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Deciphering the let-7c-5p/RRM2
axis in lung adenocarcinoma:
expression, prognosis, and
immune landscape implications

Jinlong Liu', Jinying Wu', Yu Han, Lele Li, Xingbo Bian,
Xialin Sun, Xuefeng Bian* and Xin Sun*

School of Pharmaceutical Sciences, Jilin Medical University, Jilin, China

Objective: Lung adenocarcinoma (LUAD) is a subtype of non-small cell lung
cancer with a poor prognosis. Ribonucleotide reductase subunit M2 (RRM2) has
been implicated in the progression of various cancers, but its role in LUAD
remains underexplored. This study aims to elucidate the expression patterns,
clinical significance, and regulatory mechanisms of RRM2 in LUAD.

Methods: We conducted a comprehensive analysis of RRM2 expression using
data from the Genomic Data Commons Data Portal and The Cancer Genome
Atlas. Survival analysis was performed using the KM plotter tool. The starBase
database was utilized to identify miRNAs associated with RRM2. Single-cell RNA
sequencing data was analyzed to explore the correlation between RRM2 and
immune cell infiltration. In vitro experiments were conducted to validate the
regulatory role of let-7c-5p on RRM2 in LUAD cell lines.

Results: We found that the expression of RRM2 in LUAD tissues was significantly
higher than in normal tissues, and its expression was associated with advanced
pathological stage and poor overall survival. Additionally, we identified Let-7c-5p
as a potential upstream regulator of RRM2, which is down-regulated in LAUD and
negatively correlated with RRM2 expression. In vitro experiments showed that
overexpression of let-7c-5p reduced RRM2 levels and inhibited LUAD cell
proliferation and migration. Moreover, RRM2 expression was positively
correlated with the infiltration of certain immune cells, suggesting its role in
modulating the tumor immune microenvironment.

Conclusions: Our findings suggest that RRM2 is closely associated with the
malignant progression of LUAD and may serve as a potential prognostic
biomarker with clinical relevance. Furthermore, the let-7c-5p/RRM2 regulatory
axis may play an important role in the development and progression of LUAD,
representing a promising therapeutic target that warrants further in-
depth investigation.
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Introduction

Lung cancer, a formidable adversary in the global health
landscape, is characterized by its escalating incidence and
mortality rates, posing a profound threat to both human health
and economic stability (1, 2). Non-small cell lung cancer (NSCLC),
with lung adenocarcinoma (LUAD) as its predominant subtype,
constitutes approximately 85% of all lung cancer cases (3-5).
Despite advances in surgery, chemotherapy, radiotherapy, and
targeted therapies, the five-year survival rate for LUAD patients
remains disappointingly low (6-8). The majority of LUAD patients
are diagnosed at advanced stages, often with invasion and
metastasis, thereby missing the optimal window for surgical
intervention (9, 10). The etiology of LUAD is acknowledged as a
complex, multifactorial process, and the biological and clinical
heterogeneity of LUAD presents a significant challenge for
personalized clinical management. Consequently, the
identification of LUAD biomarkers is imperative for enhancing
early detection and identifying therapeutic targets.

Recent studies have highlighted the critical role of the
ribonucleotide reductase subunit M2 (RRM2) gene in the
occurrence and progression of various human cancers, including
LUAD. The RRM2 gene encodes the regulatory subunit M2 of
ribonucleotide reductase (RNR), an enzyme of paramount
importance in cancer treatment. RNR is indispensable for the de
novo synthesis of deoxyribonucleotides, vital for DNA replication and
repair (11, 12). There is increasing evidence that RRM2 may be a
promising target for lung cancer treatment (13-16). For example,
research by Rahman et al. (17) demonstrated that the regulation of
RRM2 induces apoptosis in lung cancer cells through the modulation
of Bcl-2 expression. Additionally, low expression levels of RRM2 may
be used to assess the response of lung cancer to cisplatin-based
chemotherapy (18). Zhou et al. (19) conducted a comprehensive pan-
cancer analysis to elucidate the expression patterns, clinical
significance, and prognostic value of RRM2 across multiple cancer
types, with a particular focus on LUAD. They integrated data from
The Cancer Genome Atlas (TCGA), GEO, and other databases to
analyze RRM2 expression, clinical pathological features, and survival
outcomes. Zhang et al. (20) identified the circ_0039908/miR-let-7¢/
RRM2 axis as a key regulatory pathway in LUAD, demonstrating that
circ_0039908 regulates RRM2 expression through miR-let-7c,
thereby affecting LUAD cell proliferation and invasion. However,
despite these valuable insights, the specific mechanisms by which
RRM2 contributes to LUAD, particularly its interactions with the
tumor immune microenvironment, remain underexplored.

