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PARP inhibitors are widely used class of drugs for the treatment of homologous
recombination deficient cancers, including BRCA mutated ones. These drugs led
to substantial improvement in survival, particularly for patients with BRCA
mutated tumors. However, many patients eventually develop resistance to
PARP inhibitors, mainly due to BRCA reversion mutations. Overcoming
resistance to PARP inhibitors is an unmet medical need. Recently, it has been
shown that BRCA-deficient cells are hypersensitive to the thymidine analogue 5-
chloro-2'-deoxyuridine (CldU), either alone or in combination with PARP
inhibitors. In this study, we show, across multiple BRCA2 mutated cell lines,
that CldU sensitizes PARP inhibitor-resistant cells to PARP inhibitors. This synergy
was also present in cell lines with BRCAZ reversion mutations and was associated
with high levels of DNA damage and arrest in S phase. This effect, which is specific
to thymidine analogue CldU, may open new avenues for the treatment of BRCA
mutated cancers resistant to PARP inhibitors.

KEYWORDS

BRCA mutation, PARP inhibitor, resistance, reversion mutation, thymidine analogue,
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1 Introduction

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by
exploiting the absence of homologous recombination in cancer cells harboring
mutations in the BRCAI/BRCA2 genes (1). More precisely, cancer cells lacking the
repair proteins BRCA1 and BRCA2 rely more heavily on PARP to repair their damaged
DNA. Hence, inhibiting PARP leads to cell death as these cells are no longer able to repair
the damage to their DNA. Studies have shown that loss of BRCA2 leads to cells being 100 to
1000 times more sensitive to PARPI, this led to their exploitation in the clinic in the context
of BRCAI/2-mutated cancer (2, 3). Other mechanisms whereby PARPi induce cell death
include regulation of fork reversal and non-homologous end joining (NHE]) at collapsed
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forks (4). It is also thought that inhibition of PARP activity causes a
delay in single-strand breaks, which will accumulate and become
toxic double-strand breaks upon encounters with the replication
fork (5). PARPi are the first successful example of therapy
exploiting synthetic lethality in cancer. They showed survival
benefit across multiple cancers with BRCA mutations (6, 7).

Despite the substantial impact that PARPi have made in the
clinic, most patients with metastatic disease do eventually develop
resistance, creating a major unmet medical need. For instance, the
SOLO2 phase III trial exemplified how 78% of BRCA-mutated
patients with relapsed ovarian cancer eventually experienced
disease progression on Olaparib, indicating the development of
resistance to PARPi (8). Another example is the ARIEL2 study,
which showed that 60% of BRCA-mutated, high-grade ovarian
carcinoma patients treated with Rucaparib ultimately experienced
disease progression (9). Patients that become resistant to PARPi
have poor outcome and develop cross-resistance with other DNA
damage agents such as platinum (10, 11).

There are various described mechanisms to render cancer cells
resistance to PARPi. The first is the restoration of the homologous
recombination pathway, either through reversion mutations that
restore activity to the BRCA proteins (12, 13) or via loss of 53BP1
and other resection-associated proteins (14), which will, in turn, restore
the homologous recombination capacity of the cell (15). Recent
analyses reported that up to 80% of prostate cancer patients with
BRCA2 mutations who developed resistance to PARPi had undergone
reversion mutations (16). Mutations in PARP itself can also lead to
resistance to inhibitors by reducing the binding of the drug (17).
Finally, loss of Poly(ADP-ribose) Glycohydrolase results in defective
removal of PAR chains, potentially conferring resistance to PARPi (18).

