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Purpose: This study investigates the impact of the ml1A regulator TRMT6 on
prognosis and the tumor microenvironment in ovarian cancer.

Methods: An analysis of the TCGA database was conducted, supplemented by
validation from clinical specimens (13 paired samples), to systematically evaluate
the expression characteristics of 10 m1A regulators. The prognostic value was
assessed using the Kaplan-Meier Plotter database and Cox regression analysis.
Additionally, immunohistochemistry and the Log-rank test were employed to
validate the impact of TRMT6 on the prognosis and clinicopathological
characteristics of ovarian cancer patients. The ssGSEA algorithm and
CIBERSORT were utilized to analyze the influence of TRMT6 on the tumor
immune microenvironment. We performed single-gene differential analysis of
TRMT6 in the TCGA ovarian cancer database using the DESeq2 package and
constructed a ceRNA network.

Results: Three m1A regulators (TRMT10C, TRMT6, YTHDF1) were significantly
overexpressed in cancer tissues (p < 0.01). Specifically, among these, TRMT6 and
YTHDF1 were significantly associated with lower progression-free survival and
overall survival (OS) (p < 0.01). Notably, TRMT6 emerged as an independent
prognostic factor for predicting poor overall survival (HR = 2.74; 95% Cl, 1.13 -
6.65; P = 0.026). TRMT6 expression had a significant correlation with the
pathological stage. Furthermore, TRMT6 expression exhibited a significant
negative correlation with eleven tumor-infiltrating immune cell types, including
cytotoxic cells (p < 0.01). We also found that in ovarian cancer tissues with high
expression of TRMT6, the enrichment scores of T cells gamma delta (p < 0.01)
and Mast cells activated (p < 0.05) were significantly lower than those in tissues
with low expression. HPSE2 has the most interaction nodes among mRNAs, hsa-
miR-17-5p among miRNAs, and Lnc SNHG14 among IncRNAs in the
ceRNA network.

Conclusion: The findings suggest that the mlA regulator TRMT6 may drive
ovarian cancer progression by promoting immune escape.
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1 Introduction

Ovarian cancer (OC) is one of the three major gynecological
malignancies and the leading cause of death from gynecological
tumors (1, 2). It is estimated that in 2025, there will be
approximately 20,890 new cases of OC and about 12,730 deaths
in the United States (3). In addition to the challenges posed by drug
resistance and the absence of individualized targeted therapies,
moreover, the heterogeneity of ovarian tumors complicates
treatment outcomes. Despite incremental advances in
understanding the molecular mechanisms underlying OC,
significant gaps remain in our knowledge of post-transcriptional
regulation, particularly regarding RNA methylation and its role in
tumor progression. RNA methylation encompasses N6-
methyladenosine (m6A), N1-methyladenosine (mlA), 5-
methylcytosine (m5C), 5-hydroxymethylcytosine (5hmC), and
N7-methylguanosine (m7G) (4-6). m1A is linked to various
cellular functions, and studies have demonstrated that
dysregulation of m1A may be closely associated with tumor
proliferation (7), invasion (8), cellular metabolism (9), and the
tumor microenvironment (TME) (10). An increasing number of
reports suggest that levels of ml1A methylation, m1A-related
regulators, and mlA-associated RNAs may serve as novel
biomarkers for cancer prognosis (11-13). Furthermore, m1A-
related regulators and/or m1A modifications on transcripts could
represent breakthroughs in cancer treatment (14). In summary, a
thorough exploration of the role of m1A regulators in OC is crucial
for the development of new prognostic markers and the
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enhancement of treatment strategies for this disease. Given this,
we investigated the role of TRMT6, an mlA regulator, in OC
prognosis and the tumor immune microenvironment. The study’s
design and findings are shown in Figure 1.

2 Materials and methods
2.1 Data collection

2.1.1 Screening of m1A regulators

Through a review of the published literature, we identified 10
mlA regulators, which include the writers TRMT6, TRMT10C,
TRMT61A, and TRMT61B; the readers YTHDC1, YTHDFI,
YTHDF2, and YTHDF3; and the erasers ALKBH1 and ALKBH3
(15-17).

