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Objective: To establish and validate a radiomics nomogram that incorporated

tumor habitat and peritumor features to predict tumor progression in patients

with soft tissue sarcoma (STS).

Methods: MRI data (fat-suppressed T2-weighted and contrast-enhanced fat-

suppressed T1-weighted images) from 148 STS patients treated in four

institutions were retrospectively enrolled. Patients were divided into a training

cohort (n = 108) and validation cohort (n = 40). K-means clustering was applied

to split intratumoral voxels into three habitats according to signal intensity values.

A large number of radiomics features were extracted from numerous tumor-

associated regions (tumor lesion, peritumor, tumor expansion, and intratumoral

habitats) to construct a series of radiomics signatures. A nomogram integrating

clinical predictors and radiomics signature was established and its value for

predicting progression was validated.

Results: The nomogram yielded superior prediction performance and less

predictive error in the validation cohort (C-index, 0.777; median area under the

receiver operating characteristic curve, 0.808; integrated Brier score, 0.135).

When patients were stratified according to risk of progression (low and high)

based on the nomogram in both the training and validation cohorts, Kaplan–

Meier survival analysis demonstrated significant differences in progression-free

survival between the groups. In addition, it could attach incremental value to

histopathological grade system in progression risk evaluation.
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Conclusion: A nomogram based on intratumoral habitat and peritumor

radiomics predicts tumor progression in STS patients and stratifies them

according to risk of progression.
KEYWORDS

habitat imaging, magnetic resonance imaging, progression, radiomics nomogram, soft
tissue sarcoma
Introduction

Soft tissue sarcomas (STSs) are histologically heterogeneous and

account for less than 1% of all malignant tumors (1). Radical resection

is the standard treatment for patient with localized disease. Even after

resection, the prognosis is poor, as reported recurrence rates range

from 33% to 50% (2, 3) and the rate of distant metastasis is

approximately 46% (4). Early identification of patients with a

high risk of recurrence or metastasis after surgical resection to

enable optimal use of standard or intensified neoadjuvant

chemoradiotherapy might improve outcomes. This would require

formulation of an accurate model for risk stratification in STS patients.

Despite their limitations, the TNM, Fédération Nationale des

Centres de Lutte Contre Le Cancer (FNCLCC), and National

Cancer Institute (NCI) staging systems are commonly used to

guide STS prognostication and treatment (5). Several statistical

models based on clinical and pathological data have been

constructed and examined in previous studies to predict

outcomes in STS patients (5–7). However, these models were

based on low-dimensional clinical information and overlooked

massive high-dimensional imaging characteristics. Therefore, their

performance and generalized applicability are controversial (5, 8).

Radiomics extracts more detailed imaging features than

traditional visual interpretation and can provide more data for

clinical decision making (9). Radiomics-based models constructed

using carefully screened features have the potential to predict STS

outcomes (8, 10–13). In previous studies, radiomics data of tumor

regions were analyzed as a whole and neglected intratumoral

subregions (tumor habitats) with similar radiological phenotypes

(14). Aggressive habitats might be crucial for tumor prognosis

determination (14, 15). Several studies have demonstrated that

tumor habitat analysis has high value in predicting tumor

outcomes, both alone (16, 17) and in combination with radiomics

analysis (18). Previous studies mainly concentrated on evaluation of

the primary tumor and overlooked subtle changes in the

peritumoral microenvironment (19, 20). However, the
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peritumoral microenvironment can explain aggressive biological

behavior (21). Therefore, both tumor habitat and peritumoral

environment should be evaluated to depict a tumor’s behavior

and potential for invasion (14, 22).

This study aimed to establish and validate a radiomics

nomogram that incorporated tumor habitat and peritumoral

features to predict progression-free-survival (PFS) in patients with

STS. We hypothesized that such a nomogram would show

enhanced prognostic value.
Materials and methods

Patients

The study was approved by the review boards of all

participating institutions. The requirement for written informed

consent was waived.

We reviewed preoperative MRI data of 309 patients who

underwent resection of STS from January 2007 to July 2022 in

one of four participating hospitals. A diagnosis of STS was

confirmed histopathologically in all. Patients were included if: (i)

they had integrated medical data; (ii) STS was confirmed

pathologically (with immunohistochemical examination); and (iii)

MRI examination was performed within 2 weeks before surgery or

preoperative neoadjuvant radiotherapy/chemotherapy, and

included FS-T2WI and CE-T1WI. Patients were excluded if

medical or imaging data was inadequate or imaging was of poor

quality (signal-to-noise ratio<1.0). We also excluded those with a

second malignancy and patients who lacked follow-up data.

After applying criteria, 148 patients (average age ± standard

deviation, 54 years ± 17) were included for analysis. The training

cohort comprised 108 patients from the Affiliated Hospital of

Qingdao University and the Puyang Oilfield General Hospital.

