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Objective: This study aims to develop a noninvasive radiomics model based on

magnetic resonance imaging (MRI) for accurately predicting the longitudinal

extent of hilar cholangiocarcinoma (HCCA), to assist in subsequent surgical

decision making.

Methods: This study retrospectively collected and analyzed data from patients

with HCCA across three medical centers in China. Radiomics quantitative

features were extracted from T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), and enhanced T1 high-resolution isotropic volume examination

(e-THRIVE) sequences. L1 regularization was employed to select features, and

three single-sequence radiomics models were developed to predict Bismuth

type IV of HCCA. To improve the predictive accuracy for Bismuth type IV, the

fusion model integrating the three single-sequence models was constructed.

The performance of these models was evaluated comprehensively, and the

optimal radiomics model for predicting longitudinal extent was identified.

Results: A total of 154 patients with HCCA were included in the analysis. The

radiomics models based on T2WI, DWI, and e-THRIVE sequences demonstrated

predictive capabilities, with AUC values in the training set of 0.867, 0.923, and

0.872, respectively, and AUC values in the test set of 0.809, 0.823, and 0.808,

respectively. The fusion model, which combined features from all three

sequences, achieved superior predictive performance, with an AUC of 0.980 in

the training set and 0.907 in the test set. This model demonstrated robust

potential for predicting whether the HCCA was classified as Bismuth type IV.

Conclusion: The multi-sequence MRI-based radiomics model can effectively

predict Bismuth type IV of HCCA, assisting in clinical surgical decision-making,

facilitating R0 resection to improve the prognosis of patients with HCCA.
KEYWORDS

longitudinal extent, MRI, radiomics, Bismuth-Corlette classification, Hilar
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1 Introduction

Cholangiocarcinoma is a rare but highly aggressive epithelial

malignancy of the bile ducts and represents the most common

malignancy of the biliary system (1). Over the past few decades, the

global incidence of cholangiocarcinoma has steadily increased (2). Due

to its asymptomatic nature in the early stages or the presence of non-

specific symptoms, such as abdominal pain, weight loss, loss of

appetite, pruritus, and jaundice, diagnosis is often delayed, resulting

in a poor prognosis. Hilar cholangiocarcinoma (HCCA), originating at

the bile duct confluence or the left and right hepatic ducts (3), is the

most common subtype of cholangiocarcinoma, accounting for

approximately 40-60% of all cases (4). Surgical resection remains the

most effective treatment for HCCA (4). However, due to the complex

anatomy of the hilar region and its proximity to vital structures, such as

the arteries, portal vein, and liver parenchyma, HCCA presents

significant challenges in terms of surgical approach, diagnosis, and

prognosis (5). Achieving curative resection is particularly difficult, with

only 30-50% of patients achieving R0 resection, and postoperative

survival rates range between 20% and 40% (6). In patients with

unresectable HCCA, palliative surgeries fail to extend postoperative

survival (7). Consequently, accurate preoperative assessment of

resectability is essential for optimizing patient outcomes.

Given the aggressive nature of HCCA, numerous studies have

identified negative surgical margins (R0 resection) as the strongest

predictor of long-term survival after surgery (8–10). Patients with

positive margins have significantly worse survival outcomes

compared to those achieving R0 resection (9, 11). Accurate

assessment of the extent of HCCA invasion is crucial for surgical

planning and achieving R0 resection, as this reduces the risk of

recurrence and metastasis. In this context, preoperative assessment of

the tumor’s longitudinal spread is essential for enabling curative

resection (12). The Bismuth-Corlette classification, which focuses on

the proximal degree of biliary tract involvement, is a highly intuitive

tool for guiding surgical decisions (13). In previous studies, patients

with Bismuth type I- III lesions were typically treated with bile duct

resection or combined hemihepatectomy, depending on the direction

of tumor extension (6, 14, 15). For Bismuth type IV lesions, extended

hemihepatectomy or left/right trisectionectomy is commonly

performed to ensure more complete removal of liver tissue (16–19),

with concurrent total caudate lobectomy potentially achieving R0

resection (20). However, the expanded surgical extent significantly

increases technical complexity, leading to prolonged operative time

and increased blood loss, both of which substantially elevate the risk

of postoperative complications (21). These may include liver failure,

bile leaks, bilomas, intra-abdominal abscesses, and mortality (22, 23).

A study indicated that Bismuth-Corlett type I-III (P = 0.009) was

more likely to obtain R0 resection (24). Another research reported

that ten-year OS was higher when comparing: Bismuth-Corlette I-III

type tumor (7.7%) versus type IV tumors (2.7%) (25). Moreover,

some cases of unresectable HCCA can be treated with liver

transplantation following neoadjuvant therapy (13, 17).

Currently, MRI is widely recognized as the preferred imaging

technique for staging HCCA in high-volume centers treating bile

duct cancers (26–28). Compared to direct cholangiography, MRI is
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non-invasive and reduces the risk of tumor dissemination through

surgical wounds. Additionally, MRI offers superior soft-tissue

contrast compared to CT and ultrasound, making it crucial for

evaluating bile duct involvement and aiding surgical planning. It is

also more affordable than positron emission tomography (PET).

Studies have shown that delayed periductal enhancement in

dynamic contrast-enhanced MR scans indicates tumor invasion

and improves the accuracy in distinguishing between resectable and

unresectable tumors (29, 30). However, traditional MRI imaging

methods, are reliant on the subjective interpretation of radiologists.

On one side, HCCA is often accompanied by chronic inflammation

or fibrosis of the surrounding bile duct walls, and the MRI signal

characteristics are similar with those of tumor infiltration, making it

difficult to distinguish them during visual assessment. On the other

side, HCCA can infiltrate longitudinally along the submucosa of the

bile duct (with a range of up to 2–3 cm above and below the main

tumor mass). However, plain MRI or enhanced scans cannot clearly

show such microscopic infiltration, and the extent can only be

inferred indirectly from the length of bile duct stricture. This may

lead to delayed judgment on “whether the tumor has invaded the

key branches of the hepatic hilum” and affect the accuracy of typing.

Besides, conventional MRI images assessment of radiologists lack

quantitative analysis and fail to capture important quantitative

features within tumors, such as cellular, physiological, and genetic

heterogeneity (31). Radiomics can mine massive potential features

from medical images, breaking through the limitations of visual

assessment. This data enables quantitative analysis of lesion details,

improving the objectivity and accuracy of diagnosis, typing, and

prognostic evaluation (31, 32). Previous studies have used

ultrasound radiomics to predict the longitudinal invasion (33),

but no study has explored the use of MR Radiomics to predict

the longitudinal invasion of HCCA.

