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Introduction: Acute myeloid leukemia (AML) is a hematological malignancy that
requires accurate diagnosis and continuous monitoring to guide effective
treatment. Flow cytometry is widely used because it enables the detection of
minimal residual disease. However, current methods often rely on uniform
marker panels, overlooking the heterogeneity that arises when different
markers or staining protocols are used across patients. In addition, remission
states are frequently neglected, despite their clinical importance for disease
management and prognosis.

Methods: To address these challenges, we developed a machine learning—based
classification framework that integrates heterogeneous flow cytometry data. A
dataset comprising 53 markers was collected, and six different machine learning
classifiers were trained to distinguish between AML, complete remission (AML-
CR), and normal samples. Model performance was evaluated using accuracy,
precision, recall, F1 score, and area under the ROC curve (AUC).

Results: Among the classifiers evaluated, the Random Forest model
demonstrated the highest performance, achieving an accuracy of 94.92%, an
Fl-score of 94.13%, a precision of 94.58%, a recall of 93.74%, and an AUC of
94.83%. These results indicate that machine learning can effectively classify AML
and remission states from heterogeneous flow cytometry data.

Discussion: This study highlights the value of machine learning in overcoming
limitations of traditional flow cytometry analysis. By accommodating marker
heterogeneity and incorporating remission states, the proposed framework
provides a more robust and clinically relevant tool for AML diagnosis and
monitoring. The findings suggest that machine learning models, particularly
Random Forest, hold strong potential for improving precision in hematological
diagnostics. The code for this study is publicly available at https://zenodo.org/
records/15110287.
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1 Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease
originating from the abnormal proliferation and differentiation of
hematopoietic stem cells. It represents the most prevalent form of
adult leukemia (1). Significant improvements in AML prognosis
have been achieved through advancements in chemotherapy,
targeted therapy, transplantation techniques, CAR-T therapy, and
the ongoing refinement of supportive care (2-4). Flow cytometry,
which utilizes specific antibodies to label surface antigens on
leukemia cells, is capable of identifying and quantifying as few as
0.01% leukemia cells. It has emerged as a critical tool for the
diagnosis and monitoring of AML, widely applied in the analysis
of diverse cell populations (5, 6) and the assessment of minimal
residual disease (MRD) to evaluate disease prognosis (7, 8).
However, flow cytometry relies heavily on manual operation,
which is associated with significant drawbacks, including time-
consuming procedures, high subjectivity, and inconsistent results,
potentially leading to missed diagnoses or misdiagnoses (9).
Therefore, investigating the potential for automated diagnosis
based solely on flow cytometry data and developing an intelligent
diagnostic system that is automated, precise, and broadly applicable
holds significant clinical value for early diagnosis and treatment.

In recent years, machine learning (ML) has achieved
remarkable advancements in intelligent medical diagnosis,
particularly in disease classification, prediction, and personalized
treatment (10-12). ML excels at automatically learning from large-
scale datasets and uncovering underlying patterns (13), offering
unparalleled advantages over traditional methods, especially when
processing complex and high-dimensional biomedical data such as
flow cytometry data (14). However, existing models may not be
directly applicable to real-world flow cytometry diagnostic
scenarios due to the unstandardized nature of flow cytometry
data, which often fails to meet the input requirements of these
models. Specifically, in practical settings, the performance
limitations of flow cytometry instruments necessitate the use of
multiple panels to obtain comprehensive data for a single patient.
For instance, the same marker may be labeled with different
fluorescent dyes, leading to variations in the measured values.
Such discrepancies are rarely encountered in publicly available
standardized datasets, where each sample typically employs a
consistent combination of markers and dyes (15). Furthermore,
existing studies on flow cytometry datasets frequently overlook the
analysis of patients with complete acute myeloid leukemia
remission (AML-CR), which oversight limits the comprehensive
understanding of patient data distribution, impairs the evaluation of
treatment efficacy, and hinders the monitoring of disease
relapse risk.