2.1.2 UCSC XENA

To analyze the expression of ml1A regulators in OC tissues,
RNA sequencing data in TPM format was obtained from The
Cancer Genome Atlas (TCGA) and the Genotype-Tissue
Expression (GTEx) project. This data has been uniformly
processed through the Toil pipeline and is accessible via the
UCSC XENA database (https://xenabrowser.net/datapages/). The
dataset includes 88 normal tissues from GTEx and 427 OC tissues
from TCGA (18). For data processing, a log2(value + 1)
transformation was applied, and no filtering strategy
was implemented.
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FIGURE 1
A schematic diagram of the experiment.
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2.1.3 Kaplan—Meier plotter

We utilized the Kaplan-Meier plotter online database (https://
kmplot.com/analysis/index.php?p=service&cancer=ovar) to
investigate the prognostic value of mlA regulators in OC
patients. The hazard ratio (HR), 95% confidence interval (CI),
and log-rank p-value were clearly presented.

214 TCGA

We downloaded and organized the RNA sequencing (RNAseq)
data from the TCGA-OV project, which was processed through the
STAR pipeline, from the TCGA database (https://portal.gdc.
cancer.gov). We extracted the data in Transcripts Per Million
(TPM) format along with clinical data. The data filtering strategy
involved the removal of normal samples. The data processing
method applied was log2(value + 1). The analysis was conducted
using R (version 4.2.1), with the circlize package (version 0.4.1)
employed for visualization. The processing steps included analyzing
the correlation between pairwise variables in the dataset and
visualizing the correlation results using the circlize package. The
statistical method utilized for this analysis was Spearman
correlation. We employed the Wilcoxon rank sum test (Mann-
Whitney U test) as our statistical method for comparing two
independent groups. R packages: ggplot2[3.4.4], stats[4.2.1], car
[3.1-0].

2.1.5 Tissue collection

Between January 2023 and May 2023, a total of 13 cases of OC
tissues were collected from Hebei General Hospital. This cohort
comprised 3 cases of high-grade serous OC, 3 cases of ovarian
endometrioid adenocarcinoma, 3 cases of ovarian mucinous
adenocarcinoma, and 4 cases of ovarian granulosa cell tumour,
alongside 13 cases of normal ovarian tissues obtained through
surgical resection. The study received approval from the Ethics
Committee of Hebei Provincial People’s Hospital (approval
number: 2023047), and informed consent was secured from all
participating patients. The collected tissue samples were promptly
placed in liquid nitrogen and subsequently transported to a -80°C
freezer for storage in preparation for RNA extraction. Additionally,
from January 2015 to May 2025, 92 cases of OC tissues, which had
been embedded in paraffin post-surgical resection, were utilized for
immunohistochemical experiments. This group included 40 cases of
high-grade serous OC, 1 case of ovarian granulosa cell tumour, 5
cases of ovarian endometrioid adenocarcinoma, 6 cases of ovarian
mucinous adenocarcinoma, 4 cases of ovarian clear cell carcinoma,
and 1 case of low-grade serous OC, along with 35 cases of normal
ovarian tissues. The study was also approved by the Ethics
Committee of Hebei Provincial People’s Hospital (approval
number: 2022124), with informed consent obtained from all
patients involved.

2.2 Real-time quantitative PCR

Total RNA was extracted using TRIzol reagent (Tiangen,
Beijing, China). cDNA was obtained using the FastQuant
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First-Strand cDNA Synthesis Kit (Tiangen, Beijing, China), and
qPCR was performed on a thermal cycler (ABI, USA, 7500) using
the SYBR Green PCR Kit (Tiangen, Beijing, China) to detect gene
expression. The reaction conditions were as follows: 95°C for 15
minutes, 95°C for 10 seconds, 60°C for 20 seconds, and 72°C for 32
seconds, for a total of 40 cycles. B-actin was used as the internal

-AACt

reference. All data were analyzed using the 2 method. Primer

sequences are listed in Table 1.

TABLE 1 Primer sequence for qRT-PCR.