It is expected that this resistance issue will affect approximately
40-70% of metastatic patients with BRCA mutations (19). Strategies
aiming to combine PARPi with other drugs to overcome the hurdle
of resistance have not yet proven to be successful. Strategies aiming
to combine different PARPi with various chemotherapeutic drugs,
such as PI3K inhibitors (20), ATR inhibitors (21, 22) or Pol®
inhibitors (23, 24) have been explored but are yet to deliver
impactful results with manageable toxicities. This illustrates the
major need for strategies to overcome resistance to PARPi.
Recently, it was shown that BRCA-defective cells are sensitive to
treatment with the thymidine analogue CIdU either alone or in
combination with PARPi olaparib (5). In this study, we found that
the thymidine analogue CldU conferred specific sensitivity to
PARPi in BRCA2 mutated cell lines that were previously resistant,
including those with reversion mutations. We show that this
combination of treatments induced high levels of DNA damage
in PARP inhibitor-resistant cell lines.

2 Material and methods

2.1 Cell lines

PEO1 and PEO4 serous ovarian cancer cell lines were
purchased from Sigma-Aldrich. They are derived from peritoneal
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ascites of the same patient with a poorly differentiated serous
ovarian adenocarcinoma. PEO1 cells were collected from the
patient at first relapse (cisplatin-sensitive). PEO4 cells were
collected after the patient demonstrated resistance to cisplatin
(25). PEO1 has BRCA2 non-sense mutation (5193C>G, Y1655X)
and PEO4 harbors BRCA2 reversion mutation (5193C>T, Y1655Y).
C4-02 and C4-13 clones were derived in vitro from PEO1 cells
through continuous exposure to cisplatin for 4 weeks (25). C4-02
exhibited BRCA2 reversion mutation (5192A>T). PEOI and its 3
clones were cultured in RPMI1640 medium (+) l-glutamine
supplemented with 2mM Sodium Pyruvate and 10% fetal bovine
serum (FBS).

CAPAN-1 is a BRCA2 mutant (6174delT) pancreatic cancer cell
line. Its clones C2-5, C2-8 and C2-13 were derived in vitro through
continuous exposure to cisplatin for 4 weeks. C2-5 exhibited
BRCA2 reversion mutation (6006_6308del303) while C2-08 and
C2-13 do not have reversion mutations (13). CAPAN-1 and its 3
clones were cultured in RPMI1640 medium (+) l-glutamine
supplemented with 2mM Sodium Pyruvate and 10% fetal bovine
serum (FBS). PEO1 derived clones (C4-02 and C4-13), CAPAN-1
and its clones (C2-05, C2-08 and C2-13) were generously provided
by Prof. Toshiyasu Taniguchi (Tokai University school
of medicine).

2.2 Drugs and chemicals

Olaparib (HY-10162), CldU (Merck, C6891) and Saruparib
(HY-132167) were purchased from MedChemExpress
(LUCERNA-CHEM). Thymidine (T1895) was purchased from
Sigma-Aldrich, EdU (A10044) from ThermoFisher Scientific and
BrdU (B23151 from Invitrogen). The stock solutions of PARPi and
chemical compounds were prepared from powders dissolved in
100% dimethyl sulfoxide (DMSO) for a stock solution
concentration of 10mM except for thymidine that was dissolved
in water, aliquoted, and stored at —80°C for up to a maximum of 12
months. In order to minimize the cytotoxic effect of DMSO dilution
solution on the cells, several intermediate dilutions were prepared to
dispense 2uL of inhibitors in 2mL medium per well of a 6-well plate.
The same volume of DMSO was added to control wells.