To address this issue, we collected a dataset from real-world
diagnostic scenarios, encompassing samples with diverse
combinations of antibodies and dyes. A key advantage of this
dataset is its inclusion of AML-CR samples, enabling us to
investigate variations in cellular populations across different
disease stages. Subsequently, we calculate the statistical properties
of each marker to standardize the samples into a consistent format.
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This step preserves the distribution information of markers while
ensuring compatibility with the input requirements of ML models.
Finally, ML algorithms are employed to automatically extract
feature information from the standardized flow cytometry data
and construct robust classification models.

Specifically, this study collected flow cytometry data from 59
AML patients, 34 AML-CR patients, and 101 bone marrow flow
cytometry-normal (Norm) patients, encompassing the expression
profiles of various cell surface markers. Utilizing multiple ML
algorithms for feature extraction, selection, and modeling, we
developed a diagnostic model capable of distinguishing among
the three patient groups. The model underwent rigorous
feasibility analysis, performance validation, and comprehensive
evaluation. Extensive experimental results demonstrate the
efficacy of the proposed method in AML diagnosis. Furthermore,
we conducted additional analysis to assess the importance of
markers within the model. On one hand, the model’s findings
align with clinical knowledge, mutually reinforcing each other. On
the other hand, the identification of potentially significant features
may offer novel insights into disease mechanisms. This approach
not only enhances our understanding of the immunological
characteristics of AML but also equips clinicians with more
scientific and efficient diagnostic tools.

2 Methods
2.1 Study population

This retrospective study analyzed flow cytometry data from
patients treated at Shidong Hospital, Yangpu District, Shanghai,
between January 2019 and October 2024. The study included
samples from patients with acute myeloid leukemia (non-M3
type, AML), AML in complete remission (AML-CR), and those
with normal bone marrow flow cytometry results (Norm). The
normal group comprised patients with cytopenia or cytosis caused
by non-neoplastic conditions, including nutritional anemia,
immune thrombocytopenia, and primary thrombocythemia.
Inclusion criteria: The study subjects are AML patients aged
between 18 and 70 years. The diagnosis and classification of
leukemia are based on the World Health Organization 5th
Edition Classification of Hematologic and Lymphoid Tumors
(16), with comprehensive evaluation considering clinical
manifestations, morphology, cytogenetics, and molecular results
(17). Complete remission of bone marrow after treatment is
assessed according to the 4th Edition of Diagnostic and Efficacy
Criteria for Hematologic Diseases, with a blast cell percentage of
<5% defined as complete remission. Exclusion criteria: Patients with
other hematologic disorders, severe infections, or other systemic
diseases that may affect flow cytometry results, as well as cases with
incomplete or obviously abnormal data.

Based on the above criteria, a total of 59 AML samples, 34
AML-CR samples, and 101 Norm samples are included in the study.
The dataset comprised 53 distinct markers, as detailed in Table 1,
which are utilized for subsequent feature engineering to extract and
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TABLE 1 List of markers used in flow cytometry analysis.

CDI10-FITC CD10-PE CD117-PC5 CDI11B-FITC CD123-PE
CD13-PE CD138-APC CD138-PE CD14-ECD CD15-PC5
CD16-ECD CD16-PE CD19-ECD CD19-PC5 CD2-PC5
CD20-ECD CD23-PE CD3-ECD CD33-PE CD34-ECD
CD34-PC5 CD36-FITC CD38-FITC CD4-APC CD4-PE
CD41-ECD CD45-KO CD45-PC7 CD5-FITC CD5-PC5.5
CD56-PC5 CD56-PC5.5 CD56-PE CD57-FITC CD64-PE
CD7-PC5 CD7-PE CD71-FITC CD79B-PC5.5 =~ CDS8-FITC
CD9-FITC CKAPPA-FITC CLAMBDA-PE | FMC7-FITC FS-LIN
FS-PEAK-LIN HLA-DR-ECD HLA-DR-FITC KAPPA-FITC = LAMBDA-PE
SS-LIN TCRAB-FITC TCRGD-PE

Since the values measured for the same marker vary under different dyes, we treat each
marker-dye pair as a distinct marker here.

optimize classification features. The data are randomly split into
training and testing sets at a ratio of 7:3 while maintaining the
proportional distribution of each category in both sets. The
complete workflow for sample screening and data processing is
illustrated in Figure 1. The automatic diagnostic process of the flow
cytometry-based model begins with data collection, where patient
samples are acquired and raw flow cytometry data are generated.
These data then undergo scanning, involving preprocessing and
quality control to ensure accuracy and consistency. Next, during
feature aggregation, relevant cellular features are extracted and
combined to form comprehensive representations of each sample.
The aggregated features are used in the training and inference
phase, where the machine learning model is trained on labeled
datasets and subsequently applied to new patient data for

Data Collection

Scanning

Bone marrow LMD files

FIGURE 1

Feature Aggregation

Feature vectors
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prediction. Finally, the model produces diagnostic results that
assist clinicians in making decisions.

