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Background: Sarcomatoid renal cell carcinoma (sRCC) is an aggressive subtype
with a poor prognosis. Preoperative prognostic tools are lacking, and the
predictive value of sarcopenia combined with radiomic features from non-
contrast CT remains unexplored.

Methods: In this retrospective study, 121 pathologically confirmed sRCC patients
were enrolled. Sarcopenia was assessed using muscle mass measurements at the
L3 level on preoperative non-contrast CT. Radiomic features were extracted
from tumor regions of interest. Least absolute shrinkage and selection operator
(LASSO) and Cox regression were used to select features and construct
prognostic models for overall survival (OS). A combined model integrating
sarcopenia status and radiomic signature (Rad-score) was developed and
evaluated regarding its discrimination, calibration, and clinical utility.

Results: Multivariable analysis identified paravertebral muscle-defined
sarcopenia (HR = 3.046, p = 0.029), platelet-to-neutrophil ratio, hemoglobin-
albumin-lymphocyte-platelet score, tumor size, and N stage as independent
prognostic factors. The combined model (clinical + Rad-score) demonstrated
superior predictive performance for 1-, 2-, and 3-year OS, with AUCs of 0.849,
0.804, and 0.819, respectively, and significantly outperformed the radiomics-
only model (p = 0.002). Calibration curves and decision curve analysis confirmed
its clinical applicability.

Conclusion: The integration of sarcopenia and non-contrast CT radiomics
provides a valuable preoperative tool for predicting survival in sSRCC patients,
facilitating individualized risk stratification and clinical decision-making.
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Introduction

Sarcomatoid renal cell carcinoma (sRCC) is a rare and highly
aggressive subtype of renal cell carcinoma characterized by
sarcomatoid differentiation, accounting for approximately 4-5%
of all RCC cases (1-4). Patients with sSRCC often present with
advanced disease and suffer from a dismal prognosis, with a five-
year survival rate significantly lower than that of other renal cell
carcinoma (RCC) subtypes (3). Although surgical resection remains
the primary treatment for localized sRCC, the risk of postoperative
recurrence and metastasis is substantial, and median overall
survival is typically less than 12 months (5-7). Thus, the early
identification of patients at high risk of recurrence or mortality is of
critical clinical importance for developing individualized
treatment strategies.

Current prognostic assessment of sRCC relies predominantly
on postoperative pathological features, such as the proportion of
sarcomatoid component, tumor stage, and Ki-67 index (8, 9).
However, these indicators require surgical specimens, precluding
preoperative risk evaluation and limiting opportunities for early
intervention. Furthermore, the relatively low response rates of
sRCC to conventional targeted therapies and immunotherapy
underscore the urgent need for developing preoperative
prognostic biomarkers (10, 11).

Sarcopenia is frequently observed in patients with advanced
RCC, particularly those with high tumor burden or vascular
invasion, and often coexists with cachexia (12). It is significantly
associated with increased postoperative complications, reduced
tolerance to chemotherapy, and shortened overall survival (13).
The underlying mechanisms may involve systemic inflammation,
dysregulated protein metabolism, and immune suppression (14).
Nevertheless, the prognostic value of sarcopenia in sSRCC patients
remains incompletely understood.

In recent years, machine learning (ML) algorithms have gained
considerable attention in medical research due to their capability to
integrate multi-source data and construct high-dimensional
predictive models (15). Radiomics has emerged as a promising
approach for non-invasively decoding tumor heterogeneity by
extracting high-dimensional quantitative features from standard
medical images, thereby predicting tumor biological behavior (16,
17). Non-contrast CT, widely used in renal cancer diagnostics,
offers broad availability and standardization, and its radiomic
features have demonstrated potential in distinguishing RCC
subtypes, predicting tumor grade, and assessing prognosis (15,
18-20). However, no study to date has integrated pretreatment
sarcopenia with radiomic features from non-contrast CT for
predicting postoperative survival in SRCC patients.

Based on this background, we hypothesize that preoperative
sarcopenia combined with radiomic features from non-contrast CT
may collectively influence postoperative survival in sRCC. This
study aims to investigate the potential of sarcopenia as a
preoperative predictor and to evaluate whether its integration
with radiomic features can enhance the accuracy of survival
prediction, thereby providing an imaging-based foundation for
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preoperative risk stratification and individualized therapeutic
decision-making.

