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Purpose: This study investigates the impact of the m1A regulator TRMT6 on

prognosis and the tumor microenvironment in ovarian cancer.

Methods: An analysis of the TCGA database was conducted, supplemented by

validation from clinical specimens (13 paired samples), to systematically evaluate

the expression characteristics of 10 m1A regulators. The prognostic value was

assessed using the Kaplan-Meier Plotter database and Cox regression analysis.

Additionally, immunohistochemistry and the Log-rank test were employed to

validate the impact of TRMT6 on the prognosis and clinicopathological

characteristics of ovarian cancer patients. The ssGSEA algorithm and

CIBERSORT were utilized to analyze the influence of TRMT6 on the tumor

immune microenvironment. We performed single-gene differential analysis of

TRMT6 in the TCGA ovarian cancer database using the DESeq2 package and

constructed a ceRNA network.

Results: Three m1A regulators (TRMT10C, TRMT6, YTHDF1) were significantly

overexpressed in cancer tissues (p < 0.01). Specifically, among these, TRMT6 and

YTHDF1 were significantly associated with lower progression-free survival and

overall survival (OS) (p < 0.01). Notably, TRMT6 emerged as an independent

prognostic factor for predicting poor overall survival (HR = 2.74; 95% CI, 1.13 -

6.65; P = 0.026). TRMT6 expression had a significant correlation with the

pathological stage. Furthermore, TRMT6 expression exhibited a significant

negative correlation with eleven tumor-infiltrating immune cell types, including

cytotoxic cells (p < 0.01). We also found that in ovarian cancer tissues with high

expression of TRMT6, the enrichment scores of T cells gamma delta (p < 0.01)

and Mast cells activated (p < 0.05) were significantly lower than those in tissues

with low expression. HPSE2 has the most interaction nodes among mRNAs, hsa-

miR-17-5p among miRNAs, and Lnc SNHG14 among lncRNAs in the

ceRNA network.

Conclusion: The findings suggest that the m1A regulator TRMT6 may drive

ovarian cancer progression by promoting immune escape.
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1 Introduction

Ovarian cancer (OC) is one of the three major gynecological

malignancies and the leading cause of death from gynecological

tumors (1, 2). It is estimated that in 2025, there will be

approximately 20,890 new cases of OC and about 12,730 deaths

in the United States (3). In addition to the challenges posed by drug

resistance and the absence of individualized targeted therapies,

moreover, the heterogeneity of ovarian tumors complicates

treatment outcomes. Despite incremental advances in

understanding the molecular mechanisms underlying OC,

significant gaps remain in our knowledge of post-transcriptional

regulation, particularly regarding RNA methylation and its role in

tumor progression. RNA methylation encompasses N6-

methyladenosine (m6A), N1-methyladenosine (m1A), 5-

methylcytosine (m5C), 5-hydroxymethylcytosine (5hmC), and

N7-methylguanosine (m7G) (4–6). m1A is linked to various

cellular functions, and studies have demonstrated that

dysregulation of m1A may be closely associated with tumor

proliferation (7), invasion (8), cellular metabolism (9), and the

tumor microenvironment (TME) (10). An increasing number of

reports suggest that levels of m1A methylation, m1A-related

regulators, and m1A-associated RNAs may serve as novel

biomarkers for cancer prognosis (11–13). Furthermore, m1A-

related regulators and/or m1A modifications on transcripts could

represent breakthroughs in cancer treatment (14). In summary, a

thorough exploration of the role of m1A regulators in OC is crucial

for the development of new prognostic markers and the
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enhancement of treatment strategies for this disease. Given this,

we investigated the role of TRMT6, an m1A regulator, in OC

prognosis and the tumor immune microenvironment. The study’s

design and findings are shown in Figure 1.
2 Materials and methods

2.1 Data collection

2.1.1 Screening of m1A regulators
Through a review of the published literature, we identified 10

m1A regulators, which include the writers TRMT6, TRMT10C,

TRMT61A, and TRMT61B; the readers YTHDC1, YTHDF1,

YTHDF2, and YTHDF3; and the erasers ALKBH1 and ALKBH3

(15–17).

