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Introduction: Accurate prediction of treatment response and prognosis in breast

cancer patients is critical to advance personalized medicine and optimize

therapeutic decision-making. Within the context of AI-enabled healthcare,

there remains a pressing need to develop robust, interpretable models that can

account for the temporal complexity and heterogeneity inherent in longitudinal

patient data.

Methods: This study proposes a novel framework designed to model patient-

specific treatment trajectories using a dynamics-aware, deep sequence learning

architecture. Aligned with the core themes of computational prognostics and

precision therapy, our method addresses the challenges posed by variable

patient responses, missing clinical records, and complex pharmacological

interactions. Existing approaches, including conventional supervised learning

and static classification models, often fall short in capturing the underlying

temporal dependencies, multimodal data fusion, and counterfactual reasoning

necessary for real-world clinical deployment. These limitations hinder

generalizability, especially in scenarios where treatment outcomes are delayed

or weakly annotated. In contrast, our approach integrates recurrent modeling,

attention mechanisms, and uncertainty quantification to better capture the

evolving nature of patient health trajectories. Moreover, we incorporate

domain-informed regularization techniques and causal inference modules to

improve interpretability and clinical relevance.

Results and Discussion: By learning temporal dynamics in a personalized

manner, the proposed model enhances predictive performance while

remaining sensitive to patient-specific variations and therapeutic regimens.

Through extensive validation on real-world breast cancer cohorts, we

demonstrate that our framework not only outperforms existing baselines but

also provides actionable insights that can inform adaptive treatment planning and

risk stratification.
KEYWORDS

breast cancer prognosis, treatment response prediction, latent dynamics modeling,
symbolic knowledge infusion, AI in clinical decision support
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1 Introduction

Breast cancer continues to be a primary contributor to cancer-

associated illness and death among women on a global scale. Accurate

prediction of treatment response and patient prognosis is essential to

improving therapeutic strategies and clinical outcomes (1).

Traditionally, such predictions have relied heavily on histopathological

examination, molecular subtyping, and clinical staging; however, these

approaches are often limited by inter-observer variability and

incomplete capture of tumor heterogeneity. With the advent of digital

pathology and the availability of high-resolution whole-slide images

(WSIs), artificial intelligence (AI) offers a transformative opportunity

(2). Not only can AI-driven image classification systems process vast

amounts of image data with high consistency, but they can also uncover

complex patterns that may not be perceptible to human experts.

Moreover, these techniques enhance predictive accuracy by integrating

morphological cues with computational precision, enabling clinicians to

tailor treatments based on a more robust risk stratification (3).

Therefore, developing AI-based models for image classification is not

only necessary for optimizing individualized breast cancer therapy but

also critical in advancing precision oncology.

Early computational strategies for analyzing histopathological

images relied on predefined morphological descriptors and diagnostic

protocols (4). These systems extracted interpretable characteristics—

such as nucleus size, texture, and spatial arrangement—from tissue

samples to support rule-based classification or grading (5). While these

approaches aligned with traditional pathology workflows and offered

transparency, they were limited in flexibility and struggled to capture

the subtle and variable visual features present in large-scale WSIs. In

particular, their performance was susceptible to staining

inconsistencies, tumor heterogeneity, and variability across datasets (6).

As digital pathology advanced, researchers introduced more

adaptable models capable of recognizing patterns directly from

labeled examples (7). These methods employed classification

algorithms trained on manually extracted features, allowing systems

to differentiate tumor subtypes or predict outcomes with improved

accuracy (8). Approaches such as support vector machines and

ensemble classifiers demonstrated practical utility in medium-sized

datasets and well-curated research cohorts. However, they still relied

on handcrafted feature extraction pipelines, which imposed

constraints on scalability and made it difficult to generalize findings

across institutions or patient populations (9).

Recent innovations have led to end-to-end learning frameworks

that automatically derive predictive representations from raw

pathology images (10). Deep neural networks—particularly

convolutional architectures and attention-based models—have

enabled a patch-level analysis of WSIs, learning discriminative

features that correspond to prognostic markers (11). These

systems support the integration of contextual information and

facilitate downstream tasks such as survival analysis, molecular

subtype inference, and therapy response prediction (12). Despite

achieving state-of-the-art performance, challenges remain in

interpretability, computational demand, and the need for

annotated training data. As a response, the development of

explainable and resource-efficient architectures is gaining
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momentum, aiming to balance clinical reliability with the

scalability of deep learning in pathology (13).

In clinical oncology, various biochemical parameters are

routinely used for early tumor detection and monitoring.

Radenkovic et al. highlighted the diagnostic significance of matrix

metalloproteinases (MMP-2 and MMP-9) in basal-like breast

cancer, reflecting their association with tumor invasiveness and

progression (14). Another study by Radenkovic et al. emphasized

the role of oxidative stress-related enzymes such as lactate

dehydrogenase (LDH), catalase, and superoxide dismutase (SOD)

in tumor tissues, showing that their expression levels correspond

with mammographic findings and tumor characteristics (15). Jurisic

et al. further discussed the clinical relevance of LDH as a tumor

biomarker, summarizing its biochemical behavior and potential in

oncological diagnostics (16). In addition to biochemical assessment,

morphological analysis remains crucial. The study by Radenkovic

et al. demonstrated that correlating mammographic images with

histopathological findings in HER2-positive breast cancer provides

deeper diagnostic insights, emphasizing the need for integrated

diagnostic approaches (17).

While prior studies have demonstrated significant progress in

applying deep learning to cancer diagnostics, several challenges

remain unaddressed. Traditional symbolic systems often lack

flexibility, machine learning approaches are highly feature-

dependent, and deep learning models—though powerful—

frequently suffer from a lack of interpretability, limiting their

adoption in clinical workflows. To address these limitations, we

propose a novel hybrid approach that leverages the interpretability

of symbolic reasoning with the scalability of deep learning. Our

method incorporates a modular AI architecture that integrates

pathology-informed feature extraction with transformer-based

visual encoders and an attention-guided prognosis predictor. By

combining domain knowledge with data-driven inference, this

system not only enhances accuracy but also enables interpretability

through visual attention maps and feature attribution techniques.

Our approach is designed to operate across different clinical settings

and cancer subtypes, promoting generalizability and robustness. This

hybrid methodology aims to bridge the gap between accuracy and

trustworthiness in clinical AI applications, ultimately supporting

oncologists in devising personalized treatment regimens and

improving patient outcomes.

The main contributions of this work are as follows:
• We propose a novel dual-module framework that integrates

symbolic feature extraction with deep visual embeddings,

enabling interpretable and accurate prediction of breast

cancer treatment response.

• Our method supports multiple clinical scenarios and

subtypes by employing a flexible architecture that

generalizes across histopathology datasets with minimal

performance degradation.

• Experimental results on benchmark datasets demonstrate a

significant improvement in prediction accuracy (up to 12%

gain) over existing methods while maintaining

interpretability through integrated attention maps.
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2 Related work

2.1 Deep learning for histopathology
analysis

A central research direction in predicting breast cancer treatment

response using AI involves deep learning techniques applied to

histopathological images (18). Histopathology, particularly

hematoxylin and eosin (H&E)-stained slides, remains a gold

standard in cancer diagnosis and is widely accessible. Convolutional

neural networks (CNNs) have demonstrated notable performance in

tasks such as tumor classification, segmentation, and grading (19).

Pioneering works like that of Coudray et al. (20) on lung cancer laid the

foundation for similar approaches in breast cancer (21). In this domain,

deep learning models are trained on large annotated image datasets to

recognize morphological features that correlate with treatment

outcomes or overall prognosis. A significant body of literature has

explored the application of CNNs to distinguish between different

breast cancer subtypes, such as invasive ductal carcinoma versus

lobular carcinoma, and to predict molecular markers HER2, ER, and

PR status (22). Models such as ResNet and DenseNet have been

adapted and fine-tuned to extract both low-level texture features and

high-level morphological patterns. Moreover, multiple instance

learning (MIL) frameworks have been employed to account for the

weakly labeled nature of whole slide images, where only slide-level

labels are available without pixel-level annotations (23). Another key

development is the integration of patch-level analysis and whole-slide-

level aggregation using attention mechanisms or transformer-based

architectures. These models enable the network to focus on

diagnostically relevant regions, thereby improving prediction

accuracy and interpretability—for example, attention-based MIL has

been shown to provide heatmaps highlighting tumor-infiltrating

lymphocytes or necrotic regions, both of which are relevant to

prognosis and treatment response (24). Datasets such as

CAMELYON16, TCGA, and BACH provide valuable benchmarks

for model training and evaluation. However, the heterogeneity of breast

cancer tissue and staining protocols across institutions remains a

challenge (25). Domain adaptation and self-supervised learning have

been proposed to mitigate the performance drop in cross-domain

applications. The literature increasingly emphasizes the need for model

robustness, generalizability, and clinical interpretability, including the

use of saliency maps and feature attribution methods to

explain predictions.
2.2 Radiomics and multimodal integration

Radiomics, which involves extracting quantitative features from

medical imaging modalities like mammography, MRI, and

ultrasound, represents another prominent research direction (26).

