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Objective: This study aims to develop a noninvasive radiomics model based on
magnetic resonance imaging (MRI) for accurately predicting the longitudinal
extent of hilar cholangiocarcinoma (HCCA), to assist in subsequent surgical
decision making.

Methods: This study retrospectively collected and analyzed data from patients
with HCCA across three medical centers in China. Radiomics quantitative
features were extracted from T2-weighted imaging (T2WI), diffusion-weighted
imaging (DWI), and enhanced T1 high-resolution isotropic volume examination
(e-THRIVE) sequences. L1 regularization was employed to select features, and
three single-sequence radiomics models were developed to predict Bismuth
type IV of HCCA. To improve the predictive accuracy for Bismuth type IV, the
fusion model integrating the three single-sequence models was constructed.
The performance of these models was evaluated comprehensively, and the
optimal radiomics model for predicting longitudinal extent was identified.
Results: A total of 154 patients with HCCA were included in the analysis. The
radiomics models based on T2WI, DWI, and e-THRIVE sequences demonstrated
predictive capabilities, with AUC values in the training set of 0.867, 0.923, and
0.872, respectively, and AUC values in the test set of 0.809, 0.823, and 0.808,
respectively. The fusion model, which combined features from all three
sequences, achieved superior predictive performance, with an AUC of 0.980 in
the training set and 0.907 in the test set. This model demonstrated robust
potential for predicting whether the HCCA was classified as Bismuth type IV.
Conclusion: The multi-sequence MRI-based radiomics model can effectively
predict Bismuth type IV of HCCA, assisting in clinical surgical decision-making,
facilitating RO resection to improve the prognosis of patients with HCCA.

longitudinal extent, MRI, radiomics, Bismuth-Corlette classification, Hilar
cholangiocarcinoma
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1 Introduction

Cholangiocarcinoma is a rare but highly aggressive epithelial
malignancy of the bile ducts and represents the most common
malignancy of the biliary system (1). Over the past few decades, the
global incidence of cholangiocarcinoma has steadily increased (2). Due
to its asymptomatic nature in the early stages or the presence of non-
specific symptoms, such as abdominal pain, weight loss, loss of
appetite, pruritus, and jaundice, diagnosis is often delayed, resulting
in a poor prognosis. Hilar cholangiocarcinoma (HCCA), originating at
the bile duct confluence or the left and right hepatic ducts (3), is the
most common subtype of cholangiocarcinoma, accounting for
approximately 40-60% of all cases (4). Surgical resection remains the
most effective treatment for HCCA (4). However, due to the complex
anatomy of the hilar region and its proximity to vital structures, such as
the arteries, portal vein, and liver parenchyma, HCCA presents
significant challenges in terms of surgical approach, diagnosis, and
prognosis (5). Achieving curative resection is particularly difficult, with
only 30-50% of patients achieving RO resection, and postoperative
survival rates range between 20% and 40% (6). In patients with
unresectable HCCA, palliative surgeries fail to extend postoperative
survival (7). Consequently, accurate preoperative assessment of
resectability is essential for optimizing patient outcomes.

Given the aggressive nature of HCCA, numerous studies have
identified negative surgical margins (RO resection) as the strongest
predictor of long-term survival after surgery (8-10). Patients with
positive margins have significantly worse survival outcomes
compared to those achieving RO resection (9, 11). Accurate
assessment of the extent of HCCA invasion is crucial for surgical
planning and achieving RO resection, as this reduces the risk of
recurrence and metastasis. In this context, preoperative assessment of
the tumor’s longitudinal spread is essential for enabling curative
resection (12). The Bismuth-Corlette classification, which focuses on
the proximal degree of biliary tract involvement, is a highly intuitive
tool for guiding surgical decisions (13). In previous studies, patients
with Bismuth type I- III lesions were typically treated with bile duct
resection or combined hemihepatectomy, depending on the direction
of tumor extension (6, 14, 15). For Bismuth type IV lesions, extended
hemihepatectomy or left/right trisectionectomy is commonly
performed to ensure more complete removal of liver tissue (16-19),
with concurrent total caudate lobectomy potentially achieving RO
resection (20). However, the expanded surgical extent significantly
increases technical complexity, leading to prolonged operative time
and increased blood loss, both of which substantially elevate the risk
of postoperative complications (21). These may include liver failure,
bile leaks, bilomas, intra-abdominal abscesses, and mortality (22, 23).
A study indicated that Bismuth-Corlett type I-III (P = 0.009) was
more likely to obtain RO resection (24). Another research reported
that ten-year OS was higher when comparing: Bismuth-Corlette I-ITI
type tumor (7.7%) versus type IV tumors (2.7%) (25). Moreover,
some cases of unresectable HCCA can be treated with liver
transplantation following neoadjuvant therapy (13, 17).