2.1.2 UCSC XENA
To analyze the expression of m1A regulators in OC tissues,

RNA sequencing data in TPM format was obtained from The

Cancer Genome Atlas (TCGA) and the Genotype-Tissue

Expression (GTEx) project. This data has been uniformly

processed through the Toil pipeline and is accessible via the

UCSC XENA database (https://xenabrowser.net/datapages/). The

dataset includes 88 normal tissues from GTEx and 427 OC tissues

from TCGA (18). For data processing, a log2(value + 1)

transformation was applied, and no fi l tering strategy

was implemented.
FIGURE 1

A schematic diagram of the experiment.
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2.1.3 Kaplan–Meier plotter
We utilized the Kaplan-Meier plotter online database (https://

kmplot.com/analysis/index.php?p=service&cancer=ovar) to

investigate the prognostic value of m1A regulators in OC

patients. The hazard ratio (HR), 95% confidence interval (CI),

and log-rank p-value were clearly presented.

2.1.4 TCGA
We downloaded and organized the RNA sequencing (RNAseq)

data from the TCGA-OV project, which was processed through the

STAR pipeline, from the TCGA database (https://portal.gdc.

cancer.gov). We extracted the data in Transcripts Per Million

(TPM) format along with clinical data. The data filtering strategy

involved the removal of normal samples. The data processing

method applied was log2(value + 1). The analysis was conducted

using R (version 4.2.1), with the circlize package (version 0.4.1)

employed for visualization. The processing steps included analyzing

the correlation between pairwise variables in the dataset and

visualizing the correlation results using the circlize package. The

statistical method utilized for this analysis was Spearman

correlation. We employed the Wilcoxon rank sum test (Mann-

Whitney U test) as our statistical method for comparing two

independent groups. R packages: ggplot2[3.4.4], stats[4.2.1], car

[3.1-0].

2.1.5 Tissue collection
Between January 2023 and May 2023, a total of 13 cases of OC

tissues were collected from Hebei General Hospital. This cohort

comprised 3 cases of high-grade serous OC, 3 cases of ovarian

endometrioid adenocarcinoma, 3 cases of ovarian mucinous

adenocarcinoma, and 4 cases of ovarian granulosa cell tumour,

alongside 13 cases of normal ovarian tissues obtained through

surgical resection. The study received approval from the Ethics

Committee of Hebei Provincial People’s Hospital (approval

number: 2023047), and informed consent was secured from all

participating patients. The collected tissue samples were promptly

placed in liquid nitrogen and subsequently transported to a -80°C

freezer for storage in preparation for RNA extraction. Additionally,

from January 2015 to May 2025, 92 cases of OC tissues, which had

been embedded in paraffin post-surgical resection, were utilized for

immunohistochemical experiments. This group included 40 cases of

high-grade serous OC, 1 case of ovarian granulosa cell tumour, 5

cases of ovarian endometrioid adenocarcinoma, 6 cases of ovarian

mucinous adenocarcinoma, 4 cases of ovarian clear cell carcinoma,

and 1 case of low-grade serous OC, along with 35 cases of normal

ovarian tissues. The study was also approved by the Ethics

Committee of Hebei Provincial People’s Hospital (approval

number: 2022124), with informed consent obtained from all

patients involved.
2.2 Real-time quantitative PCR

Total RNA was extracted using TRIzol reagent (Tiangen,

Beijing, China). cDNA was obtained using the FastQuant
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First-Strand cDNA Synthesis Kit (Tiangen, Beijing, China), and

qPCR was performed on a thermal cycler (ABI, USA, 7500) using

the SYBR Green PCR Kit (Tiangen, Beijing, China) to detect gene

expression. The reaction conditions were as follows: 95°C for 15

minutes, 95°C for 10 seconds, 60°C for 20 seconds, and 72°C for 32

seconds, for a total of 40 cycles. b-actin was used as the internal

reference. All data were analyzed using the 2-DDCt method. Primer

sequences are listed in Table 1.
TABLE 1 Primer sequence for qRT-PCR.