Materials and methods
Study design and participants

This retrospective cohort analysis included patients
pathologically diagnosed with sRCC at our institution between
December 2009 and September 2024. The study protocol was
approved by the Ethics Committee of The Affiliated Hospital of
Qingdao University (Approval No: QYFYWZLL30031) and
conducted in accordance with the ethical principles of the
Declaration of Helsinki (2013 revision). Informed consent was
waived due to the retrospective nature of the study. Clinical data
were independently and blindly collected by two researchers.
Inclusion criteria were: (1) postoperative pathological
confirmation of sRCC with complete clinical records; (2)
abdominal CT scan performed within one month before surgery.
Exclusion criteria were: (1) incomplete clinical, pathological, or
follow-up data; (2) concurrent other malignancies or multi-organ
dysfunction; (3) previous neoadjuvant therapy; (4) absence of
DICOM-format CT images meeting quality standards; (5) death
due to complications within 30 days after surgery; (6) active
infection or recent use of anti-inflammatory/immunosuppressive
drugs. The study flowchart is shown in Supplementary Figure 1.
Clinical variables included age, blood biochemical indicators, and
pathological characteristics. Missing values (<5%) were handled
using multiple imputation.

Follow-up and endpoints

A standardized postoperative follow-up protocol was
implemented: assessments every 3-4 months in the first year,
every 6 months from years 2 to 5, and annually thereafter.
Evaluations included clinical symptoms, laboratory tests (e.g.,
complete blood count and biochemistry), and imaging (CT or
MRI). Follow-up concluded on April 1, 2025. The primary
endpoint was overall survival (OS), defined as the duration from
pathological diagnosis to death from any cause or the last confirmed
follow-up.

CT image acquisition

Preoperative non-contrast CT images were obtained using
multiple scanners: GE Optima CT620, LightSpeed CT750 HD,
Optima CT670, Revolution CT (GE Healthcare, USA), and
Siemens SOMATOM Sensation64 and Definition Flash (Siemens
Healthineers, Germany). Scanning parameters were: tube current
240-320 mAs (automatically modulated), voltage 120 kVp, pitch
1.375, reconstruction matrix 512x512, and slice thickness 5 mm. All
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images were exported in DICOM format from the PACS for
further processing.

Tumor segmentation and radiomic feature
extraction

Tumor segmentation and feature extraction were performed using
a standardized protocol. One radiologist (7 years of abdominal imaging
experience) and one urologist (15 years of urologic oncology
experience), both blinded to pathology, manually delineated tumor
boundaries on non-contrast CT images slice-by-layer using ITK-SNAP
(v4.2.0) to generate 3D regions of interest (ROIs), carefully excluding
adjacent renal parenchyma and perinephric fat. Discrepancies were
resolved by a third urologist with 35 years of experience. Prior to
feature extraction, all images underwent standardized preprocessing
including resampling and gray-level discretization. Features were
extracted in Python 3.7 using the pyradiomics toolbox, following the
Image Biomarker Standardisation Initiative (IBSI) guidelines (21).
Extracted features included first-order statistics, shape, gray-level co-
occurrence matrix (GLCM), gray-level dependence matrix (GLDM),
gray-level run-length matrix (GLRLM), gray-level size zone matrix
(GLSZM), neighboring gray-tone difference matrix (NGTDM), and
wavelet-derived features. To evaluate segmentation reproducibility, two
blinded urologists independently segmented ROIs on 30 randomly
selected CT images. The first reader repeated the segmentation after
one month for intra-observer consistency assessment. Features with an
intraclass correlation coefficient (ICC) > 0.75 were retained for
further analysis.

Body composition assessment and
sarcopenia diagnosis

Body composition was quantified at baseline using CT axial images
at the third lumbar (L3) level. SlicecOmatic 5.0 (Tomovision, Canada)
was used to measure cross-sectional areas (cm?) of total abdominal
muscle (TAM), psoas muscle (PM), and paraspinal muscles (PS).
Muscle tissue was defined using Hounsfield unit (HU) thresholds
(29 to 150 HU) (22), with manual correction for accuracy, as
illustrated in Figure 1. All analyses were performed by one
radiologist with 7 years of experience. Height-adjusted indices
(TAM/height®, PM/height?) were derived (23, 24). Sarcopenia was
defined using established criteria (23-25): height-adjusted TAM index
<52.4 cm?/m? (men) or <38.5 cm’/m”> (women); PM index <6.36
cm?/m? (men) or <3.92 cm*/m? (women); absolute PS area <31.97 cm?*
(men) or <28.95 cm® (women).