Currently, MRI is widely recognized as the preferred imaging
technique for staging HCCA in high-volume centers treating bile
duct cancers (26-28). Compared to direct cholangiography, MRI is
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non-invasive and reduces the risk of tumor dissemination through
surgical wounds. Additionally, MRI offers superior soft-tissue
contrast compared to CT and ultrasound, making it crucial for
evaluating bile duct involvement and aiding surgical planning. It is
also more affordable than positron emission tomography (PET).
Studies have shown that delayed periductal enhancement in
dynamic contrast-enhanced MR scans indicates tumor invasion
and improves the accuracy in distinguishing between resectable and
unresectable tumors (29, 30). However, traditional MRI imaging
methods, are reliant on the subjective interpretation of radiologists.
On one side, HCCA is often accompanied by chronic inflammation
or fibrosis of the surrounding bile duct walls, and the MRI signal
characteristics are similar with those of tumor infiltration, making it
difficult to distinguish them during visual assessment. On the other
side, HCCA can infiltrate longitudinally along the submucosa of the
bile duct (with a range of up to 2-3 cm above and below the main
tumor mass). However, plain MRI or enhanced scans cannot clearly
show such microscopic infiltration, and the extent can only be
inferred indirectly from the length of bile duct stricture. This may
lead to delayed judgment on “whether the tumor has invaded the
key branches of the hepatic hilum” and affect the accuracy of typing.
Besides, conventional MRI images assessment of radiologists lack
quantitative analysis and fail to capture important quantitative
features within tumors, such as cellular, physiological, and genetic
heterogeneity (31). Radiomics can mine massive potential features
from medical images, breaking through the limitations of visual
assessment. This data enables quantitative analysis of lesion details,
improving the objectivity and accuracy of diagnosis, typing, and
prognostic evaluation (31, 32). Previous studies have used
ultrasound radiomics to predict the longitudinal invasion (33),
but no study has explored the use of MR Radiomics to predict
the longitudinal invasion of HCCA.

The study aims to utilize MRI radiomics features derived from
different sequences to accurately predict the longitudinal extent of
HCCA. This will help determine the appropriate extent of surgical
resection, guide the selection of the most suitable surgical approach,
and ultimately improve patient prognosis.

2 Materials and methods
2.1 Patients characteristics

This retrospective study was conducted in accordance with the
ethical guidelines set by the Ethics Committee of our hospital
(Approval Number: KY2024115). This research was supported by
the National Natural Science Foundation of China (Project No.
82272077) and Science & Technology Department of Sichuan
Province (Project No. 2024JDRC0045). Informed consent was
waived due to the retrospective, multicenter nature of the study.
The study included patients with confirmed HCCA who underwent
surgical treatment and met the inclusion and exclusion criteria. The
inclusion criteria included: (1) Patients who accepted surgical
resection and pathologically diagnosed with HCCA; (2) Patients
who underwent MRI examination within one month before
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surgery, with complete multi-parametric MR imaging data
available. Patients were excluded for any of the following criteria:
(1) Images with poor quality due to severe artifacts; (2) Lesions too
small (diameter <5 mm) to delineate accurately; and (3) Patients
with significantly incomplete clinical data that could not be
supplemented. All pathological, clinical, and imaging data of the
patients were collected. Patients were recruited from three medical
centers, as summarized in Figure 1.

Bile duct invasion was classified for all patients using the
Bismuth-Corlette classification system (19, 29), The specific types
of classification are shown in Appendix S1. Bismuth type IV was
divided into a group characterized by tumor involvement of
bilateral secondary bile duct confluence or tumor invasion of
hepatic hilum more than 2 cm, which was judged to be
unresectable or required extended resection. Patients with
Bismuth type I- III were classified into the other group.

This study incorporated a comprehensive set of clinical features,
including sex, age, tumor location, Carbohydrate Antigen 19-9 (CA19-
9), Aspartate Aminotransferase (AST), Alanine Aminotransferase
(ALT), Total Bilirubin (TBIL), Direct Bilirubin (DBIL), Gamma-
Glutamyl Transferase (GGT), presence of chronic hepatitis B, and
history of Percutaneous Transhepatic Cholangial Drainage (PTCD).