Primer sequence for qRT-PCR

TRMT10C

F: 5’-TCAAGCTGCTAGAAACCACTG-3’

R: 5’-TCTGTGCAAAGCACCATCTATT-3’

TRMT61B

F: 5’- TTCGACCTCGGTAGCGGACT-3’
R: 5’- AGTCCCGTTCGGCAAGATCG-3’

TRMT6

F: 5’-GGTGCTGAAACGTGAAGATGT-3’

R: 5’-CTTGGGCTGTAGACTTCCTCC-3’

TRMT61A

F: 5’-GCCTTCGTCCACTCATGTCCAAG-3’

R: 5’-CCACTCTGCCGCTCCTCTCC-3’

ALKBH3

F: 5’-TACCACTGCTAAGAGCCATCTCC-3’

R: 5’-GACAGGCTGATTTCATACACACC-3’

ALKBH1

F: 5’-GCTGAAGCAGGGATCCTGAA-3’

R: 5’-CGGACTGTCCAAAGCTGAATG-3’

YTHDC1

F: 5’-ATCTTCCGTTCGTGCTGTCC-3’

R: 5’-GGACCATACACCCTTCGCTT-3’

YTHDF1

F: 5’-ACCTGTCCAGCTATTACCCG-3’

R: 5’-TGGTGAGGTATGGAATCGGAG-3’

YTHDF2

F: 5’-TAGCCAACTGCGACACATTC-3’

R: 5’-CACGACCTTGACGTTCCTTT-3’

YTHDF3

F: 5’-TGTTGTGGACTATAATGCGTATGC-3’

R: 5’-AAGCGAATATGCCGTAATTGGTTA-3’

b-actin

F: 5’-GGCACCACACCTTCTACAATGAC-3’

R: 5’-GGATAGCACAGCCTGGATAGCA-3’
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2.3 Immunohistochemistry

Paraffin sections were prepared for immunohistochemical

staining. Following routine dewaxing and hydration, the sections

were treated with fresh 0.3% methanol-hydrogen peroxide for

blocking. Antigen retrieval was conducted using citrate buffer,

and the sections were incubated overnight at 4°C with TRMT6-

specific antibodies. After washing with PBS, the sections were

incubated with the corresponding secondary antibodies at 37°C

for 15 minutes. Following DAB development, the sections were

counterstained, dehydrated, cleared, and mounted. Five random

fields of view were selected from each section and observed under

an OLYMPUS BX41TF (Japan) optical microscope at ×400

magnification. Three researchers, blinded to the clinical features

and outcomes, independently examined and scored the sections.

The expression of TRMT6 was quantified by multiplying the

average staining intensity (ranging from 0 to 3: 0 indicates no

staining; 1 indicates mild staining; 2 indicates moderate staining; 3

indicates intense staining) by the percentage of positive staining

(ranging from 0 to 4: 0 indicates 0%; 1 indicates 0%-25%; 2 indicates

26%-50%; 3 indicates 51%-75%; 4 indicates 76%-100%). The final

score was derived from the average of the scores calculated by the

three researchers, with a score greater than 6 considered positive.
2.4 Survival curve analysis

We employed the COX regression analysis and Log-rank test to

examine the correlation between TRMT6 expression and the

prognosis in OC. When the variables do not satisfy the

proportional hazards assumption, the Log-rank test is selected;

otherwise, the COX regression analysis is used.
2.5 Pathological characteristics analysis

We examined the correlation between TRMT6 expression and

pathological characteristics such as pathological staging, grading,

lymph node metastasis, Omental metastasis, the levels of CA125

and HE4 in the blood by Fisher test or T-test.
2.6 Correlation analysis between TRMT6
expression and tumor-infiltrating immune
cells

Download and organize RNAseq data from the STAR pipeline

of the TCGA-OV (Ovarian Serous Cystadenocarcinoma) project

from the TCGA database, and extract data in TPM format as well as

clinical data. Based on the ssGSEA algorithm provided in the R

package GSVA [1.46.0] (19), the immune infiltration of the

corresponding cloud data was calculated using the markers of 24

immune cells provided in Bindea G’s article (20). Based on the core

algorithm of CIBERSORT (analyzed by the CIBERSORT.R script),

the markers of 22 immune cells provided by the CIBERSORTx
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the immune infiltration of the uploaded data (21, 22).
2.7 Differential gene expression analysis

