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Background: Postoperative complications significantly impact gastric cancer
patients’ recovery and remain a major research focus. This study aimed to
develop a machine learning model utilizing preoperative and intraoperative
data to stratify the risk of early postoperative complications in patients
undergoing radical gastrectomy.

Methods: Clinical data from gastric cancer patients who underwent radical
gastrectomy at Peking Union Medical College Hospital between 2014 and
2024 were retrospectively collected. Using R software, ten machine learning
algorithms—including eXtreme Gradient Boosting, Support Vector Machine,
random forest, Neural Network, naive Bayes, logistic regression, Linear
Discriminant Analysis, K-Nearest Neighbors, Generalized Linear Model with
Elastic-Net Regularization and classification tree—were employed to construct
predictive models for early postoperative complications. Nested cross-validation
was applied for model validation, and performance was evaluated using receiver
operating characteristic curves, decision curve analysis, and calibration curves.
Results: A total of 926 patients were included in this study, comprising 667 males
(72%) and 259 females (28%), with 131 (14.13%) suffering postoperative
complications. Predictive features included smoking, Nutritional Risk Screening
2002 score>3, reconstruction, clinical T-stage>1, operative time, neoadjuvant
chemotherapy combined with immunotherapy or targeted therapy, and
resection site. Among the ten models, eXtreme Gradient Boosting
demonstrated the best predictive performance, achieving an area under the
receiver operating characteristic curve (AUC) of 0.788, along with superior
calibration and decision curve analysis results.

Conclusion: Based on preoperative and intraoperative data, the eXtreme
Gradient Boosting model demonstrated the strongest predictive capability for
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postoperative complications following radical gastrectomy.These findings
underscore the potential of machine learning-based models in stratifying the
risk of early postoperative complications in patients undergoing radical
gastrectomy, thereby enhancing clinical decision-making and improving
patient outcomes in gastric cancer surgery.

gastric cancer, complication, machine learning, predictive model, postoperative outcome

Introduction

Gastric cancer (GC) is a common malignant tumor of the
digestive system, ranking as the fifth most prevalent cancer globally
and the third leading cause of cancer-related mortality (1, 2).
Currently, surgical resection remains the most reliable and
mainstream treatment for GC, with postoperative recovery playing a
critical role in patient prognosis (3-6). Among the factors influencing
patient recovery, short-term postoperative outcomes, particularly the
occurrence of complications, hold significant clinical importance.

Machine learning (ML) has emerged as a cutting-edge tool in
oncological research, offering substantial advantages over traditional
statistical methods in constructing diagnostic and prognostic models
(7, 8). In cancer studies, algorithms such as eXtreme Gradient
Boosting (XGBoost), SVM (Support Vector Machine), random
forest, Neural Network (NNET), naive Bayes, logistic regression,
Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN),
Generalized Linear Model with Elastic-Net Regularization (GLMNet),
and classification trees are widely employed for predictive modeling
(9), with analysis typically conducted using R or Python.

Recent years have seen extensive research on postoperative
complications in gastric cancer (10, 11).Several studies have applied
ML to develop predictive models for such complication (6, 12, 13),
however, many of these excluded patients who underwent neoadjuvant
therapy or included only minimal data from this subgroup. To address
this gap, our study using preoperative as well as intraoperative data
incorporated a substantial cohort of neoadjuvant therapy recipients and
developed ML-based predictive models to stratify the risk of early
postoperative complications in GC. We anticipate that these models will
facilitate clinical decision-making, assist in complication prevention, and
ultimately promote accelerated postoperative recovery.

Materials and method
Patients selection

We retrospectively collected data from patients who underwent
radical gastrectomy for GC at Peking Union Medical College Hospital

between 2014 and 2024. Inclusion criteria were:(1) undergoing
radical gastrectomy; (2) histopathological confirmation of gastric
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adenocarcinoma; (3) surgery performed by experienced
gastrointestinal surgeons. Exclusion criteria included: (1) Age <18
or >80 years; (2) intraoperative detection of metastatic disease or
other evidence of metastasis; (3) concurrent other malignant tumors;
(4) severe cardiovascular, cerebrovascular, or other systemic
comorbidities; (5) missing data exceeding 30% or loss to follow-up.