Feature selection and radiomics model
construction

Radiomic features were Z-score normalized. A multi-stage
selection strategy was applied: first, features with ICC > 0.75 were
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retained; second, low-variance features (variance threshold <0.1)
were removed, and highly correlated features (|r] > 0.9) were
reduced by retaining those with higher variance. Univariate Cox
regression (p < 0.001) identified prognosis-related features, followed
by Least absolute shrinkage and selection operator (LASSO)
regression with 10-fold cross-validation (optimal A selected via
minimum error) for dimensionality reduction. Five machine
learning algorithms (SuperPC, stepwise Cox, random survival
forest [RSF], CoxBoost, and plsRcox) were used to build
prognostic models. The model with the highest C-index was
selected to generate a radiomics score (Rad-score) for
subsequent analysis.

Clinical and combined model construction

Three models were developed and compared. Univariate Cox
regression (p < 0.05) identified potential prognostic variables,
followed by LASSO regression (10-fold cross-validation, A.min)
for variable selection. Multivariable Cox regression with backward
likelihood ratio (LR) method identified independent prognostic
factors to build a clinical model centered on sarcopenia. A
combined model was constructed by integrating the Rad-score
and significant clinical variables via multivariable Cox regression.
Model performance was compared among the radiomics, clinical,
and combined models following TRIPOD guidelines.

Model evaluation and interpretation

Internal validation included repeated 10-fold cross-validation
for C-index calculation and bootstrap resampling (1000 repetitions)
for confidence intervals. Delong’s test and bootstrap methods (1000
repetitions) were used to compare C-indices between models. A
nomogram based on the combined model was developed to predict
survival probabilities. Time-dependent ROC curves assessed
discrimination at 1, 2, and 3 years. Calibration curves (1000
bootstrap samples) evaluated agreement between predicted and
observed outcomes. Decision curve analysis (DCA) quantified
clinical utility by calculating net benefit across threshold
probabilities. SHAP (Shapley Additive exPlanations) analysis
interpreted feature contributions and enhanced model
transparency (26, 27).

Statistical analysis

All analyses were performed using IBM SPSS Statistics 26.0 and
R 4.4.3. Two-sided p-values < 0.05 were considered statistically
significant. Categorical variables are presented as counts and
percentages, compared using Pearson’s % or Fisher’s exact test.
Continuous variables were tested for normality using Shapiro-Wilk
test; normally distributed variables are expressed as mean +
standard deviation and compared with t-tests, while non-normal
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variables are reported as median (IQR) and compared with Mann- TABLE 1 Baseline demographic, clinical, and pathological characteristics
Whitney U test of the 121 patients with sarcomatoid renal cell carcinoma (sRCC)
Y ’ included in the retrospective cohort study.

Value (mean + SD, median

Results Characteristic = Category [IQR], or number [%])
Baseline clinical characteristics feeer e
Sex Male 86(71.10)
This retrospective cohort study strictly adhered to predefined Female 35(28.90)
inclusion and exclusion criteria, ultimately enrolling 121 patients BMI 2421 £ 3.59
with pathologically confirmed sRCC. All patients received
standardized treatment and systematic follow-up. The median TAM index BT
follow-up time for the entire cohort was 21 months (range: 1-183 PMI 491 + 144
months). By the end of follow-up, 60 deaths had been recorded. S 43.96 + 10.23
Detailed baseline characteristics, including demographic, clinical,
and pathological parameters, are summarized in Table 1. Hypertension ves 20(41.30)
No 71(58.70)
iabetes Yes 23(19.00
Radiomic feature selection, prognostic o e
model construction, and interpretation e P8(E100)
Albumin 38.88 + 6.63
A total of 854 quantitative radiomic features were extracted Alkaline
from the ROIs. After evaluating intra- and inter-observer Phosphatase 10154 %6904
consistency (ICC > 0.75), 707 features were retained for further Cholesterol 440 + 116
analysis. Subsequent low-variance filtering (variance threshold <
0.1) and removal of highly correlated features (retaining those with LDH 21616 £ 14996
higher variance in each correlated group) yielded 186 features. Urea 5.54 + 1.95
Univariate Cox regression identified 10 features significantly Creatinine 83,98 + 6483
associated with prognosis (P < 0.001). LASSO regression was then
applied for further dimensionality reduction, resulting in six highly Glucose 6:20 %230
predictive features for model construction (Figures 2A, B). To Fibrinogen 472 + 143
comprehensively evaluate predictive performance, five algorithmic T stage T1/T2 55(45.50)
strategies were systematically compared. The plsRcox model
demonstrated optimal performance (Figure 2C), achieving a C- R Sl
index of 0.696 via 10-fold cross-validation. Time-dependent ROC N stage NO 81(66.90)
analysis showed that the model yielded AUC values of 0.706, 0.726, NI 40(33.10)
and 0.725 for predicting 1-, 2-, and 3-year OS, respectively
M stage MO 78(64.50)