We used the DESeq2 package to find differentially expressed

genes linked to high versus low TRMT6 expression in the TCGA

ovarian cancer database, with these cutoffs: FDR < 0.05 and |logFC|

≥ 2.5.
2.8 Construction of the ceRNA network

To better explore the regulatory mechanism of TRMT6 in

ovarian cancer, we focused on TRMT6 as a key gene and

performed single-gene differential analysis using the TCGA

ovarian cancer database, which identified eight DEGs (PRLHR,

NKX2-1, ZIC3, DPYSL5, HPSE2, ST8SIA3, VSTM2B, and

BTBD17). Using the miRDB and Starbase online databases, we

found 76 miRNAs and 243 lncRNAs. The ceRNA network was

visualized by using Cytoscape software.
2.9 Statistical methods

Quantitative data processing and analysis were conducted using

Opticon Monitor software (version 3.1). The DCT value was

calculated as the difference between the CT value of the target

gene and the CT value of b-actin. Subsequently, the relative

corrected value, DDCT, was computed for all samples, allowing

for the determination of the relative expression level of the

target gene using the formula: Relative quantity of the target gene

= 2^-DDCT. The statistical methods employed in this study are as

follows: For numeric variables, if the data adhere to a normal

distribution and pass the homogeneity of variance test, the T-test is

utilized for comparing two groups. In cases where the data meet the

normal distribution criteria but fail the homogeneity of variance

test, the Welch t-test is applied. Conversely, if the data do not

conform to a normal distribution, the Wilcoxon test is employed for

group comparisons. For categorical variables, when all expected

frequencies exceed 5 and the total sample size is greater than or

equal to 40, the Chi-square test is used for intergroup comparisons.

If the expected frequencies range between 1 and 5, and the total

sample size is at least 40, the continuity corrected Chi-square test

(Yates’ correction) is applied. In instances where expected

frequencies are less than 1 or the total sample size is below 40,

Fisher’s exact test is utilized for intergroup comparison.

Additionally, correlation analysis of immune infiltration was

conducted using Spearman’s rank correlation coefficient.

The analysis was performed using R software (version 4.2.1),

involving the R packages ggplot2 [3.4.4], stats [4.2.1], car [3.1-0],

survival [3.3.1], and survminer [0.4.9]. Additionally, SPSS version

19.0 was utilized for statistical analysis. All statistical tests were two-

tailed, with a significance level set at P < 0.05.
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3 Results

3.1 Expression of 10 m1A regulators in OC
and normal ovarian tissues

Through a comprehensive review of the published literature, we

identified ten m1A genes, namely TRMT10C, TRMT61B, TRMT6,

TRMT61A, ALKBH3, ALKBH1, YTHDC1, YTHDF1, YTHDF2,

and YTHDF3. In the TCGA-GTEx-OV RNAseq TOIL TPM

dataset, we observed that, except for YTHDF3, the remaining

nine m1A regulators exhibited statistically significant differences

in expression between OC tissues and normal tissues. Specifically,

the expression levels of TRMT10C, TRMT61B, TRMT6, YTHDF1,

and YTHDF2 were significantly higher in OC tissues compared to

normal tissues, whereas the other four regulators showed elevated

expression in normal tissues relative to OC tissues (Figure 2).

Furthermore, quantitative reverse transcription polymerase chain

reaction (qRT-PCR) analysis conducted on 13 OC tissues and 13

normal ovarian tissues confirmed that, apart from YTHDF3, the

other nine m1A regulators displayed statistically significant

differences in expression levels between OC and normal tissues.

Among these, TRMT10C, TRMT61B, TRMT6, YTHDF1, and

YTHDF2 exhibited higher expression in OC tissues than in

normal tissues, while the remaining four regulators had higher

expression in normal tissues compared to OC tissues (Figure 3),

corroborating the expression differences observed in the database.
3.2 The impact of m1A regulators’
expression on the prognosis of OC patients

The progression-free survival (PFS) curves derived from the

Kaplan-Meier Plotter database (Figure 4) indicate that high

expression levels of eight m1A regulators are associated with

reduced PFS. These regulators include TRMT10C (HR = 1.25;

95% CI, 1.03-1.51; P = 0.023), TRMT61B (HR = 1.17; 95% CI,

1.02-1.35; P = 0.027), TRMT6 (HR = 1.43; 95% CI, 1.19-1.73;
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P = 0.00018), TRMT61A (HR = 1.54; 95% CI, 1.27-1.87;