AI-driven radiomics aims to uncover imaging biomarkers that

predict therapeutic response or long-term outcomes. Unlike

traditional image interpretation by radiologists, radiomics

involves high-throughput feature extraction, including shape,

texture, and intensity statistics, which are then correlated with
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clinical endpoints using machine learning models (27). Recent

studies have shown that radiomic features from dynamic

contrast-enhanced MRI (DCE-MRI) can predict neoadjuvant

chemotherapy (NAC) response with significant accuracy—for

instance, early changes in tumor heterogeneity and vascularity

have been linked to treatment sensitivity (28). Deep learning has

further enhanced radiomics by replacing handcrafted feature

engineering with learned representations from raw imaging data.

Autoencoders and 3D CNNs have been utilized to capture spatial

and temporal patterns in longitudinal imaging (29). The integration

of radiomics with clinical, pathological, and genomic data

represents a growing trend. Multimodal models leveraging tabular

clinical data, histopathological images, and radiomics features have

been proposed using fusion networks, often based on transformers

or graph neural networks (GNNs) (30). These models aim to

holistically characterize the tumor microenvironment and host

response, leading to improved predictive performance over

unimodal approaches (31). The challenges include the

harmonization of imaging protocols across scanners and

institutions, limited availability of annotated longitudinal datasets,

and the interpretability of deep radiomics models (32). Federated

learning has been suggested as a solution to the data privacy and

sharing issues that hinder multi-institutional collaborations.

Furthermore, explainability techniques are being actively

developed to identify which imaging phenotypes contribute most

to the predicted outcomes (33).
2.3 AI for personalized treatment planning

A critical area of research lies in the use of AI for personalizing

breast cancer treatment by predicting individual responses to

therapy. Traditional treatment planning relies heavily on

standardized clinical guidelines, which may not capture the

complex biological heterogeneity of breast cancer (34). AI systems

offer a data-driven alternative, enabling precision oncology through

personalized predictions based on image-derived biomarkers and

patient-specific characteristics. Predictive models for treatment

response focus on various therapeutic regimens, including

chemotherapy, hormone therapy, and targeted therapies (35). By

analyzing pre-treatment imaging and pathology data, AI can stratify

patients into likely responders and non-responders (36). This allows

clinicians to modify or escalate treatment strategies proactively,

avoiding unnecessary toxicity and improving outcomes. Notable

research efforts include the use of longitudinal imaging to model

tumor evolution and response trajectories using recurrent neural

networks or temporal convolutional networks (37). Moreover,

prognosis prediction involves estimating survival outcomes such

as disease-free survival (DFS) and overall survival (OS). AI models

have been trained to predict these endpoints using features derived

from imaging and pathology, often in conjunction with clinical

staging and genetic information (38). Kaplan–Meier analysis and

Cox proportional hazards modeling are commonly used for

evaluation, while AI models often optimize metrics such as

concordance index or time-dependent AUC. Another promising
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direction involves reinforcement learning (RL) to dynamically

recommend treatment strategies (39). RL agents can be trained

on retrospective datasets to learn policies that maximize long-term

patient outcomes under various treatment sequences. This

paradigm shift from static prediction to dynamic decision-making

is still in its early stages but holds significant potential (40). Current

limitations include the scarcity of prospective validation studies, the

black-box nature of many AI models, and regulatory challenges in

clinical deployment. There is also a growing emphasis on

incorporating patient preferences and quality-of-life metrics into

AI-assisted treatment planning (41). Collaborative efforts among

oncologists, data scientists, and regulatory bodies are essential to

translate these advances into routine clinical practice.
3 Method

3.1 Overview

In this section, we introduce our proposed framework designed to

model and predict treatment response across varying biomedical and

clinical contexts. The capability to accurately forecast an individual’s

response to a therapeutic intervention is critical for enabling

personalized medicine and optimizing treatment protocols. Our

approach draws inspiration from recent advancements in sequence

modeling, dynamics imitation, and representation learning, with

specific tailoring to the domain of treatment outcome forecasting.

The “Method” section is organized into three key components,

each addressing a specific methodological challenge. In Section 3.2,

we formulate the problem of treatment response modeling as a

structured prediction task within a dynamic system, where patient

trajectories under treatment are viewed as stochastic processes. We

provide rigorous mathematical formalization, including state space

definitions, temporal dependency modeling, and symbolic

abstractions of treatment-response interactions. This foundational

formulation establishes a backbone for the learning problem and

guides subsequent model design. In Section 3.3, we introduce our

novel model, ResponseNet, which is a dynamics-aware, multi-level

sequence learner tailored to capture both short-term physiological

reactions and long-term outcome trends. ResponseNet incorporates

heterogeneous data sources, including patient histories, treatment

regimens, and clinical measurements, via a deep reparameterization

approach. It is designed to imitate the progression of patient states

post-treatment, drawing conceptual parallels with generative

adversarial imitation learning frameworks adapted from natural

video forecasting. The architectural design allows the model to

retain interpretability while maintaining strong predictive power

across varying temporal granularities. Section 3.4 details our

adaptive knowledge infusion strategy, a principled mechanism for

injecting domain knowledge into the learning process. This strategy

leverages curated clinical priors, ontological constraints, and

pharmacological knowledge to shape the learning trajectory of the

model. Through an interaction-aware optimization scheme, the

model dynamically adjusts its learning focus based on latent

treatment–response signals. This approach not only regularizes
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learning in data-sparse regimes but also encourages biologically

plausible predictions that align with expert understanding.

To improve the interpretability of the proposed architecture for

readers with clinical or non-technical backgrounds, a simplified and

color-coded schematic is introduced, as shown in Figure 1. This

figure presents the end-to-end structure of the model in a modular

layout, with functional components visually grouped and labeled. The

architecture is divided into four high-level blocks: latent state

inference (preliminaries), patient-specific prediction (ResponseNet),

counterfactual reasoning, and adaptive knowledge infusion (AKI).

Each block is represented using distinct colors to highlight its role and

to reduce cognitive load when tracing data flow. The figure

emphasizes key interactions between learned representations and

domain knowledge modules—for example, treatment actions are

semantically embedded and passed to both predictive and

counterfactual decoding modules. Latent health states are updated

dynamically and passed into response prediction layers and symbolic

constraints, while clinical priors guide the learning process through

regularizers and ontology-based constraints. This design allows for a

unified understanding of how data, treatments, and expert knowledge

interact within the model. By presenting the architecture in this

structured and clinically-oriented format, the figure enables

practitioners to interpret the role of each component without

relying on formal equations. The layout supports intuitive

comprehension of model behavior, particularly how symbolic

reasoning, learned dynamics, and decision-time explanations come

together to support interpretable prediction. This visualization serves

as a bridge between algorithmic detail and practical clinical insight,

facilitating interdisciplinary understanding and communication.
3.2 Preliminaries

This work aims to model the latent treatment response

trajectory of a patient undergoing therapeutic interventions, using

longitudinal historical data including clinical features, physiological

measurements, and treatment events. The response modeling task is

framed as a partially observed Markov decision process (POMDP),

which allows reasoning under uncertainty and incorporates the

influence of sequential interventions over time. Let P denote the

patient population. For each patient p ∈ P, the temporal sequence

T p = (xpt , a
p
t , y

p
t )

� �T
t=1 represents observations over time, where xpt

are covariates, apt are treatments, and ypt are response outcomes. The

true underlying health status is captured by a latent state zpt ∈ Z,

evolving stochastically through a transition kernel (Equation 1):

p(zpt+1 zpt , a
p
t ) = T (zpt , a

p
t ),

�� (1)

and generating observable variables via an emission model

(Equation 2):

p(xpt , y
p
t zpt ) = E(zpt ) :
�� (2)

The initial state is drawn from a prior distribution (Equation 3):

zp1 ∼ p0(z) = N (m0,S0) : (3)
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To handle partial observability, a recognition network qf(z
p
t Hp

t )
��

is introduced to approximate the posterior over latent states from

historical dataHp
t = (xps , a

p
s , y

p
s )