The study aims to utilize MRI radiomics features derived from

different sequences to accurately predict the longitudinal extent of

HCCA. This will help determine the appropriate extent of surgical

resection, guide the selection of the most suitable surgical approach,

and ultimately improve patient prognosis.
2 Materials and methods

2.1 Patients characteristics

This retrospective study was conducted in accordance with the

ethical guidelines set by the Ethics Committee of our hospital

(Approval Number: KY2024115). This research was supported by

the National Natural Science Foundation of China (Project No.

82272077) and Science & Technology Department of Sichuan

Province (Project No. 2024JDRC0045). Informed consent was

waived due to the retrospective, multicenter nature of the study.

The study included patients with confirmed HCCA who underwent

surgical treatment and met the inclusion and exclusion criteria. The

inclusion criteria included: (1) Patients who accepted surgical

resection and pathologically diagnosed with HCCA; (2) Patients

who underwent MRI examination within one month before
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surgery, with complete multi-parametric MR imaging data

available. Patients were excluded for any of the following criteria:

(1) Images with poor quality due to severe artifacts; (2) Lesions too

small (diameter <5 mm) to delineate accurately; and (3) Patients

with significantly incomplete clinical data that could not be

supplemented. All pathological, clinical, and imaging data of the

patients were collected. Patients were recruited from three medical

centers, as summarized in Figure 1.

Bile duct invasion was classified for all patients using the

Bismuth-Corlette classification system (19, 29), The specific types

of classification are shown in Appendix S1. Bismuth type IV was

divided into a group characterized by tumor involvement of

bilateral secondary bile duct confluence or tumor invasion of

hepatic hilum more than 2 cm, which was judged to be

unresectable or required extended resection. Patients with

Bismuth type I- III were classified into the other group.

This study incorporated a comprehensive set of clinical features,

including sex, age, tumor location, Carbohydrate Antigen 19-9 (CA19-

9), Aspartate Aminotransferase (AST), Alanine Aminotransferase

(ALT), Total Bilirubin (TBIL), Direct Bilirubin (DBIL), Gamma-

Glutamyl Transferase (GGT), presence of chronic hepatitis B, and

history of Percutaneous Transhepatic Cholangial Drainage (PTCD).
2.2 MRI acquisition

Preoperative MRI examinations were performed on 1.5T or 3.0T

superconducting whole-body scanners equipped with 16-channel
Frontiers in Oncology 03
abdominal coils. Standardized configurations across participating

centers comprised: Center 1 using a 3.0T Philips Achieva scanner

(Amsterdam, Netherlands), Center 2 utilizing 3.0T Siemens Avanto

system (Erlangen, Germany), and Center 3 operating a 1.5T Siemens

Prisma systems (Erlangen, Germany). Standardized pre-examination

preparations and core acquisition parameters were maintained across

all three centers. The scanning range extended from the top of the

diaphragm to the umbilical level, covering the entire biliary system.

Patients were instructed to fast and refrain from drinking for 4–8

hours prior to the examination. Before scanning, they were trained to

maintain consistent breathing and perform end-expiratory breath-

holds. For patients unable to hold their breath adequately, prospective

respiratory gating techniques were employed to minimize motion

artifacts caused by respiration.

The imaging sequences acquired included, but were not limited to,

transverse T2-weighted imaging (T2WI), transverse diffusion-weighted

imaging (DWI), and transverse enhanced T1 high-resolution isotropic

volume examination (e-THRIVE). Sensitivity encoding (SENSE)

technology was applied during image acquisition to reduce scan time

while preserving image quality. For the e-THRIVE contrast-enhanced

sequence of Center 1, gadobutrol was administered as the contrast

agent at a dose of 0.2 mL/kg and an injection rate of 2/2.5 mL/s. Four-

phase contrast-enhanced scans were performed at 20-30s, 60-70s, 120-

130s, and 180-200s after contrast injection. b = 800/1000 s/mm2 images

were used for DWI and Delayed-phase images were used for e-

THRIVE. The parameters are shown in Supplementary Table S1 in

the Supplemental Material, and the specific parameters of enhanced

scanning in each hospital are shown in Supplementary Table S2.
FIGURE 1

Flow chart of inclusion and exclusion.
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2.3 Radiomics analysis

The radiomics workflow in this study consisted of the following

steps: lesion segmentation, feature extraction, feature selection,

model construction, and model evaluation.

2.3.1 Lesion segmentation
All MR images were retrieved from the Picture Archiving and

Communication Systems (PACS) and exported in DICOM format

for all patients with HCCA, including the preoperative T2WI, DWI,

and e-THRIVE sequences. The images were then imported into the

Deepwise Multimodal Research Platform (version 2.2, https://

keyan.deepwise.com, Beijing Deepwise & League of PHD

Technology Co., Ltd, Beijing, China), hereafter referred to as the

Deepwise Multimodal. HCCA lesions were segmented using an

automatic segmentation model (34) previously published by our

center, followed by calibration by two radiologists (Reader A and

Reader B). For DWI images, segmentation was performed on the

slice with a b-value of 800, while for e-THRIVE images,

segmentation was conducted on delayed-phase images, as they

provide high focal-liver contrast in the hepatobiliary phase (35).

Regions of interest (ROIs) were delineated for all three MRI

sequences for each patient, excluding obvious internal tumor

structures such as visible blood vessels, necrotic or cystic areas,

hemorrhagic regions, and adjacent dilated bile ducts. The ROI was

drawn to keep an approximate distance of 1e2 mm from the tumor

margin with reference to the MRI images. The manual correction of

tumor boundaries was performed through integrated analysis of

multi-sequence MRI features, specifically combining ductal structural

alterations (dilation/stenosis) on T2-SPAIR, hyperintense tumor foci

on DWI indicating restricted diffusion, and ductal enhancement

patterns on e-THRIVE. Definitive indicators of bile duct invasion

included ductal discontinuity or obstruction, non-visualization or

irregular stenosis of distal segmental branches, asymmetric pre-

stenotic dilation, intraductal filling defects, and enhancing irregular

wall thickening (>3 mm) on dynamic contrast-enhanced phases,

while excluding necrotic regions, hemorrhagic foci, and non-

restricted adjacent dilated ducts (19). An example of HCCA in a

patient with Bismuth type IV is shown in Figure 2.