2.2 MRI acquisition

Preoperative MRI examinations were performed on 1.5T or 3.0T
superconducting whole-body scanners equipped with 16-channel

Center 1
n=219

10.3389/fonc.2025.1632630

abdominal coils. Standardized configurations across participating
centers comprised: Center 1 using a 3.0T Philips Achieva scanner
(Amsterdam, Netherlands), Center 2 utilizing 3.0T Siemens Avanto
system (Erlangen, Germany), and Center 3 operating a 1.5T Siemens
Prisma systems (Erlangen, Germany). Standardized pre-examination
preparations and core acquisition parameters were maintained across
all three centers. The scanning range extended from the top of the
diaphragm to the umbilical level, covering the entire biliary system.
Patients were instructed to fast and refrain from drinking for 4-8
hours prior to the examination. Before scanning, they were trained to
maintain consistent breathing and perform end-expiratory breath-
holds. For patients unable to hold their breath adequately, prospective
respiratory gating techniques were employed to minimize motion
artifacts caused by respiration.

The imaging sequences acquired included, but were not limited to,
transverse T2-weighted imaging (T2WI), transverse diffusion-weighted
imaging (DWI), and transverse enhanced T1 high-resolution isotropic
volume examination (e-THRIVE). Sensitivity encoding (SENSE)
technology was applied during image acquisition to reduce scan time
while preserving image quality. For the e-THRIVE contrast-enhanced
sequence of Center 1, gadobutrol was administered as the contrast
agent at a dose of 0.2 mL/kg and an injection rate of 2/2.5 mL/s. Four-
phase contrast-enhanced scans were performed at 20-30s, 60-70s, 120-
130s, and 180-200s after contrast injection. b = 800/1000 s/mm? images
were used for DWI and Delayed-phase images were used for e-
THRIVE. The parameters are shown in Supplementary Table S1 in
the Supplemental Material, and the specific parameters of enhanced
scanning in each hospital are shown in Supplementary Table S2.

Exclusion standards
(n=253):
(1)Images with poor

Exclusion 1
n=94

quality due to severe
artifacts. (N=172);
(2) Lesions too small

Exclusion 2
n=17

(diameter <5 mm) to

delineate accurately. Exclusion 3

n=22

(N=39);

(3)Patients with
significantly incomplete Center 1
clinical data that could n=86
not be supplemented..
(N=42).

Center 2 Center 3
n=91 n=97
Exclusion 1 Exclusion 1
n=31 n=47
Exclusion 2 Exclusion 2
n=8 n=14
Exclusion 3 Exclusion 3
n=9 n=11
Center 2 Center 3
n=43 n=25
\/ \ A

Final HCCA dataset (n=154)

Whether bilateral secondary bile ducts were involved

l

l

‘ Bismuth type IV

(n=38)

Bismuth type I-II
(n=116)

FIGURE 1
Flow chart of inclusion and exclusion.
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2.3 Radiomics analysis

The radiomics workflow in this study consisted of the following
steps: lesion segmentation, feature extraction, feature selection,
model construction, and model evaluation.

2.3.1 Lesion segmentation

All MR images were retrieved from the Picture Archiving and
Communication Systems (PACS) and exported in DICOM format
for all patients with HCCA, including the preoperative T2WI, DWI,
and e-THRIVE sequences. The images were then imported into the
Deepwise Multimodal Research Platform (version 2.2, https://
keyan.deepwise.com, Beijing Deepwise & League of PHD
Technology Co., Ltd, Beijing, China), hereafter referred to as the
Deepwise Multimodal. HCCA lesions were segmented using an
automatic segmentation model (34) previously published by our
center, followed by calibration by two radiologists (Reader A and
Reader B). For DWT images, segmentation was performed on the
slice with a b-value of 800, while for e-THRIVE images,
segmentation was conducted on delayed-phase images, as they
provide high focal-liver contrast in the hepatobiliary phase (35).
Regions of interest (ROIs) were delineated for all three MRI
sequences for each patient, excluding obvious internal tumor
structures such as visible blood vessels, necrotic or cystic areas,
hemorrhagic regions, and adjacent dilated bile ducts. The ROI was
drawn to keep an approximate distance of 1e2 mm from the tumor
margin with reference to the MRI images. The manual correction of
tumor boundaries was performed through integrated analysis of
multi-sequence MRI features, specifically combining ductal structural
alterations (dilation/stenosis) on T2-SPAIR, hyperintense tumor foci
on DWI indicating restricted diffusion, and ductal enhancement
patterns on e-THRIVE. Definitive indicators of bile duct invasion
included ductal discontinuity or obstruction, non-visualization or
irregular stenosis of distal segmental branches, asymmetric pre-
stenotic dilation, intraductal filling defects, and enhancing irregular
wall thickening (>3 mm) on dynamic contrast-enhanced phases,
while excluding necrotic regions, hemorrhagic foci, and non-
restricted adjacent dilated ducts (19). An example of HCCA in a
patient with Bismuth type IV is shown in Figure 2.