Approximately 97% of the human genome is transcribed into
non-coding RNA, which can regulate molecular processes at the
DNA-RNA-protein level (21-24). This study builds on the
foundational work of Zhou et al. (19) and Zhang et al. (20) by
focusing on the upstream regulatory mechanisms of RRM2 in
LUAD. We predicted the upstream transcription factor let-7c-5p
of RRM2 in LUAD cells through bioinformatics analysis and
confirmed its abnormal low expression in NSCLC tissues. Let-7 is
a widely studied miRNA (25-27), and previous studies have
indicated that let-7c-5p is down-regulated in LUAD. High
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expression of let-7c-5p can significantly inhibit the proliferation
of LUAD cells and promote apoptosis (28). Therefore, confirming
the relationship between let-7c-5p and RRM2, and understanding
how it regulates LUAD development, is crucial for improving the
survival rate and quality of life of patients with LUAD.

In this study, we investigated the expression of RRM2 in LUAD
and conducted survival analysis. Subsequently, we explored the
regulatory mechanisms of RRM2 in LUAD, involving nncRNAs,
miRNAs. We elucidated that let-7c-5p can reduce the expression of
RRM2, revealing the molecular mechanism by which the let-7¢c-5p/
RRM2 axis regulates LUAD cells. We also examined the biological
functions of RRM2 in LUAD. Finally, we established the correlation
between RRM2 expression in LUAD and immune cell infiltration,
biomarkers, and immune checkpoints. Our findings indicate that
the up-regulation of RRM2 mediated by ncRNAs is associated with
poor prognosis and tumor immune infiltration in LUAD patients.
These observations hold significant implications for basic research
and clinical applications and may enhance the precision of
immunotherapy for LUAD.

Materials and methods

Comparison of the expression differences
of RRM2 in LUAD and standard tissues

We employed the Biomarker Exploration of Solid Tumors
(BEST) network tool to juxtapose RRM2 expression levels
between lung cancer and standard tissues within the GSE68571
and TCGA-LUAD datasets. The gene expression data was
standardized by converting them into Z-scores to facilitate
comparative analysis (29, 30).

Analysis of the association of RRM2 and
LUAD clinicopathological parameters

We downloaded STAR-counts data and corresponding clinical
information for TCGA-LUAD tumors from the TCGA database
(https://portal.gdc.cancer.gov). We then extracted data in TPM
format and performed normalization using the log2(TPM + 1)
transformation. After retaining samples that included both RNA
seq data and clinical information, we ultimately selected 516
samples for further analysis. The GTEx data we used is from the
V8 version, detailed information can be found on the official GTEx
website (https://gtexportal.org/home/datasets). Statistical analysis
was conducted using R software, version v4.0.3. Results were
considered statistically significant when the p-value was less than
0.05 (30).

Survival analysis

To evaluate the prognostic significance of RRM2 mRNA
expression in LUAD, we first assessed its association with overall
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survival (OS) in patients with lung cancer. Survival analysis was
performed using the KM plotter online platform (http://
www.kmplot.com/analysis/) (31), The Biomarker Exploration of
Solid Tumors (BEST) network tool was used to compare RRM2
expression levels between tumor and normal tissues in the
GSE68571 dataset. Gene expression data were standardized by
conversion to Z-scores to facilitate cross-sample comparison. In
addition, hazard ratios (HRs), log-rank p-values, and 95%
confidence intervals (CIs) were calculated.

We then downloaded STAR-counts RNA-seq data and
corresponding clinical information for LUAD samples from the
TCGA database (https://portal.gdc.cancer.gov). The data were
transformed into TPM format and normalized using a log2
(TPM + 1) transformation. After filtering to include only samples
with both RNA-seq and clinical data, a total of 516 samples were
retained for downstream analyses. Consistency validation was
further performed using the GEO dataset (GSE68571). Univariate
and multivariate Cox proportional hazards regression analyses were
conducted to identify independent prognostic factors. Forest plots
were generated using the “forestplot” R package to visualize
p-values, HRs, and 95% CIs for each variable. Based on the
multivariate Cox regression results, a prognostic nomogram was
constructed using the “rms” package to predict the 5-year overall
recurrence probability. All statistical analyses were performed using
R software (version 4.0.3), and results with a p-value < 0.05 were
considered statistically significant.