Definition of complications: Early postoperative complications
were defined as any Clavien-Dindo grade >2 events occurring
within 30 days after surgery.

Data collection

We collected demographic and clinical data from enrolled patients
while controlling for potential confounding variables using the
Directed Acyclic Graph (DGA) principle. Demographic
characteristics included age and sex. Cinical data included
preoperative data, intraoperative data and postoperative outcome.
Preoperative clinical data encompassed length of preoperative
hospitalization, smoking and alcohol consumption history,
comorbidities (hypertension, diabetes mellitus, reflux esophagitis,
pyloric obstruction), psychological disorders, previous abdominal
surgery, H. pylori(HP) infection status, family history of malignant
tumors, neoadjuvant treatment therapy, Nutritional Risk Screening-
2002 (NRS-2002) score, and laboratory parameters including white
blood cell(WBC) count, hemoglobin, glucose, albumin, albumin-to-
globulin ratio(A/G), C-reactive protein(CRP), D-dimer, and tumor
markers (CA242, AFP, CEA, CA19-9, CA724). Tumor location,
clinical TNM stage (according to the AJCC 8th edition criteria), and
Her-2 expression status were determined based on preoperative
imaging and endoscopic biopsy findings. Intraoperative data
consisted of resection site, anastomosis method, operative duration,
intraoperative blood loss, endoscopy utilization, feeding tube
placement, and blood transfusion. The primary postoperative
outcome was the occurrence of complications.

Data analysis strategy

For variables with missing values less than 30%, multiple
imputation was applied to the collected data. Univariate analysis
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and LASSO regression were performed on the processed data. In the
univariate analysis, categorical data were assessed using the chi-
square test or Fisher’s exact test, normally distributed numerical
data were analyzed using the t-test (results presented as mean *
standard deviation), and non-normally distributed numerical data
were evaluated using the rank-sum test (results expressed as median
[25%;75%]. A p-value less than 0.05 was considered statistically
significant. In the LASSO analysis, the optimal regularization
parameter (A) was selected, and all factors with non-zero
coefficients were extracted. The intersection of these factors was
used to construct ML models.

Based on the mlr3 system and relevant R packages, the
following models were built and tuned: XGBoost, SVM, Random
Forest, NNET, Naive Bayes, Logistic Regression, LDA, KNN,
GLMNet, and Classification Tree. Nested cross-validation (Outer
5-fold CV +Inner 5-fold CV, resolution =3) was employed to
evaluate these models, yielding AUC, accuracy, recall, and
specificity. Receiver operating characteristic (ROC) curves,
decision curve analysis (DCA) curves, and calibration curves were
plotted to assess model performance, and the best-performing
predictive model was selected.

Results

A total of 926 patients who underwent GC surgery were
included in this study, comprising 667 males (72%) and 259
females (28%), with a median age of 61 years [53;67]. The
baseline demographic and clinical characteristics are presented in
Table 1. Postoperative complications occurred in 131 patients
(14.13%), including anastomotic leakage, gastroparesis,
hemorrhage, infection, obstruction, acute cardiovascular and
cerebrovascular events.

The univariate analysis results are presented in Table 1, which
shows significant differences between the complication and non-
complication groups in the following variables: age(p=0.04), sex
(p=0.019), preoperative hospitalization(p=0.01), smoking history
(p=0.001), neoadjuvant chemotherapy combined with
immunotherapy or targeted therapy(p=0.015), NRS2002 score>3
(p=0.006), resection extent(p=0.043), anastomosis method
(p<0.001), blood loss =50 mL(p=0.001), operative time(p<0.001),
clinical T(cT)-stage>1(p=0.003).

The LASSO regression results are illustrated in Figure 1,
revealing that factors significantly associated with postoperative
complications included Roux-en-Y anastomosis, NRS2002 score >3,
prolonged operative time, smoking, A/G, Billrouth II anastomosis,
neoadjuvant therapy combined with immunotherapy or targeted
therapy, cT-stage>1, G and excition extent. Weakly correlated
factors included CA242.

Based on the combined results of univariate and LASSO
analyses, the following variables were selected for ML model
construction: smoking, NRS2002 score >3, reconstruction
method, cT-stage >1, operative time, neoadjuvant chemotherapy
combined with immunotherapy or targeted therapy and
resection extent.