2.3.2 Feature extraction

Radiomics feature extraction in this study was also performed
using the Deepwise Multimodal Research Platform (https://
keyan.deepwise.com). Features were extracted separately for each
imaging sequence—T2WI, DWI, and e-THRIVE—resulting in a
total of 2158 features per sequence. These features were categorized
into the following groups: First Order, Shape, Gray Level Co-
occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM),
Gray Level Run Length Matrix (GLRLM), Gray Level Dependence
Matrix (GLDM), and Neighboring Gray Tone Difference Matrix
(NGTDM). Multiple filter transformations were applied to enhance
texture feature extraction, including: Wavelet, Square, SquareRoot,
Logarithm, Exponential, Gradient, Laplacian of Gaussian (LoG),
LBP-2D, and LBP-3D transforms. For LoG filtering, the parameter
for the kernel size of the LoG transformation is set to “1, 2, 3, 4, 5”.
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All images underwent intensity normalization and isotropic resampling
to a uniform voxel size of 1x 1x 1 mm>. During radiomics feature
extraction, the bin width parameter was fixed at 25 to standardize gray-
level discretization.

To ensure the stability and reproducibility of the ROI
segmentation used in this study, consistency testing was
conducted on the MRI images of 20 randomly selected HCCA
patients across the three sequences. Features with intraclass
correlation coefficients (ICCs) > 0.8 were retained, indicating
good reliability, while those with lower ICC values were excluded
from further analysis.

2.3.3 Feature selection

Since feature dimension reduction may generate new, harder-to-
interpret features, this method was not used in the study. Features with
more than 10% missing values were excluded, while features with
missing values <10% were filled with the average of the remaining
values. The remaining radiomics features were standardized using the
Z-score method to reduce dimensional differences between features.
Given that the number of extracted features far exceeded the sample
size, the machine learning process could become excessively slow and
prone to overfitting. Therefore, it was necessary to perform stringent
selection of high-dimensional and redundant features. Initially,
correlation analysis was conducted among all features, and one
feature from each pair with a linear correlation coefficient greater
than 0.9 was removed. Subsequently, L1 regularization was applied for
feature selection, and 15-20 features were retained for each imaging
sequence based on the total number of cases.

2.3.4 Model construction

Radiomics models were constructed for each imaging sequence
using the selected features. To address limited sample size and class
imbalance, a five-fold cross-validation approach was employed with
strict preservation of the original data distribution in each fold. This
enabled robust hyperparameter optimization based on validation
performance. Three linear machine learning models—Logistic
Regression (LR), Support Vector Machine (SVM), and Linear
SVC—were trained, with the best-performing model on the test
set selected as the final output.

The training and validation scores for the T2WI, DWI, and e-
THRIVE sequence models were compiled into an Excel file and
uploaded to the platform for model fusion. The fusion model
allowed the use of different classifiers, including LR, SVM, Linear
SVC, Decision Tree (DT), and Random Forest (RF). Five-fold cross-
validation was also applied during the training of the fusion model.
The final model was selected based on the highest AUC value
achieved on the test set.

2.3.5 Model analysis and evaluation

Receiver operating characteristic (ROC) curves were plotted for
each model, and the area under the curve (AUC), accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative predictive
value (NPV) were calculated to quantify the predictive performance of
each model in the training, validation, and test cohorts. A model was
considered strong if the AUC was > 0.9, moderate if AUC was between
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FIGURE 2

A 56-year-old woman with Bismush type IV HCCA. (A—C) shows the patient's axial T2WI, DWI, and enhanced ROI contoured images, respectively, and (D)
images show the affected areas at the bifurcation of the right hepatic duct and the left hepatic duct (indicated by the yellow arrows and the orange arrows).

