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Introduction: Acute myeloid leukemia (AML) is a hematological malignancy that

requires accurate diagnosis and continuous monitoring to guide effective

treatment. Flow cytometry is widely used because it enables the detection of

minimal residual disease. However, current methods often rely on uniform

marker panels, overlooking the heterogeneity that arises when different

markers or staining protocols are used across patients. In addition, remission

states are frequently neglected, despite their clinical importance for disease

management and prognosis.

Methods: To address these challenges, we developed a machine learning–based

classification framework that integrates heterogeneous flow cytometry data. A

dataset comprising 53 markers was collected, and six different machine learning

classifiers were trained to distinguish between AML, complete remission (AML-

CR), and normal samples. Model performance was evaluated using accuracy,

precision, recall, F1 score, and area under the ROC curve (AUC).

Results: Among the classifiers evaluated, the Random Forest model

demonstrated the highest performance, achieving an accuracy of 94.92%, an

F1-score of 94.13%, a precision of 94.58%, a recall of 93.74%, and an AUC of

94.83%. These results indicate that machine learning can effectively classify AML

and remission states from heterogeneous flow cytometry data.

Discussion: This study highlights the value of machine learning in overcoming

limitations of traditional flow cytometry analysis. By accommodating marker

heterogeneity and incorporating remission states, the proposed framework

provides a more robust and clinically relevant tool for AML diagnosis and

monitoring. The findings suggest that machine learning models, particularly

Random Forest, hold strong potential for improving precision in hematological

diagnostics. The code for this study is publicly available at https://zenodo.org/

records/15110287.
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1 Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease

originating from the abnormal proliferation and differentiation of

hematopoietic stem cells. It represents the most prevalent form of

adult leukemia (1). Significant improvements in AML prognosis

have been achieved through advancements in chemotherapy,

targeted therapy, transplantation techniques, CAR-T therapy, and

the ongoing refinement of supportive care (2–4). Flow cytometry,

which utilizes specific antibodies to label surface antigens on

leukemia cells, is capable of identifying and quantifying as few as

0.01% leukemia cells. It has emerged as a critical tool for the

diagnosis and monitoring of AML, widely applied in the analysis

of diverse cell populations (5, 6) and the assessment of minimal

residual disease (MRD) to evaluate disease prognosis (7, 8).

However, flow cytometry relies heavily on manual operation,

which is associated with significant drawbacks, including time-

consuming procedures, high subjectivity, and inconsistent results,

potentially leading to missed diagnoses or misdiagnoses (9).

Therefore, investigating the potential for automated diagnosis

based solely on flow cytometry data and developing an intelligent

diagnostic system that is automated, precise, and broadly applicable

holds significant clinical value for early diagnosis and treatment.

In recent years, machine learning (ML) has achieved

remarkable advancements in intelligent medical diagnosis,

particularly in disease classification, prediction, and personalized

treatment (10–12). ML excels at automatically learning from large-

scale datasets and uncovering underlying patterns (13), offering

unparalleled advantages over traditional methods, especially when

processing complex and high-dimensional biomedical data such as

flow cytometry data (14). However, existing models may not be

directly applicable to real-world flow cytometry diagnostic

scenarios due to the unstandardized nature of flow cytometry

data, which often fails to meet the input requirements of these

models. Specifically, in practical settings, the performance

limitations of flow cytometry instruments necessitate the use of

multiple panels to obtain comprehensive data for a single patient.

For instance, the same marker may be labeled with different

fluorescent dyes, leading to variations in the measured values.

Such discrepancies are rarely encountered in publicly available

standardized datasets, where each sample typically employs a

consistent combination of markers and dyes (15). Furthermore,

existing studies on flow cytometry datasets frequently overlook the

analysis of patients with complete acute myeloid leukemia

remission (AML-CR), which oversight limits the comprehensive

understanding of patient data distribution, impairs the evaluation of

treatment efficacy, and hinders the monitoring of disease

relapse risk.

To address this issue, we collected a dataset from real-world

diagnostic scenarios, encompassing samples with diverse

combinations of antibodies and dyes. A key advantage of this

dataset is its inclusion of AML-CR samples, enabling us to

investigate variations in cellular populations across different

disease stages. Subsequently, we calculate the statistical properties

of each marker to standardize the samples into a consistent format.
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This step preserves the distribution information of markers while

ensuring compatibility with the input requirements of ML models.

