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Introduction: Accurate prediction of treatment response and prognosis in breast
cancer patients is critical to advance personalized medicine and optimize
therapeutic decision-making. Within the context of Al-enabled healthcare,
there remains a pressing need to develop robust, interpretable models that can
account for the temporal complexity and heterogeneity inherent in longitudinal
patient data.

Methods: This study proposes a novel framework designed to model patient-
specific treatment trajectories using a dynamics-aware, deep sequence learning
architecture. Aligned with the core themes of computational prognostics and
precision therapy, our method addresses the challenges posed by variable
patient responses, missing clinical records, and complex pharmacological
interactions. Existing approaches, including conventional supervised learning
and static classification models, often fall short in capturing the underlying
temporal dependencies, multimodal data fusion, and counterfactual reasoning
necessary for real-world clinical deployment. These limitations hinder
generalizability, especially in scenarios where treatment outcomes are delayed
or weakly annotated. In contrast, our approach integrates recurrent modeling,
attention mechanisms, and uncertainty quantification to better capture the
evolving nature of patient health trajectories. Moreover, we incorporate
domain-informed regularization techniques and causal inference modules to
improve interpretability and clinical relevance.

Results and Discussion: By learning temporal dynamics in a personalized
manner, the proposed model enhances predictive performance while
remaining sensitive to patient-specific variations and therapeutic regimens.
Through extensive validation on real-world breast cancer cohorts, we
demonstrate that our framework not only outperforms existing baselines but
also provides actionable insights that can inform adaptive treatment planning and
risk stratification.
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1 Introduction

Breast cancer continues to be a primary contributor to cancer-
associated illness and death among women on a global scale. Accurate
prediction of treatment response and patient prognosis is essential to
improving therapeutic strategies and clinical outcomes (1).
Traditionally, such predictions have relied heavily on histopathological
examination, molecular subtyping, and clinical staging; however, these
approaches are often limited by inter-observer variability and
incomplete capture of tumor heterogeneity. With the advent of digital
pathology and the availability of high-resolution whole-slide images
(WSIs), artificial intelligence (AI) offers a transformative opportunity
(2). Not only can Al-driven image classification systems process vast
amounts of image data with high consistency, but they can also uncover
complex patterns that may not be perceptible to human experts.
Moreover, these techniques enhance predictive accuracy by integrating
morphological cues with computational precision, enabling clinicians to
tailor treatments based on a more robust risk stratification (3).
Therefore, developing Al-based models for image classification is not
only necessary for optimizing individualized breast cancer therapy but
also critical in advancing precision oncology.

Early computational strategies for analyzing histopathological
images relied on predefined morphological descriptors and diagnostic
protocols (4). These systems extracted interpretable characteristics—
such as nucleus size, texture, and spatial arrangement—from tissue
samples to support rule-based classification or grading (5). While these
approaches aligned with traditional pathology workflows and offered
transparency, they were limited in flexibility and struggled to capture
the subtle and variable visual features present in large-scale WSIs. In
particular, their performance was susceptible to staining
inconsistencies, tumor heterogeneity, and variability across datasets (6).

As digital pathology advanced, researchers introduced more
adaptable models capable of recognizing patterns directly from
labeled examples (7). These methods employed classification
algorithms trained on manually extracted features, allowing systems
to differentiate tumor subtypes or predict outcomes with improved
accuracy (8). Approaches such as support vector machines and
ensemble classifiers demonstrated practical utility in medium-sized
datasets and well-curated research cohorts. However, they still relied
on handcrafted feature extraction pipelines, which imposed
constraints on scalability and made it difficult to generalize findings
across institutions or patient populations (9).

Recent innovations have led to end-to-end learning frameworks
that automatically derive predictive representations from raw
pathology images (10). Deep neural networks—particularly
convolutional architectures and attention-based models—have
enabled a patch-level analysis of WSIs, learning discriminative
features that correspond to prognostic markers (11). These
systems support the integration of contextual information and
facilitate downstream tasks such as survival analysis, molecular
subtype inference, and therapy response prediction (12). Despite
achieving state-of-the-art performance, challenges remain in
interpretability, computational demand, and the need for
annotated training data. As a response, the development of
explainable and resource-efficient architectures is gaining
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momentum, aiming to balance clinical reliability with the
scalability of deep learning in pathology (13).

In clinical oncology, various biochemical parameters are
routinely used for early tumor detection and monitoring.
Radenkovic et al. highlighted the diagnostic significance of matrix
metalloproteinases (MMP-2 and MMP-9) in basal-like breast
cancer, reflecting their association with tumor invasiveness and
progression (14). Another study by Radenkovic et al. emphasized
the role of oxidative stress-related enzymes such as lactate
dehydrogenase (LDH), catalase, and superoxide dismutase (SOD)
in tumor tissues, showing that their expression levels correspond
with mammographic findings and tumor characteristics (15). Jurisic
et al. further discussed the clinical relevance of LDH as a tumor
biomarker, summarizing its biochemical behavior and potential in
oncological diagnostics (16). In addition to biochemical assessment,
morphological analysis remains crucial. The study by Radenkovic
et al. demonstrated that correlating mammographic images with
histopathological findings in HER2-positive breast cancer provides
deeper diagnostic insights, emphasizing the need for integrated
diagnostic approaches (17).

While prior studies have demonstrated significant progress in
applying deep learning to cancer diagnostics, several challenges
remain unaddressed. Traditional symbolic systems often lack
flexibility, machine learning approaches are highly feature-
dependent, and deep learning models—though powerful—
frequently suffer from a lack of interpretability, limiting their
adoption in clinical workflows. To address these limitations, we
propose a novel hybrid approach that leverages the interpretability
of symbolic reasoning with the scalability of deep learning. Our
method incorporates a modular Al architecture that integrates
pathology-informed feature extraction with transformer-based
visual encoders and an attention-guided prognosis predictor. By
combining domain knowledge with data-driven inference, this
system not only enhances accuracy but also enables interpretability
through visual attention maps and feature attribution techniques.
Our approach is designed to operate across different clinical settings
and cancer subtypes, promoting generalizability and robustness. This
hybrid methodology aims to bridge the gap between accuracy and
trustworthiness in clinical AI applications, ultimately supporting
oncologists in devising personalized treatment regimens and
improving patient outcomes.

The main contributions of this work are as follows:

*  We propose a novel dual-module framework that integrates
symbolic feature extraction with deep visual embeddings,
enabling interpretable and accurate prediction of breast
cancer treatment response.

* Our method supports multiple clinical scenarios and
subtypes by employing a flexible architecture that
generalizes across histopathology datasets with minimal
performance degradation.

* Experimental results on benchmark datasets demonstrate a
significant improvement in prediction accuracy (up to 12%
gain) over existing methods while maintaining
interpretability through integrated attention maps.
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2 Related work

2.1 Deep learning for histopathology
analysis

A central research direction in predicting breast cancer treatment
response using Al involves deep learning techniques applied to
histopathological images (18). Histopathology, particularly
hematoxylin and eosin (H&E)-stained slides, remains a gold
standard in cancer diagnosis and is widely accessible. Convolutional
neural networks (CNNs) have demonstrated notable performance in
tasks such as tumor classification, segmentation, and grading (19).
Pioneering works like that of Coudray et al. (20) on lung cancer laid the
foundation for similar approaches in breast cancer (21). In this domain,
deep learning models are trained on large annotated image datasets to
recognize morphological features that correlate with treatment
outcomes or overall prognosis. A significant body of literature has
explored the application of CNNs to distinguish between different
breast cancer subtypes, such as invasive ductal carcinoma versus
lobular carcinoma, and to predict molecular markers HER2, ER, and
PR status (22). Models such as ResNet and DenseNet have been
adapted and fine-tuned to extract both low-level texture features and
high-level morphological patterns. Moreover, multiple instance
learning (MIL) frameworks have been employed to account for the
weakly labeled nature of whole slide images, where only slide-level
labels are available without pixel-level annotations (23). Another key
development is the integration of patch-level analysis and whole-slide-
level aggregation using attention mechanisms or transformer-based
architectures. These models enable the network to focus on
diagnostically relevant regions, thereby improving prediction
accuracy and interpretability—for example, attention-based MIL has
been shown to provide heatmaps highlighting tumor-infiltrating
lymphocytes or necrotic regions, both of which are relevant to
prognosis and treatment response (24). Datasets such as
CAMELYON16, TCGA, and BACH provide valuable benchmarks
for model training and evaluation. However, the heterogeneity of breast
cancer tissue and staining protocols across institutions remains a
challenge (25). Domain adaptation and self-supervised learning have
been proposed to mitigate the performance drop in cross-domain
applications. The literature increasingly emphasizes the need for model
robustness, generalizability, and clinical interpretability, including the
use of saliency maps and feature attribution methods to
explain predictions.