2.3.2 Feature extraction
Radiomics feature extraction in this study was also performed

using the Deepwise Multimodal Research Platform (https://

keyan.deepwise.com). Features were extracted separately for each

imaging sequence—T2WI, DWI, and e-THRIVE—resulting in a

total of 2158 features per sequence. These features were categorized

into the following groups: First Order, Shape, Gray Level Co-

occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM),

Gray Level Run Length Matrix (GLRLM), Gray Level Dependence

Matrix (GLDM), and Neighboring Gray Tone Difference Matrix

(NGTDM). Multiple filter transformations were applied to enhance

texture feature extraction, including: Wavelet, Square, SquareRoot,

Logarithm, Exponential, Gradient, Laplacian of Gaussian (LoG),

LBP-2D, and LBP-3D transforms. For LoG filtering, the parameter

for the kernel size of the LoG transformation is set to “1, 2, 3, 4, 5”.
Frontiers in Oncology 04
All images underwent intensity normalization and isotropic resampling

to a uniform voxel size of 1× 1× 1 mm3. During radiomics feature

extraction, the bin width parameter was fixed at 25 to standardize gray-

level discretization.

To ensure the stability and reproducibility of the ROI

segmentation used in this study, consistency testing was

conducted on the MRI images of 20 randomly selected HCCA

patients across the three sequences. Features with intraclass

correlation coefficients (ICCs) ≥ 0.8 were retained, indicating

good reliability, while those with lower ICC values were excluded

from further analysis.

2.3.3 Feature selection
Since feature dimension reduction may generate new, harder-to-

interpret features, this method was not used in the study. Features with

more than 10% missing values were excluded, while features with

missing values ≤10% were filled with the average of the remaining

values. The remaining radiomics features were standardized using the

Z-score method to reduce dimensional differences between features.

Given that the number of extracted features far exceeded the sample

size, the machine learning process could become excessively slow and

prone to overfitting. Therefore, it was necessary to perform stringent

selection of high-dimensional and redundant features. Initially,

correlation analysis was conducted among all features, and one

feature from each pair with a linear correlation coefficient greater

than 0.9 was removed. Subsequently, L1 regularization was applied for

feature selection, and 15–20 features were retained for each imaging

sequence based on the total number of cases.

2.3.4 Model construction
Radiomics models were constructed for each imaging sequence

using the selected features. To address limited sample size and class

imbalance, a five-fold cross-validation approach was employed with

strict preservation of the original data distribution in each fold. This

enabled robust hyperparameter optimization based on validation

performance. Three linear machine learning models—Logistic

Regression (LR), Support Vector Machine (SVM), and Linear

SVC—were trained, with the best-performing model on the test

set selected as the final output.

The training and validation scores for the T2WI, DWI, and e-

THRIVE sequence models were compiled into an Excel file and

uploaded to the platform for model fusion. The fusion model

allowed the use of different classifiers, including LR, SVM, Linear

SVC, Decision Tree (DT), and Random Forest (RF). Five-fold cross-

validation was also applied during the training of the fusion model.

The final model was selected based on the highest AUC value

achieved on the test set.

2.3.5 Model analysis and evaluation
Receiver operating characteristic (ROC) curves were plotted for

each model, and the area under the curve (AUC), accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV) were calculated to quantify the predictive performance of

each model in the training, validation, and test cohorts. A model was

considered strong if the AUC was ≥ 0.9, moderate if AUCwas between
frontiersin.org
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0.7 and 0.9, and low if AUC was between 0.5 and 0.7. An AUC value <

0.5 indicated no predictive ability. To further evaluate the performance

of the optimal predictive model, additional analyses were conducted for

both the training and test groups. These included precision-recall (PR)

curves, decision curves, rad score distribution plots, and waterfall plots.

In the PR curve, better performance is indicated by a curve closer to the

upper right corner (both Precision and Recall near 1). In the decision

curve, a higher curve position and a wider threshold coverage range

signify greater clinical value.
2.4 Statistic analysis

SPSS software (IBM version 27.0) was used to analyze the

clinical information and laboratory test results of HCCA patients.
Frontiers in Oncology 05
For continuous variables, the independent sample t-test or

Wilcoxon rank-sum test was applied. Differences in categorical

variables between groups were compared using the c2 test. All

statistical tests were two-sided, and P values < 0.05 were considered

statistically significant.
3 Results

3.1 Patient characteristics and univariate
analysis

Table 1 summarizes the clinical characteristics of the patients

included in this study (n = 154). The cohort consisted of 96 males

(62%) and 58 females (38%), with ages ranging from 39 to 85 years
FIGURE 2

A 56-year-old woman with Bismush type IV HCCA. (A–C) shows the patient’s axial T2WI, DWI, and enhanced ROI contoured images, respectively, and (D)
images show the affected areas at the bifurcation of the right hepatic duct and the left hepatic duct (indicated by the yellow arrows and the orange arrows).
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https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Quan et al. 10.3389/fonc.2025.1632630
and a mean age of 63 years. All tumors were confirmed as

adenocarcinomas. Based on the tumor’s involvement of the

confluence of bilateral secondary bile ducts or extension >2 cm

beyond the hepatic hilum, patients were categorized into a Bismuth

type IV (n = 38) and a Bismuth type I-III (n=116). Univariate

analysis of clinical characteristics and laboratory tests showed no

statistically significant differences between the groups (Table 1).
3.2 Inter-observer and intra-observer
consistency in ROI delineation

Through intra-observer and inter-observer consistency analysis,

1,548 features with ICCs ≥ 0.8 were retained from the T2WI

sequence, 1,636 from the DWI sequence, and 1,728 from the e-

THRIVE sequence. These reliable features, demonstrating good

consistency, were subsequently included in the feature selection

and model construction processes.
3.3 Single sequence model construction
and performance

After feature selection, 18 optimal features were retained from the

T2WI and DWI sequences, and 19 features were retained from the e-

THRIVE sequence. The corresponding SHAP diagram is shown in
Frontiers in Oncology 06
Figure 3, SHAP analysis revealed that for the T2WI sequence,

squareroot_glcm_lmc2, wavelet-LHH_glszm_GrayLevelNon

UniformityNormalized, and lbp-2D_glrlm_RunVariance were the

most critical features for predicting Bismuth type IV (Figure 3A).

