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Deciphering the let-7c-5p/RRM2
axis in lung adenocarcinoma:
expression, prognosis, and
immune landscape implications
Jinlong Liu †, Jinying Wu †, Yu Han, Lele Li, Xingbo Bian,
Xialin Sun, Xuefeng Bian* and Xin Sun*

School of Pharmaceutical Sciences, Jilin Medical University, Jilin, China
Objective: Lung adenocarcinoma (LUAD) is a subtype of non-small cell lung

cancer with a poor prognosis. Ribonucleotide reductase subunit M2 (RRM2) has

been implicated in the progression of various cancers, but its role in LUAD

remains underexplored. This study aims to elucidate the expression patterns,

clinical significance, and regulatory mechanisms of RRM2 in LUAD.

Methods: We conducted a comprehensive analysis of RRM2 expression using

data from the Genomic Data Commons Data Portal and The Cancer Genome

Atlas. Survival analysis was performed using the KM plotter tool. The starBase

database was utilized to identify miRNAs associated with RRM2. Single-cell RNA

sequencing data was analyzed to explore the correlation between RRM2 and

immune cell infiltration. In vitro experiments were conducted to validate the

regulatory role of let-7c-5p on RRM2 in LUAD cell lines.

Results: We found that the expression of RRM2 in LUAD tissues was significantly

higher than in normal tissues, and its expression was associated with advanced

pathological stage and poor overall survival. Additionally, we identified Let-7c-5p

as a potential upstream regulator of RRM2, which is down-regulated in LAUD and

negatively correlated with RRM2 expression. In vitro experiments showed that

overexpression of let-7c-5p reduced RRM2 levels and inhibited LUAD cell

proliferation and migration. Moreover, RRM2 expression was positively

correlated with the infiltration of certain immune cells, suggesting its role in

modulating the tumor immune microenvironment.

Conclusions: Our findings suggest that RRM2 is closely associated with the

malignant progression of LUAD and may serve as a potential prognostic

biomarker with clinical relevance. Furthermore, the let-7c-5p/RRM2 regulatory

axis may play an important role in the development and progression of LUAD,

representing a promising therapeutic target that warrants further in-

depth investigation.
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Introduction

Lung cancer, a formidable adversary in the global health

landscape, is characterized by its escalating incidence and

mortality rates, posing a profound threat to both human health

and economic stability (1, 2). Non-small cell lung cancer (NSCLC),

with lung adenocarcinoma (LUAD) as its predominant subtype,

constitutes approximately 85% of all lung cancer cases (3–5).

Despite advances in surgery, chemotherapy, radiotherapy, and

targeted therapies, the five-year survival rate for LUAD patients

remains disappointingly low (6–8). The majority of LUAD patients

are diagnosed at advanced stages, often with invasion and

metastasis, thereby missing the optimal window for surgical

intervention (9, 10). The etiology of LUAD is acknowledged as a

complex, multifactorial process, and the biological and clinical

heterogeneity of LUAD presents a significant challenge for

personalized cl inical management. Consequently, the

identification of LUAD biomarkers is imperative for enhancing

early detection and identifying therapeutic targets.

Recent studies have highlighted the critical role of the

ribonucleotide reductase subunit M2 (RRM2) gene in the

occurrence and progression of various human cancers, including

LUAD. The RRM2 gene encodes the regulatory subunit M2 of

ribonucleotide reductase (RNR), an enzyme of paramount

importance in cancer treatment. RNR is indispensable for the de

novo synthesis of deoxyribonucleotides, vital for DNA replication and

repair (11, 12). There is increasing evidence that RRM2 may be a

promising target for lung cancer treatment (13–16). For example,

research by Rahman et al. (17) demonstrated that the regulation of

RRM2 induces apoptosis in lung cancer cells through the modulation

of Bcl-2 expression. Additionally, low expression levels of RRM2 may

be used to assess the response of lung cancer to cisplatin-based

chemotherapy (18). Zhou et al. (19) conducted a comprehensive pan-

cancer analysis to elucidate the expression patterns, clinical

significance, and prognostic value of RRM2 across multiple cancer

types, with a particular focus on LUAD. They integrated data from

The Cancer Genome Atlas (TCGA), GEO, and other databases to

analyze RRM2 expression, clinical pathological features, and survival

outcomes. Zhang et al. (20) identified the circ_0039908/miR-let-7c/

RRM2 axis as a key regulatory pathway in LUAD, demonstrating that

circ_0039908 regulates RRM2 expression through miR-let-7c,

thereby affecting LUAD cell proliferation and invasion. However,

despite these valuable insights, the specific mechanisms by which

RRM2 contributes to LUAD, particularly its interactions with the

tumor immune microenvironment, remain underexplored.