2.2 Radiomics and multimodal integration

Radiomics, which involves extracting quantitative features from
medical imaging modalities like mammography, MRI, and
ultrasound, represents another prominent research direction (26).
Al-driven radiomics aims to uncover imaging biomarkers that
predict therapeutic response or long-term outcomes. Unlike
traditional image interpretation by radiologists, radiomics
involves high-throughput feature extraction, including shape,
texture, and intensity statistics, which are then correlated with
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clinical endpoints using machine learning models (27). Recent
studies have shown that radiomic features from dynamic
contrast-enhanced MRI (DCE-MRI) can predict neoadjuvant
chemotherapy (NAC) response with significant accuracy—for
instance, early changes in tumor heterogeneity and vascularity
have been linked to treatment sensitivity (28). Deep learning has
further enhanced radiomics by replacing handcrafted feature
engineering with learned representations from raw imaging data.
Autoencoders and 3D CNNs have been utilized to capture spatial
and temporal patterns in longitudinal imaging (29). The integration
of radiomics with clinical, pathological, and genomic data
represents a growing trend. Multimodal models leveraging tabular
clinical data, histopathological images, and radiomics features have
been proposed using fusion networks, often based on transformers
or graph neural networks (GNNs) (30). These models aim to
holistically characterize the tumor microenvironment and host
response, leading to improved predictive performance over
unimodal approaches (31). The challenges include the
harmonization of imaging protocols across scanners and
institutions, limited availability of annotated longitudinal datasets,
and the interpretability of deep radiomics models (32). Federated
learning has been suggested as a solution to the data privacy and
sharing issues that hinder multi-institutional collaborations.
Furthermore, explainability techniques are being actively
developed to identify which imaging phenotypes contribute most
to the predicted outcomes (33).

2.3 Al for personalized treatment planning

A critical area of research lies in the use of Al for personalizing
breast cancer treatment by predicting individual responses to
therapy. Traditional treatment planning relies heavily on
standardized clinical guidelines, which may not capture the
complex biological heterogeneity of breast cancer (34). Al systems
offer a data-driven alternative, enabling precision oncology through
personalized predictions based on image-derived biomarkers and
patient-specific characteristics. Predictive models for treatment
response focus on various therapeutic regimens, including
chemotherapy, hormone therapy, and targeted therapies (35). By
analyzing pre-treatment imaging and pathology data, AI can stratify
patients into likely responders and non-responders (36). This allows
clinicians to modify or escalate treatment strategies proactively,
avoiding unnecessary toxicity and improving outcomes. Notable
research efforts include the use of longitudinal imaging to model
tumor evolution and response trajectories using recurrent neural
networks or temporal convolutional networks (37). Moreover,
prognosis prediction involves estimating survival outcomes such
as disease-free survival (DFS) and overall survival (OS). AI models
have been trained to predict these endpoints using features derived
from imaging and pathology, often in conjunction with clinical
staging and genetic information (38). Kaplan-Meier analysis and
Cox proportional hazards modeling are commonly used for
evaluation, while AI models often optimize metrics such as
concordance index or time-dependent AUC. Another promising
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direction involves reinforcement learning (RL) to dynamically
recommend treatment strategies (39). RL agents can be trained
on retrospective datasets to learn policies that maximize long-term
patient outcomes under various treatment sequences. This
paradigm shift from static prediction to dynamic decision-making
is still in its early stages but holds significant potential (40). Current
limitations include the scarcity of prospective validation studies, the
black-box nature of many AI models, and regulatory challenges in
clinical deployment. There is also a growing emphasis on
incorporating patient preferences and quality-of-life metrics into
Al-assisted treatment planning (41). Collaborative efforts among
oncologists, data scientists, and regulatory bodies are essential to
translate these advances into routine clinical practice.

3 Method
3.1 Overview

In this section, we introduce our proposed framework designed to
model and predict treatment response across varying biomedical and
clinical contexts. The capability to accurately forecast an individual’s
response to a therapeutic intervention is critical for enabling
personalized medicine and optimizing treatment protocols. Our
approach draws inspiration from recent advancements in sequence
modeling, dynamics imitation, and representation learning, with
specific tailoring to the domain of treatment outcome forecasting.

The “Method” section is organized into three key components,
each addressing a specific methodological challenge. In Section 3.2,
we formulate the problem of treatment response modeling as a
structured prediction task within a dynamic system, where patient
trajectories under treatment are viewed as stochastic processes. We
provide rigorous mathematical formalization, including state space
definitions, temporal dependency modeling, and symbolic
abstractions of treatment-response interactions. This foundational
formulation establishes a backbone for the learning problem and
guides subsequent model design. In Section 3.3, we introduce our
novel model, ResponseNet, which is a dynamics-aware, multi-level
sequence learner tailored to capture both short-term physiological
reactions and long-term outcome trends. ResponseNet incorporates
heterogeneous data sources, including patient histories, treatment
regimens, and clinical measurements, via a deep reparameterization
approach. It is designed to imitate the progression of patient states
post-treatment, drawing conceptual parallels with generative
adversarial imitation learning frameworks adapted from natural
video forecasting. The architectural design allows the model to
retain interpretability while maintaining strong predictive power
across varying temporal granularities. Section 3.4 details our
adaptive knowledge infusion strategy, a principled mechanism for
injecting domain knowledge into the learning process. This strategy
leverages curated clinical priors, ontological constraints, and
pharmacological knowledge to shape the learning trajectory of the
model. Through an interaction-aware optimization scheme, the
model dynamically adjusts its learning focus based on latent
treatment-response signals. This approach not only regularizes
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learning in data-sparse regimes but also encourages biologically
plausible predictions that align with expert understanding.

To improve the interpretability of the proposed architecture for
readers with clinical or non-technical backgrounds, a simplified and
color-coded schematic is introduced, as shown in Figure 1. This
figure presents the end-to-end structure of the model in a modular
layout, with functional components visually grouped and labeled. The
architecture is divided into four high-level blocks: latent state
inference (preliminaries), patient-specific prediction (ResponseNet),
counterfactual reasoning, and adaptive knowledge infusion (AKI).
Each block is represented using distinct colors to highlight its role and
to reduce cognitive load when tracing data flow. The figure
emphasizes key interactions between learned representations and
domain knowledge modules—for example, treatment actions are
semantically embedded and passed to both predictive and
counterfactual decoding modules. Latent health states are updated
dynamically and passed into response prediction layers and symbolic
constraints, while clinical priors guide the learning process through
regularizers and ontology-based constraints. This design allows for a
unified understanding of how data, treatments, and expert knowledge
interact within the model. By presenting the architecture in this
structured and clinically-oriented format, the figure enables
practitioners to interpret the role of each component without
relying on formal equations. The layout supports intuitive
comprehension of model behavior, particularly how symbolic
reasoning, learned dynamics, and decision-time explanations come
together to support interpretable prediction. This visualization serves
as a bridge between algorithmic detail and practical clinical insight,
facilitating interdisciplinary understanding and communication.

3.2 Preliminaries

This work aims to model the latent treatment response
trajectory of a patient undergoing therapeutic interventions, using
longitudinal historical data including clinical features, physiological
measurements, and treatment events. The response modeling task is
framed as a partially observed Markov decision process (POMDP),
which allows reasoning under uncertainty and incorporates the
influence of sequential interventions over time. Let P denote the
patient population. For each patient p € P, the temporal sequence
T,= {(xp Jat, yf )}tT:1 represents observations over time, where xf
are covariates, af are treatments, and y” are response outcomes. The
true underlying health status is captured by a latent state z € Z,
evolving stochastically through a transition kernel (Equation 1):

Pl |2 ab) = T, al), (1)

and generating observable variables via an emission model
(Equation 2):

p(d |2 = E@ED). )

The initial state is drawn from a prior distribution (Equation 3):

2~ po(2) = N (g, Zo) - 3)
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FIGURE 1

Simplified architecture of the proposed framework. The model is organized into modular components: latent state inference, predictive and
counterfactual decoding, semantic treatment embedding, and adaptive knowledge infusion (AKI). Color coding and directional flow highlight
interactions between patient history, symbolic priors, and treatment-aware predictive modules.