Among these, squareroot_glcm_lmc2 emerged as the most influential

factor, reflecting local texture homogeneity and demonstrating a

negative correlation with Bismuth type IV. In the DWI sequence,

gradient_glszm_LowGrayLevelZoneEmphasis, wavelet-HHL_glszm_

GrayLevelNonUniformity, and wavelet-LLL_glcm_Idn constituted the

core predictive features (Figure 3B), with the dominant factor

gradient_glszm_LowGrayLevelZoneEmphasis characterizing the

distribution patterns of hypointense areas, also showing a negative

correlation with Bismuth type IV. For the e-THRIVE sequence,

predictive efficacy centered on wavelet-HLH_firstorder_Kurtosis, log-

sigma-2-0-mm-3D_glcm_Imc2, and log-sigma-5-0-mm-

3D_firstorder_Mean (Figure 3C), where the primary feature wavelet-

HLH_firstorder_Kurtosis quantified extreme outlier distributions in

delayed-phase enhancement intensity, exhibiting a positive correlation

with Bismuth type IV. And the heatmap of the selected features is

shown in Figure 4. Radiomics models were then constructed for each

sequence, with ROC curves displayed in Figure 5. All three models

demonstrated strong predictive performance for longitudinal extent in

HCCA, with test set AUC values exceeding 0.8. The training set AUC

values were 0.867, 0.923, and 0.872 for the T2WI, DWI, and e-THRIVE

models, respectively, while the test set AUC values were 0.809, 0.823,

and 0.808, respectively.
TABLE 1 Clinical and imaging characteristic analysis in patients with HCCA.

Factors n Bismuth-Corlette classification P

Bismuth type I-III (n=116) Bismuth type IV (n=38)

Age 63 (39-85) 61 (44-76) 0.106

Sex 0.613

male 96 71 25

female 58 45 13

CA19-9 556.479 ± 1132.253 339.93 ± 339.698 0.414

ALT 143.819 ± 131.54 198.803 ± 220.486 0.171

AST 116.748 ± 91.694 157.487 ± 173.25 0.254

TBIL 150.257 ± 115.785 170.408 ± 100.231 0.339

DBIL 112.015 ± 90.188 128.697 ± 74.240 0.304

GGT 662.543 ± 612.904 642.594 ± 621.629 0.864

CHB 0.195

Yes 11 6 5

No 143 110 33

PTCD 0.604

Yes 54 42 12

No 100 74 26
CA19-9, Carbohydrate Antigen 19-9; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; TBIL, Total Bilirubin; DBIL, Direct Bilirubin; GGT, Gamma-Glutamyl Transferase;
CHB, chronic hepatitis B; PTCD, history of Percutaneous Transhepatic Cholangial Drainage.
Age is expressed as mean (min-max), and the remaining continuous variables are expressed as mean ± SD.
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3.4 Model fusion and performance

Using the scores from the three single-sequence models, a

fusion model was constructed by integrating the T2WI, DWI, and

e-THRIVE sequences. The fusion model demonstrated the best

predictive performance, employing the SVMmethod, with a test set

AUC value was 0.907(95% CI: 0.855-0.960). This model exhibited

excellent predictive accuracy, with an accuracy of 0.834, sensitivity

of 0.711, and specificity of 0.879. Additionally, fusion models

combining any two sequences showed improved predictive

performance compared to single-sequence models. Detailed
Frontiers in Oncology 07
evaluation metrics for these models are summarized in Table 2,

and the corresponding ROC curves are shown in Figure 6. The PR

curve (Figure 7A) demonstrated the model’s strong predictive

ability for HCCA classified as Bismuth type IV. The decision

curve (Figure 7B) confirmed the clinical value of the fusion

model, showing that its net benefit in predicting Bismuth type IV

was higher than the assumption that patients would develop

Bismuth type I- III. The calibration curve (Figure 7C)

demonstrated good agreement between the model-predicted

probabilities and actual outcomes. Additionally, rad score

distribution (Figure 7D) and waterfall plots (Figures 7E, F)
FIGURE 3

(A–C) show the SHAP diagram of optimal features of T2WI, DWI, and e-THRIVE, respectively. Each point represents a feature’s impact on
predictions. Color gradient (red=high, blue=low) indicates feature value magnitude. Features are sorted by mean |SHAP| (descending). Horizontal
axis: SHAP value quantifies directional influence- positive values increase the probability of predicting Bismuth type IV, while negative values
decrease it.
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visually supported the fusion model’s predictive ability for Bismuth

type IV. DeLong’s test revealed no statistically significant differences

among the models.
4 Discussion

HCCA is a highly malignant tumor with complex anatomical

structures and significant surgical challenges. Currently, precise

diagnosis, staging, treatment, and prognostic evaluation for HCCA

are inadequate. Surgical resection is still the only effective treatment.

However, patients with positive surgical margins who do not achieve

R0 resection generally have a poor prognosis, prone to recurrence and

reduced overall survival (12). Enhancing preoperative assessment of

longitudinal extent and Bismuth-Corlette classification in HCCA is

crucial for optimizing clinical treatment strategies and improving

patient survival.

In this study, we first selected 18 radiomic features from the T2WI

and DWI sequences and 19 features from the e-THRIVE sequence
Frontiers in Oncology 08
through feature selection. Single-sequence models were constructed

using three machine learning algorithms, and the best-performing

models were identified. These optimal prediction scores from the

single-sequence models were then integrated into a fusion model,

which was constructed using five machine learning algorithms. The

modeling process was repeated 100 times to ensure reliability and

satisfactory predictive performance. Among the single-sequence

models, the test set AUC values for the T2WI, DWI, and e-

THRIVE models were 0.809, 0.823, and 0.808, respectively. The

inverse association of gradient_glszm_LowGrayLevelZoneEmphasis

with Bismuth type IV on DWI-SHAP plots (Figure 3B) reveals a

critical pattern: diminished feature values indicate confluent diffusion-

restricted areas, corresponding to high tumor cell density, intracellular

water retention, increased necrotic and viscous components in the

tumor, and narrowed extracellular space. This mirrors the

longitudinal invasive growth characteristic of Bismuth type IV

HCCA along bile ducts. The superior performance of the DWI

model may be attributed to the fact that the DWI sequence takes

advantage of the diffusion characteristics of water molecules in tumor
FIGURE 4

The heatmap of the selected features of roptimal features.
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tissues. In tissues rich in tumor cells, water diffusion is restricted,

resulting in higher signal intensity on DWI and greater contrast,

which helps differentiate abnormal from normal tissues (36, 37). In the

two-sequence fusion models, combining DWI with T2WI or e-

THRIVE consistently improved predictive performance. This

may be due to e-THRIVE providing detailed information on

capillary permeability, enhancing diagnostic accuracy, while the high

contrast of DWI compensates for the relatively lower signal contrast of

the other sequences. The fusion model combining T2WI, DWI, and

e-THRIVE sequences demonstrated the highest predictive ability

for longitudinal extent in HCCA, achieving an AUC of 0.907

(95% CI: 0.855-0.960). These results suggest that MR radiomics

holds significant promise for preoperative assessment of

longitudinal extent in HCCA, helping clinicians select the most

appropriate treatment strategies and reduce recurrence and

improve survival.
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To our knowledge, this study is the first to utilize MR radiomics