Candidate miRNA prediction

Upstream binding miRNAs of RRM2 were predicted by several
target gene prediction programs, consisting of PITA, RNA22,
miRmap, microT, miRanda, PicTar, and TargetScan. Only the
predicted miRNAs that commonly appeared in more than two
programs as mentioned above were included for subsequent
analyses (32). These predicted miRNAs were regarded as
candidate miRNAs of RRM2.

Correlations between RRM2 and the
immune environment

We downloaded STAR-counts data and corresponding clinical
information for LUAD tumors from the TCGA database (https://
portal.gdc.cancer.gov). Gene expression was converted to TPM and
log-transformed (log2[TPM + 1]). Samples with both RNA-seq and
clinical data were retained (n = 516) ssGSEA scoring. Immune-cell
signatures (published marker gene sets) were scored per sample
using GSVA (R) with method = “ssgsea”. Scores represent relative
abundance of immune populations.

Group comparison and correlations. Samples were stratified
into RRM2-high vs. RRM2-low (median split). Differences in
ssGSEA scores between groups were tested by two-sided
Wilcoxon rank-sum. Associations between RRM2 expression and
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immune-cell scores were quantified by Spearman’s p. Significance
was set at P < 0.05 (two-sided). Immune-infiltration patterns were
cross-checked using TIMER and TISIDB. TIMER’s SCNA module
was used to compare infiltration across RRM2 copy-number states
(deep deletion, arm-level deletion, diploid/normal, arm-level gain,
high amplification), using TIMER’s default statistics (33).

Single-cell RNA-seq

The data used in the above research all come from the files in
the Supplementary File of the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). The Seurat package was utilized to
generate objects and filter out cells of poor quality, while also
carrying out a standard data preprocessing procedure. The number
of genes, the number of cells, and the percentage of mitochondrial
content were calculated. The filtering criteria were genes detected in
fewer than 5 cells and cells with fewer than 200 detected genes.

We retain genes detected in at least 12346 cells and filter out
cells with fewer than 200 detected genes, as well as cells with a high
mitochondrial content (>5%). After discarding low-quality cells, we
retain 2000 cells for downstream analysis. To normalize each cell,
we scale the UMI counts using scale factor = 10,000. After
logarithmically transforming the data, we use the ScaleData
function (v4.1.0) in Seurat.

We apply the corrected normalized data to standard analysis,
extracting the top 2000 variable genes for Principal Component
Analysis (PCA). For the visualization and clustering of UMAP (or
TSNE), we retain the top 20 principal components. Cell clustering is
performed using the FindClusters function (resolution = 0.8)
implemented in the Seurat R package (34).

Cell culture, antibodies, siRNA and
plasmids

The A549 and H460 cells were incubated at 37°C in a 5% CO,
atmosphere. The primary antibodies for RRM2 polyclonal antibody
were purchased from Cell Signaling Technology (Danvers, MA,
United States). The B-actin and secondary antibodies were
purchased from Protein Technology Group, Inc. (Wuhan, China).
The siRNA of RRM2 were purchased from jtsbio Biotech (jtsbio
Biotech Co.,Ltd, Wuhan, China). jtsbio Biotech designed and
established the let-7c-5p overexpression plasmid (jtsbio Biotech
Co.,Ltd, Wuhan, China) (Supplementary Table 1). Plasmid and
siRNA transfection was performed with Lipofectamine® 3000
following the manufacturer’s instructions.

CCK8 assay

Cells were seeded at a density of 5 x 10° cells/well. Add 10 ul of
CCKS8 solution at 24, 48, and 72 hours, and measure the absorbance
at 450 nm after 2 hours.
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Transwell assay

Cells were seeded at a density of 4x10” cells in 24-well transwell
inserts. After 24 hours, they were fixed with 4% paraformaldehyde
for 10 minutes, stained with crystal violet solution for 12 minutes,
and images were collected.

Quantitative real-time PCR

Cells were collected, and total RNA was extracted using Trizol
reagent (Invitro-gen Inc., Carlsbad, CA) according to the
manufacturer’s protocol. The expression levels of let-7c-5p and
RRM2 mRNA were normalized to the GAPDH (Supplementary
Table 2). The relative fold changes in target gene expression
between the control group and the experimental group were

calculated using the 27*4“T method.