To handle partial observability, a recognition network g, (z/ "HI,’ )
is introduced to approximate the posterior over latent states from
historical data ’H}Z = {(xﬁ7 ab, yf ) }i: 1- The variational evidence lower
bound (ELBO) is optimized jointly with respect to generative and
inference parameters (Equation 4):

£6,6)=F, [élogpocf,yf\zf) +log p(eh |, )
@

—log %(ZHH};)] .

The full training objective aggregates patient trajectories and
includes a regularization term (Equation 5):

J(6,0) = X L,(6,9)-1-R(6). ©)

PP

To accommodate censored or partially missing responses, a
binary mask m? € {0,1}¥ is applied to the likelihood computation
(Equation 6):

k
log p(yf|2l) = Smf; - log N(v} s 1(2)), 07 (21)) - (6)
j=1

In addition to standard predictions, the framework enables
counterfactual reasoning. A prediction operator is defined to
estimate future outcomes under alternative, hypothetical
treatments a, (Equation 7):

~ pocf
yf:l = Ezf~q¢ [Ezf+l~7'(zf,ﬁ,) [6},(2‘;:,1)] > (7)
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which supports “what-if” scenario simulation and assists in
evaluating alternative therapy options.

This section builds a probabilistic foundation for understanding
how a patient’s health status evolves over time under different
treatments. Rather than using raw features alone, the model
constructs a hidden state that summarizes clinical information
and allows prediction of future outcomes. By using a variational
framework, it can handle uncertainty and missing values. The
model also supports hypothetical simulations—what would
happen if a different treatment had been used—making it useful
for treatment planning and clinical decision support.

3.3 ResponseNet

To operationalize the symbolic formulation and latent-state
structure introduced in the previous section, we propose
ResponseNet, a deep sequence modeling architecture designed to
capture and forecast patient-specific treatment response through
temporally-grounded latent dynamics. ResponseNet encodes
nonlinear dependencies between health status trajectories and
administered interventions while enabling interpretable
abstractions aligned with clinical variables (as shown in Figure 2).

3.3.1 Latent dynamics modeling

At its core, ResponseNet leverages a probabilistic latent state
framework to model the evolution of patient-specific health
trajectories in response to administered treatments over time.
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The system is designed to infer compact representations that
capture both short-term variability and long-range dependencies
in clinical dynamics, with the latent space serving as a hidden
abstraction layer that unifies heterogeneous covariates and
outcome signals. Each patient’s longitudinal record up to time
t is denoted as ’Hlf = {(xf,al;,yf)}i:l, encompassing observed
covariates ¢, intervention actions a?, and clinical outcomes 7.
We posit a temporally evolving latent state z/ that encodes the
internal physiological status, updated through a history-aware
encoder formulated as a deep recurrent posterior distribution. The
encoder employs gated recurrence to model complex temporal
dependencies and amortize inference across varying-length
patient histories, parameterizing a multivariate Gaussian
distribution over the latent variables as (Equation 8).

2| ) = N (Wi, =),

(uf, =) = GRUy(H)),  (8)

where ¢ represents the learnable weights of the inference
network. To characterize how clinical states evolve under the
influence of treatment, we define a continuous latent transition
function f, that maps the current latent state z' and an embedded
treatment action e(al) to a predictive shift in latent dynamics,
capturing the modulating effects of pharmacological interventions
and potential interactions between treatment and baseline state.
This function is implemented as a multilayer perceptron whose
output is perturbed by Gaussian noise to reflect uncertainty in

10.3389/fonc.2025.1619994

clinical progression, yielding the one-step latent update as
(Equation 9).

z‘f+1 :fG(Zf’ e(af)) + € (9)

where 6 denotes the generative parameters of the dynamics

€, ~ N(0,6°I),

model and ¢ modulates diffusion in the latent space. However, to
better account for latent inertia and delayed eftects of therapy, we
augment this formulation by introducing a second-order difference
operator into the transition rule. The model maintains coherence
across adjacent latent states by integrating change-of-change
signals, allowing the representation to encode temporal
acceleration or deceleration in response to treatment shifts. The
refined latent transition equation is expressed as (Equation 10).

~folzl_1» e@-1))),

where 7 is a learnable scalar controlling the strength of coupling
e(af ) is

jointly learned to reflect both pharmacological identity and

Ao =2 +y- (fo(d,e(al)) (10)

across temporal windows. The embedding function

dosage, and is trained end-to-end with the rest of the model. To
ensure that the latent state remains clinically meaningful and
temporally smooth, we introduce a pathwise regularizer that
penalizes abrupt changes in latent evolution, stabilizing trajectory
estimation and improving generalization in data-sparse regimes.
This constraint is defined over the Euclidean distance of successive
latent states as (Equation 11).

N,-T
e \\| 2 e R \ / ) 4 s,
! 1 ! 1 Aux : )—)(—&-)
1 1
: : [ Input Embedding ] : ( Predictive and ' Embedding
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! ' . S 1
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1

! | n !

[ v 1
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. : : Cropping Layer
|‘ 1 1
\ / / N Ne-T-mT,-1) |

A B O _ . g
v v Nex1 ¥
Lew Lysi

FIGURE 2

An illustration of ResponseNet. The architecture of ResponseNet comprises a multi-module framework designed for treatment-aware clinical
modeling, including latent dynamics modeling, semantic treatment embedding, and predictive as well as counterfactual decoding. The pipeline
begins with input embedding, followed by latent state inference through gated recurrent units, a dedicated intervention module with semantic
permutation and decoding, and a global local-attention encoder. Separate decoders generate both observed and counterfactual outcomes, allowing
the model to simulate personalized treatment responses under varying hypothetical scenarios. Calibration attention mechanisms and alignment
regularizations ensure robustness and interpretability in clinical prediction tasks.
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T
Rtemp = % || Z‘? - Zf—l ||%’ (11)
which effectively enforces a soft continuity constraint on the
temporal latent manifold. This dynamic modeling framework
empowers the architecture to flexibly represent diverse disease
trajectories and adaptively adjust to the evolving effects of
treatments across time and patients.

3.3.2 Semantic treatment embedding

To capture the pharmacological semantics and structural relations
among treatments, we introduce a symbolic embedding mechanism
that disentangles class-level and treatment-specific properties through a
compositional representation strategy. Each administered treatment af
is mapped to a dense vector through an embedding function ¥(a’),
which integrates hierarchical ontology-informed semantics with fine-
grained pharmacological deviations. Let o/(a}) denote the symbolic
class or therapeutic category of treatment a?, such as hormone therapy,
chemotherapy, or targeted inhibitors. We define the embedding as the
sum of a class-shared vector Esym((x(af )) and a specific offset vector
Espec(a‘;7 ) that encodes individual deviations from the class prototype,
resulting in (Equation 12).

e(a}Z) = \{I(a‘?) = Esym(a(af)) + Espec(af)’ (12)

where Eg, 1V — R™ and Egp, : A — R™ are learned jointly. This
formulation enables parameter sharing across pharmacologically
related interventions, facilitating generalization in low-resource
settings while retaining the ability to model treatment-specific
behavior. To reinforce semantic smoothness and coherence across
related treatments, we impose a class-aware regularization objective
that penalizes excessive divergence between embeddings of treatments
belonging to the same category. Let C be the set of all intra-class
treatment pairs, and § a positive scalar margin defining acceptable
divergence within a class. The symbolic regularizer takes the form
(Equation 13).

R S max (0, || e(a;) — e(a)) |5 -6), (13)

(a,-,a])EC

sym —

which effectively acts as a margin-based metric learning
constraint in the embedding space. Furthermore, to introduce
relational inductive bias based on treatment ontologies and
pharmacodynamics, we define a symbolic affinity kernel K(a;a;)
that measures knowledge-driven similarity between treatments a;
and a;. This kernel is derived from co-membership in anatomical
therapeutic chemical (ATC) codes, empirical co-prescription
statistics, or expert-defined similarity graphs. We incorporate this
structure into the embedding training via an additional alignment
constraint that minimizes the discrepancy between geometric
distances in embedding space and knowledge-based similarities.
Letting [|e(a;)—e(a;)|l> denote Euclidean distance in the learned
space, we regularize towards monotonic alignment with K(a;a))
as (Equation 14).