Primer sequence for qRT-PCR

TRMT10C

F: 5-TCAAGCTGCTAGAAACCACTG-3’

R: 5-TCTGTGCAAAGCACCATCTATT-3

TRMT61B

F: 5- TTCGACCTCGGTAGCGGACT-3
R: 5- AGTCCCGTTCGGCAAGATCG-3

TRMT6

F: 5-GGTGCTGAAACGTGAAGATGT-3’

R: 5-CTTGGGCTGTAGACTTCCTCC-3’

TRMT61A

F: 5-GCCTTCGTCCACTCATGTCCAAG-3’

R: 5-CCACTCTGCCGCTCCTCTCC-3

ALKBH3

F: 5-TACCACTGCTAAGAGCCATCTCC-3

R: 5-GACAGGCTGATTTCATACACACC-3’

ALKBH1

F: 5-GCTGAAGCAGGGATCCTGAA-3

R: 5-CGGACTGTCCAAAGCTGAATG-3
YTHDC1

F: 5-ATCTTCCGTTCGTGCTGTCC-3’

R: 5-GGACCATACACCCTTCGCTT-3’
YTHDF1

F: 5-ACCTGTCCAGCTATTACCCG-3

R: 5-TGGTGAGGTATGGAATCGGAG-3’
YTHDE2

F: 5-TAGCCAACTGCGACACATTC-3

R: 5-CACGACCTTGACGTTCCTTT-3
YTHDEF3

F: 5-TGTTGTGGACTATAATGCGTATGC-3’
R: 5-AAGCGAATATGCCGTAATTGGTTA-3
B-actin

F: 5-GGCACCACACCTTCTACAATGAC-3’

R: 5-GGATAGCACAGCCTGGATAGCA-3’
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2.3 Immunohistochemistry

Paraffin sections were prepared for immunohistochemical
staining. Following routine dewaxing and hydration, the sections
were treated with fresh 0.3% methanol-hydrogen peroxide for
blocking. Antigen retrieval was conducted using citrate buffer,
and the sections were incubated overnight at 4°C with TRMT6-
specific antibodies. After washing with PBS, the sections were
incubated with the corresponding secondary antibodies at 37°C
for 15 minutes. Following DAB development, the sections were
counterstained, dehydrated, cleared, and mounted. Five random
fields of view were selected from each section and observed under
an OLYMPUS BX41TF (Japan) optical microscope at x400
magnification. Three researchers, blinded to the clinical features
and outcomes, independently examined and scored the sections.
The expression of TRMT6 was quantified by multiplying the
average staining intensity (ranging from 0 to 3: 0 indicates no
staining; 1 indicates mild staining; 2 indicates moderate staining; 3
indicates intense staining) by the percentage of positive staining
(ranging from 0 to 4: 0 indicates 0%; 1 indicates 0%-25%; 2 indicates
26%-50%; 3 indicates 51%-75%; 4 indicates 76%-100%). The final
score was derived from the average of the scores calculated by the
three researchers, with a score greater than 6 considered positive.

2.4 Survival curve analysis

We employed the COX regression analysis and Log-rank test to
examine the correlation between TRMT6 expression and the
prognosis in OC. When the variables do not satisfy the
proportional hazards assumption, the Log-rank test is selected;
otherwise, the COX regression analysis is used.

2.5 Pathological characteristics analysis

We examined the correlation between TRMT6 expression and
pathological characteristics such as pathological staging, grading,
lymph node metastasis, Omental metastasis, the levels of CA125
and HE4 in the blood by Fisher test or T-test.

2.6 Correlation analysis between TRMT6
expression and tumor-infiltrating immune
cells

Download and organize RNAseq data from the STAR pipeline
of the TCGA-OV (Ovarian Serous Cystadenocarcinoma) project
from the TCGA database, and extract data in TPM format as well as
clinical data. Based on the ssGSEA algorithm provided in the R
package GSVA [1.46.0] (19), the immune infiltration of the
corresponding cloud data was calculated using the markers of 24
immune cells provided in Bindea G’s article (20). Based on the core
algorithm of CIBERSORT (analyzed by the CIBERSORT.R script),
the markers of 22 immune cells provided by the CIBERSORTx
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website (https://cibersortx.stanford.edu/) were utilized to calculate
the immune infiltration of the uploaded data (21, 22).

