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non-contrast CT radiomics
for preoperative prediction
of survival in sarcomatoid
renal cell carcinoma
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Lijiang Sun1 and Guiming Zhang1*

1Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China, 2Department
of Radiology, Peking University People’s Hospital Qingdao Hospital, Qingdao, China
Background: Sarcomatoid renal cell carcinoma (sRCC) is an aggressive subtype

with a poor prognosis. Preoperative prognostic tools are lacking, and the

predictive value of sarcopenia combined with radiomic features from non-

contrast CT remains unexplored.

Methods: In this retrospective study, 121 pathologically confirmed sRCC patients

were enrolled. Sarcopenia was assessed usingmuscle mass measurements at the

L3 level on preoperative non-contrast CT. Radiomic features were extracted

from tumor regions of interest. Least absolute shrinkage and selection operator

(LASSO) and Cox regression were used to select features and construct

prognostic models for overall survival (OS). A combined model integrating

sarcopenia status and radiomic signature (Rad-score) was developed and

evaluated regarding its discrimination, calibration, and clinical utility.

Results: Multivariable analysis identified paravertebral muscle-defined

sarcopenia (HR = 3.046, p = 0.029), platelet-to-neutrophil ratio, hemoglobin-

albumin-lymphocyte-platelet score, tumor size, and N stage as independent

prognostic factors. The combined model (clinical + Rad-score) demonstrated

superior predictive performance for 1-, 2-, and 3-year OS, with AUCs of 0.849,

0.804, and 0.819, respectively, and significantly outperformed the radiomics-

only model (p = 0.002). Calibration curves and decision curve analysis confirmed

its clinical applicability.

Conclusion: The integration of sarcopenia and non-contrast CT radiomics

provides a valuable preoperative tool for predicting survival in sRCC patients,

facilitating individualized risk stratification and clinical decision-making.
KEYWORDS

sarcomatoid renal cell carcinoma, sarcopenia, radiomics, prognosis, non-contrast CT,
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Introduction

Sarcomatoid renal cell carcinoma (sRCC) is a rare and highly

aggressive subtype of renal cell carcinoma characterized by

sarcomatoid differentiation, accounting for approximately 4–5%

of all RCC cases (1–4). Patients with sRCC often present with

advanced disease and suffer from a dismal prognosis, with a five-

year survival rate significantly lower than that of other renal cell

carcinoma (RCC) subtypes (3). Although surgical resection remains

the primary treatment for localized sRCC, the risk of postoperative

recurrence and metastasis is substantial, and median overall

survival is typically less than 12 months (5–7). Thus, the early

identification of patients at high risk of recurrence or mortality is of

critical clinical importance for developing individualized

treatment strategies.

Current prognostic assessment of sRCC relies predominantly

on postoperative pathological features, such as the proportion of

sarcomatoid component, tumor stage, and Ki-67 index (8, 9).

However, these indicators require surgical specimens, precluding

preoperative risk evaluation and limiting opportunities for early

intervention. Furthermore, the relatively low response rates of

sRCC to conventional targeted therapies and immunotherapy

underscore the urgent need for developing preoperative

prognostic biomarkers (10, 11).

Sarcopenia is frequently observed in patients with advanced

RCC, particularly those with high tumor burden or vascular

invasion, and often coexists with cachexia (12). It is significantly

associated with increased postoperative complications, reduced

tolerance to chemotherapy, and shortened overall survival (13).

The underlying mechanisms may involve systemic inflammation,

dysregulated protein metabolism, and immune suppression (14).

Nevertheless, the prognostic value of sarcopenia in sRCC patients

remains incompletely understood.

In recent years, machine learning (ML) algorithms have gained

considerable attention in medical research due to their capability to

integrate multi-source data and construct high-dimensional

predictive models (15). Radiomics has emerged as a promising

approach for non-invasively decoding tumor heterogeneity by

extracting high-dimensional quantitative features from standard

medical images, thereby predicting tumor biological behavior (16,

17). Non-contrast CT, widely used in renal cancer diagnostics,

offers broad availability and standardization, and its radiomic

features have demonstrated potential in distinguishing RCC

subtypes, predicting tumor grade, and assessing prognosis (15,

18–20). However, no study to date has integrated pretreatment

sarcopenia with radiomic features from non-contrast CT for

predicting postoperative survival in sRCC patients.

