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Role and prognostic value
of oncostatin M and its
receptor OSMR in acute
myeloid leukemia,
myeloproliferative neoplasms
and non-hematological
malignancies
Jean-Pierre Lévesque*, Kavita Bisht, Kylie A. Alexander
and Ingrid G. Winkler

Mater Research – The University of Queensland, Woolloongabba, QLD, Australia
The oncostatin M receptor (OSMR) has recently emerged as an adverse

prognostic factor in acute myeloid leukemia (AML) and several non-

hematological malignancies. In this perspective, we discuss how oncostatin M

(OSM) and its receptor OSMR regulate tumor cells as well as mesenchymal and

endothelial cells, which are key components of hematopoietic stem cell and

tumor stem cell niches, and how these mechanisms could explain the poor

prognosis associated with high expression of OSM and OSMR in hematological

and non-hematological malignancies.
KEYWORDS
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1 Introduction

High expression of oncostatin M (OSM) receptor OSMR has recently emerged as a

poor prognosis factor in several malignancies such as acute myeloblastic leukemia (AML),

gliomas, pancreatic, gastric and kidney carcinomas. In this perspective, we perform a larger

in silico survey of the prognostic value of high OSMR and OSM transcripts in 33

malignancies and discuss the mechanisms involved in the adverse effects of high OSM-

mediated signaling in malignant cells and the tumor microenvironment, and potential

treatments to target this signaling pathway.

OSM is an inflammatory cytokine of the interleukin-6 (IL-6) family. OSM binds to two

different receptors made up of glycoprotein-130 (GP130, gene IL6ST in humans Il6st in

mice) complexed with either transmembrane OSM receptor (OSMR, gene OSMR in
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humans or Osmr in mice) or with leukemia inhibitory factor

receptor (LIFR) (1, 2). Both OSMR and LIFR have very long

intracellular domains enabling the docking of many kinases and

adaptors, eliciting similar but not identical signaling in response to

OSM (3, 4). OSM is mostly produced by activated myeloid cells

(granulocytes, monocytes and macrophages) as well as all cells of

the osteoblast lineage (3, 5, 6), and astrocytes, neurons, microglia in

the brain (7). In contrast, its receptor OSMR is not expressed by

leukocytes or hematopoietic stem and progenitor cells (HSPC) but

expressed by cells of the mesenchymal and endothelial lineages in

the bone marrow (6) and other tissues. OSM is a regulator of both

hematopoiesis and skeleton homeostasis mostly via the OSMR:

GP130 receptor complex (6) and plays important roles in

inflammatory responses in skeletal (8, 9) and cardiac (10)

muscles, lung (11), liver (12, 13), intestine (14), adipose (15), skin

(16, 17) and joints (18). Adding to the complexity of OSMR protein

roles, OSMR protein complexed with the IL-31 receptor a chain

IL31RA acts as a receptor for IL-31 (19). Recent literature now

highlights important roles of both OSMR and OSM in the

pathogenesis and response to treatment of several malignancies as

detailed below.
2 OSM and OSMR in hematological
malignancies

In a recent paper, high throughput proteomic analysis on more

than 550 newly diagnosed AML patients demonstrated that high

plasma concentration of soluble OSMR protein was a strong

independent predictor of poor survival and early mortality (20).