2.2 Data selection

Fresh bone marrow samples (3 — 5mL), anticoagulated with
heparin or EDTA, are collected and thoroughly mixed before
storage at room temperature. The leukocyte count is determined
using an automated hematology analyzer. Based on the leukocyte
count, the sample is either diluted with PBS or concentrated by
centrifugation at 1700 rpm to adjust the leukocyte concentration to
1 x 107/mL. Tubes are prepared according to the sample and the
specific antibody panel. For membrane staining, a pre-prepared
antibody cocktail is added to each tube based on the selected
antibody combination. The sample is thoroughly mixed (at least 5
inversions), and the calculated volume of the diluted or
concentrated sample is added to the bottom of the tube. After
gentle mixing, the sample is incubated in the dark for 15-20
minutes to ensure optimal staining efficiency. Subsequently, red
blood cell lysis buffer is added, followed by an additional 10-minute
incubation in the dark until complete lysis is achieved. Centrifuge
the sample at 1700 rpm for 5 minutes, then discard the supernatant.
The pellet is resuspended in 2 mL of PBS, mixed thoroughly, and
centrifuged again at 1700 rpm for 5 minutes. After discarding the
supernatant, 600 puL of 1% paraformaldehyde fixation solution is
added to resuspend the cells, which are then subjected to flow
cytometry analysis. For intracellular staining, the above steps are
followed according to the reagent manufacturer’s instructions. For
detection of surface or cytoplasmic immunoglobulin light chains,
the sample is washed three times with PBS before antibody addition.
Data acquisition is performed on a Navios 10 COLORS/3 LASER

Training and Inference Diagnostic Results

|
Lk
MLP
SVM I I

XGB

Probability distribution

GBM

Machine learning model

Automated diagnostic workflow for flow cytometry data analysis. For each patient, multiple LMD files are processed to calculate statistical features,
which are then aggregated into a standardized format. The formatted data are subsequently input into a machine learning (ML) model for training
and classification. LR, Logistic Regression; RF, Random Forest; MLP, Multilayer Perceptron; SVM, Support Vector Machine; XGB, Extreme Gradient

Boosting; GBM, Gradient Boosting Machine.
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flow cytometer, ensuring at least 5 x 10> events are collected per
sample. The antibody panel included surface markers such as CD34,
CD38, CD45, and CD117. All data are stored in LMD file format.

2.3 Data pre-processing and feature
engineering

Each sample corresponds to tens of thousands of cells, and each
cell carries multiple marker results. In clinical diagnosis, physicians
often focus on the distribution patterns of these markers across
different cell populations. Simply averaging the marker values for all
cells may overlook important distribution characteristics. To
address this, we incorporated additional statistical measures,
including mean, standard deviation (std), median, skewness, and
kurtosis, to capture the variability and asymmetry of marker
distributions more comprehensively. These statistical measures
effectively capture the distributional differences of markers across
cell populations. The mean reflects the overall expression level of a
marker, while the standard deviation quantifies variability among
cells. The median reduces the influence of extreme values, skewness
reveals distribution asymmetry, and kurtosis indicates the
sharpness of the distribution or the presence of outliers. The
formulas for calculating skewness and kurtosis are shown in
Equations 1, 2, respectively.

3
Skewness = %2?:1 {(Xi — 'u) } (1)

o

4
Kurtosis = %ETZI {(Xi — 'u) } (2)

o

where X; is the ith data point, u is the sample mean, o is the
sample standard deviation, and # is the total number of samples.
Therefore, the 53 marker values of all cells from each patient are
transformed into a 265-dimensional feature vector, where each
marker is represented by the five aforementioned distributional
features. This transformation enables a more comprehensive
representation of marker distribution across cells. The numerical
distribution of the transformed data in the training and test sets is
illustrated in Figure 2.