Based on this background, we hypothesize that preoperative

sarcopenia combined with radiomic features from non-contrast CT

may collectively influence postoperative survival in sRCC. This

study aims to investigate the potential of sarcopenia as a

preoperative predictor and to evaluate whether its integration

with radiomic features can enhance the accuracy of survival

prediction, thereby providing an imaging-based foundation for
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preoperative risk stratification and individualized therapeutic

decision-making.
Materials and methods

Study design and participants

This retrospective cohort analysis included patients

pathologically diagnosed with sRCC at our institution between

December 2009 and September 2024. The study protocol was

approved by the Ethics Committee of The Affiliated Hospital of

Qingdao University (Approval No: QYFYWZLL30031) and

conducted in accordance with the ethical principles of the

Declaration of Helsinki (2013 revision). Informed consent was

waived due to the retrospective nature of the study. Clinical data

were independently and blindly collected by two researchers.

Inclusion criteria were: (1) postoperative pathological

confirmation of sRCC with complete clinical records; (2)

abdominal CT scan performed within one month before surgery.

Exclusion criteria were: (1) incomplete clinical, pathological, or

follow-up data; (2) concurrent other malignancies or multi-organ

dysfunction; (3) previous neoadjuvant therapy; (4) absence of

DICOM-format CT images meeting quality standards; (5) death

due to complications within 30 days after surgery; (6) active

infection or recent use of anti-inflammatory/immunosuppressive

drugs. The study flowchart is shown in Supplementary Figure 1.

Clinical variables included age, blood biochemical indicators, and

pathological characteristics. Missing values (<5%) were handled

using multiple imputation.
Follow-up and endpoints

A standardized postoperative follow-up protocol was

implemented: assessments every 3–4 months in the first year,

every 6 months from years 2 to 5, and annually thereafter.

Evaluations included clinical symptoms, laboratory tests (e.g.,

complete blood count and biochemistry), and imaging (CT or

MRI). Follow-up concluded on April 1, 2025. The primary

endpoint was overall survival (OS), defined as the duration from

pathological diagnosis to death from any cause or the last confirmed

follow-up.
CT image acquisition

Preoperative non-contrast CT images were obtained using

multiple scanners: GE Optima CT620, LightSpeed CT750 HD,

Optima CT670, Revolution CT (GE Healthcare, USA), and

Siemens SOMATOM Sensation64 and Definition Flash (Siemens

Healthineers, Germany). Scanning parameters were: tube current

240–320 mAs (automatically modulated), voltage 120 kVp, pitch

1.375, reconstruction matrix 512×512, and slice thickness 5 mm. All
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images were exported in DICOM format from the PACS for

further processing.
Tumor segmentation and radiomic feature
extraction

Tumor segmentation and feature extraction were performed using

a standardized protocol. One radiologist (7 years of abdominal imaging

experience) and one urologist (15 years of urologic oncology

experience), both blinded to pathology, manually delineated tumor

boundaries on non-contrast CT images slice-by-layer using ITK-SNAP

(v4.2.0) to generate 3D regions of interest (ROIs), carefully excluding

adjacent renal parenchyma and perinephric fat. Discrepancies were

resolved by a third urologist with 35 years of experience. Prior to

feature extraction, all images underwent standardized preprocessing

including resampling and gray-level discretization. Features were

extracted in Python 3.7 using the pyradiomics toolbox, following the

Image Biomarker Standardisation Initiative (IBSI) guidelines (21).