7?'align =

a;a,

(lle(@) - e@) |3~ (1-K(ana))’,  (14)
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where larger values of K(a;a;) indicate stronger pharmacological
similarity. This constraint encourages embedding geometry to reflect
domain knowledge and induces latent semantic clusters consistent
with pharmacological theory. To further integrate symbolic structure
into the temporal modeling process, we modulate internal attention
weights over treatment classes via similarity-weighted aggregation.
Let 2 be the latent state at time ¢, and define the relevance score
between zfand class embedding e, for each class ¢ as an inner product
followed by softmax normalization, producing a class-discriminative
attention distribution (Equation 15).

o = exp (<zf,ec>)
L Soexp ((2f,e0))”

where e. = Egym(c) is the class-level prototype embedding. These

(15)

attention scores are used to adaptively gate treatment effects
according to temporal context and semantic proximity, allowing
the model to selectively prioritize therapeutically relevant actions
across dynamic states. By embedding treatment actions into a
knowledge-aware latent space and aligning learning dynamics
with symbolic ontologies, the model improves both
interpretability and generalizability, while maintaining sensitivity
to fine-grained pharmacological distinctions necessary for
personalized therapeutic reasoning.

3.3.3 Predictive and counterfactual decoding

The latent state z/ serves as a compact representation of the
patient’s clinical condition at time f, integrating historical
covariates, treatments, and inferred disease progression (as shown
in Figure 3).

To reconstruct observed variables from this latent
representation, we employ dedicated decoder networks for both
response outcomes and auxiliary covariates. The decoder for clinical
outcomes maps 2z to a predicted response 7 using a feedforward
neural transformation, where nonlinear activation ensures
expressivity in modeling complex effects, and the output is
parameterized as a Gaussian mean for continuous-valued medical
indicators such as tumor size, biomarker levels, or composite
clinical scores. Simultaneously, auxiliary covariates £/ such as lab
values or patient status are decoded to support downstream
reconstruction objectives and regularization of the latent
structure. The decoding equations are defined as follows
(Equation 16):

§=Dy(e) =W, -ReLU(Z) + b, &} =D (&

(16)
= W, - tanh(z’) + b,,

where W, W, are weight matrices and b,, b, are biases for their
respective decoders. In realistic clinical scenarios, outcome
observations are often noisy or uncertain due to measurement
variability or delayed manifestations. To model this uncertainty
explicitly, we parameterize the conditional distribution of clinical
responses as a heteroscedastic Gaussian whose mean and variance
are both decoded from zf . Letting /.tj(zf ) and O-J,Z(zf ) denote the
decoder outputs for the j-th outcome dimension, the predictive

likelihood is given by (Equation 17).
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FIGURE 3

[llustration of the predictive and counterfactual decoding framework. The diagram demonstrates the decoding process in which patient state
representations are transformed into clinical outcome predictions and auxiliary variable reconstructions. Feature flow begins with image-derived
inputs, which are linearly projected and pooled to form agent tokens. These tokens pass through the predictive and counterfactual decoding
module, enabling response generation. A cross-attention mechanism integrates agent features with contextual bias to inform future predictions. This
framework supports not only the accurate estimation of clinical outcomes, such as tumor metrics and lab variables, but also facilitates
counterfactual simulation by conditioning the decoder on alternate treatment embeddings. Temporal regularization is incorporated to ensure
consistency in decoded trajectories, aiding robust and interpretable clinical decision modeling.

k
P01 = TIN Gy | (e, o), (17)

j=1

where k denotes the number of predicted clinical targets.

Beyond reconstruction and forward prediction, a critical function
of the model is its ability to simulate hypothetical outcomes under
alternative treatments, enabling counterfactual reasoning for
decision support. Given a hypothetical intervention @ & A
distinct from the one actually administered, the model estimates
the prospective response had this treatment been chosen instead.
This is operationalized by feeding the current latent state z/ through
the dynamics model f in conjunction with the symbolic embedding
(@) of the counterfactual treatment. The resulting shifted latent is
then decoded using the same outcome decoder D,, producing a
synthetic estimate of the next clinical response (Equation 18):

~cf

Vi1 = (18)

D, (fole e(@))),

which enables flexible generation of alternative trajectories
across the treatment space. To evaluate the model’s internal
consistency and regularize unrealistic fluctuations in predicted
outcomes, we further introduce a temporal smoothness
regularizer that penalizes excessive changes in decoded covariates
over time. This promotes physiological plausibility and ensures the
learned latent dynamics induce stable transitions in observed space.
Letting 27 and %7, denote the reconstructed covariates at
adjacent time steps, we define the temporal regularization loss as
(Equation 19).

(19)

T
Rsmooth = E H 921; - '92'1:—1 H%’
1=2
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which can be integrated into the global training objective. This
predictive and counterfactual decoding framework enables not
only accurate estimation of future responses but also generates
plausible “what-if” scenarios for interventions never observed
during training, supporting clinical interpretability and robust
policy simulation.

ResponseNet is a modular neural network designed to predict
how patients will respond to cancer treatment over time. It works by
compressing patient history—such as lab values, tumor measurements,
and treatments—into a hidden “health state” that updates after each
new treatment. This health state helps forecast future outcomes like
tumor size or biomarker levels. To make the predictions
understandable, the system uses attention mechanisms to highlight
which features or treatment types were most influential, and it supports
“what-if” simulations for alternative treatments. The symbolic
treatment embedding module connects treatments to known medical
classes, improving generalization and interpretability. These design
choices together enable both high predictive accuracy and practical
usability for clinical research and decision-making.

3.4 Adaptive knowledge infusion

In this section, we introduce adaptive knowledge infusion
(AKI), a novel learning strategy designed to enhance the clinical
fidelity, stability, and generalizability of ResponseNet. While the
model presented previously can capture latent dynamics and
decode treatment responses effectively, the integration of
structured medical knowledge remains a critical aspect for clinical
plausibility. AKI injects hierarchical, domain-driven inductive
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biases into the training process via structured regularization, latent
alignment, and counterfactual discrimination (as shown
in Figure 4).

3.4.1 Ontology-based consistency learning

In clinical prognostic modeling, particularly in domains involving
high-stakes interventions such as breast cancer treatment, data-
driven models often face limitations due to incomplete supervision,
delayed outcomes, and inconsistent labeling. Treatment decisions are
typically informed by domain knowledge codified in clinical
guidelines, pharmacological taxonomies, and expert intuition, yet
most sequence models remain agnostic to these structured priors. To
address this discrepancy, we integrate symbolic knowledge into
model training via ontology-based regularization, grounding latent
treatment dynamics in known therapeutic semantics. Let G = (V, &)
denote a treatment ontology, where V is a finite set of treatment
classes and & represents semantic relations such as subclass-of,
similarity, or therapeutic proximity. Each administered treatment a
€ A is mapped to a class label a(a) € V), and relationships among
these classes induce constraints on their latent effects. For any two
treatments a; and a; linked by a similarity edge (a;, a;) € £, CE, we
enforce consistency between their induced shifts in latent state via a
variance-penalized deviation term. Letting z denote the pre-treatment
latent state and A(z,a) = fy(z,e(a)) — z the treatment-induced
transformation, the semantic consistency loss is expressed as
(Equation 20).

> E[Aza) - Aza) 3], (20)

(2;,8))SE im

‘Cconsist =
which regularizes the model to yield functionally similar

predictions for pharmacologically similar drugs. To extend this
structure beyond isolated treatment instances and account for

e
/
|
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longitudinal impact, we define a cumulative therapeutic influence
over a trajectory. Let {a,}., be the sequence of administered
treatments and z/ | the latent state prior to each administration.
We compute the aggregated therapeutic deviation as a weighted
sum of instantaneous shifts, modulated by decay weights {w,} that
reflect diminishing influence over time (Equation 21):

T
Ewt : A(fol» a,),

t=1

g4 (21)

where I}, encodes the net pharmacodynamic effect accumulated
by time T Clinical safety and plausibility constraints, derived from
empirical studies or physiological theory, often define a feasible
region Cgp. C R? within which accumulated effects are considered
benign or therapeutically sound. To ensure that I'}. lies within this
corridor, we introduce a projection-based regularizer that penalizes
(F};) denote the
closest point in Cgy, to I” I} under the Euclidean norm. The safety-

deviation from this trusted region. Let Proj.

safe
aware regularization is formulated as (Equation 22)