Finally, ML algorithms are employed to automatically extract

feature information from the standardized flow cytometry data

and construct robust classification models.

Specifically, this study collected flow cytometry data from 59

AML patients, 34 AML-CR patients, and 101 bone marrow flow

cytometry-normal (Norm) patients, encompassing the expression

profiles of various cell surface markers. Utilizing multiple ML

algorithms for feature extraction, selection, and modeling, we

developed a diagnostic model capable of distinguishing among

the three patient groups. The model underwent rigorous

feasibility analysis, performance validation, and comprehensive

evaluation. Extensive experimental results demonstrate the

efficacy of the proposed method in AML diagnosis. Furthermore,

we conducted additional analysis to assess the importance of

markers within the model. On one hand, the model’s findings

align with clinical knowledge, mutually reinforcing each other. On

the other hand, the identification of potentially significant features

may offer novel insights into disease mechanisms. This approach

not only enhances our understanding of the immunological

characteristics of AML but also equips clinicians with more

scientific and efficient diagnostic tools.
2 Methods

2.1 Study population

This retrospective study analyzed flow cytometry data from

patients treated at Shidong Hospital, Yangpu District, Shanghai,

between January 2019 and October 2024. The study included

samples from patients with acute myeloid leukemia (non-M3

type, AML), AML in complete remission (AML-CR), and those

with normal bone marrow flow cytometry results (Norm). The

normal group comprised patients with cytopenia or cytosis caused

by non-neoplastic conditions, including nutritional anemia,

immune thrombocytopenia, and primary thrombocythemia.

Inclusion criteria: The study subjects are AML patients aged

between 18 and 70 years. The diagnosis and classification of

leukemia are based on the World Health Organization 5th

Edition Classification of Hematologic and Lymphoid Tumors

(16), with comprehensive evaluation considering clinical

manifestations, morphology, cytogenetics, and molecular results

(17). Complete remission of bone marrow after treatment is

assessed according to the 4th Edition of Diagnostic and Efficacy

Criteria for Hematologic Diseases, with a blast cell percentage of

<5% defined as complete remission. Exclusion criteria: Patients with

other hematologic disorders, severe infections, or other systemic

diseases that may affect flow cytometry results, as well as cases with

incomplete or obviously abnormal data.

Based on the above criteria, a total of 59 AML samples, 34

AML-CR samples, and 101 Norm samples are included in the study.

The dataset comprised 53 distinct markers, as detailed in Table 1,

which are utilized for subsequent feature engineering to extract and
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optimize classification features. The data are randomly split into

training and testing sets at a ratio of 7:3 while maintaining the

proportional distribution of each category in both sets. The

complete workflow for sample screening and data processing is

illustrated in Figure 1. The automatic diagnostic process of the flow

cytometry-based model begins with data collection, where patient

samples are acquired and raw flow cytometry data are generated.

These data then undergo scanning, involving preprocessing and

quality control to ensure accuracy and consistency. Next, during

feature aggregation, relevant cellular features are extracted and

combined to form comprehensive representations of each sample.

The aggregated features are used in the training and inference

phase, where the machine learning model is trained on labeled

datasets and subsequently applied to new patient data for
Frontiers in Oncology 03
prediction. Finally, the model produces diagnostic results that

assist clinicians in making decisions.
2.2 Data selection

Fresh bone marrow samples (3 − 5mL), anticoagulated with

heparin or EDTA, are collected and thoroughly mixed before

storage at room temperature. The leukocyte count is determined

using an automated hematology analyzer. Based on the leukocyte

count, the sample is either diluted with PBS or concentrated by

centrifugation at 1700 rpm to adjust the leukocyte concentration to

1 × 107/mL. Tubes are prepared according to the sample and the

specific antibody panel. For membrane staining, a pre-prepared

antibody cocktail is added to each tube based on the selected

antibody combination. The sample is thoroughly mixed (at least 5

inversions), and the calculated volume of the diluted or

concentrated sample is added to the bottom of the tube. After

gentle mixing, the sample is incubated in the dark for 15–20

minutes to ensure optimal staining efficiency. Subsequently, red

blood cell lysis buffer is added, followed by an additional 10-minute

incubation in the dark until complete lysis is achieved. Centrifuge

the sample at 1700 rpm for 5 minutes, then discard the supernatant.