(Figure 2D). SHAP analysis was used to interpret the plsRcox
model. The global SHAP summary plot (Figure 2E) illustrated the M1 43(35.50)
direction and magnitude of contributions of the six key features, all

Tumor Size 7.59 £ 3.36
of which acted as positive predictors. An individual prediction
. . P Ki-67 Index 030 +0.21
analysis (Figure 2F) deconstructed the prediction for a high-risk
patient: the baseline prediction (E[f(x)] = —1.97x10""7) represents SII 1176.34 + 1025.56
the model’s output reference, while the individual prediction value PLR 21042 + 117.09
(f(x) = 4.02) indicated elevated mortality risk.
LMR 3.16 + 1.99
PNR 68.27 + 30.88
Prognostic factor selection and combined PAR 838 + 3.83
model construction GLR 0 < 301
Univariate Cox regression identified clinical features PN 47332784
significantly associated with OS in sRCC patients (Table 2). HALP 30.23 + 1831
LASSO regression was used to screen prognostic variables, (Continued)
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TABLE 1 Continued

Characteristic Category Valﬁjgéqnzz:nnﬁnﬁgém;%lan

TAM-defined Yes 88(72.70)
sarcopenia
No 33(27.30)
PM-defined Yes 88(72.70)
sarcopenia
No 33(27.30)
PS-defined Yes 6(5.00)
sarcopenia
No 115(95.00)
. Value (mean + SD, median [IQR], or
Characteristic
number [%])
OS, months 21(8.50-50.00)
State of life Survival 61(50.40)
Death 60(49.60)

SD, Standard deviation; IQR, Interquartile range; BMI, Body mass index; TAM, Total
abdominal muscle; PM, Psoas muscle; PS, Paraspinal muscle; PMI, Paraspinal muscle
index; LDH, Lactate dehydrogenase; SII, Systemic immune-inflammation index; PLR,
Platelet-to-lymphocyte ratio; LMR, Lymphocyte-to-monocyte ratio; PNR, Platelet-to-
neutrophil ratio; PAR, Platelet-to-albumin ratio; GLR, Glucose-to-lymphocyte ratio; PNI,
Prognostic nutritional index; HALP, Hemoglobin, albumin, lymphocyte, and platelet index.

including PNR, PAR, HALP, Ki-67 index, tumor size, N stage, M
stage, sarcopenia defined by TAM index, and sarcopenia defined by
PS area (Supplementary Figure 2). Subsequent multivariate Cox
regression using the backward likelihood ratio method identified
the following independent prognostic factors for OS: PNR (HR =
0.981,95% CI: 0.971-0.991; P < 0.001), HALP (HR = 0.979, 95% CI:
0.963-0.995; P = 0.01), tumor size (HR = 1.074, 95% CI: 0.996—
1.157; P = 0.064), N stage (HR = 2.434, 95% CI: 1.387-4.270; P =
0.002), and PS-defined sarcopenia (HR = 3.046, 95% CI: 1.119-
8.289; P = 0.029). A clinical prognostic model based on these
variables was constructed, and a clinical risk score was computed
for each patient. Finally, a combined prognostic model was
established by integrating the radiomics risk score (Rad-score)
with the clinical model.