P = 1.3e-05), ALKBH1 (HR = 1.51; 95% CI, 1.25-1.82; P =

2e-05), YTHDC1 (HR = 1.28; 95% CI, 1.13-1.46; P = 0.00014),

YTHDF1/FLJ20391 (HR = 1.34; 95% CI, 1.18-1.53; P = 6.2e-06),

and YTHDF2 (HR = 1.35; 95% CI, 1.19-1.54; P = 4.5e-06). In

contrast, high expression of YTHDF3 (HR = 0.76; 95% CI,

0.61-0.95; P = 0.015) correlates with improved progression-free

survival, with all differences being statistically significant.

Furthermore, the overall survival (OS) curve obtained from the

Kaplan-Meier Plotter database (Figure 5) reveals that high

expression of seven m1A regulators is associated with decreased

OS. These regulators include TRMT10C (HR = 1.47; 95% CI,

1.2-1.8; P = 0.00018), TRMT61B (HR = 1.2; 95% CI, 1.04-1.38;

P = 0.01), TRMT6 (HR = 1.39; 95% CI, 1.14-1.7; P = 0.0014),

TRMT61A (HR = 1.31; 95% CI, 1.07-1.61; P = 0.0083), ALKBH1

(HR = 1.25; 95% CI, 1.02-1.53; P = 0.035), YTHDF1/FLJ20391 (HR

= 1.23; 95% CI, 1.08-1.41; P = 0.0024), and YTHDF2 (HR = 1.26;

95% CI, 1.1-1.43; P = 0.00062).
3.3 Immunohistochemical validation of
TRMT6 expression in OC tissues and
normal tissues

The immunohistochemical results, as illustrated in Figure 6,

indicated that TRMT6 was positively expressed in 38 of the 57 OC

tissues, whereas only 6 of the 35 normal ovarian tissues exhibited

positive expression, with the remainder being negative. This

difference was statistically significant (P < 0.001).
3.4 The relationship between TRMT6
expression and overall survival in OC
patients

Cox regression analysis indicated that patients exhibiting high

TRMT6 expression in OC tissues had a significantly lower overall
FIGURE 2

The differential expressions of 10 m1A regulators between ovarian cancer and normal tissues from the TCGA-GTEX database. “***” means <0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1636191
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1636191
survival rate compared to those with low TRMT6 expression (HR =

2.74; 95% CI, 1.13-6.65; P = 0.026). The difference was statistically

significant, as illustrated in Figure 7.
3.5 Correlation analysis of TRMT6
expression with clinicopathological
characteristics of OC patients

There was no statistically significant correlation between

TRMT6 expression and various clinicopathological characteristics

in OC patients. These characteristics included pathological stage
Frontiers in Oncology 06
(p=0.022), age (p=0.492), lymphatic invasion (p=0.483), Omental

invasion (p=0.516), primary therapy outcome (p=0.313),

pathological type (p=0.338), and whether the cancer was

unilateral or bilateral (p=0.196), as illustrated in Table 2.
3.6 Correlation analysis between TRMT6
expression and immune cell infiltration
in OC

The expression of TRMT6 exhibits a weak negative correlation

with the infiltration of various immune cell types in TCGA-OV/
FIGURE 3

The differential expressions of 10 m1A regulators in ovarian cancer tissues (n=13) and normal tissues (n=13) collected in our hospital. “*” means
<0.05, “**” means <0.01, “***” means <0.001.
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RNAseq/STAR/TPM dataset (Figure 8A), including cytotoxic cells

(R=-0.274, p=5.3e-08), Th1 cells (R=-0.273, p=6.3e-08), pDC cells

(R=-0.261, p=2.4e-07), CD8T cells (R=-0.237, p=2.8e-06), NK

CD56 bright cells (R=-0.237, p=3e-06), iDC cells (R=-0.223,

p=1.1e-05), NK CD56 dim cells (R=-0.219, p=1.7e-05),

Neutrophils (R=-0.205, p=5.7e-05), T cells (R=-0.204, p=5.8e-05),
Frontiers in Oncology 07
Macrophages (R=-0.171, p=0.00083) and DC cells (R=-0.170,

p=0.00084). Furthermore, we also found that in ovarian cancer

tissues with high expression of TRMT6, the enrichment scores of

T cells gamma delta(p<0.01)and Mast cells activated (p<0.05)

were significantly lower than those in tissues with low

expression (Figure 8B).
FIGURE 5

Overall survival (OS) curves of 10 m1A regulators in the Kaplan-
Meier Plotter database.
FIGURE 4