Frontiers in Oncology

10.3389/fonc.2025.1631260

The nested cross-validation results for the XGBoost, SVM,
Random Forest, NNET, Naive Bayes, Logistic Regression, LDA,
KNN, GLMNet, and Classification Tree models are presented in
Table 2. Among these models, XGBoost demonstrated the highest
area under the receiver operating characteristic curve (AUC =
0.788) and a comparatively high recall value (0.741), indicating
superior predictive performance. The ROC curves for each model
are presented in Figure 2. The DCA and calibration curves for each
model are shown in Figures 3 and 4. In the DCA, XGBoost provided
the highest clinical net benefit, confirming its status as one of the
top-performing models. Additionally, the calibration curve
indicated that XGBoost had the best agreement between predicted
and observed probabilities. In conclusion, the XGBoost model
exhibited optimal performance in predicting postoperative
complications in GC patients.

Discussion

Postoperative complications represent the most critical factor
affecting recovery in GC patients and have long been a major
concern for surgeons. While numerous studies have investigated
predictors of various postoperative complications in GC (14, 15),
and a limited number of ML-based models have been reported (12,
13),these studies typically excluded patients receiving neoadjuvant
therapy. The present study addresses this research gap by including
GC patients who underwent neoadjuvant treatment. Furthermore,
we developed a machine learning-based predictive model for
postoperative complications using preoperative and intraoperative
data, which may ultimately guide clinical decision-making to
prevent complications and facilitate postoperative recovery.

In terms of methodology, the predictive factors for model
construction in this study were selected through a dual approach
incorporating both univariate analysis and LASSO regression. This
strategy not only preserves statistically significant variables but also
accounts for feature interactions, thereby reducing the false-positive
rate. Regarding ML algorithms, we employed ten distinct methods
—XGBoost, SVM, Random Forest, NNET, Naive Bayes, Logistic
Regression, LDA, KNN, GLMNet, and Classification Trees—
selected for their suitability given our sample size and outcome
characteristics. For model validation, we implemented nested cross-
validation, which offers distinct advantages over conventional
training-test splits. Specifically, this approach is more appropriate
for smaller datasets, rigorously prevents data leakage, and enables
phased validation, yielding more robust results (16). As this is a
complication-prediction model, the AUC and recall metrics were
prioritized in performance evaluation. Additionally, ROC, DCA,
and calibration plots were utilized to visually assess the model’s
predictive efficacy.

The LASSO and univariate analyses identified, Roux-en-Y
anastomosis, NRS2002 score>3, prolonged operative time,
smoking, and neoadjuvant chemotherapy combined with
immunotherapy or targeted therapy, cT-stage >1 as significant
risk factors for postoperative complications, while total gastric
resection demonstrated protective eftects. These findings suggest
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TABLE 1 Baseline characteristics and univariate analysis.