� �t
s=1. The variational evidence lower

bound (ELBO) is optimized jointly with respect to generative and

inference parameters (Equation 4):

L(q , f) = Eqf o
T

t=1
log p(xpt , y

p
t zpt ) + log p(zpt+1
�� ��zpt , apt )

�

−log qf(z
p
t jHp

t )� :
(4)

The full training objective aggregates patient trajectories and

includes a regularization term (Equation 5):

J (q , f) = o
p∈P

Lp(q , f) − l ·R(q) : (5)

To accommodate censored or partially missing responses, a

binary mask mp
t ∈ 0, 1f gk is applied to the likelihood computation

(Equation 6):

log p(ypt jz
p
t ) =o

k

j=1
mp

t,j · log N (ypt,j;mj(z
p
t ),s

2
j (z

p
t )) : (6)

In addition to standard predictions, the framework enables

counterfactual reasoning. A prediction operator is defined to

estimate future outcomes under alternative, hypothetical

treatments ~at (Equation 7):

ŷ p,cf
t+1 = Ezpt ∼qf

Ezpt+1∼T (zpt ,~at )
½Ey(z

p
t+1)�

h i
, (7)
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which supports “what-if” scenario simulation and assists in

evaluating alternative therapy options.

This section builds a probabilistic foundation for understanding

how a patient’s health status evolves over time under different

treatments. Rather than using raw features alone, the model

constructs a hidden state that summarizes clinical information

and allows prediction of future outcomes. By using a variational

framework, it can handle uncertainty and missing values. The

model also supports hypothetical simulations—what would

happen if a different treatment had been used—making it useful

for treatment planning and clinical decision support.
3.3 ResponseNet

To operationalize the symbolic formulation and latent-state

structure introduced in the previous section, we propose

ResponseNet, a deep sequence modeling architecture designed to

capture and forecast patient-specific treatment response through

temporally-grounded latent dynamics. ResponseNet encodes

nonlinear dependencies between health status trajectories and

administered interventions while enabling interpretable

abstractions aligned with clinical variables (as shown in Figure 2).

3.3.1 Latent dynamics modeling
At its core, ResponseNet leverages a probabilistic latent state

framework to model the evolution of patient-specific health

trajectories in response to administered treatments over time.
FIGURE 1

Simplified architecture of the proposed framework. The model is organized into modular components: latent state inference, predictive and
counterfactual decoding, semantic treatment embedding, and adaptive knowledge infusion (AKI). Color coding and directional flow highlight
interactions between patient history, symbolic priors, and treatment-aware predictive modules.
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The system is designed to infer compact representations that

capture both short-term variability and long-range dependencies

in clinical dynamics, with the latent space serving as a hidden

abstraction layer that unifies heterogeneous covariates and

outcome signals. Each patient’s longitudinal record up to time

t is denoted as Hp
t = (xps , a

p
s , y

p
s )

� �t
s=1, encompassing observed

covariates xps , intervention actions aps , and clinical outcomes yps .

We posit a temporally evolving latent state zpt that encodes the

internal physiological status, updated through a history-aware

encoder formulated as a deep recurrent posterior distribution. The

encoder employs gated recurrence to model complex temporal

dependencies and amortize inference across varying-length

patient histories, parameterizing a multivariate Gaussian

distribution over the latent variables as (Equation 8).

qf(z
p
t Hp

t ) = N (mp
t ,S

p
t ), (mp

t ,S
p
t ) = GRUf(H

p
t ),

�� (8)

where f represents the learnable weights of the inference

network. To characterize how clinical states evolve under the

influence of treatment, we define a continuous latent transition

function fq that maps the current latent state zpt and an embedded

treatment action e(apt ) to a predictive shift in latent dynamics,

capturing the modulating effects of pharmacological interventions

and potential interactions between treatment and baseline state.

This function is implemented as a multilayer perceptron whose

output is perturbed by Gaussian noise to reflect uncertainty in
Frontiers in Oncology 06
clinical progression, yielding the one-step latent update as

(Equation 9).

zpt+1 = fq(z
p
t , e(a

p
t )) + ϵt , ϵt ∼ N (0,s 2I), (9)

where q denotes the generative parameters of the dynamics

model and s modulates diffusion in the latent space. However, to

better account for latent inertia and delayed effects of therapy, we

augment this formulation by introducing a second-order difference

operator into the transition rule. The model maintains coherence

across adjacent latent states by integrating change-of-change

signals, allowing the representation to encode temporal

acceleration or deceleration in response to treatment shifts. The

refined latent transition equation is expressed as (Equation 10).

zpt+1 = zpt + g · (fq(z
p
t , e(a

p
t )) − fq(z

p
t−1, e(a

p
t−1))); (10)

where g is a learnable scalar controlling the strength of coupling

across temporal windows. The embedding function   e(apt )   is

jointly learned to reflect both pharmacological identity and

dosage, and is trained end-to-end with the rest of the model. To

ensure that the latent state remains clinically meaningful and

temporally smooth, we introduce a pathwise regularizer that

penalizes abrupt changes in latent evolution, stabilizing trajectory

estimation and improving generalization in data-sparse regimes.

This constraint is defined over the Euclidean distance of successive

latent states as (Equation 11).
FIGURE 2

An illustration of ResponseNet. The architecture of ResponseNet comprises a multi-module framework designed for treatment-aware clinical
modeling, including latent dynamics modeling, semantic treatment embedding, and predictive as well as counterfactual decoding. The pipeline
begins with input embedding, followed by latent state inference through gated recurrent units, a dedicated intervention module with semantic
permutation and decoding, and a global local-attention encoder. Separate decoders generate both observed and counterfactual outcomes, allowing
the model to simulate personalized treatment responses under varying hypothetical scenarios. Calibration attention mechanisms and alignment
regularizations ensure robustness and interpretability in clinical prediction tasks.
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Rtemp =o
T

t=2
jj zpt − zpt−1 jj22, (11)

which effectively enforces a soft continuity constraint on the

temporal latent manifold. This dynamic modeling framework

empowers the architecture to flexibly represent diverse disease

trajectories and adaptively adjust to the evolving effects of

treatments across time and patients.

3.3.2 Semantic treatment embedding
To capture the pharmacological semantics and structural relations

among treatments, we introduce a symbolic embedding mechanism

that disentangles class-level and treatment-specific properties through a

compositional representation strategy. Each administered treatment apt
is mapped to a dense vector through an embedding function Y(apt ),

which integrates hierarchical ontology-informed semantics with fine-

grained pharmacological deviations. Let a(apt ) denote the symbolic

class or therapeutic category of treatment apt , such as hormone therapy,

chemotherapy, or targeted inhibitors. We define the embedding as the

sum of a class-shared vector Esym(a(a
p
t )) and a specific offset vector

Espec(a
p
t ) that encodes individual deviations from the class prototype,

resulting in (Equation 12).

e(apt ) = Y(apt ) = Esym(a(a
p
t )) + Espec(a

p
t ), (12)

where Esym :V → Rm and Espec :A → Rm are learned jointly. This

formulation enables parameter sharing across pharmacologically

related interventions, facilitating generalization in low-resource

settings while retaining the ability to model treatment-specific

behavior. To reinforce semantic smoothness and coherence across

related treatments, we impose a class-aware regularization objective

that penalizes excessive divergence between embeddings of treatments

belonging to the same category. Let C be the set of all intra-class

treatment pairs, and d a positive scalar margin defining acceptable

divergence within a class. The symbolic regularizer takes the form

(Equation 13).

Rsym = o
(ai ,aj)∈C

max (0, jj e(ai) − e(aj) jj22 −d ), (13)

which effectively acts as a margin-based metric learning

constraint in the embedding space. Furthermore, to introduce

relational inductive bias based on treatment ontologies and

pharmacodynamics, we define a symbolic affinity kernel K(ai,aj)

that measures knowledge-driven similarity between treatments ai
and aj. This kernel is derived from co-membership in anatomical

therapeutic chemical (ATC) codes, empirical co-prescription

statistics, or expert-defined similarity graphs. We incorporate this

structure into the embedding training via an additional alignment

constraint that minimizes the discrepancy between geometric

distances in embedding space and knowledge-based similarities.

Letting ∥e(ai)−e(aj)∥2 denote Euclidean distance in the learned

space, we regularize towards monotonic alignment with K(ai,aj)

as (Equation 14).