2.4 Model establishment and evaluation

The flow cytometry data is randomly split into training and
testing sets in a 7:3 ratio. To ensure a comprehensive evaluation,
this study employs six widely used ML algorithms, encompassing
various classical approaches. These include linear models [Logistic
Regression, LR (18)], ensemble methods [Random Forest, RF (19);
Extreme Gradient Boosting, XGBoost (20); Gradient Boosting
Machine, GBM (21)], neural networks [Multilayer Perceptron,
MLP (22)], and support vector machines [Support Vector
Machine, SVM (23)]. Each algorithm represents a distinct
learning paradigm: linear models effectively capture linear
relationships and are suitable when interpretability and simplicity
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are important, ensemble methods enhance predictive performance
by aggregating multiple weak learners and work well for complex,
nonlinear, and noisy data, neural networks excel at modeling
complex nonlinear patterns and are particularly effective with
large datasets and intricate feature interactions, support vector
machines are well-suited for high-dimensional classification tasks,
especially when the classes are separable with clear margins. All
models are implemented using scikit-learn==1.6.1 in Python 3.10.
In the training set, all flow cytometry data are divided into five parts,
and five-fold cross-validation is applied. This strategy helps assess
the stability and generalization ability of the model by cycling
through each subset as the validation set. During cross-validation,
grid search is used to optimize the hyperparameters. The specific
parameter search space for each method is shown in Table 2. The
evaluation metrics include accuracy, F1-score, precision, recall, and
area under the curve (AUC). These metrics collectively reflect the
model’s performance in the classification task, with particular
significance for Fl-score and AUC when handling imbalanced
data. In addition, to analyze the contribution of features to the
prediction, shap==0.46.0 (24) is used to estimate feature
importance. Based on the concept of Shapley values, SHAP
assigns an importance value to each feature, thereby helping to
explain the model’s decision-making process and enhancing the
model’s interpretability and reliability.

3 Results
3.1 Clinical characteristics of patients

We enrolled 59 patients with acute myeloid leukemia (AML,
non-M3), 34 patients who achieved complete bone marrow
remission after treatment (AML-CR), and 101 individuals with
normal bone marrow flow cytometry results (Norm). The dataset is
randomly divided into a training set (n=135) and a test set (n=59) in
a 7:3 ratio. The collected variables encompassed demographic
characteristics (age and sex), routine blood parameters (white
blood cell count, hemoglobin level, and platelet count), the
proportion of bone marrow blasts/immunized cells, and 53
commonly used markers from flow cytometry data. The baseline
characteristics of the participants are summarized in Table 3. The
mean age of patients in the training set is 66.59 years (66.59 +
14.33), while that in the test set is 66.66 years (66.66 + 13.81), with
no statistically significant difference between the two groups (P >
0.05). Chi-square analysis revealed no significant differences (P >
0.05) in any of the examined variables between the training and test
sets, indicating similar distribution patterns across all factors. These
results demonstrate that both the training and test sets are well-
balanced and appropriate for subsequent predictive analysis.

3.2 Model performance

Table 4 and Figure 3 present the performance of different
models in the classification task. Overall, both RF and XGB
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A detailed visualization of the dataset is presented. The left panel illustrates the distribution of markers across different samples, while white indicates
the presence of corresponding markers and black indicates their absence. The right panel displays the distribution of features extracted from
different samples. Here, Markers refers to the 53 cell surface markers analyzed, while Features represents the 265 statistical features derived from the

53 markers

achieved superior results across all metrics, with F1-score, precision,
and recall reaching 0.9413, 0.9458, and 0.9374, respectively, and an
accuracy of 0.9492. These results indicate strong generalization
capabilities for these two models in the classification task. LR
exhibited a high AUC value (0.9705); however, its Fl-score
(0.9175) and precision (0.9098) are slightly lower than those of

Frontiers in Oncology

RF and XGB, suggesting some degree of misclassification. Both
MLP and SVM demonstrated identical classification performance,
with an accuracy of 0.9153 and an F1 score of 0.8932. Notably, SVM
achieved the highest AUC value (0.9741), although its other metrics
are lower than those of RF and XGB. GBM performed slightly worse
than the other models, with the lowest accuracy (0.8983) and F1
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TABLE 2 Hyperparameter search space for machine learning (ML)
models.