to predict bilateral secondary bile duct involvement in HCCA,

integrating features from T2WI, DWI, and e-THRIVE sequences

into a multimodal fusion model. Despite the rarity of HCCA and

the retrospective nature of the study, we have made considerable

efforts to explore and validate this novel diagnostic tool,

representing a key innovation. Enhanced MR imaging provides

valuable insights into bile duct involvement, while radiomics offers

a non-invasive, comprehensive method to evaluate tumors and their

microenvironment, capturing subtle variations missed by

traditional imaging. This approach has great potential for

improving diagnostic and prognostic accuracy (38–40). Several

studies have explored radiomics in cholangiocarcinoma, such as

using a radiomics nomogram to predict early recurrence of

intrahepatic cholangiocarcinoma after hepatectomy (41),

predicting tumor differentiation and lymph node metastasis in
FIGURE 5

The ROC curve of radiomics model for predicting Bismuth type IV of HCCA. (A–C) show the T2WI, DWI, and e-THRIVE sequence models,
respectively.
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extrahepatic cholangiocarcinoma (ECCA) (42), and analyzing

protein expression to guide treatment decisions (43). Recently,

radiomics has also been used to predict microvascular invasion

in HCCA (39) and lymph node metastasis in intrahepatic

cholangiocarcinoma (44). Previous studies have evaluated the

longitudinal extent of bile duct cancer using various imaging

techniques. Okumoto et al (45). assessed four-channel multi-slice

CT images in 18 patients, with correct diagnosis in 77.8% (14/18).

Ryoo et al (46). used multi-row spiral CT, including MPR and
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MinIP images, to evaluate the longitudinal extent of bile duct

cancer. The AUC for predicting longitudinal extent was 0.938 and

0.923 for MDCT MPR and MinIP images, respectively, and 0.839

and 0.836 for transverse MDCT MRC images in 27 patients. Hee

et al (47).evaluated bilateral secondary bile duct confluence in 27

patients, with an overall accuracy of 90.7% using MRI combined

with MRCP, and 85.1% using MDCT with direct cholangiography.

Another study assessed the longitudinal extent in 15 patients using

visual evaluation, with delayed-phase enhancement and MRCP
TABLE 2 Results of model evaluation indexes for predicting Bismuth type IV in HCCA patients.

Models Methods
Data
set

AUC 95% CIs ACC Sen Spe PPV NPV

T2WI Model LR
Train 0.867 [0.809-0.924] 0.701 0.921 0.629 0.449 0.961

Test 0.809 [0.736-0.881] 0.649 0.816 0.595 0.397 0.908

DWI
Model

LinearSVC
Train 0.923 [0.878-0.968] 0.864 0.632 0.940 0.774 0.886

Test 0.823 [0.744-0.901] 0.838 0.605 0.914 0.697 0.876

e-THRIVE
Model

LR
Train 0.872 [0.809-0.935] 0.766 0.895 0.724 0.515 0.954

Test 0.808 [0.732-0.885] 0.643 0.816 0.586 0.392 0.907

T2WI+
DWI Model

LR
Train 0.960 [0.931-0.989] 0.890 0.737 0.940 0.800 0.916

Test 0.879 [0.817-0.941] 0.812 0.605 0.880 0.622 0.872

DWI+e-THRIVEModel LR
Train 0.955 [0.922-0.984]] 0.903 0.790 0.940 0.811 0.932

Test 0.868 [0.802-0.933] 0.812 0.632 0.871 0.615 0.878

T2WI+e-THRIVE Model SVM
Train 0.941 [0.904-0.977] 0.834 0.868 0.823 0.623 0.951

Test 0.879 [0.820-0.938] 0.812 0.763 0.828 0.592 0.914

Three Sequences
Fusion Model

SVM
Train 0.980 [0.963-0.998] 0.916 0.895 0.922 0.791 0.964

Test 0.907 [0.855-0.960] 0.834 0.711 0.879 0.659 0.903
fr
AUC, Area under the curve; AUC 95% CIs, 95% confidence interval of AUC; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value. The
result retains three decimal places.
FIGURE 6

Fusion model ROC curve for predicting Bismuth type IV of HCCA. (A, B) show the training set and test set of the fusion model, respectively.
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images achieving accuracies of 93.3% and 80% (30), respectively.

Hikaru et al (9) assessed bile duct longitudinal invasion using multi-

row CT, ERCP, intraductal ultrasound, and biopsy, with 83.6%

accuracy in 61 patients. Compared to prior studies, our research

demonstrates significant advancements through a multicenter

cohort of 154 patients—overcoming sample size limitations while

enhancing result reliability. We implemented five-fold cross-
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validation that preserved natural class imbalance (Bismuth type

IV vs. Type I- III), mirroring real-world incidence rates and

strengthening clinical applicability. Critically, whereas traditional

imaging assessments remain operator-dependent, our noninvasive

radiomics model objectively quantified and integrated features from

T2WI, DWI, and e-THRIVE sequences, breaking through the

limitations of visual assessment and achieving superior predictive
FIGURE 7

Indicators for predicting three sequence fusion models in patients with HCCA. (A–C) are the PR curve, decision curve and calibration curve of the
fusion model respectively; (D) is the rad score diagram of the fusion model; (E, F) are the waterfall diagram of the training set and verification set of
the fusion model respectively.
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performance (test set AUC: 0.907, accuracy: 83.4%). The

application of SHAP analysis further elucidated feature

contributions, enhancing interpretability for clinical translation.