Western blot assays

Homogenize cells in RIPA lysis buffer. Determine protein
concentration using a BCA assay kit, boil the mixture at 98 °C in
a Dual-Color protein loading buffer, separate equal amounts of
protein by SDS-PAGE, and transfer to a PVDF membrane.
Subsequently, incubate the membrane with primary and
secondary antibodies. Perform enhanced chemiluminescence
to visualize the protein bands. Finally, apply Image] for
quantitative analysis.

Statistical analysis

All results are expressed as mean + SD. Comparisons among
groups were conducted using one-way ANOVA and Tukey’s multiple
comparison tests. A p-value of less than 0.05 was considered
statistically significant. Data analysis was performed using the
BEST, TIMER, and TISIDB platforms, which automatically applied
the Benjamini-Hochberg method for FDR correction in multiple
hypothesis testing and reported effect sizes (such as correlation
coefficients and normalized enrichment scores) in correlation and
enrichment analyses. Analyses were performed in R 4.0.3 using
GSVA and base/ggplot2 functions for statistics and plotting.

Results

RRM2 overexpression drives tumor
progression and predicts poor prognosis in
LUAD

Transcriptomic profiling of LUAD tissues from the GSE68571
and TCGA-LUAD cohorts demonstrates significant up-regulation of
RRM2 in tumors compared to normal tissues (Wilcoxon test,

Frontiers in Oncology

10.3389/fonc.2025.1628429

p=0.00053 and p<2.2x10'%, respectively; Figures 1A, B). RRM2
expression levels were found to escalate with advancing tumor
stage (Kruskal-Wallis test, p=2.273x107%), and correlated strongly
with TNM-T classification (p=1.08x107"), suggesting its role in
metastatic progression (Figures 1C, D). Collectively, these findings
indicate that RRM2 may contribute to the malignant progression of
LUAD and could represent a potential therapeutic target. Its stage-
dependent overexpression and significant association with patient
survival highlight the potential clinical utility of RRM2 for risk
stratification and precision oncology applications.

RRM2 overexpression predicts poor
prognosis and serves as an independent
prognostic factor in LUAD

Kaplan-Meier survival analyses consistently demonstrated that
patients with high RRM2 expression had significantly worse OS
compared with those with low expression across multiple datasets.
In the TCGA-LUAD cohort, elevated RRM2 levels were strongly
associated with reduced survival probability (HR = 1.82, 95% CI:
1.55-2.12,p=2.4x 10714 Figure 2A), which was further confirmed
in two additional LUAD datasets (HR = 1.39, 95% CI: 1.13-1.71,
p=0.0019; HR = 1.63,95% CI: 1.38-1.93, p = 9.6 x 10°%; Figures 2B,
C). The external validation cohort (GSE68571) also supported these
findings, showing significantly shorter OS in the high RRM2 group
(log-rank p < 0.01; Figure 2D).Time-dependent ROC curve
analysis yielded AUC values of 0.621 (1-year), 0.597 (3-year), and
0.586 (5-year), indicating limited but consistent prognostic
discrimination across time points (Figures 2E, F).Univariate Cox
regression identified RRM2, TNM stage, and smoking status as
significant predictors of OS (Figure 2G). Importantly, multivariate
Cox analysis confirmed RRM2 as an independent prognostic factor
for LUAD (HR = 1.30, 95% CI: 1.14-1.53, p < 0.01), after adjusting
for age, sex, race, tumor stage, and smoking status (Figure 2H).
Collectively, these findings demonstrate that RRM2 overexpression
is significantly associated with unfavorable clinical outcomes and
may serve as an independent prognostic biomarker in LUAD,
providing potential value for risk stratification and precision
oncology applications.