2.7 Differential gene expression analysis

We used the DESeq2 package to find differentially expressed
genes linked to high versus low TRMT6 expression in the TCGA
ovarian cancer database, with these cutoffs: FDR < 0.05 and |logFC|
>2.5.

2.8 Construction of the ceRNA network

To better explore the regulatory mechanism of TRMT6 in
ovarian cancer, we focused on TRMT6 as a key gene and
performed single-gene differential analysis using the TCGA
ovarian cancer database, which identified eight DEGs (PRLHR,
NKX2-1, ZIC3, DPYSL5, HPSE2, ST8SIA3, VSTM2B, and
BTBD17). Using the miRDB and Starbase online databases, we
found 76 miRNAs and 243 IncRNAs. The ceRNA network was
visualized by using Cytoscape software.

2.9 Statistical methods

Quantitative data processing and analysis were conducted using
Opticon Monitor software (version 3.1). The ACT value was
calculated as the difference between the CT value of the target
gene and the CT value of B-actin. Subsequently, the relative
corrected value, AACT, was computed for all samples, allowing
for the determination of the relative expression level of the
target gene using the formula: Relative quantity of the target gene
= 2AAACT The statistical methods employed in this study are as
follows: For numeric variables, if the data adhere to a normal
distribution and pass the homogeneity of variance test, the T-test is
utilized for comparing two groups. In cases where the data meet the
normal distribution criteria but fail the homogeneity of variance
test, the Welch t-test is applied. Conversely, if the data do not
conform to a normal distribution, the Wilcoxon test is employed for
group comparisons. For categorical variables, when all expected
frequencies exceed 5 and the total sample size is greater than or
equal to 40, the Chi-square test is used for intergroup comparisons.
If the expected frequencies range between 1 and 5, and the total
sample size is at least 40, the continuity corrected Chi-square test
(Yates’ correction) is applied. In instances where expected
frequencies are less than 1 or the total sample size is below 40,
Fisher’s exact test is utilized for intergroup comparison.
Additionally, correlation analysis of immune infiltration was
conducted using Spearman’s rank correlation coefficient.
The analysis was performed using R software (version 4.2.1),
involving the R packages ggplot2 [3.4.4], stats [4.2.1], car [3.1-0],
survival [3.3.1], and survminer [0.4.9]. Additionally, SPSS version
19.0 was utilized for statistical analysis. All statistical tests were two-
tailed, with a significance level set at P < 0.05.
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3 Results

3.1 Expression of 10 m1A regulators in OC
and normal ovarian tissues

Through a comprehensive review of the published literature, we
identified ten m1A genes, namely TRMT10C, TRMT61B, TRMTé6,
TRMT61A, ALKBH3, ALKBHI1, YTHDC1, YTHDF1, YTHDEF2,
and YTHDF3. In the TCGA-GTEx-OV RNAseq TOIL TPM
dataset, we observed that, except for YTHDF3, the remaining
nine mlA regulators exhibited statistically significant differences
in expression between OC tissues and normal tissues. Specifically,
the expression levels of TRMT10C, TRMT61B, TRMT6, YTHDFI,
and YTHDEF2 were significantly higher in OC tissues compared to
normal tissues, whereas the other four regulators showed elevated
expression in normal tissues relative to OC tissues (Figure 2).
Furthermore, quantitative reverse transcription polymerase chain
reaction (QRT-PCR) analysis conducted on 13 OC tissues and 13
normal ovarian tissues confirmed that, apart from YTHDEF3, the
other nine mlA regulators displayed statistically significant
differences in expression levels between OC and normal tissues.
Among these, TRMT10C, TRMT61B, TRMT6, YTHDF1, and
YTHDEF2 exhibited higher expression in OC tissues than in
normal tissues, while the remaining four regulators had higher
expression in normal tissues compared to OC tissues (Figure 3),
corroborating the expression differences observed in the database.