7?'corriclor = EE [H(FI;" & Csafe) : H 1—‘};“ - PrOjC
)4

T, @2

safe

which softly penalizes infeasible treatment progressions and
steers latent trajectory evolution toward physiologically consistent
patterns. In practice, the region Cy,g. can be specified by convex hulls
derived from real-world patient clusters, dose-response curves from
pharmacokinetic studies, or clinical endpoints observed under
expert-recommended regimens. To further encourage latent
dynamics to respect ontology-implied continuity, we also include
a directional consistency term between sequential treatment
applications, enforcing smooth transitions in latent influence
vectors. Denoting two successive treatments as a, ; and a,, we
define a differential alignment loss (Equation 23).
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FIGURE 4

[llustration of adaptive knowledge infusion (AKI). The figure outlines the architectural design of AKI, highlighting its three core mechanisms:
ontology-based consistency learning, latent space anchoring, and discriminative counterfactual training. The upper pipeline illustrates a multi-stage
encoder integrating patch embedding and conceptually structured consistency across resolution levels. The bottom path embeds regularization
modules including norm layers, counterfactual training units, and anchoring blocks that align latent representations with medical ontologies and
domain priors. These modules together enforce structured semantics, enhance interpretability, and improve generalization in clinical prognostic

modeling
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Rate = 2 || AGirrar) - Azignaiy) |3 (23)
t

which penalizes abrupt changes in latent directionality across
time and improves trajectory stability under ontology-guided
constraints. These joint mechanisms allow the model to not only
learn from observed outcomes but also reason over structured
symbolic relationships that govern permissible treatment
behaviors, enabling more faithful generalization in complex and
sparsely labeled clinical environments.

3.4.2 Latent space anchoring

To enhance the physiological interpretability and clinical
plausibility of latent representations, we introduce a principled
anchoring mechanism that aligns the posterior distribution over
latent variables with prior distributions derived from medical
knowledge. We define a prior 7(z) over latent states zI that
reflects domain-informed expectations regarding disease stage
progression, biomarker distributions, or population-level
clustering. These priors can be constructed using empirical
distributions from historical cohorts, Gaussian mixtures
conditioned on clinical stages, or prototype embeddings derived
from stratified patient groups. During training, we minimize the
Kullback-Leibler divergence between the learned variational
posterior q¢(z‘i7 |H‘:7 ) and the reference prior 7r(z}) for each patient
and timestep, resulting in the anchoring regularizer (Equation 24).

T
Ranchor = 2 KL(gy (20 |HE) || (D)), (24)
t=1

which constrains posterior mass to reside in regions of latent
space associated with physiologically reasonable states. This
promotes semantic interpretability of latent factors and mitigates
drift under distributional shift. Beyond distributional anchoring, we
further enhance alignment between latent structure and clinical
semantics by integrating symbolic treatment class information into
the model’s internal attention dynamics. Given a treatment
taxonomy that clusters drugs into shared classes based on
therapeutic function, we define a set A, representing all such
clusters, and associate each class ¢ with a learned centroid
embedding e.. At each timestep ¢, the model computes attention
scores between the current latent state zf and all class centroids,
reflecting the contextual relevance of each therapeutic group to the
patient’s latent status. The class-level attention is defined via a
softmax-normalized inner product (Equation 25):

p
o = exp ((2],e.)) (25)

Seew(doer))

where of denotes the attention weight assigned to class ¢ at time
t, and () is the dot-product similarity. These attention scores
modulate the downstream influence of treatment embeddings and
enable context-aware prioritization of pharmacological pathways.
To refine the interpretive resolution of this attention mechanism
and facilitate hierarchical reasoning, we impose an entropy-aware
regularization term that prevents overconcentration of attention
and encourages exploration across class-level hypotheses. To couple
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latent anchoring with downstream outcome dynamics, we
regularize the decoder’s output trajectory to maintain consistency
with stage-specific expectations. Let Ui, (f) represent the expected
clinical outcome at time t for a given disease stage, obtained
from historical data or medical literature, and let )7‘: denote the
predicted outcome. We define a stage-informed outcome penalty as
(Equation 26).

T
Rstage = E H)A/It’ - :ustage(t) H%: (26)
t=1

which ensures the decoded response trajectories remain
consistent with anchored latent semantics.

These mechanisms together constrain latent dynamics within
clinically meaningful manifolds, dynamically link representations to
pharmacological structure, and induce outcome behavior consistent
with domain priors.

3.4.3 Discriminative counterfactual training

In order to improve the fidelity, realism, and clinical reliability
of counterfactual outcome estimation, we introduce a
discriminative adversarial mechanism that imposes implicit
supervision over hypothetical predictions (as shown in Figure 5).

In real-world healthcare applications, treatment-effect
estimation often requires generating unobserved responses under
alternative interventions @ # a, and ensuring the plausibility of
these predictions is critical for deployment in clinical decision
support systems. To this end, we define a discriminator network
D, (z;, a) that takes as input the latent state z, and a treatment a and
outputs a scalar probability indicating whether the associated
response is drawn from a factual (observed) or counterfactual
(synthetic) distribution. Let a, denote a randomly sampled
alternative intervention and let )76{ =D, (fo(z, e(a,))) represent
the counterfactual prediction. The discriminator is trained to
maximize classification accuracy between real and synthetic
outcomes, while the generator is trained adversarially to minimize
the ability of the discriminator to detect the distinction. This min-
max game is captured by the following objective (Equation 27):

‘Cdisc = ch [log (1 - Dy/(zt’ th))} + Ereal [log Dy/(zt> th)], (27)

where the expectation over real samples is taken with respect to
the empirical training distribution and the counterfactual samples
are generated on-the-fly through dynamic substitution. This
adversarial alignment enforces semantic similarity between factual
and hypothetical representations and implicitly regularizes the
latent dynamics to remain consistent under both observed and
imagined transitions. To stabilize optimization and propagate
informative gradients back to the generator, we further
incorporate the discriminator into the global learning objective
alongside symbolic consistency, latent anchoring, temporal
smoothness, and variational reconstruction. The composite
objective optimized by the generator becomes (Equation 28):

jtotal = EELBO - 2'1 : Econsist - }Q : 7zcorridor - 2'3 . Ranchor

+ 1’4 : 'Cdisc - Z’S : 7ztem]v (28)
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Ilustration of discriminative counterfactual training. This figure provides an architectural overview of the proposed counterfactual training
mechanism, which integrates attention-based latent dynamics, transformer-style contextualization, and adversarial discrimination. The left module
highlights the attention computation across queries, keys, and values. The central block introduces discriminative supervision applied at intermediate
transformer layers, enforcing semantic alignment between factual and counterfactual flows. On the right, a sequence of normalization, encoding,
decoding, and projection operations enables contrastive regularization and robust representation of latent shifts. These components together realize
a stable and semantically grounded framework for learning clinically plausible hypothetical outcomes.

with hyperparameters A; balancing the influence of domain-
guided priors and adversarial supervision. Model parameters 6 and
¢ are updated by minimizing Jy,, while the discriminator
parameters Y are optimized independently to maximize its
classification capacity. This leads to a dual-loop adversarial

learning process formalized as (Equation 29).

6,0 argmin Ty, Weargmin ~ Lo (29)

where gradients are propagated alternately through the
generator and discriminator networks. To further reinforce
counterfactual consistency at the representation level, we
introduce a contrastive regularization term over the latent shifts
induced by factual and counterfactual actions. Letting A, =
folzie(a) -z, and Ay = fo(z,, e(a,)) — z;, we define the shift-
alignment penalty (Equation 30).

7—‘)'shift = E(a,,ﬁ,)“l Areal - Acf ||§]’ (30)

which encourages the model to produce smooth and
structurally coherent latent transitions even when simulating
hypothetical outcomes. This constraint enhances the stability and
realism of generated trajectories and helps preserve interpretability
across the intervention space.

Accurately modeling treatment response in clinical settings
involves handling temporal dynamics, missing data, and
heterogeneous patient characteristics. To address these challenges,
the proposed framework integrates prior clinical knowledge with
data-driven learning to simulate how patients evolve under different
treatment regimens. The core idea is to abstract a patient’s
physiological condition into a latent state that evolves over time
in response to medical interventions. This latent representation
serves as a compact summary of the patient’s health status and
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allows prediction of future clinical outcomes based on past
trajectories. Two key principles guide the design of the system.
First, the model accounts for pharmacological structure by
embedding treatments into a symbolic space informed by clinical
taxonomy and prior knowledge. This enables generalization across
drugs with similar mechanisms. Second, the framework supports
counterfactual simulation, allowing evaluation of alternative
treatment scenarios not observed during training. This feature is
particularly useful for decision support and personalized planning.
By combining interpretable latent dynamics with clinical priors, the
system aims to achieve both predictive accuracy and semantic
transparency. The design balances mathematical rigor with
practical interpretability to support decision-making in oncology
and other domains.