Approximately 97% of the human genome is transcribed into

non-coding RNA, which can regulate molecular processes at the

DNA-RNA-protein level (21–24). This study builds on the

foundational work of Zhou et al. (19) and Zhang et al. (20) by

focusing on the upstream regulatory mechanisms of RRM2 in

LUAD. We predicted the upstream transcription factor let-7c-5p

of RRM2 in LUAD cells through bioinformatics analysis and

confirmed its abnormal low expression in NSCLC tissues. Let-7 is

a widely studied miRNA (25–27), and previous studies have

indicated that let-7c-5p is down-regulated in LUAD. High
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expression of let-7c-5p can significantly inhibit the proliferation

of LUAD cells and promote apoptosis (28). Therefore, confirming

the relationship between let-7c-5p and RRM2, and understanding

how it regulates LUAD development, is crucial for improving the

survival rate and quality of life of patients with LUAD.

In this study, we investigated the expression of RRM2 in LUAD

and conducted survival analysis. Subsequently, we explored the

regulatory mechanisms of RRM2 in LUAD, involving nncRNAs,

miRNAs. We elucidated that let-7c-5p can reduce the expression of

RRM2, revealing the molecular mechanism by which the let-7c-5p/

RRM2 axis regulates LUAD cells. We also examined the biological

functions of RRM2 in LUAD. Finally, we established the correlation

between RRM2 expression in LUAD and immune cell infiltration,

biomarkers, and immune checkpoints. Our findings indicate that

the up-regulation of RRM2 mediated by ncRNAs is associated with

poor prognosis and tumor immune infiltration in LUAD patients.

These observations hold significant implications for basic research

and clinical applications and may enhance the precision of

immunotherapy for LUAD.
Materials and methods

Comparison of the expression differences
of RRM2 in LUAD and standard tissues

We employed the Biomarker Exploration of Solid Tumors

(BEST) network tool to juxtapose RRM2 expression levels

between lung cancer and standard tissues within the GSE68571

and TCGA-LUAD datasets. The gene expression data was

standardized by converting them into Z-scores to facilitate

comparative analysis (29, 30).
Analysis of the association of RRM2 and
LUAD clinicopathological parameters

We downloaded STAR-counts data and corresponding clinical

information for TCGA-LUAD tumors from the TCGA database

(https://portal.gdc.cancer.gov). We then extracted data in TPM

format and performed normalization using the log2(TPM + 1)

transformation. After retaining samples that included both RNA

seq data and clinical information, we ultimately selected 516

samples for further analysis. The GTEx data we used is from the

V8 version, detailed information can be found on the official GTEx

website (https://gtexportal.org/home/datasets). Statistical analysis

was conducted using R software, version v4.0.3. Results were

considered statistically significant when the p-value was less than

0.05 (30).
Survival analysis

To evaluate the prognostic significance of RRM2 mRNA

expression in LUAD, we first assessed its association with overall
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survival (OS) in patients with lung cancer. Survival analysis was

performed using the KM plotter online platform (http://

www.kmplot.com/analysis/) (31), The Biomarker Exploration of

Solid Tumors (BEST) network tool was used to compare RRM2

expression levels between tumor and normal tissues in the

GSE68571 dataset. Gene expression data were standardized by

conversion to Z-scores to facilitate cross-sample comparison. In

addition, hazard ratios (HRs), log-rank p-values, and 95%

confidence intervals (CIs) were calculated.