These clinical data suggest an oncogenic role of OSMR-mediated

signaling and are consistent with the anti-proliferative effect of

OSMR gene inactivation in mice and humans. Indeed, Osmr-/-

mice display mild anemia and thrombocytopenia (21–23) with

decreased HSPC cycling in the bone marrow, increased HSPC

chemotactic response, increased HSPC mobilization into the blood

in response to G-CSF or CXCR4 antagonists, as well as decreased

expression of genes associated with cell cycling, lipid metabolism,

and erythropoiesis in hematopoietic stem cells (HSC) (5). Another

recent report has shown that biallelic loss-of-function of the OSM

gene in humans causes profound anemia, thrombocytopenia and

neutropenia (24). Therefore, OSM and OSMR-mediated signaling

contributes to increased HSPC cycling and retention within the bone

marrow, enabling sufficient erythropoiesis and thrombopoiesis

output. Interestingly, the hematopoietic effects of OSMR are

mediated via the hematopoietic environment as OSMR mRNA is

undetectable to very low in mouse and human HSPC (5) or in AML

blasts (20). Reville et al. highlighted that high OSMR protein

production and transcript expression was limited to mesenchymal

stromal cells (MSCs) while undetectable in AML blasts in cultures of

leukemic marrow aspirates (20). However, their culture system did

not enable the survival and growth of bone marrow endothelial cells,

which similar to MSCs, express high levels of OSMR transcripts and

protein (5, 6) and are key functional regulatory elements of HSC

niches and leukemia stem cell niches (25–30). Therefore, the source
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of sOSMR protein in the blood of AML patients could be endothelial

cells as well as MSCs and the deregulation of these niche cell types in

the bone marrow may be involved in the mechanisms of poorer

outcome in patients with high sOSMR protein.

As the OSMR ligand OSM is expressed by myeloid cells

(particularly neutrophils and macrophages) and osteoblasts in the

bone marrow (3, 5), we plotted the expression of OSM transcripts in

the 9,736 tumor and 8,587 normal tissue samples contained in The

Cancer Genome Atlas (TCGA) database using Gene Expression

Profiling and Interactive Analysis (GEPIA) website (31, 32)

(Figure 1A). OSM transcripts were significantly higher in AML

samples than normal bone marrow samples (“LAML” in

Figure 1A). Overall survival (OS) Kaplan-Meier plot from AML

patients with 50% highest content and 50% lowest content in OSM

transcripts is shown in Figure 1B. Although the p values of p=0.055

for differences were just above the significance threshold of p=0.05,

AML patients with highest levels of OSM transcript had a trend to

shorter OS with a 1.7 hazard ratio compared to AML patients with

lowest OSM transcripts. Considering that high sOSMR protein is

significantly associated with poorer prognosis in AML (20),

confirmation of a significant association between poor prognosis

and high OSM transcripts in a larger cohort of AML patients is

warranted. In regard to the alternative OSMR ligand interleukin-31

(IL-31), IL31 transcripts were detected at least 2 orders of

magnitude lower compared to OSM transcripts (Figure 1C) and

there was no difference in OS between high and low IL31 expressing

AML with the 50% cut-off (Figure 1D). Therefore, it is likely that the

adverse effect of high OSM transcript and sOSMR protein in AML is

mediated via its ligand OSM acting indirectly via bone marrow

mesenchymal and endothelial cells which express both OSMR with

its co-receptor GP130 (5, 22, 23) rather than IL-31-mediated

signaling. One of the adverse effects of OSM-OSMR interaction

may be mediated through its induction of E-selectin expression by

endothelial cells (33) as E-selectin mediated signaling in AML stem

cells increases their resistance to the cytotoxic effects of

chemotherapy (30) (see model in Figure 1E).

In respect to other hematological malignancies, OSM mRNA

are reportedly high in Philadelphia-negative myeloproliferative

neoplasm (Ph- MPN) cells with a constitutively active JAK2

tyrosine kinase mutations such as JAK2V617F (34), with increased

OSM protein concentration in Ph- MPN patient bone marrow cells

and blood plasma (34). Furthermore cytokine production by

primary fibroblasts from MPN patients is increased in response

to OSM via OSMR expressed by fibroblasts (34). Therefore, sOSMR

and its ligand OSM may also have prognostic value in Ph- MPN.

This hypothesis is consistent with the following findings: 1)

Transduction of a JAK2V617F mutant in myeloid cell lines

dramatically increases OSM expression (34). 2) OSM promotes

HSPC proliferation, erythropoiesis and thrombopoiesis in vivo (5,

21) indirectly via bone marrow niche cells that express OSMR (5, 6).