This study has several limitations. First, due to the low incidence

of HCCA and the presence of incomplete medical records, the sample

size was relatively small. Second, the dataset from some medical

institutions is limited and still expanding. Future research should aim

to supplement this data and perform external validation. Third, the

retrospective design and the limited number of patients undergoing

surgery with gold-standard pathological diagnosis introduce potential

selection bias. Fourth, the lack of significant predictive clinical

features may be attributed to the small sample size, limiting the

representativeness of selected clinical factors. Fifth, the Bismuth-

Corlette classification does not account for vascular involvement or

lobar atrophy, which we hope to address in future studies to improve

prediction accuracy for vascular and liver involvement.
5 Conclusion

The sequence fusion radiomics model based on MRI images

demonstrates strong predictive ability for longitudinal extent in

HCCA patients, providing valuable support for clinical decision-

making. This model can help determine whether patients require

extended surgical resection, ultimately improving medical efficiency,

reducing costs, and significantly enhancing the prognosis of

HCCA patients.
Data availability statement

The data from our institution are currently being used in ongoing

follow-up studies and are not publicly available. Additional data were

obtained from collaborating medical institutions under data-sharing

agreements and are restricted to internal research use only. Requests to

access these datasets should be directed to 552185250@qq.com.
Ethics statement

The studies involving humans were approved by The Ethics

Committee of the Affiliated Hospital of Southwest Medical

University. The studies were conducted in accordance with the

local legislation and institutional requirements. Written informed

consent for participation was not required from the participants or

the participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements. Informed consent

was waived due to the retrospective, multicenter nature of the study.
Author contributions

XQ: Conceptualization, Investigation, Resources, Writing –

original draft, Writing – review & editing, Project administration,

Formal analysis, Validation, Data curation, Methodology,

Visualization. XH: Writing – review & editing, Validation, Data
Frontiers in Oncology 12
curation, Methodology, Visualization, Resources, Conceptualization.

JL: Visualization, Validation, Conceptualization, Methodology,

Writing – review & editing, Formal analysis. XY: Writing – review

& editing, Formal analysis, Methodology, Data curation, Resources. JS:

Data curation, Writing – review & editing, Conceptualization,

Funding acquisition, Validation.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was

supported by the National Natural Science Foundation of China

(Project No. 82272077) and Science & Technology Department of

Sichuan Province (Project No. 2024JDRC0045).
Acknowledgments

The author would like to thank Professor Jian Shu for his

valuable guidance throughout the research. Special thanks are also

extended to Xingqiao Huang and Jiong Liu for their insightful

suggestions and support during the study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1632630/

full#supplementary-material
frontiersin.org

mailto:552185250@qq.com
https://www.frontiersin.org/articles/10.3389/fonc.2025.1632630/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1632630/full#supplementary-material
https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Quan et al. 10.3389/fonc.2025.1632630
References
1. Soares KC, Jarnagin WR. The landmark series: hilar cholangiocarcinoma. Ann
Surg Oncol. (2021) 28:4158–70. doi: 10.1245/s10434-021-09871-6

2. Geers J, Jaekers J, Topal H, Aerts R, Vandoren C, Vanden Boer G, et al. Predictors
of survival after surgery with curative intent for perihilar cholangiocarcinoma. World J
Surg Oncol. (2020) 18. doi: 10.1186/s12957-020-02060-x

3. Surya H, Abdullah M, Nelwan EJ, Syam AF, Prasetya IB, Stefanus B, et al. Current
updates on diagnosis and management of cholangiocarcinoma: from surgery to
targeted therapy. Acta Med Indones. (2023) 55:361–70.

4. Dar FS, Abbas Z, Ahmed I, Atique M, Aujla UI, Azeemuddin M, et al. Naveed,
National guidelines for the diagnosis and treatment of hilar cholangiocarcinoma.
World J Gastroenterol. (2024) 30:1018–42. doi: 10.3748/wjg.v30.i9.1018

5. Dondossola D, Ghidini M, Grossi F, Rossi G, Foschi D. Practical review for
diagnosis and clinical management of perihilar cholangiocarcinoma. World J
Gastroenterol. (2020) 26:3542–61. doi: 10.3748/wjg.v26.i25.3542

6. Yu Z, Zhu J, Jiang H, He C, Xiao Z, Wang J, et al. Surgical resection and
prognostic analysis of 142 cases of hilar cholangiocarcinoma. Indian J Surg. (2018)
80:309–17. doi: 10.1007/s12262-016-1581-z

7. Matsuo K, Rocha FG, Ito K, D’Angelica MI, Allen PJ, Fong Y, et al. The blumgart
preoperative staging system for hilar cholangiocarcinoma: analysis of resectability and
outcomes in 380 patients. J Am Coll Surgeons. (2012) 215:343–55. doi: 10.1016/
j.jamcollsurg.2012.05.025

8. Papoulas M, Lubezky N, Goykhman Y, Kori I, Santo E, Nakache R, et al.
Contemporary surgical approach to hilar cholangiocarcinoma. Isr Med Assoc J.
(2011) 13:99–103.

9. Hayashi H, Shimizu A, Kubota K, Notake T, Masuo H, Yoshizawa T, et al.
Accuracy and limitations of preoperative assessment of longitudinal spread of perihilar
cholangiocarcinoma. Asian J Surg. (2023) 46:4743–8. doi: 10.1016/j.asjsur.2023.03.166

10. Jena SS, Mehta NN, Nundy S. Surgica l management of hi lar
cholangiocarcinoma: Controversies and recommendations. Ann Hepato-Biliary-
Pancreatic Surg. (2023) 27:227–40. doi: 10.14701/ahbps.23-028

11. D’Antuono F, De Luca S, Mainenti PP, Mollica C, Camera L, Galizia G, et al.
Comparison between multidetector CT and high–field 3T MR imaging in diagnostic
and tumour extension evaluation of patients with cholangiocarcinoma. J
Gastrointestinal Cancer. (2019) 51:534–44. doi: 10.1007/s12029-019-00276-z

12. Tamada K, Kanai N, Wada S, Tomiyama T, Ohashi A, Satoh Y, et al. Utility and
limitations of intraductal ultrasonography in distinguishing longitudinal cancer
extension along the bile duct from inflammatory wall thickening. Abdom Imaging.
(2001) 26:623–31. doi: 10.1007/s002610000208

13. Malik AK, Davidson BR, Manas DM. Surgical management, including the role of
transplantation, for intrahepatic and peri-hilar cholangiocarcinoma. Eur J Surg Oncol.
(2025) 51. doi: 10.1016/j.ejso.2024.108248

14. Hu Y-F, Hu H-J, Lv T-R, He Z-Q, Dai Y-S, Li F-Y. Should more aggressive
surgical resection be considered in the treatment for Bismuth types I and II hilar
cholangiocarcinoma? A meta-analysis. Asian J Surg. (2023) 46:4115–23. doi: 10.1016/
j.asjsur.2022.12.043

15. Li B, Li Z, Qiu Z, Qin Y, Gao Q, Ao J, et al. Surgical treatment of hilar
cholangiocarcinoma: retrospective analysis. BJS Open. (2023) 7. doi: 10.1093/bjsopen/
zrad024

16. Luo M, Yang J, Zhang K, Sun J, Lu Z, Wang Z, et al. Current advance in
comprehensive management of hilar cholangiocarcinoma and navigation in surgery: non-
systematic reviews. Int J Surg. (2025) 111:2131–47. doi: 10.1097/JS9.0000000000002206