The pellet is resuspended in 2 mL of PBS, mixed thoroughly, and

centrifuged again at 1700 rpm for 5 minutes. After discarding the

supernatant, 600 µL of 1% paraformaldehyde fixation solution is

added to resuspend the cells, which are then subjected to flow

cytometry analysis. For intracellular staining, the above steps are

followed according to the reagent manufacturer’s instructions. For

detection of surface or cytoplasmic immunoglobulin light chains,

the sample is washed three times with PBS before antibody addition.

Data acquisition is performed on a Navios 10 COLORS/3 LASER
FIGURE 1

Automated diagnostic workflow for flow cytometry data analysis. For each patient, multiple LMD files are processed to calculate statistical features,
which are then aggregated into a standardized format. The formatted data are subsequently input into a machine learning (ML) model for training
and classification. LR, Logistic Regression; RF, Random Forest; MLP, Multilayer Perceptron; SVM, Support Vector Machine; XGB, Extreme Gradient
Boosting; GBM, Gradient Boosting Machine.
TABLE 1 List of markers used in flow cytometry analysis.

CD10-FITC CD10-PE CD117-PC5 CD11B-FITC CD123-PE

CD13-PE CD138-APC CD138-PE CD14-ECD CD15-PC5

CD16-ECD CD16-PE CD19-ECD CD19-PC5 CD2-PC5

CD20-ECD CD23-PE CD3-ECD CD33-PE CD34-ECD

CD34-PC5 CD36-FITC CD38-FITC CD4-APC CD4-PE

CD41-ECD CD45-KO CD45-PC7 CD5-FITC CD5-PC5.5

CD56-PC5 CD56-PC5.5 CD56-PE CD57-FITC CD64-PE

CD7-PC5 CD7-PE CD71-FITC CD79B-PC5.5 CD8-FITC

CD9-FITC CKAPPA-FITC CLAMBDA-PE FMC7-FITC FS-LIN

FS-PEAK-LIN HLA-DR-ECD HLA-DR-FITC KAPPA-FITC LAMBDA-PE

SS-LIN TCRAB-FITC TCRGD-PE
Since the values measured for the same marker vary under different dyes, we treat each
marker-dye pair as a distinct marker here.
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flow cytometer, ensuring at least 5 × 105 events are collected per

sample. The antibody panel included surface markers such as CD34,

CD38, CD45, and CD117. All data are stored in LMD file format.
2.3 Data pre-processing and feature
engineering

Each sample corresponds to tens of thousands of cells, and each

cell carries multiple marker results. In clinical diagnosis, physicians

often focus on the distribution patterns of these markers across

different cell populations. Simply averaging the marker values for all

cells may overlook important distribution characteristics. To

address this, we incorporated additional statistical measures,

including mean, standard deviation (std), median, skewness, and

kurtosis, to capture the variability and asymmetry of marker

distributions more comprehensively. These statistical measures

effectively capture the distributional differences of markers across

cell populations. The mean reflects the overall expression level of a

marker, while the standard deviation quantifies variability among

cells. The median reduces the influence of extreme values, skewness

reveals distribution asymmetry, and kurtosis indicates the

sharpness of the distribution or the presence of outliers. The

formulas for calculating skewness and kurtosis are shown in

Equations 1, 2, respectively.

Skewness =
1
no

n
i=1

Xi − m
s

� �3� �
(1)

Kurtosis =
1
no

n
i=1

Xi − m
s

� �4� �
(2)

where Xi is the ith data point, m is the sample mean, s is the

sample standard deviation, and n is the total number of samples.