Extracted features included first-order statistics, shape, gray-level co-

occurrence matrix (GLCM), gray-level dependence matrix (GLDM),

gray-level run-length matrix (GLRLM), gray-level size zone matrix

(GLSZM), neighboring gray-tone difference matrix (NGTDM), and

wavelet-derived features. To evaluate segmentation reproducibility, two

blinded urologists independently segmented ROIs on 30 randomly

selected CT images. The first reader repeated the segmentation after

one month for intra-observer consistency assessment. Features with an

intraclass correlation coefficient (ICC) > 0.75 were retained for

further analysis.
Body composition assessment and
sarcopenia diagnosis

Body composition was quantified at baseline using CT axial images

at the third lumbar (L3) level. SliceOmatic 5.0 (Tomovision, Canada)

was used to measure cross-sectional areas (cm²) of total abdominal

muscle (TAM), psoas muscle (PM), and paraspinal muscles (PS).

Muscle tissue was defined using Hounsfield unit (HU) thresholds

(−29 to 150 HU) (22), with manual correction for accuracy, as

illustrated in Figure 1. All analyses were performed by one

radiologist with 7 years of experience. Height-adjusted indices

(TAM/height², PM/height²) were derived (23, 24). Sarcopenia was

defined using established criteria (23–25): height-adjusted TAM index

<52.4 cm²/m² (men) or <38.5 cm²/m² (women); PM index <6.36

cm²/m² (men) or <3.92 cm²/m² (women); absolute PS area <31.97 cm²

(men) or <28.95 cm² (women).
Feature selection and radiomics model
construction

Radiomic features were Z-score normalized. A multi-stage

selection strategy was applied: first, features with ICC > 0.75 were
Frontiers in Oncology 03
retained; second, low-variance features (variance threshold <0.1)

were removed, and highly correlated features (|r| > 0.9) were

reduced by retaining those with higher variance. Univariate Cox

regression (p < 0.001) identified prognosis-related features, followed

by Least absolute shrinkage and selection operator (LASSO)

regression with 10-fold cross-validation (optimal l selected via

minimum error) for dimensionality reduction. Five machine

learning algorithms (SuperPC, stepwise Cox, random survival

forest [RSF], CoxBoost, and plsRcox) were used to build

prognostic models. The model with the highest C-index was

selected to generate a radiomics score (Rad-score) for

subsequent analysis.
Clinical and combined model construction

Three models were developed and compared. Univariate Cox

regression (p < 0.05) identified potential prognostic variables,

followed by LASSO regression (10-fold cross-validation, l.min)

for variable selection. Multivariable Cox regression with backward

likelihood ratio (LR) method identified independent prognostic

factors to build a clinical model centered on sarcopenia. A

combined model was constructed by integrating the Rad-score

and significant clinical variables via multivariable Cox regression.

Model performance was compared among the radiomics, clinical,

and combined models following TRIPOD guidelines.
Model evaluation and interpretation

Internal validation included repeated 10-fold cross-validation

for C-index calculation and bootstrap resampling (1000 repetitions)

for confidence intervals. Delong’s test and bootstrap methods (1000

repetitions) were used to compare C-indices between models. A

nomogram based on the combined model was developed to predict

survival probabilities. Time-dependent ROC curves assessed

discrimination at 1, 2, and 3 years. Calibration curves (1000

bootstrap samples) evaluated agreement between predicted and

observed outcomes. Decision curve analysis (DCA) quantified

clinical utility by calculating net benefit across threshold

probabilities. SHAP (Shapley Additive exPlanations) analysis

interpreted feature contributions and enhanced model

transparency (26, 27).
Statistical analysis

All analyses were performed using IBM SPSS Statistics 26.0 and

R 4.4.3. Two-sided p-values < 0.05 were considered statistically

significant. Categorical variables are presented as counts and

percentages, compared using Pearson’s c² or Fisher’s exact test.

Continuous variables were tested for normality using Shapiro–Wilk

test; normally distributed variables are expressed as mean ±

standard deviation and compared with t-tests, while non-normal
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variables are reported as median (IQR) and compared with Mann–

Whitney U test.
Results

Baseline clinical characteristics

This retrospective cohort study strictly adhered to predefined

inclusion and exclusion criteria, ultimately enrolling 121 patients

with pathologically confirmed sRCC. All patients received

standardized treatment and systematic follow-up. The median

follow-up time for the entire cohort was 21 months (range: 1–183

months). By the end of follow-up, 60 deaths had been recorded.