Prediction and analysis of upstream
miRNAs of RRM2

The pivotal role of ncRNAs, notably miRNAs in modulating
gene expression is well-established. In LUAD, RRM2 has been
associated with tumorigenesis, and its expression is hypothesized
to be under miRNA-mediated control. To probe this hypothesis, an
exhaustive analysis was undertaken to uncover miRNAs capable of
binding and modulating RRM2 expression. Utilizing Cytoscape
software, a network was delineated to graphically represent
the interactions between RRM2 and a spectrum of miRNAs.
This network schematizes the putative regulatory relationships
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FIGURE 1

RRM2 expression in LUAD and its clinical implications. (A, B) The GEO dataset and TCGA-LUAD dataset download from the BEST database showed
that RRM2 was highly expressed in LUAD. (C) Pathologic stage. (D) Pathologic T stage. (*p<0.05; **p<0.01; ***p<0.001, ns, no significance).

between RRM2 and 20 distinct miRNAs, encompassing let-7{-5p,
miR-6845-5p, let-7b-3p, among others. The connections between
RRM2 and these miRNAs imply potential regulatory influences
they may exert on RRM2 expression (Figure 3A). This visualization
serves as a foundation for further investigation into the intricate
interplay between RRM2 and miRNAs in the context of LUAD.
To delve deeper into the interplay between RRM2 and the
aforementioned miRNAs, an expression correlation analysis was
meticulously conducted. The findings, tabulated and presented with
correlation coefficients (R-values) and their corresponding
statistical significance (P-values), delineate the relationship
between each miRNA-RRM2 pair. Notably, RRM2 exhibited
significant inverse correlations with let-7f-5p (R = -0.14525,
P = 0.001), let-7b-3p (R = -0.23631, P = 7.29E-08), and let-7b-5p
(R = -0.32575, P = 6.1E-14), suggesting that these miRNAs may
function as tumor suppressors by negatively regulating RRM2
expression. In contrast, a positive correlation was between RRM2
and miR-4788 (R = 0.28105, P = 0.000000303), implying a potential
oncogenic role in enhancing RRM2 expression (Figure 3B).
Focusing on let-7c-5p, a miRNA of particular interest due to its
significant negative correlation with RRM2, we compared its
expression levels between 512 LUAD cancer samples and 20
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standard samples using box plots. The analysis revealed a
substantial down-regulation of let-7c-5p in cancer samples
(P = 1.9e-18), hinting that its diminished expression might
contribute to the up-regulation of RRM2 and potentially foster
tumorigenesis (Figure 3C). The prediction significance of let-7¢-5p
in LUAD was further evaluated using KM survival plots. The
analysis indicated that patients with elevated let-7c-5p expression
levels exhibited improved OS rates (Log-Rank p = 0.043, Hazard
Ratio = 0.74), suggesting that let-7c-5p could serve as a potential
prediction biomarker and therapeutic target for LUAD (Figure 3D).
These results underscore the intricate regulatory network involving
RRM2 and miRNAs in LUAD and highlight the potential of
miRNAs as therapeutic agents.

let-7c-5p regulates RRM2 to inhibit the
progression of LUAD

To verify the role of let-7c-5p in the development of NSCLC, we
measured the expression of let-7c-5p in NSCLC cell lines H273,
H23, A549, and H460, as well as in normal lung epithelial cells
16HBE, using RT-qPCR. The results showed that the expression of
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Prognostic value of RRM2 in LUAD. (A) Overall survival analysis of RRM2 mRNA high and low expression in LUAD. (B) Pps analysis of RRM2 mRNA
high and low expression in LUAD. (C) FP analysis of RRM2 mRNA high and low expression in LUAD. (D) Survival curves of high and low RRM2
expression in the GsE68571. (E) The KM survival curve of the gene in TCGA data. (F) Time-dependent ROC curve. (G) Univariate and (H) multivariate
COX regression analysis of OS correlation in LUAD. Fp, First Progression; OS, Overall Survival; PpS, Post Progression Survival.

let-7c-5p was lower in all NSCLC cell lines compared to 16HBE cells
(Supplementary Figure S1). Among them, the A549 and H460 cells
showing the lowest expression of let-7c-5p were transfected with
let-7c-5p mimic or mimic control for subsequent use (Figure 4A).
RT-qPCR assay presented the transfection effectiveness of RRM2
siRNA in A549 and H460 cells (Figure 4B). The results of the CCK8
analysis indicate that the number of proliferating A549 and
H460 cells decreases following the overexpression of let-7c-5p
(Figures 4C, D). From a molecular perspective, it was found that
the let-7c-5p mimic reduces the level of RRM2 (Figure 4E). The
transwell experiment demonstrated that the absence of RRM2
significantly inhibited the cell migration and metastasis
capabilities (Figure 4F). The above results indicate that let-7c-5p
regulates RRM2, which inhibits the proliferation and migratory
capacity of LUAD cells in vitro.
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Bulk immune infiltration associated with
RRM2 expression