Therefore, the 53 marker values of all cells from each patient are

transformed into a 265-dimensional feature vector, where each

marker is represented by the five aforementioned distributional

features. This transformation enables a more comprehensive

representation of marker distribution across cells. The numerical

distribution of the transformed data in the training and test sets is

illustrated in Figure 2.
2.4 Model establishment and evaluation

The flow cytometry data is randomly split into training and

testing sets in a 7:3 ratio. To ensure a comprehensive evaluation,

this study employs six widely used ML algorithms, encompassing

various classical approaches. These include linear models [Logistic

Regression, LR (18)], ensemble methods [Random Forest, RF (19);

Extreme Gradient Boosting, XGBoost (20); Gradient Boosting

Machine, GBM (21)], neural networks [Multilayer Perceptron,

MLP (22)], and support vector machines [Support Vector

Machine, SVM (23)]. Each algorithm represents a distinct

learning paradigm: linear models effectively capture linear

relationships and are suitable when interpretability and simplicity
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by aggregating multiple weak learners and work well for complex,

nonlinear, and noisy data, neural networks excel at modeling

complex nonlinear patterns and are particularly effective with

large datasets and intricate feature interactions, support vector

machines are well-suited for high-dimensional classification tasks,

especially when the classes are separable with clear margins. All

models are implemented using scikit-learn==1.6.1 in Python 3.10.

In the training set, all flow cytometry data are divided into five parts,

and five-fold cross-validation is applied. This strategy helps assess

the stability and generalization ability of the model by cycling

through each subset as the validation set. During cross-validation,

grid search is used to optimize the hyperparameters. The specific

parameter search space for each method is shown in Table 2. The

evaluation metrics include accuracy, F1-score, precision, recall, and

area under the curve (AUC). These metrics collectively reflect the

model’s performance in the classification task, with particular

significance for F1-score and AUC when handling imbalanced

data. In addition, to analyze the contribution of features to the

prediction, shap==0.46.0 (24) is used to estimate feature

importance. Based on the concept of Shapley values, SHAP

assigns an importance value to each feature, thereby helping to

explain the model’s decision-making process and enhancing the

model’s interpretability and reliability.
3 Results

3.1 Clinical characteristics of patients

We enrolled 59 patients with acute myeloid leukemia (AML,

non-M3), 34 patients who achieved complete bone marrow

remission after treatment (AML-CR), and 101 individuals with

normal bone marrow flow cytometry results (Norm). The dataset is

randomly divided into a training set (n=135) and a test set (n=59) in

a 7:3 ratio. The collected variables encompassed demographic

characteristics (age and sex), routine blood parameters (white

blood cell count, hemoglobin level, and platelet count), the

proportion of bone marrow blasts/immunized cells, and 53

commonly used markers from flow cytometry data. The baseline

characteristics of the participants are summarized in Table 3. The

mean age of patients in the training set is 66.59 years (66.59 ±

14.33), while that in the test set is 66.66 years (66.66 ± 13.81), with

no statistically significant difference between the two groups (P >

0.05). Chi-square analysis revealed no significant differences (P >

0.05) in any of the examined variables between the training and test

sets, indicating similar distribution patterns across all factors. These

results demonstrate that both the training and test sets are well-

balanced and appropriate for subsequent predictive analysis.
3.2 Model performance

Table 4 and Figure 3 present the performance of different

models in the classification task. Overall, both RF and XGB
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achieved superior results across all metrics, with F1-score, precision,

and recall reaching 0.9413, 0.9458, and 0.9374, respectively, and an

accuracy of 0.9492. These results indicate strong generalization

capabilities for these two models in the classification task. LR

exhibited a high AUC value (0.9705); however, its F1-score

(0.9175) and precision (0.9098) are slightly lower than those of
Frontiers in Oncology 05
RF and XGB, suggesting some degree of misclassification. Both

MLP and SVM demonstrated identical classification performance,

with an accuracy of 0.9153 and an F1 score of 0.8932. Notably, SVM

achieved the highest AUC value (0.9741), although its other metrics

are lower than those of RF and XGB. GBM performed slightly worse

than the other models, with the lowest accuracy (0.8983) and F1
FIGURE 2

A detailed visualization of the dataset is presented. The left panel illustrates the distribution of markers across different samples, while white indicates
the presence of corresponding markers and black indicates their absence. The right panel displays the distribution of features extracted from
different samples. Here, Markers refers to the 53 cell surface markers analyzed, while Features represents the 265 statistical features derived from the
53 markers.
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score (0.8806). Although its AUC value reached 0.9491, its precision

(0.8752) and recall (0.8974) exhibited a certain gap, possibly due to

the model’s limited ability to distinguish between specific classes.

Overall, RF and XGB demonstrated robust performance across all

metrics, making them the most suitable candidates for this task.