17. Lauterio A, De Carlis R, Centonze L, Buscemi V, Incarbone N, Vella I, et al.
Current surgical management of peri-hilar and intra-hepatic cholangiocarcinoma.
Cancers. (2021) 13. doi: 10.3390/cancers13153657

18. Shingu Y, Ebata T, Nishio H, Igami T, Shimoyama Y, NaginoM. Clinical value of
additional resection of a margin-positive proximal bile duct in hilar
cholangiocarcinoma. Surgery. (2010) 147:49–56. doi: 10.1016/j.surg.2009.06.030

19. Lee DH, Kim B, Lee ES, Kim HJ, Min JH, Lee JM, et al. Radiologic evaluation and
structured reporting form for extrahepatic bile duct cancer: 2019 consensus
recommendations from the korean society of abdominal radiology. Korean J Radiol.
(2021) 22:41–62. doi: 10.3348/kjr.2019.0803

20. Cheng QB, Yi B, Wang JH, Jiang XQ, Luo XJ, Liu C, et al. Resection with total
caudate lobectomy confers survival benefit in hilar cholangiocarcinoma of Bismuth
type III and IV. Eur J Surg Oncol (EJSO). (2012) 38:1197–203. doi: 10.1016/
j.ejso.2012.08.009

21. Ku D, Tang R, Pang T, Pleass H, Richardson A, Yuen L, et al. Survival outcomes
of hepatic resections in Bismuth-Corlette type IV cholangiocarcinoma. ANZ J Surg.
(2019) 90:1604–14. doi: 10.1007/s12029-019-00276-z

22. Anderson B, Doyle MBM. Surgical considerations of hilar cholangiocarcinoma.
Surg Oncol Clinics North America. (2019) 28:601–17. doi: 10.1016/j.soc.2019.06.003

23. Hemming AW, Reed AI, Fujita S, Foley DP, Howard RJ. Surgical management of
hilar cholangiocarcinoma. Ann Surg. (2005) 241:693–702. doi: 10.1097/
01.sla.0000160701.38945.82
Frontiers in Oncology 13
24. Li XC, Li CX, Zhang H, Cheng F, Zhang F, Pu LY, et al. Surgical treatment and
prognosis analysis of hilar cholangiocarcinoma. Zhonghua Wai Ke Za Zhi. (2024)
62:290–301. doi: 10.3760/cma.j.cn112139-20231221-00296

25. van Keulen A-M, Olthof P, Cescon M, Guglielmi A, Jarnagin W, Nadalin S, et al.
Actual 10-year survival after resection of perihilar cholangiocarcinoma: what
factors preclude a chance for cure? Cancers. (2021) 13(24):6260. doi: 10.3390/
cancers13246260

26. Choi JY, Kim MJ, Lee JM, Kim KW, Lee JY, Han JK, et al. Hilar
cholangiocarcinoma: role of preoperative imaging with sonography, MDCT, MRI,
and direct cholangiography. AJR Am J Roentgenol. (2008) 191:1448–57. doi: 10.2214/
AJR.07.3992

27. Sotoudehmanesh R, Nejati N, Farsinejad M, Kolahdoozan S. Efficacy of
endoscopic ultrasonography in evaluation of undetermined etiology of common bile
duct dilatation on abdominal ultrasonography. Middle East J Digestive Dis. (2016)
8:267–72. doi: 10.15171/mejdd.2016.35

28. Li J, Kuehl H, Grabellus F, MÜller SP, Radunz S, Antoch G, et al. Preoperative
assessment of hilar cholangiocarcinoma by dual-modality PET/CT. J Surg Oncol.
(2008) 98:438–43. doi: 10.1002/jso.21136

29. Ryoo I, Lee JM, Chung YE, Park HS, Kim SH, Han JK, et al. Gadobutrol-
enhanced, three-dimensional, dynamic MR imaging with MR cholangiography for the
preoperative evaluation of bile duct cancer. Invest Radiol. (2010) 45:217–24.
doi: 10.1097/RLI.0b013e3181d2eeb1

30. Masselli G, Manfredi R, Vecchioli A, Gualdi G. MR imaging and MR
cholang iopancrea tography in the preopera t ive eva lua t ion of h i l a r
cholangiocarcinoma: correlation with surgical and pathologic findings. Eur Radiol.
(2008) 18:2213–21. doi: 10.1007/s00330-008-1004-z

31. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol. (2017) 14:749–62. doi: 10.1038/nrclinonc.2017.141

32. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of
radiomics in precision diagnosis and treatment of oncology: opportunities and
challenges. Theranostics. (2019) 9:1303–22. doi: 10.7150/thno.30309

33. Peng Y-T, Zhou C-Y, Lin P, Wen D-Y, Wang X-D, Zhong X-Z, et al.
Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological
characteristics of intrahepatic cholangiocarcinoma. Acad Radiol. (2020) 27:785–97.
doi: 10.1016/j.acra.2019.07.029

34. Yang C, Zhou Q, Li M, Xu L, Zeng Y, Liu J, et al. MRI-based automatic
identification and segmentation of extrahepatic cholangiocarcinoma using deep
learning network. BMC Cancer. (2023) 23. doi: 10.1186/s12885-023-11575-x

35. Joo I, Lee JM, Yoon JH. Imaging diagnosis of intrahepatic and perihilar
cholangiocarcinoma: recent advances and challenges. Radiology. (2018) 288:7–13.
doi: 10.1148/radiol.2018171187

36. De Vuysere S, Vandecaveye V, De Bruecker Y, Carton S, Vermeiren K, Tollens T,
et al. Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis,
staging and follow-up of gastric cancer, in comparison to CT: a pilot study. BMC Med
Imaging. (2021) 21. doi: 10.1186/s12880-021-00550-2

37. Xu CC, Tang YF, Ruan XZ, Huang QL, Sun L, Li J. The value of Gd-BOPTA-
enhanced MRIs and DWI in the diagnosis of intrahepatic mass-forming
cholangiocarcinoma. Neoplasma. (2017) 64:945–53. doi: 10.4149/neo_2017_619

38. Li Q, Che F, Wei Y, Jiang H-Y, Zhang Y, Song B. Role of noninvasive imaging in
the evaluation of intrahepatic cholangiocarcinoma: from diagnosis and prognosis to
treatment response. Expert Rev Gastroenterol Hepatol. (2021) 15:1267–79. doi: 10.1080/
17474124.2021.1974294