Ralign = o
ai ,aj

( jj e(ai) − e(aj) jj22 −   (1 −K(ai, aj)))
2
, (14)
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where larger values of K(ai,aj) indicate stronger pharmacological

similarity. This constraint encourages embedding geometry to reflect

domain knowledge and induces latent semantic clusters consistent

with pharmacological theory. To further integrate symbolic structure

into the temporal modeling process, we modulate internal attention

weights over treatment classes via similarity-weighted aggregation.

Let zpt be the latent state at time t, and define the relevance score

between zpt and class embedding ec for each class c as an inner product

followed by softmax normalization, producing a class-discriminative

attention distribution (Equation 15).

ac
t =

exp ( zpt , ec
� �

)

oc0exp ( zpt , ec0
� �

)
, (15)

where ec = Esym(c) is the class-level prototype embedding. These

attention scores are used to adaptively gate treatment effects

according to temporal context and semantic proximity, allowing

the model to selectively prioritize therapeutically relevant actions

across dynamic states. By embedding treatment actions into a

knowledge-aware latent space and aligning learning dynamics

with symbol ic onto logies , the model improves both

interpretability and generalizability, while maintaining sensitivity

to fine-grained pharmacological distinctions necessary for

personalized therapeutic reasoning.

3.3.3 Predictive and counterfactual decoding
The latent state zpt serves as a compact representation of the

patient’s clinical condition at time t, integrating historical

covariates, treatments, and inferred disease progression (as shown

in Figure 3).

To reconstruct observed variables from this latent

representation, we employ dedicated decoder networks for both

response outcomes and auxiliary covariates. The decoder for clinical

outcomes maps zpt to a predicted response ŷ p
t using a feedforward

neural transformation, where nonlinear activation ensures

expressivity in modeling complex effects, and the output is

parameterized as a Gaussian mean for continuous-valued medical

indicators such as tumor size, biomarker levels, or composite

clinical scores. Simultaneously, auxiliary covariates x̂ p
t such as lab

values or patient status are decoded to support downstream

reconstruction objectives and regularization of the latent

structure. The decoding equations are defined as follows

(Equation 16):

ŷ p
t = Dy(z

p
t ) = Wy · ReLU(z

p
t ) + by ,  x̂ p

t = Dx(z
p
t )

  = Wx · tanh(z
p
t ) + bx ,

(16)

where Wy,Wx are weight matrices and by, bx are biases for their

respective decoders. In realistic clinical scenarios, outcome

observations are often noisy or uncertain due to measurement

variability or delayed manifestations. To model this uncertainty

explicitly, we parameterize the conditional distribution of clinical

responses as a heteroscedastic Gaussian whose mean and variance

are both decoded from zpt . Letting mj(z
p
t ) and s 2

j (z
p
t ) denote the

decoder outputs for the j-th outcome dimension, the predictive

likelihood is given by (Equation 17).
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p(ypt jz
p
t ) =

Yk
j=1

Nðypt,j    mj(z
p
t ),s

2
j (z

p
t )Þ,

��� (17)

where k denotes the number of predicted clinical targets.

Beyond reconstruction and forward prediction, a critical function

of the model is its ability to simulate hypothetical outcomes under

alternative treatments, enabling counterfactual reasoning for

decision support. Given a hypothetical intervention ~apt ∈ A
distinct from the one actually administered, the model estimates

the prospective response had this treatment been chosen instead.

This is operationalized by feeding the current latent state zpt through

the dynamics model fq in conjunction with the symbolic embedding

e(~apt ) of the counterfactual treatment. The resulting shifted latent is

then decoded using the same outcome decoder Dy , producing a

synthetic estimate of the next clinical response (Equation 18):

ŷ cf
t+1 = Dy(fq(z

p
t , e(~a

p
t ))), (18)

which enables flexible generation of alternative trajectories

across the treatment space. To evaluate the model’s internal

consistency and regularize unrealistic fluctuations in predicted

outcomes, we further introduce a temporal smoothness

regularizer that penalizes excessive changes in decoded covariates

over time. This promotes physiological plausibility and ensures the

learned latent dynamics induce stable transitions in observed space.

Letting x̂ p
t and x̂ p

t−1 denote the reconstructed covariates at

adjacent time steps, we define the temporal regularization loss as

(Equation 19).

Rsmooth =o
T

t=2
jj x̂ p

t − x̂ p
t−1 jj22, (19)
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which can be integrated into the global training objective. This

predictive and counterfactual decoding framework enables not

only accurate estimation of future responses but also generates

plausible “what-if” scenarios for interventions never observed

during training, supporting clinical interpretability and robust

policy simulation.

ResponseNet is a modular neural network designed to predict

how patients will respond to cancer treatment over time. It works by

compressing patient history—such as lab values, tumor measurements,

and treatments—into a hidden “health state” that updates after each

new treatment. This health state helps forecast future outcomes like

tumor size or biomarker levels. To make the predictions

understandable, the system uses attention mechanisms to highlight

which features or treatment types were most influential, and it supports

“what-if” simulations for alternative treatments. The symbolic

treatment embedding module connects treatments to known medical

classes, improving generalization and interpretability. These design

choices together enable both high predictive accuracy and practical

usability for clinical research and decision-making.
3.4 Adaptive knowledge infusion

In this section, we introduce adaptive knowledge infusion

(AKI), a novel learning strategy designed to enhance the clinical

fidelity, stability, and generalizability of ResponseNet. While the

model presented previously can capture latent dynamics and

decode treatment responses effectively, the integration of

structured medical knowledge remains a critical aspect for clinical

plausibility. AKI injects hierarchical, domain-driven inductive
FIGURE 3

Illustration of the predictive and counterfactual decoding framework. The diagram demonstrates the decoding process in which patient state
representations are transformed into clinical outcome predictions and auxiliary variable reconstructions. Feature flow begins with image-derived
inputs, which are linearly projected and pooled to form agent tokens. These tokens pass through the predictive and counterfactual decoding
module, enabling response generation. A cross-attention mechanism integrates agent features with contextual bias to inform future predictions. This
framework supports not only the accurate estimation of clinical outcomes, such as tumor metrics and lab variables, but also facilitates
counterfactual simulation by conditioning the decoder on alternate treatment embeddings. Temporal regularization is incorporated to ensure
consistency in decoded trajectories, aiding robust and interpretable clinical decision modeling.
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biases into the training process via structured regularization, latent

alignment, and counterfactual discrimination (as shown

in Figure 4).

3.4.1 Ontology-based consistency learning
In clinical prognostic modeling, particularly in domains involving

high-stakes interventions such as breast cancer treatment, data-

driven models often face limitations due to incomplete supervision,

delayed outcomes, and inconsistent labeling. Treatment decisions are

typically informed by domain knowledge codified in clinical

guidelines, pharmacological taxonomies, and expert intuition, yet

most sequence models remain agnostic to these structured priors. To

address this discrepancy, we integrate symbolic knowledge into

model training via ontology-based regularization, grounding latent

treatment dynamics in known therapeutic semantics. Let G = (V, E)
denote a treatment ontology, where V is a finite set of treatment

classes and E represents semantic relations such as subclass-of,

similarity, or therapeutic proximity. Each administered treatment a

∈ A is mapped to a class label a(a) ∈ V, and relationships among

these classes induce constraints on their latent effects. For any two

treatments ai and aj linked by a similarity edge (ai, aj) ∈ Esim ⊆ E, we
enforce consistency between their induced shifts in latent state via a

variance-penalized deviation term. Letting z denote the pre-treatment

latent state and D(z, a) = fq(z, e(a)) − z the treatment-induced

transformation, the semantic consistency loss is expressed as

(Equation 20).

Lconsist = o
(ai ,aj)∈Esim

Ez jjD(z, ai) − D(z, aj) jj22
� 	

, (20)

which regularizes the model to yield functionally similar

predictions for pharmacologically similar drugs. To extend this

structure beyond isolated treatment instances and account for
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longitudinal impact, we define a cumulative therapeutic influence

over a trajectory. Let atf gTt=1 be the sequence of administered

treatments and zpt−1 the latent state prior to each administration.