Progression free survival (PFS) curves of 10 m1A regulators in the
Kaplan-Meier Plotter database.
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3.7 Construction of a competing
endogenous RNA network

In the ceRNA network built from TRMT6-based differential

analysis, HPSE2 has the most nodes among mRNAs, hsa-miR-17-

5p among miRNAs, and Lnc SNHG14 among lncRNAs (Figure 9).
Frontiers in Oncology 08
4 Discussion

OC ranks as the eighth most common and the fifth most lethal

malignant tumor globally. The incidence rate of OC is approximately

3.4%, with a mortality rate of about 4.7%. Each year, over 3 million

women are diagnosed with the disease, and around 152,000 patients

succumb to OC, posing a serious threat to women’s health and survival

(23). In clinical practice, ovarian tumors are typically first detected via

transvaginal ultrasound (TVS). However, TVS has certain limitations in

terms of diagnostic accuracy, and the accuracy of diagnosis urgently

requires improvement and optimization (24). Detecting serum

biomarkers is a convenient, economical, and non-invasive method for

predicting malignant tumors. Investigating the pathogenesis of OC and

identifying more reliable biomarkers for the development of clinical

predictive models can aid in the early detection of the disease and

improve patient prognosis. In recent years, epigenetic research has

garnered widespread attention, with approximately 170 types of RNA

chemical modifications discovered across various RNAs, including both

coding RNAs and non-coding RNAs (ncRNAs) (25–27). Among these

RNA modifications, methylation modifications are the most common

and extensively studied, accounting for over 60% of all RNA chemical

modifications, including N6-methyladenosine (m6A), N1-

methyladenosine (m1A), 5-methylcytosine (m5C), and N7-

methylguanosine (m7G) (28, 29). Although research on the functions

of RNA methylation modifications is still in its early stages, an

increasing body of data indicates that dysregulation of RNA

methylation plays a significant role in the development of various

human diseases (30–32). Cancer cells often undergo genetic and/or

epigenetic changes, which may accompany dysfunction of oncogenes or
FIGURE 6

Immunohistochemical staining results of TRMT6 expression in ovarian cancer and normal tissues.
FIGURE 7

Overall survival (OS) curves of TRMT6 in ovarian cancer patients.
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tumor suppressor genes (33, 34). As a prevalent form of post-

transcriptional modification in epigenetics, RNA methylation plays a

crucial role in the spatiotemporal regulation of gene expression (35, 36).

Among these modifications, N6-methyladenosine (m6A) is the most

extensively studied in the context of cancer (37, 38). Another significant

post-transcriptional modification is N1-methyladenosine (m1A), which

is primarily regulated by three types of enzymes: writers (TRMT6,

TRMT10C, TRMT61A, TRMT61B), readers (YTHDC1, YTHDF1 - 3),

and erasers (ALKBH1, ALKBH3). The investigation of m1A regulators

in tumorigenesis remains in its early stages. Research indicates that

TRMT6 is upregulated in hepatocellular carcinoma (HCC) tissues, and

it correlates with poorer overall survival and recurrence-free survival

rates (39). Additionally, the eraser ALKBH3 is overexpressed in lung

cancer (LC) (40) and promotes cancer cell proliferation, migration, and

invasion by inducing tRNA-derived small RNAs (41). Recent studies

have revealed the correlation between m1A regulators and the mTOR

and ErbB signaling pathways in gastrointestinal cancer (42). Research

indicates that m1A regulators and methylation modification patterns

significantly influence the evolving immune microenvironment during

the development of OC (10, 43). The m1A-related phenotypes are

associated with immune cell infiltration in the tumormicroenvironment

(TME), with distinct m1A patterns identified in immune desert,

immune inflammation, and immune exclusion phenotypes (43).