0.7 and 0.9, and low if AUC was between 0.5 and 0.7. An AUC value <
0.5 indicated no predictive ability. To further evaluate the performance
of the optimal predictive model, additional analyses were conducted for
both the training and test groups. These included precision-recall (PR)
curves, decision curves, rad score distribution plots, and waterfall plots.
In the PR curve, better performance is indicated by a curve closer to the
upper right corner (both Precision and Recall near 1). In the decision
curve, a higher curve position and a wider threshold coverage range
signify greater clinical value.

2.4 Statistic analysis

SPSS software (IBM version 27.0) was used to analyze the
clinical information and laboratory test results of HCCA patients.

Frontiers in Oncology

For continuous variables, the independent sample t-test or
Wilcoxon rank-sum test was applied. Differences in categorical
variables between groups were compared using the > test. All
statistical tests were two-sided, and P values < 0.05 were considered
statistically significant.

3 Results

3.1 Patient characteristics and univariate
analysis

Table 1 summarizes the clinical characteristics of the patients

included in this study (n = 154). The cohort consisted of 96 males
(62%) and 58 females (38%), with ages ranging from 39 to 85 years
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and a mean age of 63 years. All tumors were confirmed as
adenocarcinomas. Based on the tumor’s involvement of the
confluence of bilateral secondary bile ducts or extension >2 cm
beyond the hepatic hilum, patients were categorized into a Bismuth
type IV (n = 38) and a Bismuth type I-III (n=116). Univariate
analysis of clinical characteristics and laboratory tests showed no
statistically significant differences between the groups (Table 1).

3.2 Inter-observer and intra-observer
consistency in ROI delineation

Through intra-observer and inter-observer consistency analysis,
1,548 features with ICCs > 0.8 were retained from the T2WI
sequence, 1,636 from the DWI sequence, and 1,728 from the e-
THRIVE sequence. These reliable features, demonstrating good
consistency, were subsequently included in the feature selection
and model construction processes.

3.3 Single sequence model construction
and performance

After feature selection, 18 optimal features were retained from the
T2WT and DWTI sequences, and 19 features were retained from the e-
THRIVE sequence. The corresponding SHAP diagram is shown in

TABLE 1 Clinical and imaging characteristic analysis in patients with HCCA.

Factors

Bismuth type I-1ll (n=116)

10.3389/fonc.2025.1632630

Figure 3, SHAP analysis revealed that for the T2WI sequence,
squareroot_glem_Imc2, wavelet-LHH_glszm_GrayLevelNon
UniformityNormalized, and lbp-2D_glrlm_RunVariance were the
most critical features for predicting Bismuth type IV (Figure 3A).
Among these, squareroot_glcm_Imc2 emerged as the most influential
factor, reflecting local texture homogeneity and demonstrating a
negative correlation with Bismuth type IV. In the DWI sequence,
gradient_glszm_LowGrayLevelZoneEmphasis, wavelet-HHL glszm
GrayLevelNonUniformity, and wavelet-LLL_glcm_Idn constituted the
core predictive features (Figure 3B), with the dominant factor
gradient_glszm_LowGrayLevelZoneEmphasis characterizing the
distribution patterns of hypointense areas, also showing a negative
correlation with Bismuth type IV. For the e-THRIVE sequence,
predictive efficacy centered on wavelet-HLH_firstorder_Kurtosis, log-
sigma-2-0-mm-3D_glem_Imc2, and log-sigma-5-0-mm-
3D_firstorder_Mean (Figure 3C), where the primary feature wavelet-
HLH_firstorder_Kurtosis quantified extreme outlier distributions in
delayed-phase enhancement intensity, exhibiting a positive correlation
with Bismuth type IV. And the heatmap of the selected features is
shown in Figure 4. Radiomics models were then constructed for each
sequence, with ROC curves displayed in Figure 5. All three models
demonstrated strong predictive performance for longitudinal extent in
HCCA, with test set AUC values exceeding 0.8. The training set AUC
values were 0.867, 0.923, and 0.872 for the T2WI, DWI, and e-THRIVE
models, respectively, while the test set AUC values were 0.809, 0.823,
and 0.808, respectively.