2.3 Clonogenic assay

The cytotoxic activity of drugs and their influence on cell growth,
survival and their ability to form colonies were assessed using the
colony formation assay. Briefly, cells were seeded in 6-well plates in 2
mL of culture medium in triplicate (1500 cells per well for CAPAN-1
and its clones, and 3000 cells for PEO1 and its clones) and incubated
for 24 h (37°C, 5% CO2). Drugs were added to the medium 24h after
cell seeding with pre-selected doses of tested compounds (0.001 -
10uM olaparib, 10 - 100-1000 nM saruparib, 0.05 - 5 uM CIdU or
their combinations) by adding 2uL of 1000 x concentrated drugs
prepared in DMSO. The same volume of DMSO was added to
control wells. After 48h, the medium was changed, and cells were
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allowed to grow and proliferate in a drug-free medium for 14-21 days
until non-overlapping colonies were formed in control wells.
Colonies were fixed with paraformaldehyde (PFA) 4% for 20 min,
stained with 0.5% crystal violet in 20% ethanol for 20 min, thoroughly
rinsed with deionized water to remove residual dye, and air-dried at
room temperature. Each well was photographed using the FUSION
FX6 EDGE Imaging System and number of colonies was quantified
using Image] software® with colony counting extension. A colony of
at least a size of 20 pixel® was scored as one survivable colony and
considered for the count. Results were expressed as relative survival
(percentage of colonies) as the number of colonies per treatment
versus colonies that appeared in the DMSO control (mean colony
counts + standard errors are reported). Graphs were generated using
GraphPad Prism®, 9 software (v.9.4.1).

2.4 Flow cytometry

Following drug treatment, cells were harvested by trypsin and
fixed in 70% ethanol in PBS1X overnight at —20°C. Detection of
YH2AX phosphorylation was performed using the Guava Histone
H2AX Phosphorylation Assay Kit (Luminex, catalogue no.
FCCS100182) according to the manufacturer’s instructions.
Genomic DNA was stained by incubating the cells in PBS
containing RNase (Roche, catalogue no. 11119915001) and
propidium iodide (Sigma-Aldrich catalogue no. 81845). DNA-
YH2AX profiles were acquired by flow cytometry (CytoFLEX LX
flow cytometer); more than 5,000 cells were analyzed per sample
using Kaluza® software (Beckman Coulter).

2.5 Statistical analysis

Statistical analysis was performed using GraphPad Prism 9
software (v.9.4.1). Detailed description of means or medians,
error bars and the number replicates and/or cells analyzed is
reported in the figure legends. For comparison of more than two
groups, the two-way ANOVA with Tukey’s multiple comparisons
test was used Values are presented as mean + SEM. p<0.05 was
considered significant. Detailed description of means or medians,
error bars and the number replicates and/or cells analyzed is
reported in the figure legends. Statistical analysis was reported on
Supplementary Tables.

3 Results

3.1 BRCA2-mutant cells’ sensitivity to CldU
resembles the sensitivity to PARP inhibitor

Recent findings have demonstrated that BRCA1-deficient cells
exhibit marked sensitivity to chlorodeoxyuridine (CIdU), both as a
monotherapy and in combination with the PARP inhibitor olaparib
(4). In this study, we assessed the sensitivity to CIdU across eight
BRCA2-mutant cancer cell lines. These included: (1) PEOI, an
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ovarian cancer-derived cell line, and its isogenic derivatives
resistant to cisplatin, either with (PEO4; C4-02) or without
BRCA2 reversion mutation (25); and (2) CAPAN-1, a pancreatic
cancer-derived cell line, along with its cisplatin-resistant clones due
to either BRCA2 reversion mutations (C2-05 and C2-13) or other
mechanisms (C2-08) (13). Our results revealed that sensitivity to
CldU partially reflected sensitivity to PARP inhibitor olaparib.
Notably, PEO1 displayed pronounced sensitivity to olaparib
(Figures 1A-C) and CIdU (Figure 1E), whereas PEO4, C4-02,
CAPAN-1, C2-05, C2-08, and C2-13 exhibited reduced sensitivity
to both olaparib (Figures 1C, D) and CIdU (Figures 1E, F).