Utilizing the ssGSEA methodology, we quantified the
associations between RRM2 expression and the levels of immune
cell infiltration in LUAD (Figures 5A, B). Our findings revealed a
positive correlation between RRM2 expression and the infiltration
of Natural Killer (NK) CD56bright cells, TH2 cells, TFH, T effector
memory cells (Tem), and Macrophages, while a negative correlation
was with Th17 cells, dendritic Cells (DCs), neutrophils, cytotoxic
cells, regulatory T cells (Tregs), T memory cells (Tcm), pDCs, CD8"
T cells, and B cells. To further elucidate these relationships, scatter
plots were employed to illustrate the correlation between RRM2
expression and various immune cell populations in LUAD
(Figures 5C-0). These plots include: B cells (Figure 5C), CD4" T
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Identification of let-7c-5p as a potential upstream regulatory miRNA of RRM2 in LUAD. (A) The miRNA-RRM2 prediction network produced by
Cytoscape. (B) The correlation between the predicted expression of some candidate miRNAs and RRM2 in LUAD analyzed by starBase. (C, D) The
expression and prognostic value of let-7c-5p in LUAD were detected by starBase and Kaplan Meier plotter.

cells (Figure 5D), CD8" T cells (Figure 5E), Macrophages (MO0)
(Figure 5F), Macrophages (M1) (Figure 5G), DCs (Figure 5H),
Neutrophils (Figure 5I), Cytotoxic Cells (Figure 5]), Tregs
(Figure 5K), Tcm (Figure 5L), Tem (Figure 5M), NK cells
(Figure 5N), Monocytes (Figure 50). Box plots (Figure 5P) were
used to display the infiltration levels of different immune cells in
LUAD, categorized by copy number alterations. These analyses
indicate that the expression level of RRM2 is closely associated with
the immune cell infiltration patterns in LUAD. The correlation
coefficients and P-values provide a quantitative measure of the
strength and statistical significance of these associations. Our data
imply that elevated RRM2 expression may be associated with a
subdued anti-tumor immune response. The use of TIMER and
TISIDB databases further corroborates the connection between
RRM2 expression and immune cell infiltration, potentially
influencing LUAD prognosis and treatment responses. These
findings highlight the complex interplay between RRM2
expression and immune cell dynamics in LUAD and may have
implications for developing immunotherapeutic strategies.
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Single-cell mapping of RRM2 across
immune subsets

To delineate the immune landscape of LUAD, single-cell
transcriptomic data comprising 12,346 cells were analyzed using t-
distributed stochastic neighbor embedding (t-SNE). This
dimensionality reduction approach revealed seven transcriptionally
distinct T-cell clusters, including effector memory CD8 T cells,
MAIT cells, Non-Vd2 y8 T cells, CD4" T cells, T regulatory cells,
Terminal effector CD8 T cells, and Th1/Th17 cells (Figure 6A). The
clear separation of these clusters in the two-dimensional embedding
underscores the intrinsic transcriptional heterogeneity and
functional specialization of the T-cell compartment in LUAD.

To identify genes contributing to cellular heterogeneity, the
relationship between standardized variance and average expression
was examined (Figure 6B). Among analyzed, 2,000 were classified as
highly variable (highlighted in red). Notably, RRM2 emerged
among the top variable genes, alongside immune activation
associated genes such as FOS, CCL3, CD177, and HSPAS®,
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indicating its potential involvement in immune cell proliferation or
activation processes.

The spatial distribution map of RRM2 expression across the t-
SNE projection (Figure 6C) demonstrated a strikingly localized
pattern, with the highest density observed within a small subset of
cells positioned at the lower region of the embedding. This
subpopulation corresponded to the effector memory CD8 T-cell
cluster, while most other immune subtypes exhibited minimal
RRM2 expression. The density gradient further confirmed a
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concentrated enrichment of RRM2-positive cells, suggesting that
RRM2 expression is functionally confined to a proliferative or
metabolically active subset.

Violin plot analysis (Figure 6D) corroborated these findings,
showing that RRM2 expression was markedly elevated in effector
memory CD8 T cells, whereas it remained low or undetectable in
MAIT cells, T regulatory cells, Th1/Th17 cells, and other subsets.
Given the established role of RRM2 in deoxyribonucleotide
synthesis and DNA repair, its preferential expression in effector
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memory CD8 T cells likely supports enhanced proliferative
potential and metabolic demand during immune activation.
Collectively, these data identify RRM2 as a proliferation-
associated marker preferentially expressed in activated cytotoxic
T cells, implicating its involvement in sustaining immune effector
responses within the LUAD tumor microenvironment (TME).