Univariate analysis

Variables
P.ratio P.overall
age 61.0 [53.0:67.0] 61.0 [53.0:67.0] 63.0 [56.0:68.0] 1.02 [1.00;1.04] 0.044 0.040
sex: 0.019
female 259 (28.0%) 234 (29.4%) 25 (19.1%) Ref. Ref.
male 667 (72.0%) 561 (70.6%) 106 (80.9%) 1.76 [1.13;2.85] 0.012
preoperative hospitalization 5.00 [4.00;7.00] 5.00 [4.00;7.00] 6.00 [4.00;8.00] 1.04 [0.99;1.08] 0.119 0.010
smoking history: 0.001
no 492 (53.1%) 441 (55.5%) 51 (38.9%) Ref. Ref.
yes 434 (46.9%) 354 (44.5%) 80 (61.1%) 1.95 [1.34;2.86] <0.001
drinking history: 0.677
no 640 (69.1%) 552 (69.4%) 88 (67.2%) Ref. Ref.
yes 286 (30.9%) 243 (30.6%) 43 (32.8%) 1.11 [0.74;1.64] 0.601
hypertension: 0.447
no 624 (67.4%) 540 (67.9%) 84 (64.1%) Ref. Ref.
yes 302 (32.6%) 255 (32.1%) 47 (35.9%) 1.19 [0.80;1.74] 0.391
diabetes: 0.532
no 750 (81.0%) 647 (81.4%) 103 (78.6%) Ref. Ref.
yes 176 (19.0%) 148 (18.6%) 28 (21.4%) 1.19 [0.74;1.86] 0.455
reflux esophagitis: 1.000
no 883 (95.4%) 758 (95.3%) 125 (95.4%) Ref. Ref.
yes 43 (4.64%) 37 (4.65%) 6 (4.58%) 1.00 [0.37;2.27] 0.992
pyloric obstruction: 0.593
no 888 (95.9%) 764 (96.1%) 124 (94.7%) Ref. Ref.
yes 38 (4.10%) 31 (3.90%) 7 (5.34%) 1.41 [0.56;3.12] 0.439
psychological disorder: 0.316
no 918 (99.1%) 789 (99.2%) 129 (98.5%) Ref. Ref.
yes 8 (0.86%) 6 (0.75%) 2 (1.53%) 2.14 [0.28;9.74] 0.406
;l:izgfnopelvic surgery 0.862
no 712 (76.9%) 610 (76.7%) 102 (77.9%) Ref. Ref.
yes 214 (23.1%) 185 (23.3%) 29 (22.1%) 0.94 [0.59;1.45] 0.787
ESD history: 0.755
no 906 (97.8%) 778 (97.9%) 128 (97.7%) Ref. Ref.
yes 20 (2.16%) 17 (2.14%) 3 (2.29%) 1.12 [0.25;3.42] 0.865
HP infection: 0.780
no 795 (85.9%) 681 (85.7%) 114 (87.0%) Ref. Ref.
yes 131 (14.1%) 114 (14.3%) 17 (13.0%) 0.90 [0.50;1.52] 0.695
family history of tumor: 0.690
no 702 (75.8%) 605 (76.1%) 97 (74.0%) Ref. Ref.
(Continued)
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TABLE 1 Continued

Univariate analysis

variabies P.ratio P.overall
yes 224 (24.2%) 190 (23.9%) 34 (26.0%) 1.12 [0.72;1.69] 0.606
BMI 23.7 [21.7;26.0] 23.8 [21.6:26.0] 23.7 [22.0:26.1] 1.00 [0.95;1.06] 0913 0.702
neoadjuvant chemotherapy
combined with
immunotherapy or target 0015
therapy:
no 878 (94.8%) 760 (95.6%) 118 (90.1%) Ref. Ref.
yes 48 (5.18%) 35 (4.40%) 13 (9.92%) 241 [1.19;4.59] 0.016
NRS2002 score>3: 0.006
no 841 (90.8%) 731 (91.9%) 110 (84.0%) Ref. Ref.
yes 85 (9.18%) 64 (8.05%) 21 (16.0%) 2.19 [1.26;3.68] 0.006
WBC: 0.633
high 19 (2.05%) 15 (1.89%) 4 (3.05%) Ref. Ref.
low 79 (8.53%) 68 (8.55%) 11 (8.40%) 0.60 [0.17;2.48] 0.453
normal 828 (89.4%) 712 (89.6%) 116 (88.5%) 0.59 [0.21;2.18] 0.395
HGB: 0.671
high 62 (6.70%) 51 (6.42%) 11 (8.40%) Ref. Ref.
low 150 (16.2%) 128 (16.1%) 22 (16.8%) 0.79 [0.36;1.82] 0.574
normal 714 (77.1%) 616 (77.5%) 98 (74.8%) 0.73 [0.38;1.53] 0.385
albumin: 0.579
low 28 (3.02%) 23 (2.89%) 5 (3.82%) Ref. Ref.
normal 898 (97.0%) 772 (97.1%) 126 (96.2%) 0.73 [0.29;2.26] 0.555
albumin-to-globulin ratio: 0.195
high 6 (0.65%) 5 (0.63%) 1 (0.76%) Ref. Ref.
low 2 (0.22%) 1 (0.13%) 1 (0.76%) 3.87 [0.07:229] 0.500
normal 918 (99.1%) 789 (99.2%) 129 (98.5%) 0.74 [0.11;19.6] 0.800
G: 0.333
high 177 (19.1%) 146 (18.4%) 31 (23.7%) Ref. Ref.
low 9 (0.97%) 8 (1.01%) 1 (0.76%) 0.66 [0.03;3.88] 0.697
normal 740 (79.9%) 641 (80.6%) 99 (75.6%) 0.73 [0.47;1.14] 0.164
CRP: 1.04 [0.50;2.23] 0.203
high 178 (19.2%) 147 (18.5%) 31 (23.7%) Ref. Ref.
normal 748 (80.8%) 648 (81.5%) 100 (76.3%) 0.73 [0.47;1.15] 0.171
Di-dimer: 0.169
high 241 (26.0%) 200 (25.2%) 41 (31.3%) Ref. Ref.
normal 685 (74.0%) 595 (74.8%) 90 (68.7%) 0.74 [0.50;1.11] 0.143
CA242 6.60 [3.42;11.5] 6.60 [3.35;11.5) 6.60 [3.85;12.1] 1.00 [1.00;1.01] 0.103 0.647
AFP 2.70 [2.00;4.10] 2.70 [2.00;4.10] 2.70 [2.00;3.70] 0.97 [0.93;1.02] 0.290 0.403
CEA 2.20 [1.40;3.32] 2.11 [1.40;3.30] 2.28 [1.50;3.41] 1.00 [0.98;1.01] 0.740 0.421
(Continued)
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TABLE 1 Continued