We then downloaded STAR-counts RNA-seq data and

corresponding clinical information for LUAD samples from the

TCGA database (https://portal.gdc.cancer.gov). The data were

transformed into TPM format and normalized using a log2

(TPM + 1) transformation. After filtering to include only samples

with both RNA-seq and clinical data, a total of 516 samples were

retained for downstream analyses. Consistency validation was

further performed using the GEO dataset (GSE68571). Univariate

and multivariate Cox proportional hazards regression analyses were

conducted to identify independent prognostic factors. Forest plots

were generated using the “forestplot” R package to visualize

p-values, HRs, and 95% CIs for each variable. Based on the

multivariate Cox regression results, a prognostic nomogram was

constructed using the “rms” package to predict the 5-year overall

recurrence probability. All statistical analyses were performed using

R software (version 4.0.3), and results with a p-value < 0.05 were

considered statistically significant.
Candidate miRNA prediction

Upstream binding miRNAs of RRM2 were predicted by several

target gene prediction programs, consisting of PITA, RNA22,

miRmap, microT, miRanda, PicTar, and TargetScan. Only the

predicted miRNAs that commonly appeared in more than two

programs as mentioned above were included for subsequent

analyses (32). These predicted miRNAs were regarded as

candidate miRNAs of RRM2.
Correlations between RRM2 and the
immune environment

We downloaded STAR-counts data and corresponding clinical

information for LUAD tumors from the TCGA database (https://

portal.gdc.cancer.gov). Gene expression was converted to TPM and

log-transformed (log2[TPM + 1]). Samples with both RNA-seq and

clinical data were retained (n = 516) ssGSEA scoring. Immune-cell

signatures (published marker gene sets) were scored per sample

using GSVA (R) with method = “ssgsea”. Scores represent relative

abundance of immune populations.

Group comparison and correlations. Samples were stratified

into RRM2-high vs. RRM2-low (median split). Differences in

ssGSEA scores between groups were tested by two-sided

Wilcoxon rank-sum. Associations between RRM2 expression and
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immune-cell scores were quantified by Spearman’s r. Significance
was set at P < 0.05 (two-sided). Immune-infiltration patterns were

cross-checked using TIMER and TISIDB. TIMER’s SCNA module

was used to compare infiltration across RRM2 copy-number states

(deep deletion, arm-level deletion, diploid/normal, arm-level gain,

high amplification), using TIMER’s default statistics (33).
Single-cell RNA-seq

The data used in the above research all come from the files in

the Supplementary File of the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). The Seurat package was utilized to

generate objects and filter out cells of poor quality, while also

carrying out a standard data preprocessing procedure. The number

of genes, the number of cells, and the percentage of mitochondrial

content were calculated. The filtering criteria were genes detected in

fewer than 5 cells and cells with fewer than 200 detected genes.

We retain genes detected in at least 12346 cells and filter out

cells with fewer than 200 detected genes, as well as cells with a high

mitochondrial content (>5%). After discarding low-quality cells, we

retain 2000 cells for downstream analysis. To normalize each cell,

we scale the UMI counts using scale factor = 10,000. After

logarithmically transforming the data, we use the ScaleData

function (v4.1.0) in Seurat.

We apply the corrected normalized data to standard analysis,

extracting the top 2000 variable genes for Principal Component

Analysis (PCA). For the visualization and clustering of UMAP (or

TSNE), we retain the top 20 principal components. Cell clustering is

performed using the FindClusters function (resolution = 0.8)

implemented in the Seurat R package (34).
Cell culture, antibodies, siRNA and
plasmids

The A549 and H460 cells were incubated at 37°C in a 5% CO2

atmosphere. The primary antibodies for RRM2 polyclonal antibody

were purchased from Cell Signaling Technology (Danvers, MA,

United States). The b-actin and secondary antibodies were

purchased from Protein Technology Group, Inc. (Wuhan, China).

The siRNA of RRM2 were purchased from jtsbio Biotech (jtsbio

Biotech Co.,Ltd, Wuhan, China). jtsbio Biotech designed and

established the let-7c-5p overexpression plasmid (jtsbio Biotech

Co.,Ltd, Wuhan, China) (Supplementary Table 1). Plasmid and

siRNA transfection was performed with Lipofectamine® 3000

following the manufacturer’s instructions.
CCK8 assay

Cells were seeded at a density of 5 × 103 cells/well. Add 10 µl of

CCK8 solution at 24, 48, and 72 hours, and measure the absorbance

at 450 nm after 2 hours.
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Transwell assay

Cells were seeded at a density of 4×104 cells in 24-well transwell

inserts. After 24 hours, they were fixed with 4% paraformaldehyde

for 10 minutes, stained with crystal violet solution for 12 minutes,

and images were collected.
Quantitative real-time PCR

Cells were collected, and total RNA was extracted using Trizol

reagent (Invitro-gen Inc., Carlsbad, CA) according to the

manufacturer’s protocol. The expression levels of let-7c-5p and

RRM2 mRNA were normalized to the GAPDH (Supplementary

Table 2). The relative fold changes in target gene expression

between the control group and the experimental group were

calculated using the 2−DDCT method.
Western blot assays

Homogenize cells in RIPA lysis buffer. Determine protein

concentration using a BCA assay kit, boil the mixture at 98 °C in

a Dual-Color protein loading buffer, separate equal amounts of

protein by SDS-PAGE, and transfer to a PVDF membrane.