Discussion

The present study provides a comprehensive analysis of the
role of RRM2 in LUAD and its interplay with miRNAs and
the tumor immune microenvironment. Our findings highlight
the multifaceted role of RRM2 in LUAD pathogenesis, prognosis,
and immune regulation. The prediction and analytical exploration
of upstream miRNAs targeting RRM2 has shedlight on potential
regulatory mechanisms involving ncRNAs, which are recognized
for their role in modulating gene expression in cancer. Notably,
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miRNAs such as let-7f-5p, let-7b-3p, and let-7b-5p exhibited
significant negative correlations with RRM2, implying their roles
as tumor suppressors by down-regulating RRM2. In contrast, the
positive correlation between RRM2 and miR-4788 suggests a role in
enhancing RRM2 expression, potentially contributing to oncogenic
processes. Our findings indicate that let-7c-5p can repress RRM2
expression, and the inhibition of RRM2 can curtail the metastatic
potential of LUAD cells. This observation is congruent with the
outcomes of our comprehensive analysis, highlighting the relevance
of these regulatory interactions in LUAD pathobiology.

Our integrated multi-omics analysis revealed that RRM2 is
significantly up-regulated in LUAD tissues compared to normal
counterparts, with a progressive increase in expression associated
with advanced tumor stages and TNM classification. This up-
regulation of RRM2 is consistent with its known role in promoting
cell proliferation and DNA synthesis, which are critical for tumor
growth and metastasis. In this study, elevated RRM2 expression was
found to be significantly associated with poorer OS in patients with
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LUAD, underscoring its potential prognostic relevance. The ROC
analysis yielded an AUC of 0.62, suggesting limited discriminative
ability; therefore, RRM2 alone may not serve as a reliable standalone
diagnostic biomarker. The Kaplan-Meier survival analysis, using the
median expression value as the cutoff, further supported its
association with unfavorable prognosis. Taken together, these
findings indicate that RRM2 holds promise as a prognostic
biomarker, although its diagnostic utility appears limited and
requires further validation in larger, independent cohorts.

The identification of miRNAs that regulate RRM2 expression
provides insights into the post-transcriptional mechanisms
underlying LUAD progression. Our analysis revealed several
miRNAs, including let-7f-5p, let-7b-3p, and let-7b-5p, that exhibit
significant inverse correlations with RRM2 expression. These
miRNAs are likely to function as tumor suppressors by negatively
regulating RRM2. In particular, let-7c-5p, which showed a strong
negative correlation with RRM2, was significantly down-regulated in
LUAD samples. The prognostic significance of let-7c-5p, as
demonstrated by improved OS in patients with higher expression
levels, highlights its potential as a therapeutic target and biomarker.
The restoration of let-7c-5p expression could potentially inhibit
RRM2, thereby suppressing tumor progression in LUAD (Figure 7).

Our experimental validation further elucidated the role of let-7c-
5p in the progression of LUAD. We observed that, compared with
normal lung epithelial cells (16 HBE), A549 and H460 cells exhibited
the lowest levels of let-7c-5p expression and were subsequently
transfected with let-7c-5p mimics or controls for functional studies.
The overexpression of let-7c-5p in these cells significantly reduced
RRM2 expression, as confirmed by western blot analyses. The
decrease in RRM2 levels was associated with reduced cell migration
capabilities, as demonstrated by transwell assays. These results
directly prove that let-7c-5p regulates RRM2 expression, thereby

let-7c-5p

Lung cancer

FIGURE 7
The schematic diagram of let-7c-5p/RRM2 in LUAD.
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inhibiting the proliferation and migratory capacity of LUAD cells in
vitro. This regulatory mechanism highlights the tumor-suppressive
role of let-7c-5p and underscores its potential as a therapeutic target
for LUAD.

The correlation analysis between RRM2 expression and
immune cell infiltration revealed a complex and multifaceted
interaction within the tumor immune microenvironment of
LUAD. Elevated RRM2 expression was positively correlated with
the infiltration of specific immune subsets, such as NK CD56+bright
cells and Th2 cells, while showing negative correlations with Th17
cells and DCs. This bidirectional association suggests that RRM2
may contribute to shaping the immune landscape of LUAD,
potentially through influencing immune cell recruitment and
activation dynamics.