Univariate analysis

variables P.ratio P.overall
CA199 10.1 [6.43;16.7] 9.90 [6.40;16.8] 11.3 [6.70;16.5] 1.00 [1.00;1.00] 0.611 0.395
CA724 2.30 [1.50:6.00] 2.40 [1.50:6.00] 2.00 [1.50;5.65] 0.99 [0.98;1.01] 0.343 0.225
excision extent: 0.043
distal 572 (61.8%) 503 (63.3%) 69 (52.7%) Ref. Ref.
proximal 40 (4.32%) 35 (4.40%) 5 (3.82%) 1.07 [0.35;2.60] 0.896
total 314 (33.9%) 257 (32.3%) 57 (43.5%) 1.62 [1.10;2.37] 0.015
reconstruction: <0.001
billroth1 432 (46.7%) 404 (50.8%) 28 (21.4%) Ref. Ref.
billroth2 12 (1.30%) 9 (1.13%) 3 (2.29%) 4.93 [0.99;18.0] 0.051
oesophago-gastric 40 (4.32%) 35 (4.40%) 5 (3.82%) 2.10 [0.67;5.42] 0.186
Roux-en-y 442 (47.7%) 347 (43.6%) 95 (72.5%) 3.93 [2.55;6.24] <0.001
intraoperative transfusion: 0.128
no 892 (96.3%) 769 (96.7%) 123 (93.9%) Ref. Ref.
yes 34 (3.67%) 26 (3.27%) 8 (6.11%) 1.95 [0.80;4.24] 0.134
intraoperative gastroscopy: 1.000
no 875 (94.5%) 751 (94.5%) 124 (94.7%) Ref. Ref.
yes 51 (5.51%) 44 (5.53%) 7 (5.34%) 0.98 [0.39;2.10] 0.964
blood loss>50: 0.001
no 663 (71.6%) 586 (73.7%) 77 (58.8%) Ref. Ref.
yes 263 (28.4%) 209 (26.3%) 54 (41.2%) 1.97 [1.34;2.88] 0.001
operative duration 3.65 [3.10;4.50] 3.50 [3.00;4.25] 4.50 [3.78;5.15] 2.15 [1.79;2.58] <0.001 <0.001
location(preoperative): 0.093
antrum 316 (34.1%) 283 (35.6%) 33 (25.2%) Ref. Ref.
body 190 (20.5%) 160 (20.1%) 30 (22.9%) 1.61 [0.94;2.74] 0.083
diffuse 159 (17.2%) 135 (17.0%) 24 (18.3%) 1.53 [0.86;2.68] 0.148
GEJ 147 (15.9%) 118 (14.8%) 29 (22.1%) 2.10 [1.22;3.63] 0.008
incisura angularis 114 (12.3%) 99 (12.5%) 15 (11.5%) 1.31 [0.66;2.47] 0.432
Her2(biopsy): 0.507
no 396 (42.8%) 336 (42.3%) 60 (45.8%) Ref. Ref.
yes 530 (57.2%) 459 (57.7%) 71 (54.2%) 0.87 [0.60;1.26] 0.450
cT-stage>1: 0.003
no 305 (32.9%) 277 (34.8%) 28 (21.4%) Ref. Ref,
yes 621 (67.1%) 518 (65.2%) 103 (78.6%) 1.96 [1.27;3.10] 0.002
cN-stage: 0.076
no 487 (52.6%) 428 (53.8%) 59 (45.0%) Ref. Ref.
yes 439 (47.4%) 367 (46.2%) 72 (55.0%) 1.42 [0.98;2.07] 0.063
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FIGURE 1