Subsequently, incubate the membrane with primary and

secondary antibodies. Perform enhanced chemiluminescence

to visualize the protein bands. Finally, apply ImageJ for

quantitative analysis.
Statistical analysis

All results are expressed as mean ± SD. Comparisons among

groups were conducted using one-way ANOVA and Tukey’s multiple

comparison tests. A p-value of less than 0.05 was considered

statistically significant. Data analysis was performed using the

BEST, TIMER, and TISIDB platforms, which automatically applied

the Benjamini-Hochberg method for FDR correction in multiple

hypothesis testing and reported effect sizes (such as correlation

coefficients and normalized enrichment scores) in correlation and

enrichment analyses. Analyses were performed in R 4.0.3 using

GSVA and base/ggplot2 functions for statistics and plotting.
Results

RRM2 overexpression drives tumor
progression and predicts poor prognosis in
LUAD

Transcriptomic profiling of LUAD tissues from the GSE68571

and TCGA-LUAD cohorts demonstrates significant up-regulation of

RRM2 in tumors compared to normal tissues (Wilcoxon test,
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p=0.00053 and p<2.2×10-16, respectively; Figures 1A, B). RRM2

expression levels were found to escalate with advancing tumor

stage (Kruskal-Wallis test, p=2.273×10-33), and correlated strongly

with TNM-T classification (p=1.08×10-31), suggesting its role in

metastatic progression (Figures 1C, D). Collectively, these findings

indicate that RRM2 may contribute to the malignant progression of

LUAD and could represent a potential therapeutic target. Its stage-

dependent overexpression and significant association with patient

survival highlight the potential clinical utility of RRM2 for risk

stratification and precision oncology applications.
RRM2 overexpression predicts poor
prognosis and serves as an independent
prognostic factor in LUAD

Kaplan–Meier survival analyses consistently demonstrated that

patients with high RRM2 expression had significantly worse OS

compared with those with low expression across multiple datasets.

In the TCGA-LUAD cohort, elevated RRM2 levels were strongly

associated with reduced survival probability (HR = 1.82, 95% CI:

1.55–2.12, p = 2.4 × 10-14; Figure 2A), which was further confirmed

in two additional LUAD datasets (HR = 1.39, 95% CI: 1.13–1.71,

p = 0.0019; HR = 1.63, 95% CI: 1.38–1.93, p = 9.6 × 10-9; Figures 2B,

C). The external validation cohort (GSE68571) also supported these

findings, showing significantly shorter OS in the high RRM2 group

(log-rank p < 0.01; Figure 2D).Time-dependent ROC curve

analysis yielded AUC values of 0.621 (1-year), 0.597 (3-year), and

0.586 (5-year), indicating limited but consistent prognostic

discrimination across time points (Figures 2E, F).Univariate Cox

regression identified RRM2, TNM stage, and smoking status as

significant predictors of OS (Figure 2G). Importantly, multivariate

Cox analysis confirmed RRM2 as an independent prognostic factor

for LUAD (HR = 1.30, 95% CI: 1.14–1.53, p < 0.01), after adjusting

for age, sex, race, tumor stage, and smoking status (Figure 2H).

Collectively, these findings demonstrate that RRM2 overexpression

is significantly associated with unfavorable clinical outcomes and

may serve as an independent prognostic biomarker in LUAD,

providing potential value for risk stratification and precision

oncology applications.
Prediction and analysis of upstream
miRNAs of RRM2

The pivotal role of ncRNAs, notably miRNAs in modulating

gene expression is well-established. In LUAD, RRM2 has been

associated with tumorigenesis, and its expression is hypothesized

to be under miRNA-mediated control. To probe this hypothesis, an

exhaustive analysis was undertaken to uncover miRNAs capable of

binding and modulating RRM2 expression. Utilizing Cytoscape

software, a network was delineated to graphically represent

the interactions between RRM2 and a spectrum of miRNAs.