Bismuth-Corlette classification

Bismuth type IV (h=38)

Age 63 (39-85) 61 (44-76) 0.106
Sex 0.613
male 96 71 25
female 58 45 13
CA19-9 556.479 + 1132.253 339.93 + 339.698 0.414
ALT 143.819 + 131.54 198.803 + 220.486 0.171
AST 116.748 + 91.694 157.487 £ 173.25 0.254
TBIL 150.257 £ 115.785 170.408 + 100.231 0.339
DBIL 112.015 £ 90.188 128.697 + 74.240 0.304
GGT 662.543 + 612.904 642.594 + 621.629 0.864
CHB 0.195
Yes 11 6 5
No 143 110 33
PTCD 0.604
Yes 54 42 12
No 100 74 26

CA19-9, Carbohydrate Antigen 19-9; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; TBIL, Total Bilirubin; DBIL, Direct Bilirubin; GGT, Gamma-Glutamyl Transferase;

CHB, chronic hepatitis B; PTCD, history of Percutaneous Transhepatic Cholangial Drainage.

Age is expressed as mean (min-max), and the remaining continuous variables are expressed as mean + SD.
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FIGURE 3

(A-C) show the SHAP diagram of optimal features of T2WI, DWI, and e-THRIVE, respectively. Each point represents a feature's impact on
predictions. Color gradient (red=high, blue=low) indicates feature value magnitude. Features are sorted by mean |SHAP| (descending). Horizontal
axis: SHAP value quantifies directional influence- positive values increase the probability of predicting Bismuth type IV, while negative values

decrease it.

3.4 Model fusion and performance

Using the scores from the three single-sequence models, a
fusion model was constructed by integrating the T2WI, DWI, and
e-THRIVE sequences. The fusion model demonstrated the best
predictive performance, employing the SVM method, with a test set
AUC value was 0.907(95% CI: 0.855-0.960). This model exhibited
excellent predictive accuracy, with an accuracy of 0.834, sensitivity
of 0.711, and specificity of 0.879. Additionally, fusion models
combining any two sequences showed improved predictive
performance compared to single-sequence models. Detailed
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evaluation metrics for these models are summarized in Table 2,
and the corresponding ROC curves are shown in Figure 6. The PR
curve (Figure 7A) demonstrated the model’s strong predictive
ability for HCCA classified as Bismuth type IV. The decision
curve (Figure 7B) confirmed the clinical value of the fusion
model, showing that its net benefit in predicting Bismuth type IV
was higher than the assumption that patients would develop
Bismuth type I- III. The calibration curve (Figure 7C)
demonstrated good agreement between the model-predicted
probabilities and actual outcomes. Additionally, rad score
distribution (Figure 7D) and waterfall plots (Figures 7E, F)
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FIGURE 4

The heatmap of the selected features of roptimal features.

visually supported the fusion model’s predictive ability for Bismuth
type IV. DeLong’s test revealed no statistically significant differences
among the models.

4 Discussion

HCCA is a highly malignant tumor with complex anatomical
structures and significant surgical challenges. Currently, precise
diagnosis, staging, treatment, and prognostic evaluation for HCCA
are inadequate. Surgical resection is still the only effective treatment.
However, patients with positive surgical margins who do not achieve
RO resection generally have a poor prognosis, prone to recurrence and
reduced overall survival (12). Enhancing preoperative assessment of
longitudinal extent and Bismuth-Corlette classification in HCCA is
crucial for optimizing clinical treatment strategies and improving
patient survival.

In this study, we first selected 18 radiomic features from the T2ZWI
and DWI sequences and 19 features from the e-THRIVE sequence
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through feature selection. Single-sequence models were constructed
using three machine learning algorithms, and the best-performing
models were identified. These optimal prediction scores from the
single-sequence models were then integrated into a fusion model,
which was constructed using five machine learning algorithms. The
modeling process was repeated 100 times to ensure reliability and
satisfactory predictive performance. Among the single-sequence
models, the test set AUC values for the T2WI, DWI, and e-
THRIVE models were 0.809, 0.823, and 0.808, respectively. The
inverse association of gradient_glszm_LowGrayLevelZoneEmphasis
with Bismuth type IV on DWI-SHAP plots (Figure 3B) reveals a
critical pattern: diminished feature values indicate confluent diffusion-
restricted areas, corresponding to high tumor cell density, intracellular
water retention, increased necrotic and viscous components in the
tumor, and narrowed extracellular space. This mirrors the
longitudinal invasive growth characteristic of Bismuth type IV
HCCA along bile ducts. The superior performance of the DWI
model may be attributed to the fact that the DWI sequence takes
advantage of the diffusion characteristics of water molecules in tumor
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The ROC curve of radiomics model for predicting Bismuth type IV of HCCA. (A—C) show the T2WI, DWI, and e-THRIVE sequence models,

respectively.

