tumor margins, suggesting HER2+/HR− and

TNBC molecular subtypes may be associated with peritumoral

cellular microenvironments.
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