(A) LASSO regression cross—validation curve (B) Key variables for LASSO regression screening.

patients with smoking history, poor nutritional status, prolonged
operative duration, complex surgical approaches, aggressive tumor
biology face higher complication risks.

Surgery is the most critical factor contributing to postoperative
complications. A multicenter retrospective study involving 2,508 patients
(17) demonstrated that Roux-en-Y anastomosis and prolonged operative
duration were risk factors for postoperative complications. Smoking and
inflammatory status are associated with the development and poor
prognosis of various tumors. Research by Kentaro Matsuo et al. (18)
found that patients with a history of smoking and higher WBC levels at
the gastroesophageal junction were more prone to anastomotic leakage
after surgery. The study by Junbo Zuo’s team (19)indicated that
malnutrition and sarcopenia were correlated with postoperative

Frontiers in Oncology

complications in GC patients. Luigi Marano (20)revealed that early
immunonutrition support for postoperative GC patients significantly
reduced the incidence of anastomotic leakage and infection events
compared to those without such support. Conversely, Jingxia Lv (21)
found that inadequate postoperative nutritional support was a risk factor
for poor prognosis after radical gastrectomy. Tumor aggressiveness is
also a key factor influencing postoperative complications. Studies have
shown that GC patients with neural invasion and higher T-stage have
worse prognoses (22, 23). These findings are consistent with our research
results, further validating the reliability of this study.

In addition, the results of this study suggest that GC patients
receiving neoadjuvant therapy combined with immunotherapy or
targeted therapy may be at a higher risk of postoperative
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TABLE 2 Performance metrics of the models.

Model AUC [95%Cl]

Accuracy [95%Cl]

10.3389/fonc.2025.1631260

Recall [95%Cl] Specificity [95%]

Decision Tree

KNN

SVM

XGBoost

Random Forest

GLMNet

LDA

0.726 [0.645, 0.808]
0.749 [0.660, 0.838]
0.621 [0.543, 0.700]
0.788 [0.746, 0.830]
0.768 [0.708, 0.827]
0.774 [0.724, 0.824]

0.785 [0.746, 0.825]

0.725 [0.694, 0.755]
0.662 [0.620, 0.703]
0.819 [0.784, 0.853]
0.687 [0.644, 0.729]
0.678 [0.603, 0.753]
0.715 [0.671, 0.759]

0.741 [0.713, 0.768]

0.606 [0.464, 0.748]
0.681 [0.542, 0.821]
0215 [0.076, 0.354]
0.741 [0.684, 0.799]
0.732 [0.679, 0.785]
0.648 [0.563, 0.733]

0.674 [0.571, 0.777]

0.745 [0.692, 0.797]
0.657 [0.595, 0.720]
0.918 [0.867, 0.969]
0.678 [0.619, 0.736]
0.67 [0.584, 0.756)

0.727 [0.672, 0.781]

0.752 [0.711, 0.793]

Logistic

0.765 [0.702, 0.829]

0.725 [0.675, 0.774]

0.653 [0.501, 0.805]

0.736 [0.669, 0.804]

Naive Bayes

Neural Net

0.751 [0.694, 0.808]

0.785 [0.691, 0.880]

0.68 [0.623, 0.737]

0.716 [0.658, 0.774]

0.669 [0.497, 0.842]

0.734 [0.573, 0.895]

0.682 [0.599, 0.764]