tissues. In tissues rich in tumor cells, water diffusion is restricted,
resulting in higher signal intensity on DWI and greater contrast,
which helps differentiate abnormal from normal tissues (36, 37). In the
two-sequence fusion models, combining DWI with T2WI or e-
THRIVE consistently improved predictive performance. This
may be due to e-THRIVE providing detailed information on
capillary permeability, enhancing diagnostic accuracy, while the high
contrast of DWI compensates for the relatively lower signal contrast of
the other sequences. The fusion model combining T2WI, DWI, and
e-THRIVE sequences demonstrated the highest predictive ability
for longitudinal extent in HCCA, achieving an AUC of 0.907
(95% CI: 0.855-0.960). These results suggest that MR radiomics
holds significant promise for preoperative assessment of
longitudinal extent in HCCA, helping clinicians select the most
appropriate treatment strategies and reduce recurrence and
improve survival.
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To our knowledge, this study is the first to utilize MR radiomics
to predict bilateral secondary bile duct involvement in HCCA,
integrating features from T2WI, DWI, and e-THRIVE sequences
into a multimodal fusion model. Despite the rarity of HCCA and
the retrospective nature of the study, we have made considerable
efforts to explore and validate this novel diagnostic tool,
representing a key innovation. Enhanced MR imaging provides
valuable insights into bile duct involvement, while radiomics offers
a non-invasive, comprehensive method to evaluate tumors and their
microenvironment, capturing subtle variations missed by
traditional imaging. This approach has great potential for
improving diagnostic and prognostic accuracy (38-40). Several
studies have explored radiomics in cholangiocarcinoma, such as
using a radiomics nomogram to predict early recurrence of
intrahepatic cholangiocarcinoma after hepatectomy (41),
predicting tumor differentiation and lymph node metastasis in
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TABLE 2 Results of model evaluation indexes for predicting Bismuth type IV in HCCA patients.

Models Methods AUC 95% Cls

Train 0.867 [0.809-0.924] 0.701 0.921 0.629 0.449 0.961

T2WI Model LR
Test 0.809 [0.736-0.881] 0.649 0.816 0.595 0.397 0.908
DWI Train 0.923 [0.878-0.968] 0.864 0.632 0.940 0.774 0.886

Model LinearSVC

ode Test 0.823 [0.744-0.901] 0.838 0.605 0.914 0.697 0.876
 THRIVE . Train 0.872 [0.809-0.935] 0.766 0.895 0.724 0.515 0.954
Model Test 0.808 [0.732-0.885] 0.643 0.816 0.586 0.392 0.907
AWt . Train 0.960 [0.931-0.989] 0.890 0.737 0.940 0.800 0.916
DWI Model Test 0.879 [0.817-0.941] 0.812 0.605 0.880 0.622 0.872
Train 0.955 [0.922-0.984]] 0.903 0.790 0.940 0.811 0.932

DWI+e-THRIVEModel LR
Test 0.868 [0.802-0.933] 0.812 0.632 0.871 0.615 0.878
Train 0.941 [0.904-0.977] 0.834 0.868 0.823 0.623 0.951

T2WI+e-THRIVE Model SVM
Test 0.879 [0.820-0.938] 0.812 0.763 0.828 0.592 0.914
Train 0.980 [0.963-0.998] 0.916 0.895 0.922 0.791 0.964

Three Sequences SVM
Fusion Model Test 0.907 [0.855-0.960] 0.834 0711 0.879 0.659 0.903

AUC, Area under the curve; AUC 95% Cls, 95% confidence interval of AUC; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value. The

result retains three decimal places.

extrahepatic cholangiocarcinoma (ECCA) (42), and analyzing
protein expression to guide treatment decisions (43). Recently,
radiomics has also been used to predict microvascular invasion
in HCCA (39) and lymph node metastasis in intrahepatic
cholangiocarcinoma (44). Previous studies have evaluated the
longitudinal extent of bile duct cancer using various imaging
techniques. Okumoto et al (45). assessed four-channel multi-slice
CT images in 18 patients, with correct diagnosis in 77.8% (14/18).
Ryoo et al (46). used multi-row spiral CT, including MPR and