3) In a mouse model of lymphoproliferative neoplasm driven by

activating mutation of the FLT3 tyrosine kinase domain (FLT3-

TKD), co-transduction with OSM cDNA switched the

lymphoproliferative FLT3-TKD neoplasm to a myeloproliferative

neoplasm suggesting that OSM is a potent inducer of a pro-myeloid
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niche (35). 4) Transplantation of mouse HSCs overexpressing OSM

resulted in fatal myelofibrosis (36), a common adverse evolution of

Ph- MPNs. Further along this latter point, it has recently emerged

that activating JAK2V617F mutation upregulates the expression of

the “don’t eat me” antigen CD24 at the surface of neutrophils

enabling the accumulation of old senescent neutrophils to escape

efferocytosis and accumulate in the bone marrow promoting
Frontiers in Oncology 03
evolution to myelofibrosis (37). As neutrophils are a major source

of OSM protein in the bone marrow (5, 6) and OSM overexpression

triggers myelofibrosis (36), accumulation of OSM secreted by

senescent JAK2V617F neutrophils may be a driver of the evolution

of polycythemia vera (the most frequent clinical manifestation of

MPNs with JAK2V617F driving mutation) to myelofibrosis which

has worse clinical outcome.
FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Expression of transcripts for OSMR ligands OSM and IL-31 with overall survival plots of AML patients with highest and lowest expression OSM and
IL31 transcripts. (A) OSM transcript quantification in transcripts per million in various tumors (red dots) versus paired normal tissues (green dots)
extracted from the TCGA database stratified as adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangial carcinoma (CHOL), colon adenocarcinoma
(COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiform (GBM), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
acute myeloid leukemia (LAML), lower grade glioma (LGG), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and
paraganglioma (PCPG), prostate adenocarcinoma (PARD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), testicular germ cell tumor (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), uterine carcinosarcoma (UCS) and uveal melanoma (UVM). Bars show median value for each tumor (T) and normal tissue (N)
with number of samples indicated. Significant differences in OSM transcripts per million between malignant and paired normal tissues are indicated
with colored malignancy abbreviation above the chart in red for OSM overexpressed in tumor versus paired normal tissue and in green for OSM
under-expressed in malignant versus paired normal tissue. (B) Kaplan-Meier plots of overall survival of AML patients with 50% highest (red plot) and
50% lowest OSM (blue plot) transcripts, log-rank test p value, hazard ratio (HR), significance of hazard ratio p(HR) and number of patients are
indicated on the plot (n=106). (C) IL31 transcript in various tumors (red dots) versus paired normal matching tissues (green dots) extracted from the
TCGA database and stratified as described in (A). (D) Kaplan-Meier plots of overall survival of AML with 50% highest and 50% lowest IL31 transcripts.
(E) Model of OSM and OSMR effects on normal hematopoiesis (left side) and AML (right side). In normal bone marrow, low level of OSM is released
by myeloid cells stimulating basal production of cytokines/growth factors by MSCs and endothelial cells expressing OSMR/GP130 receptor complex
and forming HSPC niches. In the leukemic bone marrow, malignant AML blasts express and release high levels of OSM, stimulating MSCs and
endothelial cells via the OSMR/GP130 receptor complex they express, to release excessive amounts of growth factors, cytokines, and sOSMR
protein as well as boost endothelial E-selectin expression, all contributing to enhanced AML blast proliferation, migration and chemoresistance.
Similar effects may occur in multiple myeloma, Philadelphia-negative MPN, and solid tumors. Panels (A–D) were generated by using the GEPIA
website in April 2025 (32).
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In respect to lymphoid neoplasms, high sOSMR (19) and OSM

(38) protein concentrations have also been reported in the serum of

multiple myeloma patients. However, high plasma OSM had no

significant prognostic value in newly diagnosed multiple myeloma

patients (38) and the potential prognosis value of sOSMR

concentrations in multiple myeloma has not been reported.
3 OSM and OSMR in non-
hematological malignancies

Endothelial cells (39, 40) and mesenchymal cells (41) are

important players in cancer stem cell niches within solid tumors.