Furthermore, eight m1A regulators exhibit a positive correlation with

activated mast cells, plasma cells, and M1 macrophages in abdominal

aortic aneurysms. Notably, YTHDF3 has been demonstrated to

promote M1 polarization of macrophages while inhibiting M2

polarization (44). However, the clinical significance of m1A regulators

in OC remains poorly understood.

To address this issue, we utilized bioinformatics analysis to

identify ten m1A regulators that exhibited differential expression

between OC tissues and normal tissues, and were closely associated

with prognosis. Subsequently, we validated the differential expression

of the m1A regulator TRMT6 using qRT-PCR in collected OC tissues

and normal tissues, which aligned with the results of our

bioinformatics analysis. Given the association between TRMT6

overexpression and poor prognosis in OC, we further confirmed its

statistically significant differential expression between OC and

normal tissues through immunohistochemistry experiments. These

experiments revealed that TRMT6 expression has a negative

correlation with prognosis. Our research showed that the

expression levels of TRMT6 correlate with ovarian cancer staging,

but the expression levels of TRMT6 demonstrated no significant

correlation with other clinicopathological features, such as lymph

node metastasis or omental metastasis. This raises the question:

through what mechanism does TRMT6 influence the prognosis of
TABLE 2 Correlation of the expression levels of TRMT6 with the
clinicopathological characteristics of ovarian cancer patients.

Characteristics
Score in
IHC <6.5

Score in
IHC >6.5

P
value

n 28 29

Pathological.Stage,
n (%)

0.022

Stage III 9 (32.1%) 17 (58.6%)

Stage IV 2 (7.1%) 4 (13.8%)

Stage I 8 (28.6%) 7 (24.1%)

Stage II 9 (32.1%) 1 (3.4%)

Age, mean ± sd 54.571 ± 10.119 56.621 ± 12.123 0.492

Lymphatic invasion,
n (%)

0.483

Yes 10 (35.7%) 13 (44.8%)

No 18 (64.3%) 16 (55.2%)

Omental invasion,
n (%)

0.516

Yes 12 (42.9%) 10 (34.5%)

No 16 (57.1%) 19 (65.5%)

Primary therapy
outcome, n (%)

0.313

PD 2 (7.1%) 3 (10.3%)

PR 5 (17.9%) 11 (37.9%)

SD 2 (7.1%) 2 (6.9%)

CR 19 (67.9%) 13 (44.8%)

Pathologic.Type, n (%) 0.338

high-grade serous ovarian
cancer

17 (60.7%) 23 (79.3%)

granulosa cell tumor 1 (3.6%) 0 (0%)

ovarian endometrioid
carcinoma

4 (14.3%) 1 (3.4%)

mucinous ovarian cancer 3 (10.7%) 3 (10.3%)

ovarian clear cell carcinoma 3 (10.7%) 1 (3.4%)

low-grade serous ovarian
cancer

0 (0%) 1 (3.4%)

Unilateral or bilateral,
n (%)

0.196

Bilateral 7 (25%) 12 (41.4%)

Right 12 (42.9%) 13 (44.8%)

Left 9 (32.1%) 4 (13.8%)

CA125, n (%) 0.851

Yes 19 (67.9%) 19 (65.5%)

No 9 (32.1%) 10 (34.5%)

(Continued)
TABLE 2 Continued

Characteristics
Score in
IHC <6.5

Score in
IHC >6.5

P
value

HE4, n (%) 0.514

Yes 14 (50%) 17 (58.6%)

No 14 (50%) 12 (41.4%)
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OC patients? Considering the current research indicating that m1A

methylation modification significantly impacts the prognosis of OC

and shapes the immune microenvironment, it is reasonable to

explore whether this might be the key to understanding how

TRMT6 affects the prognosis. It is essential to consider that

TRMT6 may affect the prognosis of OC patients by participating in

the regulation of tumor cell immune infiltration. Notably, our

research findings suggest a negative correlation between TRMT6

expression and the infiltration of various tumor immune cells.