39. Gao L, Xiong M, Chen X, Han Z, Yan C, Ye R, et al. Multi-region radiomic analysis
based on multi-sequence MRI can preoperatively predict microvascular invasion in
hepatocellular carcinoma. Front Oncol. (2022) 12. doi: 10.3389/fonc.2022.818681

40. Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. Machine learning-based
Radiomics analysis for differentiation degree and lymphatic node metastasis of
extrahepatic cholangiocarcinoma. BMC Cancer. (2021) 21. doi: 10.1186/s12885-021-
08947-6

41. Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel nomogram for
preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front
Oncol. (2018) 8. doi: 10.3389/fonc.2018.00360

42. Yang C, Huang M, Li S, Chen J, Yang Y, Qin N, et al. Radiomics model of
magnetic resonance imaging for predicting pathological grading and lymph node
metastases of extrahepatic cholangiocarcinoma. Cancer Lett. (2020) 470:1–7.
doi: 10.1016/j.canlet.2019.11.036

43. Singh SR, Sadot E, Simpson AL, Do RKG, Gonen M, Shia J, et al.
Cholangiocarcinoma: correlation between molecular profiling and imaging
phenotypes. PloS One. (2015) 10(7):e0132953. doi: 10.1371/journal.pone.0132953

44. Pan YJ, S.j. Wu Y, Cao ZR, Shan Y, Lin J, Xu PJ. Intra- and peri-tumoral
radiomics based on dynamic contrast enhanced-MRI to identify lymph node metastasis
and prognosis in intrahepatic cholangiocarcinoma. J Magnetic Resonance Imaging.
(2024) 60:2669–80. doi: 10.1002/jmri.29390
frontiersin.org

https://doi.org/10.1245/s10434-021-09871-6
https://doi.org/10.1186/s12957-020-02060-x
https://doi.org/10.3748/wjg.v30.i9.1018
https://doi.org/10.3748/wjg.v26.i25.3542
https://doi.org/10.1007/s12262-016-1581-z
https://doi.org/10.1016/j.jamcollsurg.2012.05.025
https://doi.org/10.1016/j.jamcollsurg.2012.05.025
https://doi.org/10.1016/j.asjsur.2023.03.166
https://doi.org/10.14701/ahbps.23-028
https://doi.org/10.1007/s12029-019-00276-z
https://doi.org/10.1007/s002610000208
https://doi.org/10.1016/j.ejso.2024.108248
https://doi.org/10.1016/j.asjsur.2022.12.043
https://doi.org/10.1016/j.asjsur.2022.12.043
https://doi.org/10.1093/bjsopen/zrad024
https://doi.org/10.1093/bjsopen/zrad024
https://doi.org/10.1097/JS9.0000000000002206
https://doi.org/10.3390/cancers13153657
https://doi.org/10.1016/j.surg.2009.06.030
https://doi.org/10.3348/kjr.2019.0803
https://doi.org/10.1016/j.ejso.2012.08.009
https://doi.org/10.1016/j.ejso.2012.08.009
https://doi.org/10.1007/s12029-019-00276-z
https://doi.org/10.1016/j.soc.2019.06.003
https://doi.org/10.1097/01.sla.0000160701.38945.82
https://doi.org/10.1097/01.sla.0000160701.38945.82
https://doi.org/10.3760/cma.j.cn112139-20231221-00296
https://doi.org/10.3390/cancers13246260
https://doi.org/10.3390/cancers13246260
https://doi.org/10.2214/AJR.07.3992
https://doi.org/10.2214/AJR.07.3992
https://doi.org/10.15171/mejdd.2016.35
https://doi.org/10.1002/jso.21136
https://doi.org/10.1097/RLI.0b013e3181d2eeb1
https://doi.org/10.1007/s00330-008-1004-z
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.7150/thno.30309
https://doi.org/10.1016/j.acra.2019.07.029
https://doi.org/10.1186/s12885-023-11575-x
https://doi.org/10.1148/radiol.2018171187
https://doi.org/10.1186/s12880-021-00550-2
https://doi.org/10.4149/neo_2017_619
https://doi.org/10.1080/17474124.2021.1974294
https://doi.org/10.1080/17474124.2021.1974294
https://doi.org/10.3389/fonc.2022.818681
https://doi.org/10.1186/s12885-021-08947-6
https://doi.org/10.1186/s12885-021-08947-6
https://doi.org/10.3389/fonc.2018.00360
https://doi.org/10.1016/j.canlet.2019.11.036
https://doi.org/10.1371/journal.pone.0132953
https://doi.org/10.1002/jmri.29390
https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Quan et al. 10.3389/fonc.2025.1632630
45. Okumoto T, Sato A, Yamada T, Takase K, Matsuhashi T, Tsuda M, et al. Correct
diagnosis of vascular encasement and longitudinal extension of hilar
cholangiocarcinoma by four-channel multidetector-row computed tomography.
Tohoku J Exp Med. (2009) 217:1–8. doi: 10.1620/tjem.217.1

46. Ryoo I, Lee JM, Park HS, Han JK, Choi BI. Preoperative assessment of
longitudinal extent of bile duct cancers using MDCT with multiplanar
Frontiers in Oncology 14
reconstruction and minimum intensity projections: Comparison with MR
cholangiography. Eur J Radiol. (2012) 81:2020–6. doi: 10.1016/j.ejrad.2011.06.007

47. Park HS, Lee JM, Choi J-Y, Lee MW, Kim HJ, Han JK, et al. Preoperative
evaluation of bile duct cancer: MRI combined with MR cholangiopancreatography
versus MDCT with direct cholangiography. Am J Roentgenology. (2008) 190:396–405.
doi: 10.2214/AJR.07.2310
frontiersin.org

https://doi.org/10.1620/tjem.217.1
https://doi.org/10.1016/j.ejrad.2011.06.007
https://doi.org/10.2214/AJR.07.2310
https://doi.org/10.3389/fonc.2025.1632630
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Preoperative assessment of longitudinal extent in hilar cholangiocarcinoma using noninvasive enhanced MR radiomics: a multicenter study
	1 Introduction
	2 Materials and methods
	2.1 Patients characteristics
	2.2 MRI acquisition
	2.3 Radiomics analysis
	2.3.1 Lesion segmentation
	2.3.2 Feature extraction
	2.3.3 Feature selection
	2.3.4 Model construction
	2.3.5 Model analysis and evaluation

	2.4 Statistic analysis

	3 Results
	3.1 Patient characteristics and univariate analysis
	3.2 Inter-observer and intra-observer consistency in ROI delineation
	3.3 Single sequence model construction and performance
	3.4 Model fusion and performance

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