As OSMR is expressed by these cells (5, 22, 23) as well as some

mucosal and glandular epithelial cells (42), OSMR and OSMmay also

play important roles in several non-hematological malignancies by

directly acting on tumor cells or indirectly via endothelial and

mesenchymal cells such as fibroblasts in the tumor environment.

In support of this, high OSMR transcript content is a poor prognosis

factor in glioblastoma (43, 44), pancreatic adenocarcinoma (45), and

gastric cancer (46). Analysis of OSMR transcript expression in all

tumor types and corresponding healthy tissues in the TCGA database

(Figure 2A) showed OSMR transcripts are significantly more

expressed in tumors than the paired normal tissues in esophageal

carcinoma (ESCA), glioblastoma multiform (GBM), kidney renal

clear cell carcinoma (KIRC), pancreatic adenocarcinoma (PAAD),

stomach adenocarcinoma (STAD) and thymoma (THYM). Lower

grade glioma (LGG) had higher expression ofOSMRwhen compared

to healthy tissue, but this was not significant. As samples were

generally higher in solid tumor datasets compared to AML, we

used a more stringent quartile cut-off and plotted OS and disease-

free survival (DFS) from the 25% highestOSMR transcript expressing

tumors (High OSMR) and 25% lowest OSMR expressing tumors
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(Low OSMR). GBM, LGG, PAAD and STAD with highest OSMR

transcripts had significantly worse OS, DFS and hazard ratios than

the same tumors with lowest OSMR expression (Figures 2B–E). High

OSMR transcripts in KIRC had no effect on OS but significantly

poorer DFS (Figure 2F). Among tumor types with similar OSMR

transcripts compared to paired normal tissue, kidney renal papillary

cell carcinoma (KIRP) had significantly worse OS but no difference in

DFS (Figure 2G). Unexpectedly, adrenocortical carcinoma (ACC),

had significantly less OSMR transcripts compared to paired normal

tissue (Figure 2A) but patients with high OSMR transcripts had

significantly poorer DFS and equivalent OS (Figure 2H). We could

not find any significant difference in OS and DFS between high and

low OSMR expression in all other tumor types contained in the

TCGA database (result not shown).

Reciprocally, OSM mRNA expression was significantly higher in

GBM, PAAD and AML compared to corresponding healthy tissue

(Figure 1A). OS was significantly worse in KIRC with high OSM

transcripts but there was no significant difference in DFS (Figure 2I).

There was no difference in OS or DFS between high and low OSM

transcript levels in GBM or PAAD patients (result not shown). We

also checked that these findings were similar with a median cut-off

(50%) for OSMR and OSM transcripts (Supplementary Figure 1).

This was true except for KIRP and ACC which did not show

significant difference for OS or DFS with a 50% cut-off.

The poorer prognosis of tumors with high OSMR transcripts is

consistent with previously reported effects of OSM or OSMR gene

knock-down on these tumor types. For instance, OSM protein has

been reported to increase migration, invasiveness and mesenchymal

phenotype of GBM cell lines (43), and OSMR protein can translocate

to the mitochondrial matrix to protect GBM stem cells from

irradiation (44). Likewise OSM has been found to enhance tumor

growth and epithelial-to-mesenchymal transition of pancreatic ductal

adenocarcinoma cell lines in vivo in immunodeficient mice via
frontiersin.org
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OSMR (45). Additionally, OSM produced by macrophages has been

found to induce an inflammatory phenotype in PAAD-associated

fibroblasts providing a pro-tumorigenic environment in PAAD (47).

OSM also promotes the proliferation of gastric cancer cells in vitro
Frontiers in Oncology 05
and in vivo in Nude mice (46). Finally, OSM has been reported to

increase migration, invasiveness and epithelial-to-mesenchymal

transition of clear cell renal carcinoma cell lines in vitro (48).