Meanwhile, SVM, with the highest AUC value, may offer
Frontiers in Oncology 06
advantages in certain application scenarios. Additionally,

confusion matrix analysis revealed that the misclassified samples

are evenly distributed across different categories, indicating that

these models maintained a balanced classification error

across classes.
3.3 Feature importance analysis

Figure 4 displays the top 10 most important features in the

decision-making process for each model. Notably, CD117 and

CD34 are identified as the most influential markers for

distinguishing AML in the GBM, RF, and XGB models. These

findings resonate with clinical practice, where both CD117 and

CD34 are extensively utilized for AML differentiation and

classification. This congruence between model predictions and

clinical practices underscores the potential of data-driven

approaches in medical diagnostics and highlights the pivotal roles

of CD117 and CD34 in AML diagnosis. HLA-DR significantly

affects the classification of AML and AML-CR in the GBM, RF, and

LR models, while CD45 plays a crucial role in the GBM and SVM

models, suggesting its potential contribution to the regulation of

immunophenotypic heterogeneity in AML. Lower expression of

HLA-DR is commonly observed in immature leukemia cells,

particularly in M0/M1 subtypes, indicating a differentiation block

that may facilitate immune evasion or serve as a marker for specific

stages of differentiation. Furthermore, CD45 expression varies

throughout the stages of myeloid differentiation, with its

heterogeneity, in conjunction with differential expression of HLA-

DR, contributing to the formation of different immune subtypes,

thus indicating a differentiation blockade and the coexistence of

multiple stages of differentiation. Additionally, the markers in the

Norm group exhibit lower specificity, raising concerns about the

risk of overfitting in some models due to the smaller phenotypic

variability observed in normal samples. These insights suggest that

while the models generally perform well, caution is warranted

regarding the risk of overfitting, especially when distinguishing

between normal and diseased states.
TABLE 2 Hyperparameter search space for machine learning (ML)
models.

Model Hyperparameters

Random Forest (RF)

n_estimators: [50, 100, 200]
max_depth: [10, 20, 30]
min_samples split: [2, 5, 10]
min_samples leaf: [1, 2, 4]
max_features: [‘sqrt’, ‘log2’, None]

Support Vector Machine (SVM)

C: [0.1, 1, 10]
kernel: [‘linear’, ‘rbf’, ‘poly’]
gamma: [‘scale’, ‘auto’]
degree: [3, 5]
class_weight: [None, ‘balanced’]

Multilayer Perceptron (MLP)

hidden_layer_sizes: [(50), (100), (50, 50)]
activation: [‘relu’, ‘tanh’]
solver: [‘adam’, ‘sgd’]
alpha: [0.0001, 0.001, 0.01]
learning_rate: [‘constant’, ‘invscaling’,
‘adaptive’]

Logistic Regression (LR)

C: [0.01, 0.1, 1, 10, 100]
penalty: [‘l1’, ‘l2’]
solver: [‘liblinear’, ‘saga’]
max_iter: [100, 200, 300]
class_weight: [None, ‘balanced’]

Extreme Gradient Boosting
(XGB)

n_estimators: [50, 100, 200, 500]
max_depth: [3, 6, 10]
learning_rate: [0.01, 0.05, 0.1]
subsample: [0.6, 0.8, 1.0]
colsample_bytree: [0.6, 0.8, 1.0]

Gradient Boosting Machine
(GBM)

n_estimators: [50, 100, 200]
learning_rate: [0.01, 0.05, 0.1]
max_depth: [3, 5, 7]
min_samples_split: [2, 5, 10]
subsample: [0.8, 0.9, 1.0]
TABLE 3 Clinical characteristics of the training set and test set.

Variables Train set Test set Value of t Value of P

Age 66.59 ± 14.33 66.66 ± 13.81 -0.03 0.97

Sex -0.08 0.94

Male 77(57.04%) 34(57.63%)

Female 58(42.96%) 25(42.37%)

WBC (10^9/L) 17.25 ± 50.89 20.12 ± 61.81 -0.34 0.74

Hb(g/L) 87.70 ± 39.18 87.30 ± 37.42 0.07 0.95

PLT (10^9/L) 141.12 ± 163.65 127.41 ± 158.05 0.54 0.59

BMBC (%) 0.14 ± 0.24 0.15 ± 0.27 -0.31 0.76
WBC, white blood cell count; Hb, hemoglobin level; PLT, platelet count; BMBC, bone marrow blast cell count.
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4 Discussion