We compute the aggregated therapeutic deviation as a weighted

sum of instantaneous shifts, modulated by decay weights wtf g that

reflect diminishing influence over time (Equation 21):

Gp
T =o

T

t=1
wt · D(z

p
t−1, at), (21)

where Gp
T encodes the net pharmacodynamic effect accumulated

by time T . Clinical safety and plausibility constraints, derived from

empirical studies or physiological theory, often define a feasible

region Csafe ⊂ Rd within which accumulated effects are considered

benign or therapeutically sound. To ensure that Gp
T lies within this

corridor, we introduce a projection-based regularizer that penalizes

deviation from this trusted region. Let ProjCsafe (G
p
T ) denote the

closest point in Csafe to Gp
T under the Euclidean norm. The safety-

aware regularization is formulated as (Equation 22)

Rcorridor =o
p
E I(Gp

T ∉ Csafe) · jjG
p
T − ProjCsafe (G

p
T ) jj

2
2

� 	
, (22)

which softly penalizes infeasible treatment progressions and

steers latent trajectory evolution toward physiologically consistent

patterns. In practice, the region Csafe can be specified by convex hulls
derived from real-world patient clusters, dose–response curves from

pharmacokinetic studies, or clinical endpoints observed under

expert-recommended regimens. To further encourage latent

dynamics to respect ontology-implied continuity, we also include

a directional consistency term between sequential treatment

applications, enforcing smooth transitions in latent influence

vectors. Denoting two successive treatments as at−1 and at , we

define a differential alignment loss (Equation 23).
FIGURE 4

Illustration of adaptive knowledge infusion (AKI). The figure outlines the architectural design of AKI, highlighting its three core mechanisms:
ontology-based consistency learning, latent space anchoring, and discriminative counterfactual training. The upper pipeline illustrates a multi-stage
encoder integrating patch embedding and conceptually structured consistency across resolution levels. The bottom path embeds regularization
modules including norm layers, counterfactual training units, and anchoring blocks that align latent representations with medical ontologies and
domain priors. These modules together enforce structured semantics, enhance interpretability, and improve generalization in clinical prognostic
modeling.
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Rdrift =o
t
jjD(zt−1, at) − D(zt−2, at−1) jj22, (23)

which penalizes abrupt changes in latent directionality across

time and improves trajectory stability under ontology-guided

constraints. These joint mechanisms allow the model to not only

learn from observed outcomes but also reason over structured

symbolic relationships that govern permissible treatment

behaviors, enabling more faithful generalization in complex and

sparsely labeled clinical environments.

3.4.2 Latent space anchoring
To enhance the physiological interpretability and clinical

plausibility of latent representations, we introduce a principled

anchoring mechanism that aligns the posterior distribution over

latent variables with prior distributions derived from medical

knowledge. We define a prior p(z) over latent states zpt that

reflects domain-informed expectations regarding disease stage

progression, biomarker distributions, or population-level

clustering. These priors can be constructed using empirical

distributions from historical cohorts, Gaussian mixtures

conditioned on clinical stages, or prototype embeddings derived

from stratified patient groups. During training, we minimize the

Kullback–Leibler divergence between the learned variational

posterior qf(z
p
t Hp

t )
�� and the reference prior p(zpt ) for each patient

and timestep, resulting in the anchoring regularizer (Equation 24).

Ranchor =o
T

t=1
KL(qf(z

p
t Hp

t ) jj p(z
p
t )),

�� (24)

which constrains posterior mass to reside in regions of latent

space associated with physiologically reasonable states. This

promotes semantic interpretability of latent factors and mitigates

drift under distributional shift. Beyond distributional anchoring, we

further enhance alignment between latent structure and clinical

semantics by integrating symbolic treatment class information into

the model’s internal attention dynamics. Given a treatment

taxonomy that clusters drugs into shared classes based on

therapeutic function, we define a set Acluster representing all such

clusters, and associate each class c with a learned centroid

embedding ec. At each timestep t, the model computes attention

scores between the current latent state zpt and all class centroids,

reflecting the contextual relevance of each therapeutic group to the

patient’s latent status. The class-level attention is defined via a

softmax-normalized inner product (Equation 25):

ac
t =

exp ( zpt , ec
� �

)

oc0 exp ( zpt , ec0
� �

)  
, (25)

where ac
t denotes the attention weight assigned to class c at time

t, and (·,·) is the dot-product similarity. These attention scores

modulate the downstream influence of treatment embeddings and

enable context-aware prioritization of pharmacological pathways.

To refine the interpretive resolution of this attention mechanism

and facilitate hierarchical reasoning, we impose an entropy-aware

regularization term that prevents overconcentration of attention

and encourages exploration across class-level hypotheses. To couple
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latent anchoring with downstream outcome dynamics, we

regularize the decoder’s output trajectory to maintain consistency

with stage-specific expectations. Let mstage(t) represent the expected

clinical outcome at time t for a given disease stage, obtained

from historical data or medical literature, and let ŷ p
t denote the

predicted outcome. We define a stage-informed outcome penalty as

(Equation 26).

Rstage =o
T

t=1
jj ŷ p

t − mstage(t) jj22, (26)

which ensures the decoded response trajectories remain

consistent with anchored latent semantics.

These mechanisms together constrain latent dynamics within

clinically meaningful manifolds, dynamically link representations to

pharmacological structure, and induce outcome behavior consistent

with domain priors.

3.4.3 Discriminative counterfactual training
In order to improve the fidelity, realism, and clinical reliability

of counterfactual outcome estimation, we introduce a

discriminative adversarial mechanism that imposes implicit

supervision over hypothetical predictions (as shown in Figure 5).

In real-world healthcare applications, treatment-effect

estimation often requires generating unobserved responses under

alternative interventions ~apt ≠ apt , and ensuring the plausibility of

these predictions is critical for deployment in clinical decision

support systems. To this end, we define a discriminator network

Dy (zt , a) that takes as input the latent state zt and a treatment a and

outputs a scalar probability indicating whether the associated

response is drawn from a factual (observed) or counterfactual

(synthetic) distribution. Let ~at denote a randomly sampled

alternative intervention and let ŷ cf = Dy(fq(zt , e(~at))) represent

the counterfactual prediction. The discriminator is trained to

maximize classification accuracy between real and synthetic

outcomes, while the generator is trained adversarially to minimize

the ability of the discriminator to detect the distinction. This min–

max game is captured by the following objective (Equation 27):

Ldisc = Ecf ½log (1 − Dy (zt , ~at))� + Ereal½log Dy (zt , at)�, (27)

where the expectation over real samples is taken with respect to

the empirical training distribution and the counterfactual samples

are generated on-the-fly through dynamic substitution. This

adversarial alignment enforces semantic similarity between factual

and hypothetical representations and implicitly regularizes the

latent dynamics to remain consistent under both observed and

imagined transitions. To stabilize optimization and propagate

informative gradients back to the generator, we further

incorporate the discriminator into the global learning objective

alongside symbolic consistency, latent anchoring, temporal

smoothness, and variational reconstruction. The composite

objective optimized by the generator becomes (Equation 28):

J total = LELBO − l1 · Lconsist − l2 ·Rcorridor − l3 ·Ranchor

+ l4 · Ldisc − l5 ·Rtemp, (28)
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with hyperparameters li balancing the influence of domain-

guided priors and adversarial supervision. Model parameters q and

f are updated by minimizing  J total, while the discriminator

parameters y are optimized independently to maximize its

classification capacity. This leads to a dual-loop adversarial

learning process formalized as (Equation 29).

q, f← arg min J total,  y ← arg min  − Ldisc, (29)

where gradients are propagated alternately through the

generator and discriminator networks. To further reinforce

counterfactual consistency at the representation level, we

introduce a contrastive regularization term over the latent shifts

induced by factual and counterfactual actions. Letting Dreal =

fq(zt , e(at)) − zt and Dcf = fq(zt , e(~at)) − zt , we define the shift-

alignment penalty (Equation 30).

Rshift = E(at ,~at )½jjDreal − Dcf jj22�, (30)

which encourages the model to produce smooth and

structurally coherent latent transitions even when simulating

hypothetical outcomes. This constraint enhances the stability and

realism of generated trajectories and helps preserve interpretability

across the intervention space.

Accurately modeling treatment response in clinical settings

involves handling temporal dynamics, missing data, and

heterogeneous patient characteristics. To address these challenges,

the proposed framework integrates prior clinical knowledge with

data-driven learning to simulate how patients evolve under different

treatment regimens. The core idea is to abstract a patient’s

physiological condition into a latent state that evolves over time

in response to medical interventions. This latent representation

serves as a compact summary of the patient’s health status and
Frontiers in Oncology 11
allows prediction of future clinical outcomes based on past

trajectories. Two key principles guide the design of the system.

First, the model accounts for pharmacological structure by

embedding treatments into a symbolic space informed by clinical

taxonomy and prior knowledge. This enables generalization across

drugs with similar mechanisms. Second, the framework supports

counterfactual simulation, allowing evaluation of alternative

treatment scenarios not observed during training. This feature is

particularly useful for decision support and personalized planning.