This network schematizes the putative regulatory relationships
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between RRM2 and 20 distinct miRNAs, encompassing let-7f-5p,

miR-6845-5p, let-7b-3p, among others. The connections between

RRM2 and these miRNAs imply potential regulatory influences

they may exert on RRM2 expression (Figure 3A). This visualization

serves as a foundation for further investigation into the intricate

interplay between RRM2 and miRNAs in the context of LUAD.

To delve deeper into the interplay between RRM2 and the

aforementioned miRNAs, an expression correlation analysis was

meticulously conducted. The findings, tabulated and presented with

correlation coefficients (R-values) and their corresponding

statistical significance (P-values), delineate the relationship

between each miRNA-RRM2 pair. Notably, RRM2 exhibited

significant inverse correlations with let-7f-5p (R = -0.14525,

P = 0.001), let-7b-3p (R = -0.23631, P = 7.29E-08), and let-7b-5p

(R = -0.32575, P = 6.1E-14), suggesting that these miRNAs may

function as tumor suppressors by negatively regulating RRM2

expression. In contrast, a positive correlation was between RRM2

and miR-4788 (R = 0.28105, P = 0.000000303), implying a potential

oncogenic role in enhancing RRM2 expression (Figure 3B).

Focusing on let-7c-5p, a miRNA of particular interest due to its

significant negative correlation with RRM2, we compared its

expression levels between 512 LUAD cancer samples and 20
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standard samples using box plots. The analysis revealed a

substantial down-regulation of let-7c-5p in cancer samples

(P = 1.9e-18), hinting that its diminished expression might

contribute to the up-regulation of RRM2 and potentially foster

tumorigenesis (Figure 3C). The prediction significance of let-7c-5p

in LUAD was further evaluated using KM survival plots. The

analysis indicated that patients with elevated let-7c-5p expression

levels exhibited improved OS rates (Log-Rank p = 0.043, Hazard

Ratio = 0.74), suggesting that let-7c-5p could serve as a potential

prediction biomarker and therapeutic target for LUAD (Figure 3D).

These results underscore the intricate regulatory network involving

RRM2 and miRNAs in LUAD and highlight the potential of

miRNAs as therapeutic agents.
let-7c-5p regulates RRM2 to inhibit the
progression of LUAD

To verify the role of let-7c-5p in the development of NSCLC, we

measured the expression of let-7c-5p in NSCLC cell lines H273,

H23, A549, and H460, as well as in normal lung epithelial cells

16HBE, using RT-qPCR. The results showed that the expression of
FIGURE 1

RRM2 expression in LUAD and its clinical implications. (A, B) The GEO dataset and TCGA-LUAD dataset download from the BEST database showed
that RRM2 was highly expressed in LUAD. (C) Pathologic stage. (D) Pathologic T stage. (*p<0.05; **p<0.01; ***p<0.001, ns, no significance).
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let-7c-5p was lower in all NSCLC cell lines compared to 16HBE cells

(Supplementary Figure S1). Among them, the A549 and H460 cells

showing the lowest expression of let-7c-5p were transfected with

let-7c-5p mimic or mimic control for subsequent use (Figure 4A).

RT-qPCR assay presented the transfection effectiveness of RRM2

siRNA in A549 and H460 cells (Figure 4B). The results of the CCK8

analysis indicate that the number of proliferating A549 and

H460 cells decreases following the overexpression of let-7c-5p

(Figures 4C, D). From a molecular perspective, it was found that

the let-7c-5p mimic reduces the level of RRM2 (Figure 4E). The

transwell experiment demonstrated that the absence of RRM2

significantly inhibited the cell migration and metastasis

capabilities (Figure 4F). The above results indicate that let-7c-5p

regulates RRM2, which inhibits the proliferation and migratory

capacity of LUAD cells in vitro.
Frontiers in Oncology 06
Bulk immune infiltration associated with
RRM2 expression