The validation cohort comprised 40 patients from the Shandong

Provincial Hospital Affiliated to Shandong First Medical University

and the Third Hospital of Hebei Medical University. The process of

patient enrollment is shown in Figure 1. The pathological findings

are shown in Supplementary Table S1.

PFS was defined as the time from surgery to local recurrence,

detection of new distant metastases on imaging, death, or last

follow-up. Follow-up surveys were conducted every 3 to 6 months
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for the first 2 years after surgery and every 6 months thereafter. The

censoring date was set as December 17, 2022.
MRI protocol

MRI included axial fat-suppressed T2-weighted imaging (FS-

T2WI) and axial contrast-enhanced fat-suppressed T1-weighted

imaging (CE-T1WI). Scans were performed using the following

scanners: HDx 1.5 T/3.0 T (GE Healthcare, Chicago, IL, USA),

Magnetom Skyra 3.0 T (Siemens, Munich, Germany), Achieva 1.5 T

(Philips Healthcare, Amsterdam, Netherlands), and Prisma

(Siemens). Scanner parameters are listed in Supplementary

Table S2.
Clinical data collection and semantic MRI
evaluation

Twenty characteristics were collected from among the clinical

baseline information, postoperative histopathological indicators

and semantic MRI features (Supplementary A1).
Image preprocessing and lesion
segmentation

The study flowchart is shown in Figure 2. Image preprocessing

and segmentation of tumor-associated regions were performed as a
Frontiers in Oncology 03
four-step procedure which included image registration, N4-bias-

field-correction, tumor-associated region segmentation, and spatial

resampling (Supplementary A2).

Prior to habitat analysis of tumor regions, signal intensity on the

FS-T2WI and CE-T1WI images was normalized using the

histogram intensity normalization method in Python (23). After

applying the K-means clustering module, the voxels in FS-T2WI

and CE-T1WI images were aggregated after normalization into

three clusters standing for functionally coherent tumor subregions.

Two distinct signal intensity maps of the FS-T2WI and CE-T1WI

sequences defined the clusters and separated the whole tumor

region into 3 intratumoral habitats: habitat 1, a low-enhancing

solid subregion with low CE-T1WI and FS-T2WI signal intensity;

habitat 2, an enhancing viable subregion with high CE-T1WI and

FS-T2WI signal intensity; and habitat 3, a hypoactive subregion

with s medium CE-T1WI and FS-T2WI signal intensity.
Radiomics feature extraction

Feature extraction was processed using PyRadiomics in Python.

For the tumor region, peritumoral, and tumoral expansion masks,

1906 conventional radiomics features (containing first-order, shape,

textural, and wavelet features) were extracted from each sequence.

For the three intratumoral habitats, 93 radiomics features

(containing first-order and textural features) were extracted. In

addition, voxel number and voxel fraction of each habitat for every

patient were recorded as baseline habitat features.
FIGURE 1

Study inclusion and exclusion criteria. FS-T2WI, fat-suppressed T2-weighted imaging; CE-T1WI, contrast enhanced fat-suppressed T1-weighted
imaging; SNR, signal-to-noise ratio.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1619704
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2025.1619704
Standardization and normalization of
features

Radiomics features were standardized using combat

compensation methodology, which can reduce technical

inconsistencies resulting from different scanner protocols (24).

Then, they were normalized into a Z-score referring to their

mean value and standard deviation.
Progression predictive survival signature
determination

The process of survival signatures determination was detailed in

Supplementary A3. In total, 18 signatures of three sets were built:

conventional radiomics signature set, habitat baseline signature set,

and habitat radiomics signature set (Supplementary Table S3).

The radiomics progression risk score (RPRS) of the best

performing radiomics signature was calculated using the

following formula:
Frontiers in Oncology 04
RPRS =o
N

i=0
Ci � Vi

where N is the number of features enrolled into the signature, Vi

is the value of the ith feature, and Ci is the regression coefficient in

the signature.
Survival model development and validation

The process of clinical model and nomogram construction was

detailed in Supplementary A4.
Statistics

Statistical analyses were performed using R software version

4.1.0 (The R Foundation, Vienna, Austria). Continuous data were

compared using the t-test. Categorical data were compared using

the chi-square or Fisher exact test as appropriate. For survival

signatures and models, predictive performance was evaluated using
FIGURE 2

Flowchart of radiomics analysis.
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the concordance index (C-index) and receiver operating

characteristic curve analysis (25). Prediction errors were estimated

using the integrated Brier score (IBS). The IBS was evaluated using

the “Boot632plus” splitting method (26). Calibration curves and

decision curve analysis were used to assess model fitting, clinical

reliability, and practicability. Patients were divided into subgroups

with different risks of progression based on optimal cut-off values

that were determined using X-tile software version 3.6.1 (Yale

University School of Medicine, New Haven, CT, USA) (27). PFS

was estimated using the Kaplan–Meier method and compared using
Frontiers in Oncology 05
the log-rank test. Areas under the ROC curve (AUCs) were

compared using the DeLong test. P<0.05 was considered significant.
Results

Median PFS overall 148 patients was 12.5 months (range, 1–88).