Detailed baseline characteristics, including demographic, clinical,

and pathological parameters, are summarized in Table 1.
Radiomic feature selection, prognostic
model construction, and interpretation

A total of 854 quantitative radiomic features were extracted

from the ROIs. After evaluating intra- and inter-observer

consistency (ICC > 0.75), 707 features were retained for further

analysis. Subsequent low-variance filtering (variance threshold <

0.1) and removal of highly correlated features (retaining those with

higher variance in each correlated group) yielded 186 features.

Univariate Cox regression identified 10 features significantly

associated with prognosis (P < 0.001). LASSO regression was then

applied for further dimensionality reduction, resulting in six highly

predictive features for model construction (Figures 2A, B). To

comprehensively evaluate predictive performance, five algorithmic

strategies were systematically compared. The plsRcox model

demonstrated optimal performance (Figure 2C), achieving a C-

index of 0.696 via 10-fold cross-validation. Time-dependent ROC

analysis showed that the model yielded AUC values of 0.706, 0.726,

and 0.725 for predicting 1-, 2-, and 3-year OS, respectively

(Figure 2D). SHAP analysis was used to interpret the plsRcox

model. The global SHAP summary plot (Figure 2E) illustrated the

direction and magnitude of contributions of the six key features, all

of which acted as positive predictors. An individual prediction

analysis (Figure 2F) deconstructed the prediction for a high-risk

patient: the baseline prediction (E[f(x)] = −1.97×10-17) represents

the model’s output reference, while the individual prediction value

(f(x) = 4.02) indicated elevated mortality risk.
Prognostic factor selection and combined
model construction

Univariate Cox regression identified clinical features

significantly associated with OS in sRCC patients (Table 2).

LASSO regression was used to screen prognostic variables,
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TABLE 1 Baseline demographic, clinical, and pathological characteristics
of the 121 patients with sarcomatoid renal cell carcinoma (sRCC)
included in the retrospective cohort study.

Characteristic Category
Value (mean ± SD, median

[IQR], or number [%])

Age, years 57.26 ± 12.28

Sex Male 86(71.10)

Female 35(28.90)

BMI 24.21 ± 3.59

TAM index 43.74 ± 7.97

PMI 4.91 ± 1.44

PS 43.96 ± 10.23

Hypertension Yes 50(41.30)

No 71(58.70)

Diabetes Yes 23(19.00)

No 98(81.00)

Albumin 38.88 ± 6.63

Alkaline
Phosphatase

101.54 ± 69.04

Cholesterol 4.40 ± 1.16

LDH 216.16 ± 149.96

Urea 5.54 ± 1.95

Creatinine 83.98 ± 64.83

Glucose 6.20 ± 2.50

Fibrinogen 4.72 ± 1.43

T stage T1/T2 55(45.50)

T3/T4 66(54.50)

N stage N0 81(66.90)

N1 40(33.10)

M stage M0 78(64.50)

M1 43(35.50)

Tumor Size 7.59 ± 3.36

Ki-67 Index 0.30 ± 0.21

SII 1176.34 ± 1025.56

PLR 210.42 ± 117.09

LMR 3.16 ± 1.99

PNR 68.27 ± 30.88

PAR 8.38 ± 3.83

GLR 4.40 ± 3.01

PNI 47.33 ± 7.84

HALP 30.23 ± 18.31

(Continued)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1637032
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1637032
including PNR, PAR, HALP, Ki-67 index, tumor size, N stage, M

stage, sarcopenia defined by TAM index, and sarcopenia defined by

PS area (Supplementary Figure 2). Subsequent multivariate Cox

regression using the backward likelihood ratio method identified

the following independent prognostic factors for OS: PNR (HR =

0.981, 95% CI: 0.971–0.991; P < 0.001), HALP (HR = 0.979, 95% CI:

0.963–0.995; P = 0.01), tumor size (HR = 1.074, 95% CI: 0.996–

1.157; P = 0.064), N stage (HR = 2.434, 95% CI: 1.387–4.270; P =

0.002), and PS-defined sarcopenia (HR = 3.046, 95% CI: 1.119–

8.289; P = 0.029). A clinical prognostic model based on these

variables was constructed, and a clinical risk score was computed

for each patient. Finally, a combined prognostic model was

established by integrating the radiomics risk score (Rad-score)

with the clinical model.
Frontiers in Oncology 05
Prognostic model based on sarcopenia and
radiomics and its interpretation

Using the selected clinical prognostic factors and the Rad-score,

a nomogram was developed to predict 1-, 2-, and 3-year OS in sRCC

patients (Figure 3A). The nomogram is applied as follows: (1)

determine the points for each variable on the top point scale; (2)

project each point vertically to the “Points” axis; (3) sum all points

to obtain the total score; (4) determine the corresponding 1-, 2-, and

3-year survival probabilities on the bottom survival probability axis.

SHAP analysis was further employed to interpret the combined

model. The global SHAP beeswarm plot (Figure 3B) revealed that

all four key predictive features exhibited positive contributions

(SHAP values > 0), indicating significant associations with poor

prognosis. Individual prediction visualization (Figure 3C)

illustrated an example of a high-risk patient: the baseline

prediction (E[f(x)] = 0) represents the model’s risk reference,

while the individual prediction (f(x) = 4.14) was substantially

higher, consistent with actual high-risk clinical outcomes.
Predictive performance and clinical
validation of the combined prognostic
model

The combined model demonstrated superior discriminative

ability for predicting OS in sRCC patients compared to the

sarcopenia-based clinical model and the radiomics model alone.

Based on repeated cross-validation, the mean C-indices for the

clinical, radiomics, and combined models in the training cohort

were 0.746, 0.696, and 0.783, respectively. Pairwise comparisons

using Delong’s test indicated a statistically significant difference

between the combined model and the radiomics model (p = 0.002),

while differences between the clinical and radiomics models (p =

0.081) and between the clinical and combined models (p = 0.216)

were not statistically significant.
TABLE 1 Continued

Characteristic Category
Value (mean ± SD, median

[IQR], or number [%])

TAM-defined
sarcopenia

Yes 88(72.70)

No 33(27.30)

PM-defined
sarcopenia

Yes 88(72.70)

No 33(27.30)

PS-defined
sarcopenia

Yes 6(5.00)

No 115(95.00)

Characteristic
Value (mean ± SD, median [IQR], or

number [%])

OS, months 21(8.50-50.00)

State of life Survival 61(50.40)

Death 60(49.60)
SD, Standard deviation; IQR, Interquartile range; BMI, Body mass index; TAM, Total
abdominal muscle; PM, Psoas muscle; PS, Paraspinal muscle; PMI, Paraspinal muscle
index; LDH, Lactate dehydrogenase; SII, Systemic immune-inflammation index; PLR,
Platelet-to-lymphocyte ratio; LMR, Lymphocyte-to-monocyte ratio; PNR, Platelet-to-
neutrophil ratio; PAR, Platelet-to-albumin ratio; GLR, Glucose-to-lymphocyte ratio; PNI,
Prognostic nutritional index; HALP, Hemoglobin, albumin, lymphocyte, and platelet index.
FIGURE 1

Representative CT image analysis of a 41-year-old female patient. (A) Axial non-contrast CT image acquired at the level of the third lumbar vertebra
(L3). (B) Automated segmentation of muscle compartments: paraspinal muscles (PS, red), psoas major muscles (PM, green), and total abdominal
muscle (TAM, combined overlay). Abbreviations: CT, computed tomography; L3, third lumbar vertebra; TAM, total abdominal muscle; PM, psoas
major; PS, paraspinal muscles.
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Time-dependent ROC analysis further validated the predictive

accuracy of the models. The sarcopenia-based clinical model

achieved AUC values of 0.814 (95% CI: 0.726–0.902), 0.749 (95%

CI: 0.651–0.847), and 0.780 (95% CI: 0.684–0.876) for predicting 1-,

2-, and 3-year OS, respectively (Figure 4A). The corresponding

AUC values for the combined model were 0.849 (95% CI: 0.773–
Frontiers in Oncology 06
0.926), 0.804 (95% CI: 0.725–0.883), and 0.819 (95% CI: 0.733–