Model Hyperparameters

n_estimators: [50, 100, 200]

max_depth: [10, 20, 30]
Random Forest (RF) min_samples split: [2, 5, 10]
min_samples leaf: [1, 2, 4]

max_features: [‘sqrt’, log2’, None]

C: [0.1, 1, 10]

kernel: [linear’, ‘rbf, ‘poly’]
Support Vector Machine (SVM) | gamma: [‘scale’, ‘auto’]
degree: [3, 5]
class_weight: [None, ‘balanced’]

hidden_layer_sizes: [(50), (100), (50, 50)]
activation: [‘relu’, ‘tanh’]

solver: [‘adam’, ‘sgd’]

alpha: [0.0001, 0.001, 0.01]
learning_rate: [‘constant’, ‘invscaling’,
‘adaptive’]

Multilayer Perceptron (MLP)

C: [0.01, 0.1, 1, 10, 100]
penalty: [11’, 12’]

solver: [liblinear’, ‘saga’]
max_iter: [100, 200, 300]
class_weight: [None, ‘balanced’]

Logistic Regression (LR)

n_estimators: [50, 100, 200, 500]
max_depth: [3, 6, 10]
learning_rate: [0.01, 0.05, 0.1]
subsample: [0.6, 0.8, 1.0]
colsample_bytree: [0.6, 0.8, 1.0]

Extreme Gradient Boosting
(XGB)

n_estimators: [50, 100, 200]
learning_rate: [0.01, 0.05, 0.1]
max_depth: [3, 5, 7]
min_samples_split: [2, 5, 10]
subsample: [0.8, 0.9, 1.0]

Gradient Boosting Machine
(GBM)

score (0.8806). Although its AUC value reached 0.9491, its precision
(0.8752) and recall (0.8974) exhibited a certain gap, possibly due to
the model’s limited ability to distinguish between specific classes.
Overall, RF and XGB demonstrated robust performance across all
metrics, making them the most suitable candidates for this task.
Meanwhile, SVM, with the highest AUC value, may offer

TABLE 3 Clinical characteristics of the training set and test set.

10.3389/fonc.2025.1638074

advantages in certain application scenarios. Additionally,
confusion matrix analysis revealed that the misclassified samples
are evenly distributed across different categories, indicating that
these models maintained a balanced classification error
across classes.

3.3 Feature importance analysis

Figure 4 displays the top 10 most important features in the
decision-making process for each model. Notably, CD117 and
CD34 are identified as the most influential markers for
distinguishing AML in the GBM, RF, and XGB models. These
findings resonate with clinical practice, where both CD117 and
CD34 are extensively utilized for AML differentiation and
classification. This congruence between model predictions and
clinical practices underscores the potential of data-driven
approaches in medical diagnostics and highlights the pivotal roles
of CD117 and CD34 in AML diagnosis. HLA-DR significantly
affects the classification of AML and AML-CR in the GBM, RF, and
LR models, while CD45 plays a crucial role in the GBM and SVM
models, suggesting its potential contribution to the regulation of
immunophenotypic heterogeneity in AML. Lower expression of
HLA-DR is commonly observed in immature leukemia cells,
particularly in MO/M1 subtypes, indicating a differentiation block
that may facilitate immune evasion or serve as a marker for specific
stages of differentiation. Furthermore, CD45 expression varies
throughout the stages of myeloid differentiation, with its
heterogeneity, in conjunction with differential expression of HLA-
DR, contributing to the formation of different immune subtypes,
thus indicating a differentiation blockade and the coexistence of
multiple stages of differentiation. Additionally, the markers in the
Norm group exhibit lower specificity, raising concerns about the
risk of overfitting in some models due to the smaller phenotypic
variability observed in normal samples. These insights suggest that
while the models generally perform well, caution is warranted
regarding the risk of overfitting, especially when distinguishing
between normal and diseased states.