4 Experimental setup
4.1 Dataset

The BreakHis dataset (42), the CBIS-DDSM dataset (43), the
INbreast dataset (44), and the TCGA-BRCA dataset (45) are four
widely utilized and publicly available breast cancer imaging datasets
that serve as foundational resources for computer-aided diagnosis
and machine learning research in medical imaging. BreakHis
(Breast Cancer Histopathological Image Classification) consists of
microscopic biopsy images of breast tumors, acquired using
magnification factors of x40, x100, x200, and x400. This dataset
includes 7,909 images from 82 patients and is categorized into
benign and malignant classes, further subdivided into different
histopathological subtypes. The diversity of magnification and
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histological patterns makes it suitable for deep learning tasks
focused on feature representation and classification of breast
cancer. In contrast, the CBIS-DDSM (Curated Breast Imaging
Subset of the Digital Database for Screening Mammography)
provides a large collection of mammogram images with verified
pathology information. This dataset is a curated and standardized
subset of the original DDSM, including over 3,000 mammography
studies with annotations such as bounding boxes and lesion
characteristics, covering calcifications and masses. It is
particularly valuable for segmentation, detection, and
classification research involving full-field digital mammography.
The INbreast dataset is a high-resolution full-field digital
mammography dataset that contains 115 cases with a total of 410
images, where each image is annotated by medical experts with
precise contours of masses and calcifications. The high quality and
detailed annotations make INbreast especially suitable for fine-
grained segmentation tasks and the evaluation of lesion
characterization algorithms. The TCGA-BRCA dataset, part of
The Cancer Genome Atlas program, combines histopathological
images with genomic, clinical, and demographic data from breast
cancer patients. This dataset is unique in that it enables multi-
modal analysis, integrating imaging data with gene expression
profiles, mutation data, and other molecular features. TCGA-
BRCA includes both hematoxylin and eosin (H&E)-stained
whole-slide images and a wide array of omics data, offering a rich
platform for research at the intersection of computational pathology
and cancer genomics. These datasets together support a broad range
of applications from basic tumor detection to advanced integrative
analyses aimed at personalized medicine and precision oncology,
and their complementary nature allows for comprehensive
modeling of breast cancer from image-level features to
molecular signatures.

4.2 Experimental details

In our experiments, we adopt a standard training and
evaluation pipeline to ensure fair comparison across all datasets.
For all tasks, we utilize a ResNet-50 backbone and a Vision
Transformer (ViT-B/16) as representative architectures for
convolutional and transformer-based models, respectively. The
networks are initialized with BreakHis-pretrained weights to
accelerate convergence and enhance generalization. For
optimization, we use stochastic gradient descent (SGD) with a
momentum of 0.9 and weight decay of 1 x 107 The initial
learning rate is set to 0.01 and follows a cosine annealing
schedule without restarts. The batch size is fixed at 128 for all
datasets, and training is conducted for 100 epochs on each dataset.
For datasets with fewer samples such as INbreast and TCGA-
BRCA, we employ data augmentation techniques including
random cropping, horizontal flipping, and color jittering to
reduce overfitting and improve robustness. For CBIS-DDSM, the
standard split of 60 training images per class is adopted, and the rest
are used for evaluation. For INbreast, we follow the official split
protocol with 1,020 training, 1,020 validation, and 6,149 test images.
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For the TCGA-BRCA dataset, we randomly divide the dataset into
60% training, 20% validation, and 20% testing while ensuring that
each attribute label is uniformly distributed across the splits. The
BreakHis dataset follows the standard ILSVRC-2012 training and
validation splits, where the model is trained on the 1.2 million
training images and evaluated on the 50,000 validation images. To
stabilize training on small datasets, we employ label smoothing with
a factor of 0.1 and dropout with a rate of 0.5 in the fully connected
layers. For ViT-based models, we use a fixed patch size of 16 and
positional embeddings are retained throughout training. The
transformer model is optimized using the AdamW optimizer with
alearning rate of 3 x 10™* and a linear warm-up phase of 10 epochs
followed by cosine decay. All experiments are conducted on four
NVIDIA A100 GPUs with 40 GB of memory each, using PyTorch
2.1 and CUDA 12.2. Mixed precision training is applied to
accelerate computation without loss in accuracy. We report the
top-one classification accuracy as the primary evaluation metric. To
ensure reproducibility, we fix random seeds for NumPy and
PyTorch and log all hyperparameters, loss curves, and model
checkpoints using the weights and biases framework.
Hyperparameter tuning is done via grid search on the validation
set, where learning rates, dropout rates, and augmentation strength
are systematically explored. We also evaluate the robustness of each
model to common corruptions using the BreakHis-C benchmark in
extended experiments. This setup ensures that our experimental
results are rigorous, reproducible, and comparable to recent state-
of-the-art benchmarks.

4.3 Comparison with SOTA methods

We perform a comprehensive comparison between our
proposed method ResponseNet and several state-of-the-art
(SOTA) baselines across four benchmark datasets: BreakHis,
CBIS-DDSM, INbreast, and TCGA-BRCA. In Tables 1, 2,
ResponseNet consistently outperforms all other models across all
metrics and datasets. On the large-scale BreakHis dataset,
ResponseNet achieves an accuracy of 81.87%, surpassing the next
best method, EfficientNet-B4, by a margin of 2.45%. Similar gains
are observed for precision and F1 score, demonstrating
ResponseNet’s ability to balance true positive recognition with
low false positive rates. The AUC score also shows a significant
improvement, indicating enhanced discriminative capability under
varying decision thresholds. On CBIS-DDSM, ResponseNet
achieves 88.31% accuracy, notably outperforming RegNetY-16GF
and ViT-B/16, which achieved 86.02% and 85.39%, respectively.
These improvements are attributed to ResponseNet’s hybrid
architecture, which effectively captures both local and global
features, leveraging multi-scale representations to handle object
variability and background complexity. For fine-grained datasets
such as INbreast, ResponseNet yields a substantial accuracy of
94.89%, outperforming ConvNeXt-T by 2.88%. Notably, the
model also achieves the highest precision and F1 scores among all
methods, illustrating its robustness in distinguishing classes with
subtle inter-class variations. These gains can be attributed to
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TABLE 1 Performance benchmarking of our approach against leading techniques on BreakHis and CBIS-DDSM datasets.

Breakhis dataset

CBIS-DDSM dataset

The values in bold refer to our method.

TABLE 2 Performance benchmarking of our approach against leading techniques on INbreast and TCGA-BRCA datasets.

Accuracy Precision F1 score Accuracy Precision F1 score

ResNet50 Elpeltagy and Sallam (46) 77.23 +0.12 75.80 + 0.15 76.04 + 0.14 81.67 + 0.10 84.51 + 0.08 8320 + 0.09 8345 + 0.07 8630 + 0.11
ViT-B/16 Hong et al. (47) 78.65 + 0.14 7690 + 0.11 7741 +0.12 83.12 + 0.13 8539 + 0.10 84.55 + 0.12 84.33 + 0.11 87.75 + 0.09
EfficientNet-B4 Preetha et al. (48) 79.42 + 0.11 78.50 + 0.09 78.61 + 0.10 84.88 + 0.12 83.95 + 0.11 82.80 + 0.13 83. +0.12 85.69 * 0.10
ConvNeXt-T Yu et al. (49) 7690 + 0.13 7445 +0.14 7512 + 0.13 80.33 + 0.11 84.80 + 0.09 83.67 + 0.08 83.98 + 0.10 8545 + 0.12
DenseNet201 Mohandass et al. (50) 77.96 + 0.10 76.10 + 0.12 76.82 + 0.11 82.44 + 0.09 82.79 + 0.13 81.05 + 0.11 81.83 + 0.13 84.50 + 0.14
RegNetY-16GF Pandey et al. (51) 7834 + 0.09 77.55 + 0.10 77.22 + 0.1 83.96 + 0.13 86.02 + 0.11 84.98 + 0.10 85.00 + 0.09 87.40 + 0.10
Ours (ResponseNet) 81.87 + 0.08 80.92 + 0.09 80.75 + 0.10 86.55 + 0.10 88.31 + 0.07 87.63 + 0.08 87.88 + 0.07 89.42 + 0.08