0.905) (Figure 4B). Calibration curves showed good agreement

between predicted and observed survival probabilities for the

combined model (Figure 4C). DCA indicated that the combined

model offered high clinical utility across most threshold

probabilities for 1-, 2-, and 3-year survival predictions, with net
FIGURE 2

Radiomics feature selection, prognostic model construction, and interpretation using SHAP. (A) LASSO coefficient profile of the 10 radiomic features
significantly associated with overall survival (univariate Cox regression, P < 0.001). (B) Ten-fold cross-validation curve for tuning parameter (l)
selection in the LASSO regression. The optimal l value is indicated by the vertical dotted line. (C) Comparison of six prognostic modeling
approaches based on the C-index. The plsRcox model showed the highest predictive performance (C-index = 0.696). (D) Time-dependent receiver
operating characteristic (ROC) curves of the plsRcox model for predicting 1-, 2-, and 3-year overall survival. (E) Global SHAP summary plot
displaying the magnitude and direction of the influence of the six selected radiomic features on the model output. All features contributed positively
to risk prediction. (F) SHAP waterfall chart illustrating the decomposition of the predicted risk score for an individual high-risk patient, showing the
additive contribution of each feature relative to the baseline prediction.
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TABLE 2 Univariate and multivariate Cox regression analyses of factors associated with overall survival in patients with sarcomatoid renal cell
carcinoma (sRCC).

Variable
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age 0.996 0.977-1.016 0.707

Gender

Female Ref

Male 0.917 0.531-1.584 0.757

BMI 0.927 0.868-0.991 <0.026

Hypertension

No Ref

Yes 0.612 0.357-1.049 0.074

Diabetes

No Ref

Yes 0.750 0.369-1.528 0.429

Albumin 0.956 0.919-0.995 0.029

Alkaline
Phosphatase

1.002 0.999-1.006 0.153

Cholesterol 0.997 0.793-1.254 0.979

LDH 1.002 1.000-1.003 0.022

Urea 0.885 0.768-1.019 0.089

Creatinine 1.000 0.997-1.003 0.919

Glucose 1.051 0.940-1.176 0.384

Fibrinogen 1.213 1.031-1.427 0.020

Tumor Size 1.105 1.033-1.182 0.003 1.074 0.996-1.157 0.064

Ki-67 6.215 1.963-19.678 0.002

T stage

T1/T2 Ref

T3/T4 2.060 1.202-3.530 0.009

N stage

N0 Ref Ref

N1 2.413 1.443-4.034 0.001 2.434 1.387-4.270 0.002

M stage

M0 Ref

M1 2.428 1.458-4.044 0.001

SII 1.000 1.000-1.000 0.003

PLR 1.002 1.000-1.004 0.025

LMR 0.704 0.563-0.879 0.002

PNR 0.990 0.979-1.000 0.052 0.981 0.971-0.991 <0.001

PAR 1.083 1.021-1.150 0.008

GLR 1.049 0.969-1.135 0.239

(Continued)
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benefit exceeding those of the “treat-all” and “treat-none” strategies

(Figures 4D–F), supporting its potential for clinical application.
Discussion

This study is the first to integrate pretreatment sarcopenia with

radiomic features from non-contrast CT to develop and validate a

combined model for predicting postoperative OS in patients with

sRCC. The combined model demonstrated good discriminative

ability for predicting 1-, 2-, and 3-year OS, with AUC values of

0.849, 0.804, and 0.819, respectively. It significantly outperformed the

radiomics-only model (p = 0.002) and consistently showed higher C-

indices and AUCs compared to the clinical-only model, although this

difference did not reach statistical significance (p = 0.216).

Furthermore, the combined model exhibited good calibration and

clinical utility in decision curve analysis, supporting its potential value

in individualized prognostic assessment.