3.2 The impact of m1A regulators’
expression on the prognosis of OC patients

The progression-free survival (PFS) curves derived from the
Kaplan-Meier Plotter database (Figure 4) indicate that high
expression levels of eight m1A regulators are associated with
reduced PFS. These regulators include TRMT10C (HR = 1.25;
95% CI, 1.03-1.51; P = 0.023), TRMT61B (HR = 1.17; 95% ClI,
1.02-1.35; P = 0.027), TRMT6 (HR = 1.43; 95% CI, 1.19-1.73;

10.3389/fonc.2025.1636191

P 0.00018), TRMT61A (HR = 1.54; 95% CI, 1.27-1.87;
P 1.3e-05), ALKBH1 (HR = 1.51; 95% CI, 1.25-1.82; P =
2e-05), YTHDCI1 (HR = 1.28; 95% CI, 1.13-1.46; P = 0.00014),
YTHDF1/FLJ20391 (HR = 1.34; 95% CI, 1.18-1.53; P = 6.2¢-06),
and YTHDF2 (HR = 1.35; 95% CI, 1.19-1.54; P = 4.5e-06). In
contrast, high expression of YTHDF3 (HR = 0.76; 95% CI,
0.61-0.95; P = 0.015) correlates with improved progression-free
survival, with all differences being statistically significant.

Furthermore, the overall survival (OS) curve obtained from the
Kaplan-Meier Plotter database (Figure 5) reveals that high
expression of seven mlA regulators is associated with decreased
OS. These regulators include TRMT10C (HR = 1.47; 95% CI,
1.2-1.8; P = 0.00018), TRMT61B (HR = 1.2; 95% CI, 1.04-1.38;
P = 0.01), TRMT6 (HR = 1.39; 95% CI, 1.14-1.7; P = 0.0014),
TRMT61A (HR = 1.31; 95% CI, 1.07-1.61; P = 0.0083), ALKBH1
(HR = 1.25;95% CI, 1.02-1.53; P = 0.035), YTHDF1/FLJ20391 (HR
=1.23; 95% CI, 1.08-1.41; P = 0.0024), and YTHDF2 (HR = 1.26;
95% CI, 1.1-1.43; P = 0.00062).

3.3 Immunohistochemical validation of
TRMT6 expression in OC tissues and
normal tissues

The immunohistochemical results, as illustrated in Figure 6,
indicated that TRMT6 was positively expressed in 38 of the 57 OC
tissues, whereas only 6 of the 35 normal ovarian tissues exhibited
positive expression, with the remainder being negative. This
difference was statistically significant (P < 0.001).

3.4 The relationship between TRMT6
expression and overall survival in OC
patients

Cox regression analysis indicated that patients exhibiting high
TRMT6 expression in OC tissues had a significantly lower overall
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The differential expressions of 10 m1A regulators between ovarian cancer and normal tissues from the TCGA-GTEX database. “***" means <0.001.
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The differential expressions of 10 m1A regulators in ovarian cancer tissues (n=13) and normal tissues (n=13) collected in our hospital. “*" means
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survival rate compared to those with low TRMT6 expression (HR =
2.74; 95% CI, 1.13-6.65; P = 0.026). The difference was statistically
significant, as illustrated in Figure 7.

3.5 Correlation analysis of TRMT6
expression with clinicopathological
characteristics of OC patients

There was no statistically significant correlation between
TRMT6 expression and various clinicopathological characteristics
in OC patients. These characteristics included pathological stage
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(p=0.022), age (p=0.492), lymphatic invasion (p=0.483), Omental
invasion (p=0.516), primary therapy outcome (p=0.313),
pathological type (p=0.338), and whether the cancer was
unilateral or bilateral (p=0.196), as illustrated in Table 2.

3.6 Correlation analysis between TRMT6
expression and immune cell infiltration
in OC

The expression of TRMT6 exhibits a weak negative correlation
with the infiltration of various immune cell types in TCGA-OV/
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FIGURE 4 FIGURE 5

Progression free survival (PFS) curves of 10 m1A regulators in the Overall survival (OS) curves of 10 m1A regulators in the Kaplan-

Kaplan-Meier Plotter database. Meier Plotter database.