(A)

FIGURE 1

(B)

10.3389/fonc.2025.1637032

Prognostic model based on sarcopenia and
radiomics and its interpretation

Using the selected clinical prognostic factors and the Rad-score,
a nomogram was developed to predict 1-, 2-, and 3-year OS in sSRCC
patients (Figure 3A). The nomogram is applied as follows: (1)
determine the points for each variable on the top point scale; (2)
project each point vertically to the “Points” axis; (3) sum all points
to obtain the total score; (4) determine the corresponding 1-, 2-, and
3-year survival probabilities on the bottom survival probability axis.
SHAP analysis was further employed to interpret the combined
model. The global SHAP beeswarm plot (Figure 3B) revealed that
all four key predictive features exhibited positive contributions
(SHAP values > 0), indicating significant associations with poor
prognosis. Individual prediction visualization (Figure 3C)
illustrated an example of a high-risk patient: the baseline
prediction (E[f(x)] = 0) represents the model’s risk reference,
while the individual prediction (f(x) = 4.14) was substantially
higher, consistent with actual high-risk clinical outcomes.

Predictive performance and clinical
validation of the combined prognostic
model

The combined model demonstrated superior discriminative
ability for predicting OS in sRCC patients compared to the
sarcopenia-based clinical model and the radiomics model alone.
Based on repeated cross-validation, the mean C-indices for the
clinical, radiomics, and combined models in the training cohort
were 0.746, 0.696, and 0.783, respectively. Pairwise comparisons
using Delong’s test indicated a statistically significant difference
between the combined model and the radiomics model (p = 0.002),
while differences between the clinical and radiomics models (p =
0.081) and between the clinical and combined models (p = 0.216)
were not statistically significant.

Representative CT image analysis of a 41-year-old female patient. (A) Axial non-contrast CT image acquired at the level of the third lumbar vertebra
(L3). (B) Automated segmentation of muscle compartments: paraspinal muscles (PS, red), psoas major muscles (PM, green), and total abdominal
muscle (TAM, combined overlay). Abbreviations: CT, computed tomography; L3, third lumbar vertebra; TAM, total abdominal muscle; PM, psoas

major; PS, paraspinal muscles
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LASSO Coefficient Path Cross-Validation Curve for LASSO
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FIGURE 2

Radiomics feature selection, prognostic model construction, and interpretation using SHAP. (A) LASSO coefficient profile of the 10 radiomic features
significantly associated with overall survival (univariate Cox regression, P < 0.001). (B) Ten-fold cross-validation curve for tuning parameter (1)
selection in the LASSO regression. The optimal A value is indicated by the vertical dotted line. (C) Comparison of six prognostic modeling
approaches based on the C-index. The plsRcox model showed the highest predictive performance (C-index = 0.696). (D) Time-dependent receiver
operating characteristic (ROC) curves of the plsRcox model for predicting 1-, 2-, and 3-year overall survival. (E) Global SHAP summary plot
displaying the magnitude and direction of the influence of the six selected radiomic features on the model output. All features contributed positively
to risk prediction. (F) SHAP waterfall chart illustrating the decomposition of the predicted risk score for an individual high-risk patient, showing the

additive contribution of each feature relative to the baseline prediction.

Time-dependent ROC analysis further validated the predictive
accuracy of the models. The sarcopenia-based clinical model
achieved AUC values of 0.814 (95% CI: 0.726-0.902), 0.749 (95%
CI: 0.651-0.847), and 0.780 (95% CI: 0.684-0.876) for predicting 1-,
2-, and 3-year OS, respectively (Figure 4A). The corresponding
AUC values for the combined model were 0.849 (95% CI: 0.773-
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0.926), 0.804 (95% CI: 0.725-0.883), and 0.819 (95% CI: 0.733-
0.905) (Figure 4B). Calibration curves showed good agreement
between predicted and observed survival probabilities for the
combined model (Figure 4C). DCA indicated that the combined
model offered high clinical utility across most threshold
probabilities for 1-, 2-, and 3-year survival predictions, with net
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TABLE 2 Univariate and multivariate Cox regression analyses of factors associated with overall survival in patients with sarcomatoid renal cell
carcinoma (sRCC).