Sarcopenia, an important indicator of nutritional and

inflammatory status, was identified in this study as an independent

prognostic factor in sRCC. Specifically, sarcopenia defined by PS area

was significantly associated with poorer outcomes (HR = 3.046, p =

0.029), consistent with previous studies in clear cell renal cell

carcinoma and other solid tumors (28–31). The underlying

mechanisms are multifactorial, involving not only classic

inflammatory pathways and protein metabolism dysregulation, but

also gut microbiota dysbiosis, immunosenescence, and chronic

oxidative stress, together forming a complex pathological network

(32–34). Age-related gut dysbiosis is characterized by a reduction in

beneficial bacteria (e.g., Bacteroides, Bifidobacterium, and short-
Frontiers in Oncology 08
chain fatty acid [SCFA]-producing bacteria) and an increase in

opportunistic pathogens (e.g., Proteobacteria) (35–37). These

changes lead to decreased production of SCFAs such as butyrate

(38, 39), impair intestinal barrier integrity, and promote translocation

of microbial-associated molecular patterns (MAMPs) into the

circulation, triggering a systemic low-grade inflammatory state (40,

41). Inflammatory cytokines (e.g., TNF-a, IL-6) activate NF-kB and

MAPK signaling pathways, exacerb muscle protein degradation and

suppressing synthesis, thereby directly promoting sarcopenia (42, 43).

From a redox perspective, sarcopenia is closely linked to chronic

oxidative stress. Under physiological conditions, reactive oxygen

species (ROS) and reactive nitrogen species (RNS) contribute to

muscle adaptation and regeneration; however, under pathological

conditions such as malignancy, aging, or chronic inflammation,

excessive ROS/RNS production induces oxidative stress, leading to

mitochondrial dysfunction, protein oxidation, lipid peroxidation, and

DNA damage. These processes promote protein degradation, inhibit

synthesis, and induce apoptosis and necrosis of muscle cells (44, 45).

Moreover, accumulation of advanced glycation end-products (AGEs)

and advanced lipoxidation end-products (ALEs) can cause muscle

protein cross-linking and functional loss, and exacerbate atrophy

through activation of RAGE-mediated inflammatory pathways such

as NF-kB (46, 47). Our multivariate analysis also confirmed the

prognostic value of clinical indicators including PNR, HALP, tumor

size, and N stage, enriching the prognostic toolkit for sRCC and

supporting potential applications in perioperative management,

treatment strategy discussion, and personalized follow-up planning.

In terms of radiomics, six features significantly associated with

OS were selected from non-contrast CT images to construct a

radiomic model with a C-index of 0.696, indicating moderate
TABLE 2 Continued

Variable
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

M stage

PNI 0.960 0.930-0.991 0.013

HALP 0.974 0.958-0.990 0.001 0.979 0.963-0.995 0.010

TAM-defined sarcopenia

No Ref

Yes 2.002 1.059-3.784 0.033

PM-defined sarcopenia

No Ref

Yes 1.284 0.721-2.888 0.395

PS-defined sarcopenia

No Ref Ref

Yes 2.804 1.112-7.071 0.029 3.046 1.119-8.289 0.029
BMI, Body mass index; TAM, Total abdominal muscle; PM, Psoas muscle; PS, Paraspinal muscle; LDH, Lactate dehydrogenase; SII, Systemic immune-inflammation index; PLR, Platelet-to-
lymphocyte ratio; LMR, Lymphocyte-to-monocyte ratio; PNR, Platelet-to-neutrophil ratio; PAR, Platelet-to-albumin ratio; GLR, Glucose-to-lymphocyte ratio; PNI, Prognostic nutritional index;
HALP, Hemoglobin, albumin, lymphocyte, and platelet index.
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predictive ability. However, the limited performance of radiomics

alone suggests that imaging features may not fully capture the high

heterogeneity and complex biology of sRCC. Notably, SHAP analysis

revealed that all selected radiomic features were positive predictors,

collectively indicating poorer prognosis, possibly related to

intratumoral necrosis, fibrosis, or microenvironment dysregulation.

The combined model integrating clinical and radiomic features

allowed complementary multi-dimensional risk assessment and

significantly improved the identification of high-risk patients.