RNAseq/STAR/TPM dataset (Figure 8A), including cytotoxic cells ~ Macrophages (R=-0.171, p=0.00083) and DC cells (R=-0.170,
(R=-0.274, p=5.3e-08), Thl cells (R=-0.273, p=6.3e-08), pDC cells = p=0.00084). Furthermore, we also found that in ovarian cancer
(R=-0.261, p=2.4e-07), CD8T cells (R=-0.237, p=2.8¢-06), NK tissues with high expression of TRMTS6, the enrichment scores of
CD56 bright cells (R=-0.237, p=3e-06), iDC cells (R=-0.223, T cells gamma delta(p<0.01)and Mast cells activated (p<0.05)
p=1.1e-05), NK CD56 dim cells (R=-0.219, p=1.7e-05), were significantly lower than those in tissues with low
Neutrophils (R=-0.205, p=5.7¢-05), T cells (R=-0.204, p=5.8¢-05),  expression (Figure 8B).
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FIGURE 6

Immunohistochemical staining results of TRMT6 expression in ovarian cancer and normal tissues.
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FIGURE 7
Overall survival (OS) curves of TRMT6 in ovarian cancer patients.

3.7 Construction of a competing
endogenous RNA network

In the ceRNA network built from TRMT6-based differential

analysis, HPSE2 has the most nodes among mRNAs, hsa-miR-17-
5p among miRNAs, and Lnc SNHG14 among IncRNAs (Figure 9).
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4 Discussion

OC ranks as the eighth most common and the fifth most lethal
malignant tumor globally. The incidence rate of OC is approximately
3.4%, with a mortality rate of about 4.7%. Each year, over 3 million
women are diagnosed with the disease, and around 152,000 patients
succumb to OC, posing a serious threat to women’s health and survival
(23). In clinical practice, ovarian tumors are typically first detected via
transvaginal ultrasound (TVS). However, TVS has certain limitations in
terms of diagnostic accuracy, and the accuracy of diagnosis urgently
requires improvement and optimization (24). Detecting serum
biomarkers is a convenient, economical, and non-invasive method for
predicting malignant tumors. Investigating the pathogenesis of OC and
identifying more reliable biomarkers for the development of clinical
predictive models can aid in the early detection of the disease and
improve patient prognosis. In recent years, epigenetic research has
garnered widespread attention, with approximately 170 types of RNA
chemical modifications discovered across various RNAs, including both
coding RNAs and non-coding RNAs (ncRNAs) (25-27). Among these
RNA modifications, methylation modifications are the most common
and extensively studied, accounting for over 60% of all RNA chemical
modifications, including N6-methyladenosine (m6A), NI1-
methyladenosine (ml1A), 5-methylcytosine (m5C), and N7-
methylguanosine (m7G) (28, 29). Although research on the functions
of RNA methylation modifications is still in its early stages, an
increasing body of data indicates that dysregulation of RNA
methylation plays a significant role in the development of various
human diseases (30-32). Cancer cells often undergo genetic and/or
epigenetic changes, which may accompany dysfunction of oncogenes or
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TABLE 2 Correlation of the expression levels of TRMT6 with the
clinicopathological characteristics of ovarian cancer patients.

S Score in Score in P
Characteristics | e 65  IHC>6.5  value
n 28 29
Pathological.Stage,
9 - s 0.022
Stage I1I 9 (32.1%) 17 (58.6%)
Stage IV 2 (7.1%) 4 (13.8%)
Stage I 8 (28.6%) 7 (24.1%)
Stage 11 9 (32.1%) 1 (3.4%)
Age, mean * sd 54.571 =+ 10.119 56.621 + 12.123 0.492
Lymphatic invasion,
ymener o 0.483
Yes 10 (35.7%) 13 (44.8%)
No 18 (64.3%) 16 (55.2%)
Omental invasion,
n (%) 0.516
Yes 12 (42.9%) 10 (34.5%)
No 16 (57.1%) 19 (65.5%)
Primary thera
outcorr)'(ne, n (7F3/ 0.513
PD 2 (7.1%) 3 (10.3%)
PR 5 (17.9%) 11 (37.9%)
SD 2 (7.1%) 2 (6.9%)
CR 19 (67.9%) 13 (44.8%)
Pathologic.Type, n (%) 0.338
high-grade serous ovarian 17 (60.7%) 23 (79.3%)
cancer
granulosa cell tumor 1 (3.6%) 0 (0%)
ovarian endometrioid
carcinoma 4 (14.3%) 1 (3.4%)
mucinous ovarian cancer 3 (10.7%) 3 (10.3%)
ovarian clear cell carcinoma 3 (10.7%) 1 (3.4%)
low-grade serous ovarian 0 (0%) 1 (3.4%)
cancer
Unilateral or bilateral,
n (%) 0.196
Bilateral 7 (25%) 12 (41.4%)
Right 12 (42.9%) 13 (44.8%)
Left 9 (32.1%) 4 (13.8%)
cA2S Nt 0.851
Yes 19 (67.9%) 19 (65.5%)
No 9 (32.1%) 10 (34.5%)
(Continued)
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TABLE 2 Continued