Variables Train set Test set Value of t Value of P
Age 66.59 + 14.33 66.66 + 13.81 -0.03 097

Sex -0.08 0.94

Male 77(57.04%) 34(57.63%)

Female 58(42.96%) 25(42.37%)

WBC (10A9/L) 17.25 + 50.89 20.12 + 61.81 -0.34 0.74

Hb(g/L) 87.70 + 39.18 87.30 + 37.42 0.07 0.95

PLT (10A9/L) 141.12 + 163.65 127.41 + 158.05 0.54 0.59

BMBC (%) 0.14 + 0.24 0.15 +0.27 -0.31 0.76

WBC, white blood cell count; Hb, hemoglobin level; PLT, platelet count; BMBC, bone marrow blast cell count.
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TABLE 4 The performance of different models.

10.3389/fonc.2025.1638074

Model Accuracy F1(%) Precision (%) Recall (%) AUC (%)
LR 93.22 9175 90.98 92.66 97.05
RF 94.92 94.13 94.58 93.74 94.83
MLP 9153 89.32 89.58 90.04 95.14
SVM 9153 89.32 89.58 90.04 97.41
XGB 94.92 94.13 94.58 93.74 942
GBM 89.83 88.06 87.52 89.74 9491

LR, linear regression; RF, random forest; MLP, multi-layer perceptron; SVM, support vector machine; XGB, extreme gradient boosting; GBM, gradient boosting machine.

4 Discussion

Acute myeloid leukemia (AML) is a highly aggressive and
heterogeneous hematopoietic malignancy, representing 15-20% of
all leukemia diagnoses worldwide. The global annual incidence is
estimated at 1.0-1.5 per 100,000 population, corresponding to
approximately 40,000-50,000 new cases each year, with around
80% occurring in adults (aged = 18 years) (25). Despite significant
advances in therapeutic modalities, including chemotherapy,
allogeneic stem cell transplantation, and novel targeted/
immunotherapeutic agents, the overall prognosis of AML remains
unsatisfactory. Patients with high-risk features (e.g., advanced age

[260 years], TP53 mutations, or complex karyotypes) exhibit
particularly dismal outcomes, with 5-year overall survival rates as
low as 5-15% (4). The therapeutic landscape remains particularly
constrained for patients with relapsed/refractory (R/R) AML.
Disease progression is frequently complicated by life-threatening
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cytopenias (including transfusion-dependent anemia),
opportunistic infections, and progressive multiorgan dysfunction
- clinical manifestations directly attributable to the intrinsically
aggressive biology of leukemic cells. This underscores the critical
unmet need for advanced diagnostic modalities to guide precision

therapeutic strategies. Flow cytometry-based immunophenotyping
analysis offers critical support for the early detection of disease
progression and the development of personalized treatment
strategies by dynamically monitoring cell characteristics.

Conventional flow cytometry methods for manual detection
typically rely on gating and clustering techniques to categorize cells

into multiple subpopulations, performing multi-parameter analysis
of surface and intracellular markers. These methods are widely used

for the diagnosis and classification of hematologic malignancies
(26). Conventional flow cytometry data analysis remains labor-
intensive and subject to inter-operator variability due to its reliance
on manual gating expertise. This inherent limitation has spurred the
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machine.

rapid adoption of machine learning algorithms in hematological
diagnostics, enabling automated analysis of cellular morphology,
immunophenotypic patterns, and histopathological features with
enhanced reproducibility (27-29). Among them, Beni et al. (30)
introduces a multi-cell classification benchmark dataset; Hu et al.
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(31) uses deep convolutional neural networks for cytomegalovirus
classification based on flow cytometry data; Li et al. (32) transforms
SW-480 epithelial cancer cell flow cytometry data into images and
uses convolutional neural networks for classification. Although
these methods have positively contributed to the improvement of
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flow cytometry diagnostics, their practical implementation
continues to encounter substantial challenges: (1) the inherently
high-dimensional nature of patient-level FCM data; (2) substantial
inter-sample variability introduced by both biological heterogeneity
(e.g., treatment response status) and technical factors (e.g.,
instrument configuration); and (3) the critical knowledge gap
regarding immunophenotypic patterns during remission phases.
Addressing these challenges, we developed a novel cell-level data
integration framework using real-world clinical FCM datasets.
Notably, our study represents the first systematic incorporation of
remission phase AML samples into classification models, thereby
establishing a much-needed benchmark for treatment
response monitoring.