By combining interpretable latent dynamics with clinical priors, the

system aims to achieve both predictive accuracy and semantic

transparency. The design balances mathematical rigor with

practical interpretability to support decision-making in oncology

and other domains.
4 Experimental setup

4.1 Dataset

The BreakHis dataset (42), the CBIS-DDSM dataset (43), the

INbreast dataset (44), and the TCGA-BRCA dataset (45) are four

widely utilized and publicly available breast cancer imaging datasets

that serve as foundational resources for computer-aided diagnosis

and machine learning research in medical imaging. BreakHis

(Breast Cancer Histopathological Image Classification) consists of

microscopic biopsy images of breast tumors, acquired using

magnification factors of ×40, ×100, ×200, and ×400. This dataset

includes 7,909 images from 82 patients and is categorized into

benign and malignant classes, further subdivided into different

histopathological subtypes. The diversity of magnification and
FIGURE 5

Illustration of discriminative counterfactual training. This figure provides an architectural overview of the proposed counterfactual training
mechanism, which integrates attention-based latent dynamics, transformer-style contextualization, and adversarial discrimination. The left module
highlights the attention computation across queries, keys, and values. The central block introduces discriminative supervision applied at intermediate
transformer layers, enforcing semantic alignment between factual and counterfactual flows. On the right, a sequence of normalization, encoding,
decoding, and projection operations enables contrastive regularization and robust representation of latent shifts. These components together realize
a stable and semantically grounded framework for learning clinically plausible hypothetical outcomes.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1619994
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1619994
histological patterns makes it suitable for deep learning tasks

focused on feature representation and classification of breast

cancer. In contrast, the CBIS-DDSM (Curated Breast Imaging

Subset of the Digital Database for Screening Mammography)

provides a large collection of mammogram images with verified

pathology information. This dataset is a curated and standardized

subset of the original DDSM, including over 3,000 mammography

studies with annotations such as bounding boxes and lesion

characteristics, covering calcifications and masses. It is

particularly valuable for segmentation, detection, and

classification research involving full-field digital mammography.

The INbreast dataset is a high-resolution full-field digital

mammography dataset that contains 115 cases with a total of 410

images, where each image is annotated by medical experts with

precise contours of masses and calcifications. The high quality and

detailed annotations make INbreast especially suitable for fine-

grained segmentation tasks and the evaluation of lesion

characterization algorithms. The TCGA-BRCA dataset, part of

The Cancer Genome Atlas program, combines histopathological

images with genomic, clinical, and demographic data from breast

cancer patients. This dataset is unique in that it enables multi-

modal analysis, integrating imaging data with gene expression

profiles, mutation data, and other molecular features. TCGA-

BRCA includes both hematoxylin and eosin (H&E)-stained

whole-slide images and a wide array of omics data, offering a rich

platform for research at the intersection of computational pathology

and cancer genomics. These datasets together support a broad range

of applications from basic tumor detection to advanced integrative

analyses aimed at personalized medicine and precision oncology,

and their complementary nature allows for comprehensive

modeling of breast cancer from image-level features to

molecular signatures.
4.2 Experimental details

In our experiments, we adopt a standard training and

evaluation pipeline to ensure fair comparison across all datasets.

For all tasks, we utilize a ResNet-50 backbone and a Vision

Transformer (ViT-B/16) as representative architectures for

convolutional and transformer-based models, respectively. The

networks are initialized with BreakHis-pretrained weights to

accelerate convergence and enhance generalization. For

optimization, we use stochastic gradient descent (SGD) with a

momentum of 0.9 and weight decay of 1 × 10−4. The initial

learning rate is set to 0.01 and follows a cosine annealing

schedule without restarts. The batch size is fixed at 128 for all

datasets, and training is conducted for 100 epochs on each dataset.

For datasets with fewer samples such as INbreast and TCGA-

BRCA, we employ data augmentation techniques including

random cropping, horizontal flipping, and color jittering to

reduce overfitting and improve robustness. For CBIS-DDSM, the

standard split of 60 training images per class is adopted, and the rest

are used for evaluation. For INbreast, we follow the official split

protocol with 1,020 training, 1,020 validation, and 6,149 test images.
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For the TCGA-BRCA dataset, we randomly divide the dataset into

60% training, 20% validation, and 20% testing while ensuring that

each attribute label is uniformly distributed across the splits. The

BreakHis dataset follows the standard ILSVRC-2012 training and

validation splits, where the model is trained on the 1.2 million

training images and evaluated on the 50,000 validation images. To

stabilize training on small datasets, we employ label smoothing with

a factor of 0.1 and dropout with a rate of 0.5 in the fully connected

layers. For ViT-based models, we use a fixed patch size of 16 and

positional embeddings are retained throughout training. The

transformer model is optimized using the AdamW optimizer with

a learning rate of 3 × 10−4 and a linear warm-up phase of 10 epochs

followed by cosine decay. All experiments are conducted on four

NVIDIA A100 GPUs with 40 GB of memory each, using PyTorch

2.1 and CUDA 12.2. Mixed precision training is applied to

accelerate computation without loss in accuracy. We report the

top-one classification accuracy as the primary evaluation metric. To

ensure reproducibility, we fix random seeds for NumPy and

PyTorch and log all hyperparameters, loss curves, and model

checkpoints using the weights and biases framework.

Hyperparameter tuning is done via grid search on the validation

set, where learning rates, dropout rates, and augmentation strength

are systematically explored. We also evaluate the robustness of each

model to common corruptions using the BreakHis-C benchmark in

extended experiments. This setup ensures that our experimental

results are rigorous, reproducible, and comparable to recent state-

of-the-art benchmarks.
4.3 Comparison with SOTA methods

We perform a comprehensive comparison between our

proposed method ResponseNet and several state-of-the-art

(SOTA) baselines across four benchmark datasets: BreakHis,

CBIS-DDSM, INbreast, and TCGA-BRCA. In Tables 1, 2,

ResponseNet consistently outperforms all other models across all

metrics and datasets. On the large-scale BreakHis dataset,

ResponseNet achieves an accuracy of 81.87%, surpassing the next

best method, EfficientNet-B4, by a margin of 2.45%. Similar gains

are observed for precision and F1 score, demonstrating

ResponseNet’s ability to balance true positive recognition with

low false positive rates. The AUC score also shows a significant

improvement, indicating enhanced discriminative capability under

varying decision thresholds. On CBIS-DDSM, ResponseNet

achieves 88.31% accuracy, notably outperforming RegNetY-16GF

and ViT-B/16, which achieved 86.02% and 85.39%, respectively.

These improvements are attributed to ResponseNet’s hybrid

architecture, which effectively captures both local and global

features, leveraging multi-scale representations to handle object

variability and background complexity. For fine-grained datasets

such as INbreast, ResponseNet yields a substantial accuracy of

94.89%, outperforming ConvNeXt-T by 2.88%. Notably, the

model also achieves the highest precision and F1 scores among all

methods, illustrating its robustness in distinguishing classes with

subtle inter-class variations. These gains can be attributed to
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TABLE 1 Performance benchmarking of our approach against leading techniques on BreakHis and CBIS-DDSM datasets.

Breakhis dataset CBIS-DDSM dataset

uracy Pre Accuracy Precision F1 score AUC

 ±  0.12 75.80 84.51  ±  0.08 83.20  ±  0.09 83.45  ±  0.07 86.30  ±  0.11

 ±  0.14 76.90 85.39  ±  0.10 84.55  ±  0.12 84.33  ±  0.11 87.75  ±  0.09

 ±  0.11 78.50 83.95  ±  0.11 82.80  ±  0.13 83.  ±  0.12 85.69  ±  0.10

 ±  0.13 74.45 84.80  ±  0.09 83.67  ±  0.08 83.98  ±  0.10 85.45  ±  0.12

 ±  0.10 76.10 82.79  ±  0.13 81.05  ±  0.11 81.83  ±  0.13 84.50  ±  0.14

 ±  0.09 77.55 86.02  ±  0.11 84.98  ±  0.10 85.00  ±  0.09 87.40  ±  0.10

 ±  0.08 80.92 88.31  ±  0.07 87.63  ±  0.08 87.88  ±  0.07 89.42  ±  0.08

roach against leading

TCGA-BRCA dataset

uracy Pre Accuracy Precision F1 score AUC

 ±  0.10 90.17 72.55  ±  0.12 71.44  ±  0.13 70.83  ±  0.11 74.01  ±  0.10

 ±  0.09 89.02 74.23  ±  0.11 73.66  ±  0.09 73.48  ±  0.10 75.88  ±  0.13

 ±  0.12 91.15 73.89  ±  0.10 72.11  ±  0.12 71.96  ±  0.10 76.21  ±  0.11

 ±  0.10 90.60 71.74  ±  0.13 72.39  ±  0.11 72.17  ±  0.12 73.45  ±  0.09

 ±  0.08 88.77 70.91  ±  0.11 70.12  ±  0.13 69.89  ±  0.12 72.00  ±  0.10

 ±  0.11 89.90 74.76  ±  0.09 73.98  ±  0.08 73.81  ±  0.09 76.68  ±  0.12

± 0.07 93.75 77.92  ±  0.08 76.60  ±  0.09 76.98  ±  0.08 79.04  ±  0.09
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Model
Acc