Score in P
IHC >6.5 value

Score in
IHC <6.5

Characteristics

HE4, n (%) 0.514

Yes 14 (50%) ‘ 17 (58.6%)

No 14 (50%) ‘ 12 (41.4%)

tumor suppressor genes (33, 34). As a prevalent form of post-
transcriptional modification in epigenetics, RNA methylation plays a
crucial role in the spatiotemporal regulation of gene expression (35, 36).
Among these modifications, N6-methyladenosine (m6A) is the most
extensively studied in the context of cancer (37, 38). Another significant
post-transcriptional modification is N1-methyladenosine (m1A), which
is primarily regulated by three types of enzymes: writers (TRMT6,
TRMT10C, TRMT61A, TRMT61B), readers (YTHDCI1, YTHDFI - 3),
and erasers (ALKBH1, ALKBH3). The investigation of m1A regulators
in tumorigenesis remains in its early stages. Research indicates that
TRMTE6 is upregulated in hepatocellular carcinoma (HCC) tissues, and
it correlates with poorer overall survival and recurrence-free survival
rates (39). Additionally, the eraser ALKBH3 is overexpressed in lung
cancer (LC) (40) and promotes cancer cell proliferation, migration, and
invasion by inducing tRNA-derived small RNAs (41). Recent studies
have revealed the correlation between m1A regulators and the mTOR
and ErbB signaling pathways in gastrointestinal cancer (42). Research
indicates that m1A regulators and methylation modification patterns
significantly influence the evolving immune microenvironment during
the development of OC (10, 43). The m1A-related phenotypes are
associated with immune cell infiltration in the tumor microenvironment
(TME), with distinct m1A patterns identified in immune desert,
immune inflammation, and immune exclusion phenotypes (43).
Furthermore, eight m1A regulators exhibit a positive correlation with
activated mast cells, plasma cells, and M1 macrophages in abdominal
aortic aneurysms. Notably, YITHDF3 has been demonstrated to
promote M1 polarization of macrophages while inhibiting M2
polarization (44). However, the clinical significance of m1A regulators
in OC remains poorly understood.

To address this issue, we utilized bioinformatics analysis to
identify ten mlA regulators that exhibited differential expression
between OC tissues and normal tissues, and were closely associated
with prognosis. Subsequently, we validated the differential expression
of the m1A regulator TRMT6 using qRT-PCR in collected OC tissues
and normal tissues, which aligned with the results of our
bioinformatics analysis. Given the association between TRMT6
overexpression and poor prognosis in OC, we further confirmed its
statistically significant differential expression between OC and
normal tissues through immunohistochemistry experiments. These
experiments revealed that TRMT6 expression has a negative
correlation with prognosis. Our research showed that the
expression levels of TRMT6 correlate with ovarian cancer staging,
but the expression levels of TRMT6 demonstrated no significant
correlation with other clinicopathological features, such as lymph
node metastasis or omental metastasis. This raises the question:
through what mechanism does TRMT6 influence the prognosis of
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OC patients? Considering the current research indicating that m1A
methylation modification significantly impacts the prognosis of OC
and shapes the immune microenvironment, it is reasonable to
explore whether this might be the key to understanding how
TRMT6 affects the prognosis. It is essential to consider that
TRMT6 may affect the prognosis of OC patients by participating in
the regulation of tumor cell immune infiltration. Notably, our
research findings suggest a negative correlation between TRMT6
expression and the infiltration of various tumor immune cells.
Despite the weak correlation, statistical significance supports a
potential association between TRMT6 and immune-infiltrating
cells. The negative correlation (r < 0, p < 0.001) implies that
TRMT6 may exert broad yet subtle regulatory effects on immune-
infiltrating cells within the tumor microenvironment. This weak
correlation may be attributed to several factors. 1. Large sample
size. While a large sample size enhances statistical significance, the
effect size may be diluted. 2. Multi-factorial regulation. The
abundance of immune-infiltrating cells is co-regulated by multiple
genes and pathways, limiting the contribution of a single gene, such
as TRMT6. 3. Indirect effects. TRMT6 may indirectly influence
immune cell infiltration by regulating other molecules, including
RNA-modifying enzymes or immune-related factors. Moreover, the
differences in enrichment scores of T cells gamma delta and Mast
cells activated between the high and low expression groups also
suggested that TRMT6 contributes to poor prognosis in OC patients
by promoting tumor immune escape, rather than through
conventional pathways like facilitating lymph node metastasis.