Utilizing the ssGSEA methodology, we quantified the

associations between RRM2 expression and the levels of immune

cell infiltration in LUAD (Figures 5A, B). Our findings revealed a

positive correlation between RRM2 expression and the infiltration

of Natural Killer (NK) CD56bright cells, TH2 cells, TFH, T effector

memory cells (Tem), and Macrophages, while a negative correlation

was with Th17 cells, dendritic Cells (DCs), neutrophils, cytotoxic

cells, regulatory T cells (Tregs), T memory cells (Tcm), pDCs, CD8+

T cells, and B cells. To further elucidate these relationships, scatter

plots were employed to illustrate the correlation between RRM2

expression and various immune cell populations in LUAD

(Figures 5C–O). These plots include: B cells (Figure 5C), CD4+ T
FIGURE 2

Prognostic value of RRM2 in LUAD. (A) Overall survival analysis of RRM2 mRNA high and low expression in LUAD. (B) Pps analysis of RRM2 mRNA
high and low expression in LUAD. (C) FP analysis of RRM2 mRNA high and low expression in LUAD. (D) Survival curves of high and low RRM2
expression in the GsE68571. (E) The KM survival curve of the gene in TCGA data. (F) Time-dependent ROC curve. (G) Univariate and (H) multivariate
COX regression analysis of OS correlation in LUAD. Fp, First Progression; OS, Overall Survival; PpS, Post Progression Survival.
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cells (Figure 5D), CD8+ T cells (Figure 5E), Macrophages (M0)

(Figure 5F), Macrophages (M1) (Figure 5G), DCs (Figure 5H),

Neutrophils (Figure 5I), Cytotoxic Cells (Figure 5J), Tregs

(Figure 5K), Tcm (Figure 5L), Tem (Figure 5M), NK cells

(Figure 5N), Monocytes (Figure 5O). Box plots (Figure 5P) were

used to display the infiltration levels of different immune cells in

LUAD, categorized by copy number alterations. These analyses

indicate that the expression level of RRM2 is closely associated with

the immune cell infiltration patterns in LUAD. The correlation

coefficients and P-values provide a quantitative measure of the

strength and statistical significance of these associations. Our data

imply that elevated RRM2 expression may be associated with a

subdued anti-tumor immune response. The use of TIMER and

TISIDB databases further corroborates the connection between

RRM2 expression and immune cell infiltration, potentially

influencing LUAD prognosis and treatment responses. These

findings highlight the complex interplay between RRM2

expression and immune cell dynamics in LUAD and may have

implications for developing immunotherapeutic strategies.
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Single-cell mapping of RRM2 across
immune subsets

To delineate the immune landscape of LUAD, single-cell

transcriptomic data comprising 12,346 cells were analyzed using t-

distributed stochastic neighbor embedding (t-SNE). This

dimensionality reduction approach revealed seven transcriptionally

distinct T-cell clusters, including effector memory CD8 T cells,

MAIT cells, Non-Vd2 gd T cells, CD4+ T cells, T regulatory cells,

Terminal effector CD8 T cells, and Th1/Th17 cells (Figure 6A). The

clear separation of these clusters in the two-dimensional embedding

underscores the intrinsic transcriptional heterogeneity and

functional specialization of the T-cell compartment in LUAD.

To identify genes contributing to cellular heterogeneity, the

relationship between standardized variance and average expression

was examined (Figure 6B). Among analyzed, 2,000 were classified as

highly variable (highlighted in red). Notably, RRM2 emerged

among the top variable genes, alongside immune activation

associated genes such as FOS, CCL3, CD177, and HSPA6,
FIGURE 3

Identification of let-7c-5p as a potential upstream regulatory miRNA of RRM2 in LUAD. (A) The miRNA-RRM2 prediction network produced by
Cytoscape. (B) The correlation between the predicted expression of some candidate miRNAs and RRM2 in LUAD analyzed by starBase. (C, D) The
expression and prognostic value of let-7c-5p in LUAD were detected by starBase and Kaplan Meier plotter.
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indicating its potential involvement in immune cell proliferation or

activation processes.

The spatial distribution map of RRM2 expression across the t-

SNE projection (Figure 6C) demonstrated a strikingly localized

pattern, with the highest density observed within a small subset of

cells positioned at the lower region of the embedding. This

subpopulation corresponded to the effector memory CD8 T-cell

cluster, while most other immune subtypes exhibited minimal

RRM2 expression. The density gradient further confirmed a
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concentrated enrichment of RRM2-positive cells, suggesting that

RRM2 expression is functionally confined to a proliferative or

metabolically active subset.

Violin plot analysis (Figure 6D) corroborated these findings,

showing that RRM2 expression was markedly elevated in effector

memory CD8 T cells, whereas it remained low or undetectable in

MAIT cells, T regulatory cells, Th1/Th17 cells, and other subsets.