Acute myeloid leukemia (AML) is a highly aggressive and

heterogeneous hematopoietic malignancy, representing 15-20% of

all leukemia diagnoses worldwide. The global annual incidence is

estimated at 1.0–1.5 per 100,000 population, corresponding to

approximately 40,000–50,000 new cases each year, with around

80% occurring in adults (aged ≥ 18 years) (25). Despite significant

advances in therapeutic modalities, including chemotherapy,

allogeneic stem cell transplantation, and novel targeted/

immunotherapeutic agents, the overall prognosis of AML remains

unsatisfactory. Patients with high-risk features (e.g., advanced age

[≥60 years], TP53 mutations, or complex karyotypes) exhibit

particularly dismal outcomes, with 5-year overall survival rates as

low as 5-15% (4). The therapeutic landscape remains particularly

constrained for patients with relapsed/refractory (R/R) AML.

Disease progression is frequently complicated by life-threatening
Frontiers in Oncology 07
cytopenias (including transfusion-dependent anemia),

opportunistic infections, and progressive multiorgan dysfunction

- clinical manifestations directly attributable to the intrinsically

aggressive biology of leukemic cells. This underscores the critical

unmet need for advanced diagnostic modalities to guide precision

therapeutic strategies. Flow cytometry-based immunophenotyping

analysis offers critical support for the early detection of disease

progression and the development of personalized treatment

strategies by dynamically monitoring cell characteristics.

Conventional flow cytometry methods for manual detection

typically rely on gating and clustering techniques to categorize cells

into multiple subpopulations, performing multi-parameter analysis

of surface and intracellular markers. These methods are widely used

for the diagnosis and classification of hematologic malignancies

(26). Conventional flow cytometry data analysis remains labor-

intensive and subject to inter-operator variability due to its reliance

on manual gating expertise. This inherent limitation has spurred the
FIGURE 3

The performance analysis of different models. The first row shows the receiver operating characteristic (ROC) curve, the second row shows the
precision-recall (PR) curve, and the third row shows the confusion matrix. LR, linear regression; RF, random forest; MLP, multi-layer perceptron;
SVM, support vector machine; XGB, extreme gradient boosting; GBM, gradient boosting machine.
TABLE 4 The performance of different models.

Model Accuracy (%) F1(%) Precision (%) Recall (%) AUC (%)

LR 93.22 91.75 90.98 92.66 97.05

RF 94.92 94.13 94.58 93.74 94.83

MLP 91.53 89.32 89.58 90.04 95.14

SVM 91.53 89.32 89.58 90.04 97.41

XGB 94.92 94.13 94.58 93.74 94.2

GBM 89.83 88.06 87.52 89.74 94.91
LR, linear regression; RF, random forest; MLP, multi-layer perceptron; SVM, support vector machine; XGB, extreme gradient boosting; GBM, gradient boosting machine.
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rapid adoption of machine learning algorithms in hematological

diagnostics, enabling automated analysis of cellular morphology,

immunophenotypic patterns, and histopathological features with

enhanced reproducibility (27–29). Among them, Beni et al. (30)

introduces a multi-cell classification benchmark dataset; Hu et al.
Frontiers in Oncology 08
(31) uses deep convolutional neural networks for cytomegalovirus

classification based on flow cytometry data; Li et al. (32) transforms

SW-480 epithelial cancer cell flow cytometry data into images and

uses convolutional neural networks for classification. Although

these methods have positively contributed to the improvement of
FIGURE 4

The feature importance analysis of different models based on SHAP. Each row represents the SHAP feature importance analysis results of a method
on acute myeloid leukemia (AML), acute myeloid leukemia complete remission (AML-CR), and normal (Norm) classes, respectively. LR, linear
regression; RF, random forest; MLP, multi-layer perceptron; SVM, support vector machine; XGB, extreme gradient boosting; GBM, gradient boosting
machine.
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flow cytometry diagnostics, their practical implementation

continues to encounter substantial challenges: (1) the inherently

high-dimensional nature of patient-level FCM data; (2) substantial

inter-sample variability introduced by both biological heterogeneity

(e.g., treatment response status) and technical factors (e.g.,

instrument configuration); and (3) the critical knowledge gap

regarding immunophenotypic patterns during remission phases.