To delve into the mechanism by which TRMT6 influences the
immune response in ovarian cancer, we conducted differential gene
expression analysis based on the varying expression levels of TRMT6
and constructed a ceRNA network. As the most interconnected mRNA
in the ceRNA network, the latest research showed that HPSE2
influenced tumor progression in multiple ways by facilitating
interactions between tumors and host tissues. It created an ideal
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tumor microenvironment, promoting tumor growth, metastasis, and
chemotherapy resistance (45). Given its multifaceted role in the tumor
microenvironment, HPSE2 regulated these key traits, underscoring the
need for HPSE2-targeted therapies (46). Besides the research on
ovarian cancer, in the comprehensive analysis of the latest gastric
cancer (GC) immune microenvironment-related ceRNA regulatory
axis, researchers discovered that the LINC01133/miR-17-5p/PBLD axis
played a crucial role in the development of GC (47). Researchers have
discovered that the IncRNA SNHGI14/hsa-miR-101-3p/KL/PLK1
regulatory axis plays a modulatory role in the immune
microenvironment of lung adenocarcinoma (48). It is worth
considering that TRMT6 may regulate the tumor immune
microenvironment in ovarian cancer by interacting with HPSE, hsa-
miR-17-5p, and IncRNA SNHG14. However, more in-depth
fundamental experiments are needed to validate this conclusion.

The abnormal expression of the mlA regulator TRMT6 may
influence patient prognosis by exerting indirect or synergistic effects
within the tumor immune microenvironment (49). Pan-cancer
analysis revealed that RNA methylation genes ALYREF, NSUN4,
TRMT6, and YTHDEF1 were associated with immune infiltration in
the tumor microenvironment (49). GSEA and immune correlation
analysis between different clusters suggested that m6A/m5C/ml1A
modification patterns played a significant role in the tumor
microenvironment of gliomas, providing valuable information for
anti-glioma immunotherapy (50). The study by Li et al. showed that
the cluster subgroups and risk models of m6A/m5C/mlA regulatory
genes were associated with poor prognosis and the immune
microenvironment in hepatocellular carcinoma, potentially serving as
a new tool for assessing the prognosis of hepatocellular carcinoma
patients (51). Our study is the first to discover that the m1A regulator
TRMT6 in OC may impact patient prognosis by promoting immune
escape, which also provided a significant reference value for the
immunotherapy of OC. In clinical practice, these study results may
support developing TRMT6 blood-based testing to predict OC
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The ceRNA network. Red diamonds represent mRNA, green rectangles represent miRNA, and purple circles represent LncRNA.

prognosis, and or assess immunotherapy response when combined with
PD-1 testing. The TRMT6 gene worsens ovarian cancer prognosis by
disrupting immune response pathways. Its major clinical implications
are as follows: as a biomarker for prognosis, its expression levels can
identify high-risk patients and guide personalized treatment; as a
therapeutic target, inhibitors could reverse immune suppression,
enhance immunotherapy efficacy, offering new ways to improve
survival. However, the specific mechanisms underlying this influence
require further experimental validation. Additionally, a more in-depth
exploration of TRMT6’s role in OC treatment could contribute to the
enhancement of targeted therapeutic strategies for OC.
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