3.2 CldU sensitizes PARP inhibitor-resistant
cells to PARP inhibitors

We next investigated whether the combination of CldU and
PARPi exerts a synergistic effect in BRCA2-mutant cancer cells.
Remarkably, the co-treatment with low doses of olaparib (1 uM)
and CIdU (0.5 uM) proved to be lethal in BRCA2-mutant PEO1 cells,
as well as in its olaparib-resistant isogenic derivatives, including
revertant clones PEO4 and C4-02 (Figure 2A, Supplementary
Table 1 and Supplementary Figure 1A). This synergistic effect was
further validated using saruparib (AZ5305), a second-generation,
highly potent and PARP1-selective inhibitor with approximately 500-
fold selectivity for PARP1 over PARP2 (18). Low-dose saruparib (10
nM) combined with CIdU resulted in >80% cell death across the three
PEOI1-derived clones, all of which were resistant to saruparib
monotherapy (Figure 2C, Supplementary Table 3, Supplementary
Figure 1C and Supplementary Figures 2A-D). Consistently, the
combination of CldU with olaparib (Figure 2B, Supplementary
Table 2 and Supplementary Figure 1B) elicited a synergistic
response in the BRCA2-mutant CAPAN-1 cell line and its PARP
inhibitor-resistant isogenic derivatives, including the reversion-
bearing C2-05 clone. Interestingly, the synergistic response
between saruparib and CldU in CAPAN-1 cells was less significant
(Figure 2D, Supplementary Table 4, Supplementary Figure 1D and
Supplementary Figures 2E-H). This could reflect the high intrinsic
resistance of these cells to both agents, in addition to saruparib being
a PARP1 specific inhibitor with lower trapping potential than
olaparib (26). Collectively, these findings demonstrate that CldU
and PARPi act synergistically in BRCA2-mutant cancer cells, even in
the context of acquired PARP inhibitor resistance, including
resistance mediated by BRCA2 reversion mutations.

3.3 The synergistic effect of CldU and
PARP inhibitor is specific

CldU is a thymidine analogue with a chemical structure closely
resembling that of native thymidine. It is commonly used in molecular
biology to label newly synthesized DNA, as it is incorporated into
DNA but not RNA. Other thymidine analogues, such as 5-ethynyl-2'-
deoxyuridine (EdU) and 5-bromo-2’-deoxyuridine (BrdU), serve
similar roles in tracking DNA synthesis (Figure 3A). To determine
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Clonogenic sensitivity to olaparib and CldU in BRCA2-mutant cancer cells and their PARPi-resistant derivatives. (A, B) Dose-response of
BRCA2-deficient PEO1 and Capan-1 cells treated for 48 h with increasing concentrations of (A) the PARP inhibitor olaparib (0.0001-1 pM) or

(B) chlorodeoxyuridine (CldU; 0.05-0.5 uM). Survival is expressed as percent of untreated control. (C, D) Olaparib sensitivity in BRCA2-mutant
parental lines versus isogenic PARPi-resistant clones. (C) PEO1 (BRCA2-mutant) compared to C4-13 (non-revertant resistant) and two BRCA2-
reversion derivatives (PEO4, C4-2). (D) Capan-1 (BRCA2-mutant) compared to C2-13 (non-revertant) and two BRCA2-reversion clones (C2-8, C2-5).
(E, F) Corresponding clonogenic survival following 48 h CldU treatment in the same sets of PEO1-derived [(E) PEO1, PEO4, C4-2, C4-13] and
Capan-1-derived [(F) Capan-1, C2-8, C2-13, C2-5] cell lines. In all panels, data are mean + SD of three independent biological replicates; curves are

normalized to untreated controls.