This study pioneers the inclusion of AML patients in complete
remission (AML-CR) within a classification system and has
successfully developed an artificial intelligence model that
accurately differentiates among healthy individuals, AML patients,
and AML-CR. The model demonstrated > 90% accuracy in all
baseline tests, confirming its validity. This high accuracy further
indicates that AML-CR exhibits significantly distinct characteristics
compared to the other two groups, offering new perspectives for
clinical diagnosis. Notably, our machine learning model shows
substantial speed advantages over both manual analysis and deep
learning methods. In bone marrow flow cytometry testing, the
entire process from sample processing and staining to data
acquisition typically requires several to over ten minutes (33).
Data analysis requires professionals to manually gate and analyze
antigen expression patterns while integrating clinical background
for interpretation. Flow cytometry specialists at Shanghai KingMed
Diagnostics report that the analytical duration varies significantly
(15 minutes to several hours) depending on sample complexity,
clinical requirements, and operator experience. Our diagnostic
approach completes single-patient data analysis in< 1 second,
demonstrating two key advantages: (1) a 100-1000x improvement
in processing speed compared to conventional methods, and (2) a
substantial reduction in technologist workload. Clinical
implementation of this method enables real-time assessment of
disease status and treatment response, supporting timely
therapeutic decision-making. By applying the proposed method to
actual flow cytometry data analysis, physicians can evaluate
patients’ disease status and treatment response more rapidly and
accurately, thereby developing more personalized treatment plans.
Al-assisted flow cytometry analysis is expected to play an important
role in primary medical institutions lacking flow cytometry
diagnostic specialists, helping more patients benefit.

Multimodal SHAP analysis demonstrates that the key markers of
the AML group (CD117, CD34, HLA-DR) exhibit strong
concordance with established clinical diagnostic criteria, thereby
validating their pivotal role as core immunophenotypic markers for
leukemia cell identification and classification. We identified
significant differences in the expression patterns of specific cell
surface markers among de novo patients with AML, healthy
individuals, and post-treatment AML patients who achieved
complete remission. Notably, CD34 and CD117 expression levels
are significantly higher in AML patients compared to both healthy
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individuals and remission-phase patients, whereas CD45 expression
is comparatively reduced. These findings suggest a potential
mechanistic link between aberrant marker expression and AML
pathogenesis, therapeutic efficacy, and relapse, advancing our
understanding of the disease’s biology. Furthermore, flow
cytometric profiling of AML patients in complete remission
facilitates the identification of therapy-responsive immunological
markers and provides early warning signs for potential disease
recurrence. Notably, the markers identified in the normal group
demonstrated relatively low specificity, potentially reflecting
physiological variations in immune homeostasis. To improve
model robustness, adversarial training or sample size expansion
approaches should be considered to enhance interference resistance.

Notwithstanding the meaningful contributions of this work,
certain limitations merit consideration. Chief among these is the
restricted generalizability inherent to single-center studies with
limited sample sizes. Second, the intrinsic heterogeneity and
technical variability in flow cytometry data may introduce
measurement noise and analytical interference, which could
adversely affect the model’s predictive accuracy. Additionally, the
biological implications of specific cell surface markers warrant further
investigation. Future studies should employ expanded cohorts
incorporating diverse AML subtypes and treatment phases to
optimize and validate the machine learning model’s performance.
Furthermore, integrating genomic sequencing data and other multi-
omics information to develop a multi-omics fusion model, alongside
multimodal imaging data and clinical information, could provide a
more comprehensive AML diagnostic and prognostic assessment
tool, thereby advancing the precision and scientific rigor of clinical
decision-making. The current study is limited to non-M3 AML
patients. Future research should extend the model’s applicability to
additional AML subtypes, including acute promyelocytic leukemia
(M3) and other rare variants, to enhance its clinical utility. Looking
forward, translational application of this model to the broader
spectrum of hematologic neoplasms, such as acute lymphoblastic
leukemia, may establish new frameworks for AI-powered.
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