Univariate analysis Multivariate analysis
Variable
95% ClI P value 95% ClI P value
Age 0.996 0.977-1.016 0.707
‘ Gender
Female Ref
Male 0917 0.531-1.584 0.757
BMI 0.927 0.868-0.991 <0.026
‘ Hypertension
No Ref
Yes 0.612 0.357-1.049 0.074
‘ Diabetes
No Ref
Yes 0.750 0.369-1.528 0.429
Albumin 0.956 0.919-0.995 0.029
Alkaline
Phosphatase 1.002 0.999-1.006 0.153
Cholesterol 0.997 0.793-1.254 0.979
LDH 1.002 1.000-1.003 0.022
Urea 0.885 0.768-1.019 0.089
Creatinine 1.000 0.997-1.003 0.919
Glucose 1.051 0.940-1.176 0.384
Fibrinogen 1213 1.031-1.427 0.020
Tumor Size 1.105 1.033-1.182 0.003 1.074 0.996-1.157 0.064
Ki-67 6.215 1.963-19.678 0.002
‘ T stage
T1/T2 Ref
T3/T4 2.060 1.202-3.530 0.009
‘ N stage
NO Ref Ref
N1 2.413 1.443-4.034 0.001 2434 1.387-4.270 0.002
‘ M stage
Mo Ref
Ml 2428 1.458-4.044 0.001
SII 1.000 1.000-1.000 0.003
PLR 1.002 1.000-1.004 0.025
LMR 0.704 0.563-0.879 0.002
PNR 0.990 0.979-1.000 0.052 0.981 0.971-0.991 <0.001
PAR 1.083 1.021-1.150 0.008
GLR 1.049 0.969-1.135 0.239

(Continued)
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TABLE 2 Continued

Univariate analysis

Multivariate analysis

variable 95% Cl 95% Cl
M stage
PNI 0.960 0.930-0.991 0.013
HALP 0.974 0.958-0.990 0.001 0.979 0.963-0.995 0.010
TAM-defined sarcopenia
No Ref
Yes 2.002 1.059-3.784 0.033
PM-defined sarcopenia
No Ref
Yes 1.284 0.721-2.888 0.395
PS-defined sarcopenia
No Ref Ref
Yes 2.804 1.112-7.071 0.029 3.046 1.119-8.289 0.029

BMI, Body mass index; TAM, Total abdominal muscle; PM, Psoas muscle; PS, Paraspinal muscle; LDH, Lactate dehydrogenase; SII, Systemic immune-inflammation index; PLR, Platelet-to-
lymphocyte ratio; LMR, Lymphocyte-to-monocyte ratio; PNR, Platelet-to-neutrophil ratio; PAR, Platelet-to-albumin ratio; GLR, Glucose-to-lymphocyte ratio; PNI, Prognostic nutritional index;

HALP, Hemoglobin, albumin, lymphocyte, and platelet index.

benefit exceeding those of the “treat-all” and “treat-none” strategies
(Figures 4D-F), supporting its potential for clinical application.

Discussion

This study is the first to integrate pretreatment sarcopenia with
radiomic features from non-contrast CT to develop and validate a
combined model for predicting postoperative OS in patients with
sRCC. The combined model demonstrated good discriminative
ability for predicting 1-, 2-, and 3-year OS, with AUC values of
0.849, 0.804, and 0.819, respectively. It significantly outperformed the
radiomics-only model (p = 0.002) and consistently showed higher C-
indices and AUCs compared to the clinical-only model, although this
difference did not reach statistical significance (p = 0.216).
Furthermore, the combined model exhibited good calibration and
clinical utility in decision curve analysis, supporting its potential value
in individualized prognostic assessment.

Sarcopenia, an important indicator of nutritional and
inflammatory status, was identified in this study as an independent
prognostic factor in SRCC. Specifically, sarcopenia defined by PS area
was significantly associated with poorer outcomes (HR = 3.046, p =
0.029), consistent with previous studies in clear cell renal cell
carcinoma and other solid tumors (28-31). The underlying
mechanisms are multifactorial, involving not only classic
inflammatory pathways and protein metabolism dysregulation, but
also gut microbiota dysbiosis, immunosenescence, and chronic
oxidative stress, together forming a complex pathological network
(32-34). Age-related gut dysbiosis is characterized by a reduction in
beneficial bacteria (e.g., Bacteroides, Bifidobacterium, and short-
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chain fatty acid [SCFA]-producing bacteria) and an increase in
opportunistic pathogens (e.g., Proteobacteria) (35-37). These
changes lead to decreased production of SCFAs such as butyrate
(38, 39), impair intestinal barrier integrity, and promote translocation
of microbial-associated molecular patterns (MAMPs) into the
circulation, triggering a systemic low-grade inflammatory state (40,
41). Inflammatory cytokines (e.g., TNF-0,, IL-6) activate NF-xB and
MAPK signaling pathways, exacerb muscle protein degradation and
suppressing synthesis, thereby directly promoting sarcopenia (42, 43).
From a redox perspective, sarcopenia is closely linked to chronic
oxidative stress. Under physiological conditions, reactive oxygen
species (ROS) and reactive nitrogen species (RNS) contribute to
muscle adaptation and regeneration; however, under pathological
conditions such as malignancy, aging, or chronic inflammation,
excessive ROS/RNS production induces oxidative stress, leading to
mitochondrial dysfunction, protein oxidation, lipid peroxidation, and
DNA damage. These processes promote protein degradation, inhibit
synthesis, and induce apoptosis and necrosis of muscle cells (44, 45).
Moreover, accumulation of advanced glycation end-products (AGEs)
and advanced lipoxidation end-products (ALEs) can cause muscle
protein cross-linking and functional loss, and exacerbate atrophy
through activation of RAGE-mediated inflammatory pathways such
as NF-kB (46, 47). Our multivariate analysis also confirmed the
prognostic value of clinical indicators including PNR, HALP, tumor
size, and N stage, enriching the prognostic toolkit for sSRCC and
supporting potential applications in perioperative management,
treatment strategy discussion, and personalized follow-up planning,