Previous studies have shown that radiomic features can effectively

reflect tumor heterogeneity, microenvironment, and biological

behavior, providing non-invasive quantitative information closely

related to pathological characteristics. Multiple studies have

successfully developed radiomic models based on CT, MRI, and

PET/CT to predict ISUP grade, metastatic potential, and prognosis in

RCC, demonstrating considerable clinical value (48–50). Importantly,

radiomics has shown promise not only in tumor grading but also in

prognostic stratification. Zhao et al. (51) developed a model based on

intravoxel incoherent motion (IVIM) diffusion-weighted imaging for

preoperative prediction of nuclear grade and survival in ccRCC with
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venous tumor thrombus, outperforming conventional imaging

metrics. Other studies have combined radiomics with existing

clinical scoring systems (e.g., SSIGN score, Leibovich score) to

improve prognostic accuracy (52–54). For example, Li et al. (54)

validated a CT-based deep learning radiomic model for Leibovich

risk stratification in non-metastatic ccRCC across multiple centers,

suggesting its utility as a complement to existing clinical tools. The

significant difference between the combined and radiomics-only

models (p = 0.002) underscores the contribution of clinical

variables such as sarcopenia. Although the difference between the

combined and clinical-only models was not statistically significant

(p = 0.216), the consistent advantage in time-dependent ROC

analysis and C-index suggests more stable predictive performance

of the integrated model.

This study has several limitations. First, its retrospective single-

center design and relatively small sample size may introduce selection

bias. Second, although consistency was assessed, manual ROI

delineation is subject to subjective variability; future studies could

employ deep learning-based auto-segmentation to improve

reproducibility and efficiency. Third, dynamic variables such as
FIGURE 3

Prognostic nomogram integrating sarcopenia-associated clinical factors and radiomic features, with model interpretability analysis. (A) Nomogram
for predicting 1-, 2-, and 3-year overall survival in sarcomatoid renal cell carcinoma (sRCC) patients, combining sarcopenia-related clinical predictors
with the radiomics score (Radscore). To apply the nomogram: assign points for each variable on the top axis, sum the points, and locate the total on
the survival probability axes to estimate predicted survival. (B) SHAP summary plot illustrating the overall contribution of each predictor in the
combined model. Each dot represents an individual patient; positive SHAP values indicate variables associated with increased mortality risk. (C) SHAP
waterfall chart explaining the prediction for a representative high-risk patient (Sample 11). The baseline prediction (E[f(x)]=0) reflects the average
population risk, while the patient’s elevated risk score (f(x)=4.14) is primarily driven by high Radscore and PNR.
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quality of life, nutritional intake, or treatment-related adverse events

were not included, which may influence outcomes. Finally, all models

were internally validated; multi-center prospective studies are needed

to evaluate generalizability. Despite these limitations, this study is the

first to demonstrate the synergistic value of pretreatment sarcopenia

and non-contrast CT radiomics in prognostic prediction for sRCC,

offering a novel non-invasive approach for preoperative risk

stratification. The combined model exhibits not only high predictive

accuracy but also clinical interpretability—SHAP analysis clarified the
Frontiers in Oncology 10
contribution of each feature, enhancing the credibility and potential

clinical utility of the model.
Conclusion

This study demonstrates that a combined model integrating

preoperative sarcopenia and non-contrast CT-based radiomic

features significantly improves the prediction of postoperative
FIGURE 4

Predictive performance and clinical utility of the combined prognostic model in sarcomatoid renal cell carcinoma (sRCC). (A, B) Time-dependent
receiver operating characteristic (ROC) curves of the clinical model (A) and the combined model (B) for predicting 1-, 2-, and 3-year overall survival.
(C) Calibration curve of the combined model, showing the agreement between predicted and observed survival probabilities. (D–F) Decision curve
analysis (DCA) for 1-year (D), 2-year (E), and 3-year (F) overall survival, comparing the net benefit of the combined model against the clinical model,
radiomics model, and extreme intervention strategies.
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survival in patients with sRCC. The model outperformed radiomics-

only predictions and showed robust discriminative ability and clinical

utility. These findings support the use of sarcopenia and radiomics as

complementary preoperative biomarkers for individualized prognostic

assessment and treatment planning in this high-risk population.
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