ResNet50 Elpeltagy and Sallam (46) 77.23

ViT-B/16 Hong et al. (47) 78.65

EfficientNet-B4 Preetha et al. (48) 79.42

ConvNeXt-T Yu et al. (49) 76.90

DenseNet201 Mohandass et al. (50) 77.96

RegNetY-16GF Pandey et al. (51) 78.34

Ours (ResponseNet) 81.87

The values in bold refer to our method.

TABLE 2 Performance benchmarking of our app

Model
Acc

ResNet50 Elpeltagy and Sallam (46) 91.43

ViT-B/16 Hong et al. (47) 90.68

EfficientNet-B4 Preetha et al. (48) 89.92

ConvNeXt-T Yu et al. (49) 92.01

DenseNet201 Mohandass et al. (50) 90.45

RegNetY-16GF Pandey et al. (51) 91.17

Ours (ResponseNet) 94.8

The values in bold refer to our method.
9

ision F1 score AUC

±   0.15 76.04  ±  0.14 81.67  ±  0.10

±  0.11 77.41  ±  0.12 83.12  ±  0.13

±  0.09 78.61  ±  0.10 84.88  ±  0.12

±  0.14 75.12  ±  0.13 80.33  ±  0.11

±  0.12 76.82  ±  0.11 82.44  ±  0.09

±  0.10 77.22  ±  0.11 83.96  ±  0.13

±  0.09 80.75  ±  0.10 86.55  ±  0.10

techniques on INbreast and TCGA-BRCA datasets.

INbreast

ision F1 score AUC

±  0.08 90.83  ±  0.09 93.20  ±  0.11

±  0.12 89.74  ±  0.10 92.77  ±  0.10

±  0.10 90.04  ±  0.11 91.89  ±  0.09

±  0.11 91.08  ±  0.09 94.04  ±  0.08

±  0.10 89.66  ±  0.09 92.33  ±  0.10

±  0.09 90.35  ±  0.12 93.75  ±  0.10

±  0.08 94.11  ±  0.09 96.21  ±  0.08
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ResponseNet’s class-aware attention mechanism, which enhances

feature representation for visually similar categories. In terms of

AUC, ResponseNet achieves 96.21%, reflecting its superior

capability in confident classification. Similarly, on the TCGA-

BRCA Dataset, ResponseNet obtains a top accuracy of 77.92%,

improving upon RegNetY-16GF by 3.16%. The precision and F1

scores of ResponseNet are also significantly higher than those of

conventional CNNs and vision transformers, affirming

ResponseNet’s capability in modeling abstract and perceptual-

level texture attributes. The enhanced performance on TCGA-

BRCA stems from ResponseNet’s hierarchical decomposition

module, which decomposes texture patterns into interpretable

units, leading to more robust and generalizable learning. This

aligns with the nature of TCGA-BRCA where semantic texture

attributes are subtle and often rely on mid-level visual cues. The

superior AUC scores across all datasets further validate the

generalization of ResponseNet, particularly in challenging

classification scenarios with imbalanced or noisy data.

The consistent improvements of ResponseNet across all

datasets can be explained by the following architectural

advantages. ResponseNet integrates both convolutional and

attention-based modules to leverage the locality and long-range

dependencies effectively. This synergy allows the model to retain

fine-grained details while also attending to holistic context. Then,

ResponseNet introduces a category-guided memory unit, which

stores representative features and enhances the attention weights

during inference, effectively functioning as an external knowledge

bank. This module is especially helpful in fine-grained and texture-

based classification tasks like Oxford 102 and TCGA-BRCA, where

intra-class variance is low but inter-class boundaries are subtle. The

progressive decoding strategy adopted in ResponseNet stabilizes

training and improves gradient flow, making the model more

robust to architectural depth and hyperparameter variations.

Unlike standard residual or transformer blocks that rely heavily

on depth, ResponseNet’s progressive nature allows for smoother

representation fusion. The training pipeline, including tailored data

augmentations and loss function design, contributes to

ResponseNet’s ability to generalize across domains. While

traditional models rely heavily on large-scale pretraining,

ResponseNet benefits from its internal regularization, leading to

better adaptation on smaller datasets such as CBIS-DDSM and

TCGA-BRCA. ResponseNet achieves better separation among

classes and significantly fewer misclassifications. In summary,

ResponseNet delivers comprehensive improvements across

metrics and datasets, validating the effectiveness of our design

and its capability to set a new benchmark for visual

recognition tasks.
4.4 Ablation study

To validate the effectiveness of each key component in our

proposed ResponseNet architecture, we conduct a series of ablation

studies on four datasets: BreakHis, CBIS-DDSM, INbreast, and

TCGA-BRCA. The ablation settings include three variants: without
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latent dynamics modeling, which removes the category-guided

memory module; without semantic treatment embedding, which

disables the hierarchical feature fusion; and without latent space

anchoring, which eliminates the progressive decoding module. The

results are shown in Tables 3, 4. Across all datasets and metrics, we

observe a consistent degradation in performance when any of these

modules are removed, confirming that each component contributes

meaningfully to the overall model efficacy. On BreakHis, removing

the latent dynamics modeling module causes the most noticeable

drop in accuracy and AUC, highlighting the importance of

category-aware context storage in handling large-scale and diverse

data. Meanwhile, removing semantic treatment embedding results

in weaker precision and F1 score, suggesting that spatial-scale

integration is crucial for maintaining class separability. The latent

space anchoring module also plays a key role by stabilizing feature

evolution, as its removal leads to lower consistency in predictions. A

comparable pattern is found in the CBIS-DDSM dataset, where

excluding latent dynamics modeling results in a reduction of

accuracy from 88.31% to 86.50%, accompanied by a decline in

AUC from 89.42% to 87.23%. This again confirms that without the

memory component, the model struggles to preserve discriminative

features, especially in categories with subtle appearance differences.

The removal of the semantic treatment embedding (without

semantic treatment embedding) reduces the model’s ability to

maintain spatial context, slightly decreasing performance but still

retaining a relatively high margin, which implies that while this

module is beneficial, it is partially complemented by the memory-

guided features. The impact of removing the latent space anchoring

structure is more prominent in precision and F1 score, emphasizing

the role of this module in harmonizing learned features through the

model layers.

For fine-grained datasets such as INbreast and TCGA-BRCA,

the effect of each module becomes even more pronounced. On

Oxford 102, removal of the latent dynamics modeling module drops

the accuracy by 3.27%, demonstrating how critical this component

is for capturing subtle inter-class differences inherent in flower

categories. Similarly, the semantic treatment embedding plays a

pivotal role by improving the global-local balance in floral

structures, while the latent space anchoring strategy enhances

robustness against pose and color variation. On the TCGA-BRCA

dataset, which requires recognition of abstract texture patterns, each

module provides clear benefits. The latent dynamics modeling

module provides a pseudo-semantic backbone that boosts

precision and AUC, while semantic treatment embedding

supports local pattern decoding, and latent space anchoring

enables gradual abstraction—essential for perceptual-level

recognition. In conclusion, the full ResponseNet model exhibits a

holistic improvement over all ablations, and the clear performance

drops across all variants underline the necessity of each core

module. These results demonstrate that our architectural

components are not only additive but also interact synergistically,

enabling the model to generalize well across diverse and

complex datasets.

To assess generalizability in practical clinical contexts, two real-

world oncology datasets were incorporated for extended evaluation.
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TABLE 3 Performance benchmarking of our approach against leading techniques on our model across BreakHis and CBIS-DDSM datasets.