Addressing these challenges, we developed a novel cell-level data

integration framework using real-world clinical FCM datasets.

Notably, our study represents the first systematic incorporation of

remission phase AML samples into classification models, thereby

establishing a much-needed benchmark for treatment

response monitoring.

This study pioneers the inclusion of AML patients in complete

remission (AML-CR) within a classification system and has

successfully developed an artificial intelligence model that

accurately differentiates among healthy individuals, AML patients,

and AML-CR. The model demonstrated > 90% accuracy in all

baseline tests, confirming its validity. This high accuracy further

indicates that AML-CR exhibits significantly distinct characteristics

compared to the other two groups, offering new perspectives for

clinical diagnosis. Notably, our machine learning model shows

substantial speed advantages over both manual analysis and deep

learning methods. In bone marrow flow cytometry testing, the

entire process from sample processing and staining to data

acquisition typically requires several to over ten minutes (33).

Data analysis requires professionals to manually gate and analyze

antigen expression patterns while integrating clinical background

for interpretation. Flow cytometry specialists at Shanghai KingMed

Diagnostics report that the analytical duration varies significantly

(15 minutes to several hours) depending on sample complexity,

clinical requirements, and operator experience. Our diagnostic

approach completes single-patient data analysis in< 1 second,

demonstrating two key advantages: (1) a 100-1000× improvement

in processing speed compared to conventional methods, and (2) a

substantial reduction in technologist workload. Clinical

implementation of this method enables real-time assessment of

disease status and treatment response, supporting timely

therapeutic decision-making. By applying the proposed method to

actual flow cytometry data analysis, physicians can evaluate

patients’ disease status and treatment response more rapidly and

accurately, thereby developing more personalized treatment plans.

AI-assisted flow cytometry analysis is expected to play an important

role in primary medical institutions lacking flow cytometry

diagnostic specialists, helping more patients benefit.

Multimodal SHAP analysis demonstrates that the key markers of

the AML group (CD117, CD34, HLA-DR) exhibit strong

concordance with established clinical diagnostic criteria, thereby

validating their pivotal role as core immunophenotypic markers for

leukemia cell identification and classification. We identified

significant differences in the expression patterns of specific cell

surface markers among de novo patients with AML, healthy

individuals, and post-treatment AML patients who achieved

complete remission. Notably, CD34 and CD117 expression levels

are significantly higher in AML patients compared to both healthy
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individuals and remission-phase patients, whereas CD45 expression

is comparatively reduced. These findings suggest a potential

mechanistic link between aberrant marker expression and AML

pathogenesis, therapeutic efficacy, and relapse, advancing our

understanding of the disease’s biology. Furthermore, flow

cytometric profiling of AML patients in complete remission

facilitates the identification of therapy-responsive immunological

markers and provides early warning signs for potential disease

recurrence. Notably, the markers identified in the normal group

demonstrated relatively low specificity, potentially reflecting

physiological variations in immune homeostasis. To improve

model robustness, adversarial training or sample size expansion

approaches should be considered to enhance interference resistance.

Notwithstanding the meaningful contributions of this work,

certain limitations merit consideration. Chief among these is the

restricted generalizability inherent to single-center studies with

limited sample sizes. Second, the intrinsic heterogeneity and

technical variability in flow cytometry data may introduce

measurement noise and analytical interference, which could

adversely affect the model’s predictive accuracy. Additionally, the

biological implications of specific cell surface markers warrant further

investigation. Future studies should employ expanded cohorts

incorporating diverse AML subtypes and treatment phases to

optimize and validate the machine learning model’s performance.

Furthermore, integrating genomic sequencing data and other multi-

omics information to develop a multi-omics fusion model, alongside

multimodal imaging data and clinical information, could provide a

more comprehensive AML diagnostic and prognostic assessment

tool, thereby advancing the precision and scientific rigor of clinical

decision-making. The current study is limited to non-M3 AML

patients. Future research should extend the model’s applicability to

additional AML subtypes, including acute promyelocytic leukemia

(M3) and other rare variants, to enhance its clinical utility. Looking

forward, translational application of this model to the broader

spectrum of hematologic neoplasms, such as acute lymphoblastic

leukemia, may establish new frameworks for AI-powered.
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