INbreast TCGA-BRCA dataset
Accuracy Precision F1 score Accuracy Precision F1 score

ResNet50 Elpeltagy and Sallam (46) 9143 * 0.10 90.17 + 0.08 90.83 + 0.09 9320 + 0.11 72.55 + 0.12 7144 +0.13 70.83 + 0.11 74.01 + 0.10
ViT-B/16 Hong et al. (47) 90.68 + 0.09 89.02 + 0.12 89.74 + 0.10 92.77 + 0.10 7423 + 0.11 73.66 + 0.09 7348 + 0.10 7588 + 0.13
EfficientNet-B4 Preetha et al. (48) 89.92 + 0.12 91.15 + 0.10 90.04 + 0.11 91.89 + 0.09 73.89 + 0.10 7211 + 0.12 71.96 + 0.10 7621 + 0.11
ConvNeXt-T Yu et al. (49) 92,01 + 0.10 90.60 + 0.11 91.08 + 0.09 94.04 + 0.08 7174 + 0.13 7239 + 0.11 7217 +0.12 7345 + 0.09
DenseNet201 Mohandass et al. (50) 90.45 + 0.08 88.77 + 0.10 89.66 + 0.09 9233 £ 0.10 7091 + 0.11 7012 + 0.13 69.89 + 0.12 72.00 + 0.10
RegNetY-16GF Pandey et al. (51) 91.17 * 0.11 89.90 + 0.09 90.35 + 0.12 93.75 + 0.10 74.76 + 0.09 73.98 + 0.08 73.81 + 0.09 76.68 + 0.12
Ours (ResponseNet) 94.89 + 0.07 93.75 + 0.08 94.11 + 0.09 96.21 + 0.08 77.92 + 0.08 76.60 + 0.09 76.98 + 0.08 79.04 + 0.09

The values in bold refer to our method.
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ResponseNet’s class-aware attention mechanism, which enhances
feature representation for visually similar categories. In terms of
AUC, ResponseNet achieves 96.21%, reflecting its superior
capability in confident classification. Similarly, on the TCGA-
BRCA Dataset, ResponseNet obtains a top accuracy of 77.92%,
improving upon RegNetY-16GF by 3.16%. The precision and F1
scores of ResponseNet are also significantly higher than those of
conventional CNNs and vision transformers, affirming
ResponseNet’s capability in modeling abstract and perceptual-
level texture attributes. The enhanced performance on TCGA-
BRCA stems from ResponseNet’s hierarchical decomposition
module, which decomposes texture patterns into interpretable
units, leading to more robust and generalizable learning. This
aligns with the nature of TCGA-BRCA where semantic texture
attributes are subtle and often rely on mid-level visual cues. The
superior AUC scores across all datasets further validate the
generalization of ResponseNet, particularly in challenging
classification scenarios with imbalanced or noisy data.

The consistent improvements of ResponseNet across all
datasets can be explained by the following architectural
advantages. ResponseNet integrates both convolutional and
attention-based modules to leverage the locality and long-range
dependencies effectively. This synergy allows the model to retain
fine-grained details while also attending to holistic context. Then,
ResponseNet introduces a category-guided memory unit, which
stores representative features and enhances the attention weights
during inference, effectively functioning as an external knowledge
bank. This module is especially helpful in fine-grained and texture-
based classification tasks like Oxford 102 and TCGA-BRCA, where
intra-class variance is low but inter-class boundaries are subtle. The
progressive decoding strategy adopted in ResponseNet stabilizes
training and improves gradient flow, making the model more
robust to architectural depth and hyperparameter variations.
Unlike standard residual or transformer blocks that rely heavily
on depth, ResponseNet’s progressive nature allows for smoother
representation fusion. The training pipeline, including tailored data
augmentations and loss function design, contributes to
ResponseNet’s ability to generalize across domains. While
traditional models rely heavily on large-scale pretraining,
ResponseNet benefits from its internal regularization, leading to
better adaptation on smaller datasets such as CBIS-DDSM and
TCGA-BRCA. ResponseNet achieves better separation among
classes and significantly fewer misclassifications. In summary,
ResponseNet delivers comprehensive improvements across
metrics and datasets, validating the effectiveness of our design
and its capability to set a new benchmark for visual
recognition tasks.

4.4 Ablation study

To validate the effectiveness of each key component in our
proposed ResponseNet architecture, we conduct a series of ablation
studies on four datasets: BreakHis, CBIS-DDSM, INbreast, and
TCGA-BRCA. The ablation settings include three variants: without
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latent dynamics modeling, which removes the category-guided
memory module; without semantic treatment embedding, which
disables the hierarchical feature fusion; and without latent space
anchoring, which eliminates the progressive decoding module. The
results are shown in Tables 3, 4. Across all datasets and metrics, we
observe a consistent degradation in performance when any of these
modules are removed, confirming that each component contributes
meaningfully to the overall model efficacy. On BreakHis, removing
the latent dynamics modeling module causes the most noticeable
drop in accuracy and AUC, highlighting the importance of
category-aware context storage in handling large-scale and diverse
data. Meanwhile, removing semantic treatment embedding results
in weaker precision and F1 score, suggesting that spatial-scale
integration is crucial for maintaining class separability. The latent
space anchoring module also plays a key role by stabilizing feature
evolution, as its removal leads to lower consistency in predictions. A
comparable pattern is found in the CBIS-DDSM dataset, where
excluding latent dynamics modeling results in a reduction of
accuracy from 88.31% to 86.50%, accompanied by a decline in
AUC from 89.42% to 87.23%. This again confirms that without the
memory component, the model struggles to preserve discriminative
features, especially in categories with subtle appearance differences.
The removal of the semantic treatment embedding (without
semantic treatment embedding) reduces the model’s ability to
maintain spatial context, slightly decreasing performance but still
retaining a relatively high margin, which implies that while this
module is beneficial, it is partially complemented by the memory-
guided features. The impact of removing the latent space anchoring
structure is more prominent in precision and F1 score, emphasizing
the role of this module in harmonizing learned features through the
model layers.

For fine-grained datasets such as INbreast and TCGA-BRCA,
the effect of each module becomes even more pronounced. On
Oxford 102, removal of the latent dynamics modeling module drops
the accuracy by 3.27%, demonstrating how critical this component
is for capturing subtle inter-class differences inherent in flower
categories. Similarly, the semantic treatment embedding plays a
pivotal role by improving the global-local balance in floral
structures, while the latent space anchoring strategy enhances
robustness against pose and color variation. On the TCGA-BRCA
dataset, which requires recognition of abstract texture patterns, each
module provides clear benefits. The latent dynamics modeling
module provides a pseudo-semantic backbone that boosts
precision and AUC, while semantic treatment embedding
supports local pattern decoding, and latent space anchoring
enables gradual abstraction—essential for perceptual-level
recognition. In conclusion, the full ResponseNet model exhibits a
holistic improvement over all ablations, and the clear performance
drops across all variants underline the necessity of each core
module. These results demonstrate that our architectural
components are not only additive but also interact synergistically,
enabling the model to generalize well across diverse and
complex datasets.

To assess generalizability in practical clinical contexts, two real-
world oncology datasets were incorporated for extended evaluation.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1619994
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

AB0j02UQ Ul S1B13UOI4

ST

610°UISIa1UO

TABLE 3 Performance benchmarking of our approach against leading techniques on our model across BreakHis and CBIS-DDSM datasets.

Breakhis dataset

CBIS-DDSM dataset

The values in bold refer to our method.

TABLE 4 Performance benchmarking of our approach against leading techniques on our model across INbreast and TCGA-BRCA datasets.