In terms of radiomics, six features significantly associated with
OS were selected from non-contrast CT images to construct a
radiomic model with a C-index of 0.696, indicating moderate
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predictive ability. However, the limited performance of radiomics
alone suggests that imaging features may not fully capture the high
heterogeneity and complex biology of sSRCC. Notably, SHAP analysis
revealed that all selected radiomic features were positive predictors,
collectively indicating poorer prognosis, possibly related to
intratumoral necrosis, fibrosis, or microenvironment dysregulation.
The combined model integrating clinical and radiomic features
allowed complementary multi-dimensional risk assessment and
significantly improved the identification of high-risk patients.
Previous studies have shown that radiomic features can effectively
reflect tumor heterogeneity, microenvironment, and biological
behavior, providing non-invasive quantitative information closely
related to pathological characteristics. Multiple studies have
successfully developed radiomic models based on CT, MRI, and
PET/CT to predict ISUP grade, metastatic potential, and prognosis in
RCC, demonstrating considerable clinical value (48-50). Importantly,
radiomics has shown promise not only in tumor grading but also in
prognostic stratification. Zhao et al. (51) developed a model based on
intravoxel incoherent motion (IVIM) diffusion-weighted imaging for
preoperative prediction of nuclear grade and survival in ccRCC with
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venous tumor thrombus, outperforming conventional imaging
metrics. Other studies have combined radiomics with existing
clinical scoring systems (e.g., SSIGN score, Leibovich score) to
improve prognostic accuracy (52-54). For example, Li et al. (54)
validated a CT-based deep learning radiomic model for Leibovich
risk stratification in non-metastatic ccRCC across multiple centers,
suggesting its utility as a complement to existing clinical tools. The
significant difference between the combined and radiomics-only
models (p = 0.002) underscores the contribution of clinical
variables such as sarcopenia. Although the difference between the
combined and clinical-only models was not statistically significant
(p = 0.216), the consistent advantage in time-dependent ROC
analysis and C-index suggests more stable predictive performance
of the integrated model.

This study has several limitations. First, its retrospective single-
center design and relatively small sample size may introduce selection
bias. Second, although consistency was assessed, manual ROI
delineation is subject to subjective variability; future studies could
employ deep learning-based auto-segmentation to improve
reproducibility and efficiency. Third, dynamic variables such as
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radiomics model, and extreme intervention strategies.

quality of life, nutritional intake, or treatment-related adverse events
were not included, which may influence outcomes. Finally, all models
were internally validated; multi-center prospective studies are needed
to evaluate generalizability. Despite these limitations, this study is the
first to demonstrate the synergistic value of pretreatment sarcopenia
and non-contrast CT radiomics in prognostic prediction for sRCC,
offering a novel non-invasive approach for preoperative risk
stratification. The combined model exhibits not only high predictive
accuracy but also clinical interpretability—SHAP analysis clarified the
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contribution of each feature, enhancing the credibility and potential
clinical utility of the model.

Conclusion

This study demonstrates that a combined model integrating
preoperative sarcopenia and non-contrast CT-based radiomic
features significantly improves the prediction of postoperative
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survival in patients with sSRCC. The model outperformed radiomics-
only predictions and showed robust discriminative ability and clinical
utility. These findings support the use of sarcopenia and radiomics as
complementary preoperative biomarkers for individualized prognostic
assessment and treatment planning in this high-risk population.
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