Despite the weak correlation, statistical significance supports a

potential association between TRMT6 and immune-infiltrating

cells. The negative correlation (r < 0, p < 0.001) implies that

TRMT6 may exert broad yet subtle regulatory effects on immune-

infiltrating cells within the tumor microenvironment. This weak

correlation may be attributed to several factors. 1. Large sample

size. While a large sample size enhances statistical significance, the

effect size may be diluted. 2. Multi-factorial regulation. The

abundance of immune-infiltrating cells is co-regulated by multiple

genes and pathways, limiting the contribution of a single gene, such

as TRMT6. 3. Indirect effects. TRMT6 may indirectly influence

immune cell infiltration by regulating other molecules, including

RNA-modifying enzymes or immune-related factors. Moreover, the

differences in enrichment scores of T cells gamma delta and Mast

cells activated between the high and low expression groups also

suggested that TRMT6 contributes to poor prognosis in OC patients

by promoting tumor immune escape, rather than through

conventional pathways like facilitating lymph node metastasis.

To delve into the mechanism by which TRMT6 influences the

immune response in ovarian cancer, we conducted differential gene

expression analysis based on the varying expression levels of TRMT6

and constructed a ceRNA network. As the most interconnected mRNA

in the ceRNA network, the latest research showed that HPSE2

influenced tumor progression in multiple ways by facilitating

interactions between tumors and host tissues. It created an ideal
Frontiers in Oncology 10
tumor microenvironment, promoting tumor growth, metastasis, and

chemotherapy resistance (45). Given its multifaceted role in the tumor

microenvironment, HPSE2 regulated these key traits, underscoring the

need for HPSE2-targeted therapies (46). Besides the research on

ovarian cancer, in the comprehensive analysis of the latest gastric

cancer (GC) immune microenvironment-related ceRNA regulatory

axis, researchers discovered that the LINC01133/miR-17-5p/PBLD axis

played a crucial role in the development of GC (47). Researchers have

discovered that the lncRNA SNHG14/hsa-miR-101-3p/KL/PLK1

regulatory axis plays a modulatory role in the immune

microenvironment of lung adenocarcinoma (48). It is worth

considering that TRMT6 may regulate the tumor immune

microenvironment in ovarian cancer by interacting with HPSE, hsa-

miR-17-5p, and lncRNA SNHG14. However, more in-depth

fundamental experiments are needed to validate this conclusion.

The abnormal expression of the m1A regulator TRMT6 may

influence patient prognosis by exerting indirect or synergistic effects

within the tumor immune microenvironment (49). Pan-cancer

analysis revealed that RNA methylation genes ALYREF, NSUN4,

TRMT6, and YTHDF1 were associated with immune infiltration in

the tumor microenvironment (49). GSEA and immune correlation

analysis between different clusters suggested that m6A/m5C/m1A

modification patterns played a significant role in the tumor

microenvironment of gliomas, providing valuable information for

anti-glioma immunotherapy (50). The study by Li et al. showed that

the cluster subgroups and risk models of m6A/m5C/m1A regulatory

genes were associated with poor prognosis and the immune

microenvironment in hepatocellular carcinoma, potentially serving as

a new tool for assessing the prognosis of hepatocellular carcinoma

patients (51). Our study is the first to discover that the m1A regulator

TRMT6 in OC may impact patient prognosis by promoting immune

escape, which also provided a significant reference value for the

immunotherapy of OC. In clinical practice, these study results may

support developing TRMT6 blood-based testing to predict OC
FIGURE 8

Correlation analysis between TRMT6 expression and tumor immune infiltration (A) The lollipop charts (B) The differential results of immune cell
enrichment scores between high and low TRMT6 expression groups in ovarian cancer tissues from the TCGA database. “*” means <0.05, “**” means
<0.01, “***” means <0.001.
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prognosis, and or assess immunotherapy response when combined with

PD-1 testing. The TRMT6 gene worsens ovarian cancer prognosis by

disrupting immune response pathways. Its major clinical implications

are as follows: as a biomarker for prognosis, its expression levels can

identify high-risk patients and guide personalized treatment; as a

therapeutic target, inhibitors could reverse immune suppression,

enhance immunotherapy efficacy, offering new ways to improve

survival. However, the specific mechanisms underlying this influence

require further experimental validation. Additionally, a more in-depth

exploration of TRMT6’s role in OC treatment could contribute to the

enhancement of targeted therapeutic strategies for OC.
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