whether the observed synergy between CldU and PARPi is unique to
CldU or shared among thymidine analogues, we evaluated the
cytotoxic effects of olaparib (1 uM) in combination with thymidine
or its analogues (CldU, BrdU, and EdU) at an equivalent
concentration (0.5 uM) in PEO1 and PEO4 cell lines. Our results
demonstrated that the synergistic interaction with olaparib was
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specific to CldU (Figures 3B-E and Supplementary Figure 3). In
contrast, EdU exhibited intrinsic cytotoxicity across all conditions,
independent of olaparib co-treatment (Figures 3B-E and
Supplementary Figure 3). This result is consistent with a recent
report showing that EAU induces DNA damage in mammalian
cells, that is repaired by nucleotide excision repair (27). Neither
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BRCA2-mutant cells and their isogenic PARPI-resistant derivatives after 48 h treatment with vehicle (DMSO), CldU (0.5 uM), olaparib (1 yM), or the
combination. (A) PEO1 (BRCA2-mutant), PEO4 and C4-2 (BRCA2-revertant resistant), and C4-13 (non-revertant resistant). Data are mean + SD of
three technical replicates from one representative experiment (n = 3 independent repeats). (B) Capan-1 (BRCA2-mutant), C2-5 and C2-8 (BRCA2-
revertant resistant), and C2-13 (non-revertant resistant). Data are mean + SD of three independent biological replicates. (C, D) Clonogenic survival
of the same cell panels treated for 48 h with CldU (0.5 uM), the PARP-1 selective inhibitor saruparib (10 nM), or their combination. (C) PEOL1 lineage
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GraphPad Prism 10.5.0 software by two-way ANOVA with Tukey’'s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. In
all panels, the striped bars (combination) reveal pronounced loss of clonogenic survival in both parental and PARPi-resistant clones, indicating strong

synergy between CldU and either olaparib or saruparib

thymidine nor BrdU alone, nor in combination with olaparib,
exhibited significant cytotoxic effects. These findings suggest that the
synergy between CldU and PARPi is not a general property of
thymidine analogues, but rather a specific feature of CldU.

3.4 CldU combination with PARP inhibitor
induce DNA damage

Finally, we sought to determine whether the combination of
CldU and PARP inhibition induces DNA damage in BRCA2-
mutant cancer cells. As expected, treatment with olaparib alone
triggered DNA damage in PARP-sensitive PEO1 cells (Figure 4A).
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In contrast, olaparib monotherapy did not elicit substantial DNA
damage in PARP-resistant PEO4 and C4-02 cells (Figure 4B and
Supplementary Figure 4). Notably, co-treatment with CldU and
olaparib resulted in marked DNA damage in these resistant cell
lines (Supplementary Figure 4). Furthermore, the combination of
CldU and olaparib induced early S-phase cell cycle arrest in both
PEO1 and PEO4 cells (Supplementary Figure 4), consistent with
replication stress-associated DNA damage. In parallel, EdU
treatment led to DNA damage across all conditions (Figures 4A,
B), independent of BRCA2 status, underscoring its inherent
cytotoxicity. Collectively, these findings demonstrate that CldU
and olaparib cooperate to induce DNA damage in PARPi-
resistant cells, supporting a synergistic mechanism of action.
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CldU is the most potent and selective thymidine analogue for synergizing with PARP inhibition. (A—D) Clonogenic survival of BRCA2-mutant PEO1
cells and isogenic derivatives following 48-hour treatment with thymidine analogues (Thymidine, EdU, CldU, or BrdU; 0.5 pM) alone or combined
with olaparib (1 pM). (A) PEO1 parental cells. (B) C4-13 (PARPi-resistant, BRCA2 non-revertant). (C) PEO4 (PARPi-resistant, BRCA2-revertant). (D) C4-2
(PARPi-resistant, BRCA2-revertant). Data represent the mean + SD of three technical replicates from one representative experiment (n=3). Statistical
significance was assessed using GraphPad Prism 10.5.0 software by two-way ANOVA with Tukey's multiple comparisons test. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. Experiments were repeated independently three times for panels (A, C), and twice for panels (B, D).