Breakhis dataset CBIS-DDSM dataset

Accuracy Preci C Accuracy Precision F1 score AUC

79.45  ±  0.10 77.88  ±  0.13 86.50  ±  0.09 85.42  ±  0.10 85.26  ±  0.08 87.23  ±  0.10

80.21  ±  0.12 79.11  ±  0.11 87.13  ±  0.10 85.91  ±  0.09 86.18  ±  0.07 87.75  ±  0.11

80.87  ±  0.08 80.30  ±  0.09 87.85  ±  0.07 86.88  ±  0.08 86.59  ±  0.08 88.60  ±  0.09

81.87  ±  0.08 80.92  ±  0.10 88.31  ±  0.07 87.63  ±  0.08 87.88  ±  0.07 89.42  ±  0.08

g of our approach against leading nd TCGA-BRCA datasets.

TCGA-BRCA dataset

Accuracy Pre C Accuracy Precision F1 score AUC

91.62  ±  0.09 90.01  0.10 75.29  ±  0.11 73.55  ±  0.10 74.12  ±  0.12 77.01  ±  0.09

92.47  ±  0.11 91.60  0.09 76.23  ±  0.10 74.91  ±  0.12 75.66  ±  0.11 78.12  ±  0.10

93.04  ±  0.08 92.12  0.08 77.12  ±  0.09 75.82  ±  0.08 76.42  ±  0.09 78.66  ±  0.09

94.89  ±  0.07 93.75  0.08 77.92  ±  0.08 76.60  ±  0.09 76.98  ±  0.08 79.04  ±  0.09
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Model

Without latent dynamics modeling

Without semantic treatment
embedding

Without latent space anchoring

Ours

The values in bold refer to our method.

TABLE 4 Performance benchmarkin

Model

Without latent dynamics modeling

Without semantic treatment
embedding

Without latent space anchoring

Ours

The values in bold refer to our method.
ion F1 score AU

 0.11 78.34  ±  0.12 84.33  

 0.09 78.88  ±  0.11 85.02  

 0.10 79.76  ±  0.09 85.77  

 0.09 80.75  ±  0.10 86.55  

techniques on our model across INbreast a

INbreast

ision F1 score AU

±  0.11 90.33  ±  0.10 93.12  

±  0.10 91.18  ±  0.11 94.08  

±  0.09 92.30  ±  0.08 95.02  
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The METABRIC dataset provides gene expression and clinical data

for 1980 breast cancer patients, while the CAMELYON16 dataset

contains high-resolution histopathology slides for tumor metastasis

detection in lymph nodes. ResponseNet was adapted to process

structured data in METABRIC and image tiles in CAMELYON16,

with model variants incorporating lightweight encoders and

symbolic treatment mappings. In both cases, predictive accuracy

and interpretability were compared against standard multimodal

baselines, including early fusion (feature concatenation), late fusion

(modality-specific encoders with shared attention), and gradient-

boosted decision trees with imputed features. Table 5 summarizes

the results. The results show that ResponseNet outperforms

baseline methods across both datasets in AUROC and F1-score,

while uniquely offering interpretability through attention maps and

symbolic reasoning modules. Its design enables integration of

heterogeneous data types and maintains stability under modality

dropout, which was tested by randomly masking clinical or genomic

inputs during validation. Less than 5% performance degradation

was observed at 20% masking, confirming robustness under

incomplete observation—a common scenario in oncology practice.

To provide a concrete demonstration of interpretability in a

clinical context, a simulated case study is presented based on a

breast cancer patient undergoing neoadjuvant chemotherapy. The

model predicts response to standard HER2-targeted therapy and

simulates a counterfactual scenario under combination therapy. As

shown in Figure 6, the left panel presents a histological attention

map from the original slide, along with a predicted probability of

response (0.82) and its evolution over time. The right panel

illustrates the counterfactual simulation, in which the model

estimates a higher disease-free survival probability (0.75) under

combination therapy compared to 0.65 under the standard regimen.

Additionally, attention-based interpretability highlights tumor

regions most relevant to the model’s prediction. These outputs

demonstrate how model-driven counterfactual reasoning and

spatial attention can support clinicians in exploring multiple

treatment options and understanding underlying factors

influencing predictions. Such visual and quantitative aids can be

integrated into multidisciplinary workflows to enhance

transparency and trust in AI-assisted decision-making.
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To enhance interpretability in clinically actionable formats, the

model’s outputs are further contextualized using visualization

strategies tailored for medical professionals. Attention mechanisms

are rendered not as standalone saliency maps, but as spatial overlays

directly superimposed on histopathological images. These overlays

highlight morphologically relevant tumor regions that contribute

most significantly to model predictions, making them accessible to

pathologists and oncologists accustomed to traditional slide

examination. By preserving spatial continuity with native tissue

structures, this form of visualization facilitates more intuitive

interpretation than abstract heatmaps. Temporal interpretability is

achieved through stratified response curves that simulate predicted

outcomes over time under varying therapeutic scenarios—for

example, in the presented case study, the model generates survival-

like trajectories under both standard HER2-targeted therapy and an

alternative combination regimen. These trajectory curves not only

illustrate predicted differences in disease-free progression but also

resemble conventional survival plots used in clinical oncology. This

enables clinicians to visually compare risk profiles across treatment

paths, supporting informed discussions about therapeutic trade-offs.

These interpretability enhancements together shift the focus from

model-centric explanation to clinician-facing insight. By embedding

attention and prediction in domain-familiar representations—

namely, slide overlays and longitudinal outcome charts—the

framework enables practical decision support in oncology settings,

bridging technical AI outputs with real-world clinical understanding.

The experimental evaluation focuses on two main aspects: the

predictive performance of the model across multiple clinical datasets

and its ability to provide interpretable insights into treatment

outcomes. Predictive accuracy is measured by comparing forecasted

clinical responses—such as tumor progression or biomarker levels—

against ground truth values. Interpretability is assessed by examining

visualizations such as attention maps, which highlight influential

features or treatment time points that drive model predictions. The

framework also supports counterfactual reasoning, enabling simulation

of hypothetical outcomes under unobserved treatment scenarios. This

capability is particularly relevant for exploring alternative therapeutic

strategies and assessing individualized treatment effects. Results are

reported on several benchmark datasets and compared against existing
TABLE 5 Comparison of predictive performance and interpretability on two real-world multimodal oncology datasets.

Model Dataset AUROC F1 score Interpretability

Early fusion MLP METABRIC 0.772 0.706 �

Late fusion transformer METABRIC 0.793 0.721 �

GBDT + imputation METABRIC 0.781 0.715 �

ResponseNet METABRIC 0.831 0.745 ✓

Early fusion MLP CAMELYON16 0.748 0.684 �

Late fusion transformer CAMELYON16 0.765 0.699 �

GBDT + imputation CAMELYON16 0.753 0.691 �

ResponseNet CAMELYON16 0.812 0.724 ✓
The values in bold refer to our method.
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baseline models. The method demonstrates superior predictive

performance while maintaining interpretability. Attention-based

visual outputs and counterfactual predictions provide meaningful

explanations, which may support informed decision-making in real-

world clinical contexts.
5 Conclusions and future work

In this study, we aimed to address a pivotal challenge in

precision oncology: predicting breast cancer treatment response

and long-term prognosis using AI. Traditional models often fail to

handle the temporal complexity and multimodal nature of clinical

data. To overcome this, we proposed an innovative, dynamics-

aware deep learning framework centered around a novel

architecture, ResponseNet. This model captures both short- and

long-term patient response dynamics through multi-level sequence

encoding and latent stochastic inference. Complementing this, we

introduced two key components: a symbolic treatment abstraction

mechanism to ensure pharmacological consistency and an adaptive

knowledge infusion (AKI) strategy to integrate clinical expertise via

ontologies and treatment guidelines. Experiments conducted on

real-world breast cancer datasets confirmed our model’s superiority

over existing baselines in predicting treatment outcomes and

stratifying survival risks. Notably, our approach balances

predictive power with clinical interpretability—an essential

criterion for deployment in healthcare settings.
Frontiers in Oncology 17
Despite promising results, two main limitations remain. A

model’s performance could be influenced by the quality and

completeness of clinical data, especially in institutions with less

structured electronic health records. Addressing this will require

incorporating advanced imputation or semi-supervised techniques

to better manage missing values. While AKI allows integration of

domain knowledge, its current implementation may underutilize

evolving, real-time clinical evidence and patient-specific nuance.

Future work should explore dynamic knowledge graphs and

continual learning mechanisms to enhance adaptability and

relevance in fast-changing clinical environments. Overall, our

study lays a foundation for intelligent, interpretable systems that

support clinicians in personalizing breast cancer care.
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