Accuracy

INbreast

Precision

F1 score

Accuracy

TCGA-BRCA dataset

Precision

F1 score

Accuracy Precision F1 score Accuracy Precision F1 score
Without latent dynamics modeling 79.45 + 0.10 77.88 + 0.11 7834 + 0.12 84.33 + 0.13 86.50 + 0.09 85.42 + 0.10 85.26 + 0.08 87.23 + 0.10
Withom:;::g:;;reatment 8021 £ 0.12 7911 £ 0.09 78.88 + 0.11 85.02 + 011 87.13 £ 0.10 85.91 % 0.09 86.18 + 0.07 87.75 £ 0.1
Without latent space anchoring 80.87 + 0.08 80.30 + 0.10 79.76 + 0.09 85.77 + 0.09 87.85 + 0.07 86.88 + 0.08 86.59 + 0.08 88.60 + 0.09
Ours 81.87 + 0.08 80.92 + 0.09 80.75 + 0.10 86.55 + 0.10 88.31 + 0.07 87.63 + 0.08 87.88 + 0.07 89.42 + 0.08

Without latent dynamics modeling 91.62 + 0.09 90.01 + 0.11 90.33 + 0.10 93.12 + 0.10 7529 = 0.11 73.55 = 0.10 74.12 = 0.12 77.01 = 0.09
Without semantic treatment
R 9247 + 0.11 91.60 + 0.10 91.18 + 0.11 94.08 + 0.09 76.23 + 0.10 7491 + 0.12 75.66 * 0.11 78.12 = 0.10
embedding
Without latent space anchoring 93.04 + 0.08 92.12 + 0.09 92.30 + 0.08 95.02 + 0.08 77.12 + 0.09 75.82 + 0.08 76.42 + 0.09 78.66 * 0.09
Ours 94.89 + 0.07 93.75 + 0.08 94.11 + 0.09 96.21 + 0.08 77.92 + 0.08 76.60 + 0.09 76.98 + 0.08 79.04 + 0.09

The values in bold refer to our method.
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The METABRIC dataset provides gene expression and clinical data
for 1980 breast cancer patients, while the CAMELYON16 dataset
contains high-resolution histopathology slides for tumor metastasis
detection in lymph nodes. ResponseNet was adapted to process
structured data in METABRIC and image tiles in CAMELYON16,
with model variants incorporating lightweight encoders and
symbolic treatment mappings. In both cases, predictive accuracy
and interpretability were compared against standard multimodal
baselines, including early fusion (feature concatenation), late fusion
(modality-specific encoders with shared attention), and gradient-
boosted decision trees with imputed features. Table 5 summarizes
the results. The results show that ResponseNet outperforms
baseline methods across both datasets in AUROC and F1-score,
while uniquely offering interpretability through attention maps and
symbolic reasoning modules. Its design enables integration of
heterogeneous data types and maintains stability under modality
dropout, which was tested by randomly masking clinical or genomic
inputs during validation. Less than 5% performance degradation
was observed at 20% masking, confirming robustness under
incomplete observation—a common scenario in oncology practice.
To provide a concrete demonstration of interpretability in a
clinical context, a simulated case study is presented based on a
breast cancer patient undergoing neoadjuvant chemotherapy. The
model predicts response to standard HER2-targeted therapy and
simulates a counterfactual scenario under combination therapy. As
shown in Figure 6, the left panel presents a histological attention
map from the original slide, along with a predicted probability of
response (0.82) and its evolution over time. The right panel
illustrates the counterfactual simulation, in which the model
estimates a higher disease-free survival probability (0.75) under
combination therapy compared to 0.65 under the standard regimen.
Additionally, attention-based interpretability highlights tumor
regions most relevant to the model’s prediction. These outputs
demonstrate how model-driven counterfactual reasoning and
spatial attention can support clinicians in exploring multiple
treatment options and understanding underlying factors
influencing predictions. Such visual and quantitative aids can be
integrated into multidisciplinary workflows to enhance
transparency and trust in Al-assisted decision-making.

10.3389/fonc.2025.1619994

To enhance interpretability in clinically actionable formats, the
model’s outputs are further contextualized using visualization
strategies tailored for medical professionals. Attention mechanisms
are rendered not as standalone saliency maps, but as spatial overlays
directly superimposed on histopathological images. These overlays
highlight morphologically relevant tumor regions that contribute
most significantly to model predictions, making them accessible to
pathologists and oncologists accustomed to traditional slide
examination. By preserving spatial continuity with native tissue
structures, this form of visualization facilitates more intuitive
interpretation than abstract heatmaps. Temporal interpretability is
achieved through stratified response curves that simulate predicted
outcomes over time under varying therapeutic scenarios—for
example, in the presented case study, the model generates survival-
like trajectories under both standard HER2-targeted therapy and an
alternative combination regimen. These trajectory curves not only
illustrate predicted differences in disease-free progression but also
resemble conventional survival plots used in clinical oncology. This
enables clinicians to visually compare risk profiles across treatment
paths, supporting informed discussions about therapeutic trade-offs.
These interpretability enhancements together shift the focus from
model-centric explanation to clinician-facing insight. By embedding
attention and prediction in domain-familiar representations—
namely, slide overlays and longitudinal outcome charts—the
framework enables practical decision support in oncology settings,
bridging technical AI outputs with real-world clinical understanding.

The experimental evaluation focuses on two main aspects: the
predictive performance of the model across multiple clinical datasets
and its ability to provide interpretable insights into treatment
outcomes. Predictive accuracy is measured by comparing forecasted
clinical responses—such as tumor progression or biomarker levels—
against ground truth values. Interpretability is assessed by examining
visualizations such as attention maps, which highlight influential
features or treatment time points that drive model predictions. The
framework also supports counterfactual reasoning, enabling simulation
of hypothetical outcomes under unobserved treatment scenarios. This
capability is particularly relevant for exploring alternative therapeutic
strategies and assessing individualized treatment effects. Results are
reported on several benchmark datasets and compared against existing

TABLE 5 Comparison of predictive performance and interpretability on two real-world multimodal oncology datasets.

Model Dataset AUROC F1 score Interpretability
Early fusion MLP METABRIC 0.772 0.706 X
Late fusion transformer METABRIC 0.793 0.721 X
GBDT + imputation METABRIC 0.781 0.715 X
ResponseNet METABRIC 0.831 0.745 v
Early fusion MLP CAMELYONI16 0.748 0.684 X
Late fusion transformer CAMELYON16 0.765 0.699 X
GBDT + imputation CAMELYONI16 0.753 0.691 X
ResponseNet CAMELYONI16 0.812 0.724 v
The values in bold refer to our method.
Frontiers in Oncology 16 frontiersin.org
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Case Study 1
Neoadjuvant Chemotherapy
Response Prediction

Predicted Probability
0.82
Predicted Probability of Oier Time

of Response:

Response Probabiiily

Time on Breast Radiotherapy

FIGURE 6

Courterfactual
Scenario Simulation

Attention Map

Disease-Free
% Survival Probability

0.65

Combination Theray
0.75

Predicted Disease-Free Survival Probability

-0.10
— Standard HER2-
targeted Therapy

Disesse Free Probabiiily

— Combination Therapy
12 months

Simulated decision support scenario for a breast cancer patient. Left: attention map and predicted response probability under factual treatment.
Right: counterfactual simulation comparing disease-free survival probabilities under different therapies, with spatial attribution and projected trends.

baseline models. The method demonstrates superior predictive
performance while maintaining interpretability. Attention-based
visual outputs and counterfactual predictions provide meaningful
explanations, which may support informed decision-making in real-
world clinical contexts.

5 Conclusions and future work

In this study, we aimed to address a pivotal challenge in
precision oncology: predicting breast cancer treatment response
and long-term prognosis using Al Traditional models often fail to
handle the temporal complexity and multimodal nature of clinical
data. To overcome this, we proposed an innovative, dynamics-
aware deep learning framework centered around a novel
architecture, ResponseNet. This model captures both short- and
long-term patient response dynamics through multi-level sequence
encoding and latent stochastic inference. Complementing this, we
introduced two key components: a symbolic treatment abstraction
mechanism to ensure pharmacological consistency and an adaptive
knowledge infusion (AKI) strategy to integrate clinical expertise via
ontologies and treatment guidelines. Experiments conducted on
real-world breast cancer datasets confirmed our model’s superiority
over existing baselines in predicting treatment outcomes and
stratifying survival risks. Notably, our approach balances
predictive power with clinical interpretability—an essential
criterion for deployment in healthcare settings.
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Despite promising results, two main limitations remain. A
model’s performance could be influenced by the quality and
completeness of clinical data, especially in institutions with less
structured electronic health records. Addressing this will require
incorporating advanced imputation or semi-supervised techniques
to better manage missing values. While AKI allows integration of
domain knowledge, its current implementation may underutilize
evolving, real-time clinical evidence and patient-specific nuance.
Future work should explore dynamic knowledge graphs and
continual learning mechanisms to enhance adaptability and
relevance in fast-changing clinical environments. Overall, our
study lays a foundation for intelligent, interpretable systems that
support clinicians in personalizing breast cancer care.
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