4 Discussion

PARP inhibitors (PARPi) have significantly advanced the
treatment of cancers harboring BRCAI or BRCA2 mutations by
exploiting deficiencies in homologous recombination-mediated
DNA repair. However, resistance to PARPi remains a major
clinical challenge. Reversion mutations in BRCAI/BRCA2—
observed in up to 80% of patients who develop resistance to
PARPi—can restore protein function, thereby reinstating DNA
repair capability and leading to therapeutic resistance and poor
outcomes (16, 17). Strategies to overcome PARPi resistance are
actively being explored. In this study, we demonstrate that the
thymidine analogue chlorodeoxyuridine (CldU) sensitizes PARPi-
resistant cancer cells to PARP inhibition. This cytotoxic effect is
thought to result from the accumulation of single-stranded DNA
gaps initiated by uracil DNA glycosylase-mediated base excision
repair. When combined with PARPi-induced replication stress and
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compromised fork protection in BRCA-deficient cells, this leads to
lethal levels of DNA damage. Notably, even cells harboring BRCA
reversion mutations, which partially restore homologous
recombination, remain sensitive to the combination of CldU and
PARPi. This suggests that the mechanism of cytotoxicity may
bypass conventional BRCA-mediated repair pathways. Although
the exact mechanism of cell death remains to be fully elucidated, our
findings point to a potentially novel vulnerability in PARPi-
resistant cancers. Of note, we observed that the combination of
CldU and olaparib was synergetic across all cell lines derived from
both PEO1 and CAPAN-1, while the synergistic effect between
saruparib and CldU in CAPAN-1 cells was less significant.
Elucidating whether this is due to intrinsic differences in DNA
repair between cell lines, replication stress response, or PARP
trapping efficiency (26) need to be addressed in the future.
Importantly, while CIdU is not approved for clinical use and is
currently limited to research applications as a DNA synthesis
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The chlorine group in CldU drives enhanced DNA damage in BRCA2-mutant cells under PARP inhibition. Quantification of yH2AX-positive cells
(marker of DNA damage) by flow cytometry after 48-hour treatment with thymidine analogues (Thymidine, EdU, CldU, or BrdU; 0.5 pM), alone or
combined with olaparib (1 uM). (A) PEO1 (BRCA2-mutant parental line). (B) PEO4 (PARPi-resistant, BRCA2-revertant). Data show the percentage of
YH2AX-positive cells from three independent experiments. Increased DNA damage in CldU-treated groups highlights the role of the chlorine

modification under PARP inhibition.

marker, clinically approved nucleoside analogues such as
gemcitabine, cytarabine, and trifluridine share structural
similarities. Some of these, particularly gemcitabine, have shown
synergistic activity with PARPI in preclinical models of non-small-
cell lung cancer (28) and in a clinical trial that enrolled pancreatic
cancer patients (29). Next-generation antibody drug conjugates
combining dual payloads that target DNA damage, for instance
topoisomerase 1 inhibitor and PARPi, are currently investigated
(30) and could be a therapeutic approach to reduce the toxicities of
such combinations. Our work also confirmed that another
thymidine analogue, EdU, is cytotoxic and induces DNA damage
in mammalian cancer cells (27, 31), independent of BRCA2 status.
Overall, our findings prompt further investigation into nucleotide
analogues for the treatment of PARPi-resistant cancers.
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SUPPLEMENTARY FIGURE 1

Representative colony formation assays showing the effects of combined CldU
and PARP inhibition on BRCA2-mutant and PARPi-resistant cell lines. (A, B)
Representative images from clonogenic survival assays following 48-hour
treatment with olaparib (1 pM) plus CldU (0.5 pM) in: (A) PEO1 (BRCA2-
mutant) and its isogenic derivatives (PEO4, C4-2, C4-13) (B) Capan-1 (BRCA2-
mutant) and its isogenic derivatives (C2-8, C2-13, C2-5) (C, D) Representative
images from clonogenic survival assays following 48-hour treatment with
saruparib (10 nM) plus CldU (0.5 pM) in: (C) PEO1 and its isogenic derivatives
(PEO4, C4-2, C4-13) (D) Capan-1 and its isogenic derivatives (C2-8, C2-13, C2-
5). For each condition, one well from triplicate experiments is shown.
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