Given the pivotal role of the TME in determining
immunotherapy efficacy, RRM2-associated proliferative activity and
variations in myeloid and lymphoid cell composition may confound
observed immune response signals (35, 36). Therefore, future studies
should integrate proliferation indices, cytokine signaling pathways,
and myeloid lineage markers to better distinguish association from
causation, and to evaluate whether RRM2 adds prognostic value to
composite models of immunotherapy response (37, 38).

At the single-cell level, transcriptomic profiling uncovered
marked heterogeneity among T-cell subpopulations, identifying
RRM2 as a gene with distinctive expression patterns across
immune lineages. Notably, RRM2 was selectively enriched in
effector memory CD8" T cells, consistent with its canonical role
in deoxyribonucleotide synthesis and DNA replication, which are
essential for rapid clonal expansion and sustained cytotoxic activity.
In contrast, RRM2 expression was minimal in Tregs and exhausted
CD8" T-cell subsets, reinforcing its association with a metabolically
active and cytotoxic immune phenotype rather than with
immunosuppressive or dysfunctional states.

Collectively, these findings position RRM2 as a proliferation-
associated and functionally relevant marker of activated cytotoxic T
cells, potentially contributing to antitumor immune responses in
LUAD. The dual correlations observed across innate and adaptive
immune compartments further imply that RRM2 may act as a
molecular modulator linking metabolic programming to immune
functionality. Future mechanistic studies are warranted to elucidate
whether RRM2 directly governs T-cell activation, persistence, or
effector function, which could inform the development of novel
immunotherapeutic strategies targeting LUAD.

Conclusion

In summary, our study provides strong evidence for the critical
role of RRM2 in LUAD, highlighting its high expression, its
association with poor prognosis, and the complex regulatory
mechanisms involving miRNAs. The let-7c-5p/RRM2 axis holds
promise as a novel therapeutic target for LUAD. Moreover, RRM2-
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related genetic alterations and the immune microenvironment
underscore its multifaceted role in LUAD. These findings warrant
further investigation into the mechanisms of RRM2 in LUAD and
its potential as a therapeutic target and prognostic biomarker,
paving the way for new frontiers in personalized medicine.
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Glossary
AUC
CCK8
BP
BEST
CC

CI
DSS
GSEA
GO
HR
LUAD
KM

KEGG

The Area Under the Curve
Cell Counting Kit-8

Biological processes
Biomarker Exploration of Solid Tumors
Cellular components
Confidence intervals

Disease Specific Survival

Gene Set Enrichment Analysis
Gene Ontology

Hazard ratios

Lung adenocarcinoma
Kaplan-Meier

Kyoto Encyclopedia of Genes and Genomes
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MF

[N

PFS
RFS
ssGSEA
TCGA
TIMER
DCs
Tregs
Tem
Tem

NK
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Molecular functions

Overall survival

Progression Free Survival

Recurrence Free Survival

Single-sample Gene Set Enrichment Analysis
The cancer Genome Atlas

The Tumor Immune Estimation Resource
Dendritic Cells

Regulatory T cells

T memory cells

T effector memory cells

Natural Killer cells

frontiersin.org


https://doi.org/10.3389/fonc.2025.1628429
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Deciphering the let-7c-5p/RRM2 axis in lung adenocarcinoma: expression, prognosis, and immune landscape implications
	Introduction
	Materials and methods
	Comparison of the expression differences of RRM2 in LUAD and standard tissues
	Analysis of the association of RRM2 and LUAD clinicopathological parameters
	Survival analysis
	Candidate miRNA prediction
	Correlations between RRM2 and the immune environment
	Single-cell RNA-seq
	Cell culture, antibodies, siRNA and plasmids
	CCK8 assay
	Transwell assay
	Quantitative real-time PCR
	Western blot assays
	Statistical analysis

	Results
	RRM2 overexpression drives tumor progression and predicts poor prognosis in LUAD
	RRM2 overexpression predicts poor prognosis and serves as an independent prognostic factor in LUAD
	Prediction and analysis of upstream miRNAs of RRM2
	let-7c-5p regulates RRM2 to inhibit the progression of LUAD
	Bulk immune infiltration associated with RRM2 expression
	Single-cell mapping of RRM2 across immune subsets

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References
	Glossary