0.714 [0.652, 0.777)

complications, which represents a novel finding. In recent years,
although numerous studies on neoadjuvant therapy for GC have been
published, the majority have focused on comparing the efficacy and
safety of chemotherapy combined with targeted/immunotherapeutic
agents versus conventional neoadjuvant chemotherapy regimens (24—
26). However, there remains a scarcity of comparative analyses
regarding postoperative complications between patients who
underwent surgery following neoadjuvant therapy incorporating
targeted or immunotherapeutic agents and those who did not receive
any neoadjuvant treatment. A distinctive feature of this study is the
inclusion of both patients who received neoadjuvant therapy and those
who did not. It is noteworthy that patients receiving neoadjuvant
chemotherapy combined with immunotherapy or targeted therapy

often present with features inherently associated with a higher
propensity for postoperative complications, such as more advanced
tumor stages, broader invasive extent, and more complex surgical
procedures.Furthermore, from a mechanistic perspective, previous
studies have suggested that immunotherapy and targeted therapy may
induce inflammatory responses or immune-related adverse events,
thereby impairing tissue healing (27-29). These factors may explain
the observed correlation between the combined neoadjuvant
immunotherapeutic or targeted regimen and an increased risk of
postoperative complications. Nevertheless, the precise mechanisms
underlying the elevated risk of postoperative complications associated
with neoadjuvant therapy combined with immunotherapy or targeted
therapy warrant further investigation.

ROC Curves Comparison with Cross—Validated AUC
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FIGURE 2
Receiver operating characteristic curves of the models.
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Decision curve analysis (DCA) of the models.

As shown in Figures 3 and 4 the XGBoost model demonstrated the
best predictive performance among the ML models evaluated. It
achieved optimal results across ROC, DCA and calibration curves.
Furthermore, Table 2 shows that the XGBoost model also achieved a
high recall, a performance metric that is often more critical than accuracy

FIGURE 4
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in predicting complications, especially when dealing with imbalanced
class distributions. These findings collectively confirm the high efficiency,
accuracy, and clinical utility of the XGBoost prediction model.

During the development of the XGBoost prediction model, both
preoperative and intraoperative predictors were incorporated to
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enable immediate postoperative risk stratification for complications.
This approach facilitates early intervention in high-risk patients.
Clinically, factors such as smoking history, preoperative NRS2002
score, neoadjuvant therapy regimen, and clinical tumor stage are
readily available before surgery. This study has identified smoking
history, NRS2002 score >3, neoadjuvant therapy combined with
targeted or immunotherapy, and cT-stage >1 as significant risk
factors for postoperative complications. Therefore, preoperative
interventions—including smoking cessation counseling, nutritional
support, adequate tumor downstaging, and optimal selection of
neoadjuvant therapy—may help mitigate these risks. Furthermore,
for patients who are candidates for different surgical approaches, the
model can be utilized preoperatively to calculate and compare the
predicted risk stratification intervals for complications associated
with various surgical techniques, thereby assisting in the selection
of the most appropriate procedure. Concurrently, efforts should be
made to shorten the operative duration during surgery. Finally, for
patients predicted to be at high risk for complications immediately
after surgery, more intensive monitoring of their postoperative
condition is essential. Timely implementation of corresponding
management measures is crucial to accelerate recovery and
improve patient prognosis.

The highlight of this study lies in the application of ML methods
to establish a predictive model for postoperative complications in all
GC patients (including those who underwent neoadjuvant therapy),
with the model evaluated using cross-nested validation. Additionally,
it was found that chemotherapy combined with immunotherapy or
targeted therapy may contribute to the occurrence of postoperative
complications. This study also has limitations. It is a single-center
retrospective study, which inherently limits the sample size.
Furthermore, the inclusion of certain intraoperative variables in
this predictive model may partially compromise its utility for
preoperative clinical decision-making. In the future, our team will
continue to expand the database and incorporate external datasets to
further validate the model.

Conclusion

This study developed a ML-based predictive model using
preoperative and intraoperative data to forecast postoperative
complications in GC patients undergoing radical gastrectomy,
including those receiving neoadjuvant therapy. Key predictive
factors included smoking, NRS2002score>3, reconstruction
method, extent of resection, T-stage >1, operative time and
neoadjuvant therapy combining immunotherapy or targeted
therapy. Among the ten evaluated models, the XGBoost model
demonstrated the highest AUC (0.788), exhibiting superior
reliability and greater clinical decision-making benefit in
predicting postoperative complications for GC patients. These
findings highlight the significant potential of artificial intelligence
in improving complication prediction and facilitating faster
postoperative recovery in GC patients.
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