Given the established role of RRM2 in deoxyribonucleotide

synthesis and DNA repair, its preferential expression in effector
FIGURE 4

The effect of let-7c-5p regulation on RRM2 in LUAD. (A) The let-7c-5p expression in A549 and H460 cells after let-7c-5p mimic/control transfection
was determined by RT-qPCR. (B) RRM2 siRNA transfection efficiency was detected by qRT-PCR. (C, D) Proliferation of A549 and H460 cells after
let-7c-5p transfection determined by the CCK8 assay. (E) Let-7c-5p mimic could decrease the expression of RRM2. (F) Blocking RRM2 expression
could decrease the metastasis number of A549 and H460 cells (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 5

Association between RRM2 and immune cell infiltration in LUAD. (A, B) According to different expression levels of RRM2, the infiltration levels of
immune cells were analyzed in groups. (C-O) RRM2 is correlated with immune infiltration in LUAD. (P) The relationship between the altered somatic
copy number of RRM2 gene and infiltrating immune cells in LUAD (*p < 0.05; **p < 0.01; ***p < 0.001, ns, no significance).
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memory CD8 T cells likely supports enhanced proliferative

potential and metabolic demand during immune activation.

Collectively, these data identify RRM2 as a proliferation-

associated marker preferentially expressed in activated cytotoxic

T cells, implicating its involvement in sustaining immune effector

responses within the LUAD tumor microenvironment (TME).
Discussion

The present study provides a comprehensive analysis of the

role of RRM2 in LUAD and its interplay with miRNAs and

the tumor immune microenvironment. Our findings highlight

the multifaceted role of RRM2 in LUAD pathogenesis, prognosis,

and immune regulation. The prediction and analytical exploration

of upstream miRNAs targeting RRM2 has shedlight on potential

regulatory mechanisms involving ncRNAs, which are recognized

for their role in modulating gene expression in cancer. Notably,
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miRNAs such as let-7f-5p, let-7b-3p, and let-7b-5p exhibited

significant negative correlations with RRM2, implying their roles

as tumor suppressors by down-regulating RRM2. In contrast, the

positive correlation between RRM2 and miR-4788 suggests a role in

enhancing RRM2 expression, potentially contributing to oncogenic

processes. Our findings indicate that let-7c-5p can repress RRM2

expression, and the inhibition of RRM2 can curtail the metastatic

potential of LUAD cells. This observation is congruent with the

outcomes of our comprehensive analysis, highlighting the relevance

of these regulatory interactions in LUAD pathobiology.

Our integrated multi-omics analysis revealed that RRM2 is

significantly up-regulated in LUAD tissues compared to normal

counterparts, with a progressive increase in expression associated

with advanced tumor stages and TNM classification. This up-

regulation of RRM2 is consistent with its known role in promoting

cell proliferation and DNA synthesis, which are critical for tumor

growth and metastasis. In this study, elevated RRM2 expression was

found to be significantly associated with poorer OS in patients with
FIGURE 6

Single-cell transcriptomic characterization of RRM2 expression in immune cell subsets of LUAD. (A) Cell type lineage mapping. (B) Density map of
RRM2 expression projected onto the t-SNE embedding. (C) Mean variance relationship of gene expression levels. (D) Violin plot depicting RRM2
expression across major T-cell subsets.
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LUAD, underscoring its potential prognostic relevance. The ROC

analysis yielded an AUC of 0.62, suggesting limited discriminative

ability; therefore, RRM2 alone may not serve as a reliable standalone

diagnostic biomarker. The Kaplan–Meier survival analysis, using the

median expression value as the cutoff, further supported its

association with unfavorable prognosis. Taken together, these

findings indicate that RRM2 holds promise as a prognostic

biomarker, although its diagnostic utility appears limited and

requires further validation in larger, independent cohorts.

The identification of miRNAs that regulate RRM2 expression

provides insights into the post-transcriptional mechanisms

underlying LUAD progression. Our analysis revealed several

miRNAs, including let-7f-5p, let-7b-3p, and let-7b-5p, that exhibit

significant inverse correlations with RRM2 expression. These

miRNAs are likely to function as tumor suppressors by negatively

regulating RRM2. In particular, let-7c-5p, which showed a strong

negative correlation with RRM2, was significantly down-regulated in

LUAD samples. The prognostic significance of let-7c-5p, as

demonstrated by improved OS in patients with higher expression

levels, highlights its potential as a therapeutic target and biomarker.

The restoration of let-7c-5p expression could potentially inhibit

RRM2, thereby suppressing tumor progression in LUAD (Figure 7).