Importantly, deletion of the VHL gene specifically in kidney tubule
FIGURE 2 (Continued)
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FIGURE 2 (Continued)

OSMR transcript expression and patient survival of highest and lowest 25% OSMR transcript expressing tumors. (A) OSMR transcript quantification in
transcripts per million in various tumors (red dots) versus paired normal tissues (green dots) extracted from the TCGA database stratified as
described in Figure 1A. Significant differences in OSMR transcript per million between malignant and paired normal tissues are indicated with
colored malignancy abbreviations above the chart with red for OSMR transcripts significantly overexpressed in tumor versus paired normal tissue
and green for OSMR transcripts significantly under-expressed in malignant versus paired normal tissue. (B–H) Kaplan-Meier plots of overall and
disease-free survival of patients with 25% highest OSMR transcript (red curves) versus lowest 25% OSMR transcript (blue curves) for (B) glioblastoma
multiform (GBM, n=162), (C) low grade glioma (LGG, n=514), (D) pancreatic adenocarcinoma (PAAD, n=178), (E) stomach adenocarcinoma (STAD,
n=384), (F) kidney renal clear cell carcinoma (KIRC, n=516), (G) kidney papillary cell carcinoma (KIRP, n=280), and (H) adrenocortical carcinoma
(ACC, n=76). (I) Kaplan-Meier plots of overall and disease-free survival of patients with 25% highest OSM transcript (red curves) versus lowest 25%
OSM transcript (blue curves) for kidney renal clear cell carcinoma (KIRC). Log-rank test p value, hazard ratio (HR), significance of hazard ratio p(HR)
and number of patients are indicated on each plot. Panels were generated by using the GEPIA website in April 2025 (32).

Lévesque et al. 10.3389/fonc.2025.1636570
cells in mice (approximately 70% of clear cell renal carcinoma have

inactivating mutation of VHL) induces production of OSM which in

turn pushes kidney endothelial cells into an endothelial-to-

mesenchymal transition to support VHL-defective tubule cell

transformation and promote macrophage polarization towards a

tissue-supportive M2-like phenotype (49). This vicious loop

between OSM-expressing VHL-defective tubule cells and activated

endothelium expressing OSMR is functionally important as injection

of neutralizing OSM antibodies into immuno-deficient mice

transplanted with human clear cell renal carcinoma cells inhibited

primary tumor vascularization, growth and metastasis (49).
4 Discussion

Kaplan-Meier plots in Figures 1, 2 and previous reports discussed

above clearly indicate that the interaction of OSM with the OSMR:

GP130 receptor complex plays a role in the pathobiology and

response to treatment of a number of malignancies such as AML,

MPNs, glioma and glioblastoma, pancreatic, gastric and renal

carcinomas where high expression of OSMR or OSM transcripts

has poor prognosis value. The effects of the OSM: OSMR interaction

are multipronged as it can alter either the function of malignant stem

cell niches as observed in malignant hematological stem cells that do

not express OSMR such as AML or MPNs, or directly act on

malignant cells that express OSMR with further support from

tumor-associated fibroblasts and endothelial cells which also

express OSMR.

As OSM protein is highly expressed by activated neutrophils,

monocytes and macrophages, blood concentration of OSM protein

may not be a reliable prognosis marker of cancer treatment outcome

because OSM concentration is also elevated during infections, sepsis

(50, 51), acute and chronic inflammation (14, 16, 52) or in response

to therapeutic treatments with myelopoietic cytokines such as

granulocyte colony-stimulating factor (5). On the other hand,

OSMR is not expressed by leukocytes but by non-hematopoietic

malignant cells, as well as endothelial and mesenchymal cells forming

the tumor environment. As soluble sOSMR protein is produced by

alternative splicing of the OSMR transcript in exon 8 (19), it is likely

that sOSMR protein may be similarly increased in the plasma of

patients with tumors expressing high levels of OSMR transcripts,

although actual concentrations of plasma sOSMR were not measured

in patient samples from the TCGA used for our in silico analysis.
Frontiers in Oncology 06
5 Conclusion and perspectives