MinIP images, to evaluate the longitudinal extent of bile duct
cancer. The AUC for predicting longitudinal extent was 0.938 and
0.923 for MDCT MPR and MinIP images, respectively, and 0.839
and 0.836 for transverse MDCT MRC images in 27 patients. Hee
et al (47).evaluated bilateral secondary bile duct confluence in 27
patients, with an overall accuracy of 90.7% using MRI combined
with MRCP, and 85.1% using MDCT with direct cholangiography.
Another study assessed the longitudinal extent in 15 patients using
visual evaluation, with delayed-phase enhancement and MRCP
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Fusion model ROC curve for predicting Bismuth type IV of HCCA. (A, B) show the training set and test set of the fusion model, respectively.

Frontiers in Oncology 10

frontiersin.org


https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Quan et al.

10.3389/fonc.2025.1632630

A
Test
c
S -
® |
8 Lo
& !
04 L
02
00
%o 02 o oe s o
Recall
C
Calibration plots (reliability curve)
1.0
0 0.8
o
>
)
123
Bos
o
.
°
So4
=
o
«
<
Y02
""" Perfectly calibrated
0.0 —#— nodel
0.0 0.2 0.4 0.6 0.8 1.0
o 3 scores
=
5 50
<]
S
o —
0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value
E
TRAIN
-
l H|
az
H
w2
s
5 % 3 % % £
Samples
FIGURE 7

Decision Analysis

Train
g -

— None

Net Benefit
<005 000 005 010 015 020 0.25
L

[ T T T
0.6

0.0 0.2 0.4 08 1.0
High Risk Threshold
Cost:Benefit Ratio
train test
1.00 " =
Wilcoxon, p < 2.2e-1§, i Wilcoxon, p = 5.3e-14 , .
g . |®
Y3 . 5.
" L
. v %
075 o . .
. 8 o & label
£os0 : :
g T T .0
" o1
. .
025 . % v
o * N
3 . . ® e
. E". s
0.00 L
0 1 1
label
TEST
-
| mm
£ o |I||||||
B
2
e
13 % ) @ ) Eg
Samples

Indicators for predicting three sequence fusion models in patients with HCCA. (A—C) are the PR curve, decision curve and calibration curve of the
fusion model respectively; (D) is the rad score diagram of the fusion model; (E, F) are the waterfall diagram of the training set and verification set of

the fusion model respectively.

images achieving accuracies of 93.3% and 80% (30), respectively.
Hikaru et al (9) assessed bile duct longitudinal invasion using multi-
row CT, ERCP, intraductal ultrasound, and biopsy, with 83.6%
accuracy in 61 patients. Compared to prior studies, our research
demonstrates significant advancements through a multicenter
cohort of 154 patients—overcoming sample size limitations while
enhancing result reliability. We implemented five-fold cross-
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validation that preserved natural class imbalance (Bismuth type
IV vs. Type I- III), mirroring real-world incidence rates and
strengthening clinical applicability. Critically, whereas traditional
imaging assessments remain operator-dependent, our noninvasive
radiomics model objectively quantified and integrated features from
T2WI, DWI, and e-THRIVE sequences, breaking through the
limitations of visual assessment and achieving superior predictive

frontiersin.org


https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Quan et al.

performance (test set AUC: 0.907, accuracy: 83.4%). The
application of SHAP analysis further elucidated feature
contributions, enhancing interpretability for clinical translation.

This study has several limitations. First, due to the low incidence
of HCCA and the presence of incomplete medical records, the sample
size was relatively small. Second, the dataset from some medical
institutions is limited and still expanding. Future research should aim
to supplement this data and perform external validation. Third, the
retrospective design and the limited number of patients undergoing
surgery with gold-standard pathological diagnosis introduce potential
selection bias. Fourth, the lack of significant predictive clinical
features may be attributed to the small sample size, limiting the
representativeness of selected clinical factors. Fifth, the Bismuth-
Corlette classification does not account for vascular involvement or
lobar atrophy, which we hope to address in future studies to improve
prediction accuracy for vascular and liver involvement.

5 Conclusion

The sequence fusion radiomics model based on MRI images
demonstrates strong predictive ability for longitudinal extent in
HCCA patients, providing valuable support for clinical decision-
making. This model can help determine whether patients require
extended surgical resection, ultimately improving medical efficiency,
reducing costs, and significantly enhancing the prognosis of
HCCA patients.
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