Our experimental validation further elucidated the role of let-7c-

5p in the progression of LUAD. We observed that, compared with

normal lung epithelial cells (16 HBE), A549 and H460 cells exhibited

the lowest levels of let-7c-5p expression and were subsequently

transfected with let-7c-5p mimics or controls for functional studies.

The overexpression of let-7c-5p in these cells significantly reduced

RRM2 expression, as confirmed by western blot analyses. The

decrease in RRM2 levels was associated with reduced cell migration

capabilities, as demonstrated by transwell assays. These results

directly prove that let-7c-5p regulates RRM2 expression, thereby
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inhibiting the proliferation and migratory capacity of LUAD cells in

vitro. This regulatory mechanism highlights the tumor-suppressive

role of let-7c-5p and underscores its potential as a therapeutic target

for LUAD.

The correlation analysis between RRM2 expression and

immune cell infiltration revealed a complex and multifaceted

interaction within the tumor immune microenvironment of

LUAD. Elevated RRM2 expression was positively correlated with

the infiltration of specific immune subsets, such as NK CD56+bright

cells and Th2 cells, while showing negative correlations with Th17

cells and DCs. This bidirectional association suggests that RRM2

may contribute to shaping the immune landscape of LUAD,

potentially through influencing immune cell recruitment and

activation dynamics.

Given the pivotal role of the TME in determining

immunotherapy efficacy, RRM2-associated proliferative activity and

variations in myeloid and lymphoid cell composition may confound

observed immune response signals (35, 36). Therefore, future studies

should integrate proliferation indices, cytokine signaling pathways,

and myeloid lineage markers to better distinguish association from

causation, and to evaluate whether RRM2 adds prognostic value to

composite models of immunotherapy response (37, 38).

At the single-cell level, transcriptomic profiling uncovered

marked heterogeneity among T-cell subpopulations, identifying

RRM2 as a gene with distinctive expression patterns across

immune lineages. Notably, RRM2 was selectively enriched in

effector memory CD8+ T cells, consistent with its canonical role

in deoxyribonucleotide synthesis and DNA replication, which are

essential for rapid clonal expansion and sustained cytotoxic activity.

In contrast, RRM2 expression was minimal in Tregs and exhausted

CD8+ T-cell subsets, reinforcing its association with a metabolically

active and cytotoxic immune phenotype rather than with

immunosuppressive or dysfunctional states.

Collectively, these findings position RRM2 as a proliferation-

associated and functionally relevant marker of activated cytotoxic T

cells, potentially contributing to antitumor immune responses in

LUAD. The dual correlations observed across innate and adaptive

immune compartments further imply that RRM2 may act as a

molecular modulator linking metabolic programming to immune

functionality. Future mechanistic studies are warranted to elucidate

whether RRM2 directly governs T-cell activation, persistence, or

effector function, which could inform the development of novel

immunotherapeutic strategies targeting LUAD.
Conclusion

In summary, our study provides strong evidence for the critical

role of RRM2 in LUAD, highlighting its high expression, its

association with poor prognosis, and the complex regulatory

mechanisms involving miRNAs. The let-7c-5p/RRM2 axis holds

promise as a novel therapeutic target for LUAD. Moreover, RRM2-
FIGURE 7

The schematic diagram of let-7c-5p/RRM2 in LUAD.
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related genetic alterations and the immune microenvironment

underscore its multifaceted role in LUAD. These findings warrant

further investigation into the mechanisms of RRM2 in LUAD and

its potential as a therapeutic target and prognostic biomarker,

paving the way for new frontiers in personalized medicine.
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Glossary

AUC The Area Under the Curve
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CCK8 Cell Counting Kit-8
BP Biological processes
BEST Biomarker Exploration of Solid Tumors
CC Cellular components
CI Confidence intervals
DSS Disease Specific Survival
GSEA Gene Set Enrichment Analysis
GO Gene Ontology
HR Hazard ratios
LUAD Lung adenocarcinoma
KM Kaplan-Meier
KEGG Kyoto Encyclopedia of Genes and Genomes
14
MF Molecular functions
OS Overall survival
PFS Progression Free Survival
RFS Recurrence Free Survival
ssGSEA Single-sample Gene Set Enrichment Analysis
TCGA The cancer Genome Atlas
TIMER The Tumor Immune Estimation Resource
DCs Dendritic Cells
Tregs Regulatory T cells
Tcm T memory cells
Tem T effector memory cells
NK Natural Killer cells
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