Blood sOSMR concentration may represent an easily measurable

prognosis marker not only in AML as recently reported (20) but also

in the other malignancies discussed in this perspective, which

warrants further clinical studies for its prognostic potential. In

regards of possible treatments of patients with high levels of

sOSMR protein or OSMR or OSM gene expression, the main axis

of OSMR-mediated signaling is via tyrosine phosphorylation and

activation of transcription factors STAT1 and STAT3 (and in some

cell types STAT5) via tyrosine kinases JAK1 and JAK2 (4, 6).

Therefore, adjunct treatments with small non-selective JAK1 and

JAK2 tyrosine kinase inhibitors such as ruxolitinib, tofacitinib and

others (53) may improve outcome in these patients. Therapeutics that

specifically target OSMR or OSM such as the humanized neutralizing

anti-OSM monoclonal antibody GSK2330811 may also be of interest

to treat AML patients with high sOSMR protein or OSM transcripts

as GSK2330811 was found to induce thrombocytopenia, anemia and

mild neutropenia in patients with diffuse cutaneous systemic sclerosis

(54). Effectiveness of such neutralizing OSM antibodies in other

malignancies in which high OSMR expression leads to poorer

outcome remains to be established. In conclusion, elevated OSMR-

mediated signaling is emerging as a poor prognosis factor in a

number of malignancies such as AML, GBM, LGG, STAD, KIRC

and KIRP. Consequently,OSMR gene expression and sOSMR protein

blood concentration should be systematically measured in patients

with these diseases and clinical trials should be undertaken to test

efficacy of adjunct therapies with JAK1/2 inhibitors or neutralizing

OSM antibodies to current best treatments.
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Lévesque et al. 10.3389/fonc.2025.1636570
Glossary

ACC adrenocortical carcinoma
Frontiers in Oncology
AML acute myeloblastic leukemia
BLCA bladder urothelial carcinoma
CESC cervical squamous cell carcinoma and endocervical

adenocarcinoma
CHOL cholangial carcinoma
COAD colon adenocarcinoma
DFS disease-free survival
DLBC diffuse large B-cell lymphoma
ESCA esophageal carcinoma
FLT-3 Fms-like tyrosine-protein kinase-3
GBM glioblastoma multiform
GEPIA Gene expression Profiling and Interactive Analysis
GP130 glycoprotein-130
HNSC head and neck squamous cell carcinoma
HSC hematopoietic stem cell
HSPC hematopoietic stem and progenitor cell
IL interleukin
JAK Janus tyrosine-kinase
KICH kidney chromophobe carcinoma
KIRC kidney renal clear cell carcinoma
KIRP kidney renal papillary cell carcinoma
LAML acute myeloid leukemia
LGG lower grade glioma
LIHC hepatocellular carcinoma
LUAD lung adenocarcinoma
09
LUSC lung squamous cell carcinoma
MESO mesothelioma
MPN myeloproliferative neoplasm
MSC mesenchymal stromal cell
OS overall survival
OSM oncostatin M
OSMR oncostatin M receptor
sOSMR soluble oncostatin M receptor protein
OV ovarian serous cystadenocarcinoma
PAAD pancreatic adenocarcinoma
PCGP pheochromocytoma and paraganglioma
PARD prostate adenocarcinoma
READ rectum adenocarcinoma
SARC sarcoma
SKCM skin cutaneous melanoma
STAD stomach adenocarcinoma
STAT signal transducer and activator of transduction
TCGA The Cancer Genome Atlas
TGCT testicular germ cell tumor
THCA thyroid carcinoma
THYM thymoma
UCEC uterine corpus endometrial carcinoma
UCS uterine carcinosarcoma
UVM uveal melanoma
VHL von Hippel Lindau protein
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