Mean PFS in patients who experienced STS progression and those

who did not was 11 months and 13 months, respectively. Patients

from the training and validation cohorts had similar baseline
TABLE 1 Patient baseline characteristics.

Training cohort Validation cohort P

No. of patients 108 40

Prognosis None-progression 67 (45.3) 23 (15.5) 0.616

Progression 41 (27.7) 17 (11.5)

PFS (month) * 11.5 [5, 21.5] 23 [9, 46.5] 0.001

Clinical baseline information

Age (year) # 56 ± 16 28 ± 21 0.002

Gender Male 57 (38.5) 26 (17.5) 0.183

Female 51 (34.5) 14 (9.5)

Postoperative histopathological indicators

FNCLCC I 16 (10.8) 16 (10.8) 0.001

II 32 (21.6) 11 (7.4)

III 60 (40.5) 13 (8.8)

NCI I 15 (10.1) 15 (10.1) 0.002

II 35 (23.6) 14 (9.5)

III 58 (39.2) 11 (7.4)

AJCC I 18 (12.2) 13 (8.8) 0.028

II 13 (8.8) 9 (6.1)

III 61 (41.2) 13 (8.8)

IV 16 (10.8) 5 (3.4)

Histopathological grade Low 16 (10.8) 16 (10.8) 0.001

High 92 (62.2) 24 (16.2)

Semantic MRI features

Number Solitary 85 (57.4) 28 (18.9) 0.268

Multiple 23 (15.5) 12 (8.1)

Depth Deep 34 (23.0) 23 (15.5) 0.004

Superficial 74 (50.0) 17 (11.5)

Heterogeneous SI at FS-T2WI <50% 64 (43.2) 12 (8.1) 0.002

≥50% 44 (29.7) 28 (18.9)

Tumor volume with MRI signal compatible with necrosis 0 31 (20.9) 7 (4.7) 0.276

1%–50% 57 (38.5) 22 (14.9)

(Continued)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1619704
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2025.1619704
characteristics except for age, FNCLCC grade, NCI grade, American

Joint Committee on Cancer (AJCC) stage, histopathological grade,

depth, heterogeneous signal intensity on T2WI, radiotherapy,

chemotherapy, and tumor location (Table 1).
Habitat analysis and radiomics signature
development

Baseline habitat features are shown in Supplementary Table S4.

Nine baseline habitat features-based predictive signatures yielded
Frontiers in Oncology 06
unconvincing performance in the validation cohort (Table 2). The

selected radiomics features in each predictive signature are shown

in Supplementary Table S5. As shown in Table 3, among all the

radiomics signatures, the Peri-tumor + Habitat _combined

signature yielded relatively stable and excellent performance for

prediction progression: in the training cohort, the C-index was

0.868 (95% confidence interval [CI], 0.809–0.927), median AUC

was 0.914, and IBS was 0.091; in the validation cohort, the C-index

was 0.761 (95% CI, 0.647–0.875), median AUC was 0.775, and IBS

was 0.131. As a result, this signature was identified as the best

performing radiomics signature and was entered into the follow-up
TABLE 1 Continued

Training cohort Validation cohort P

Semantic MRI features

>50% 20 (13.5) 11 (7.4)

Margin definitions at CE-T1WI Well-defined≥90% 47 (31.8) 15 (10.1) 0.15

Well-defined50%-90% 50 (33.8) 16 (10.8)

Well-defined<50% 11 (7.4) 9 (6.1)

Peritumoral edema No 22 (14.9) 8 (5.4) 0.602

Limited 76 (51.4) 26 (17.6)

Extensive 10 (6.8) 6 (4.1)

Peritumoral enhancement + 54 (36.5) 14 (9.5) 0.104

– 54 (36.5) 26 (17.6)

T-stage 1 22 (14.9) 6 (4.1) 0.422

2 34 (23.0) 18 (12.2)

3 21 (14.2) 8 (5.4)

4 31 (20.9) 8 (5.4)

N-stage 0 89 (60.1) 34 (23.0) 0.709

1 19 (12.8) 6 (4.1)

M-stage 0 87 (58.8) 34 (23.0) 0.534

1 21 (14.2) 6 (4.1)

Surgical margins R0· 89 (60.1) 36 (24.3) 0.258

R1 19 (12.8) 4 (2.7)

Radiotherapy No 77 (52.0) 12 (8.1) 0.001

Adjuvant 31 (20.9) 28 (18.9)

Chemotherapy No 73 (49.3) 17 (11.5) 0.005

Adjuvant 35 (23.6) 23 (15.5)

Location Limbs 80 (54.1) 17 (11.5) 0.001

Trunk wall 6 (4.1) 6 (4.1)

Head and neck 11 (7.4) 3 (2.0)

Internal trunk 11 (7.4) 14 (9.5)
Data are numbers of participants; data in parentheses are percentages.
PFS, progression-free-survival; FNCLCC, Fédération Nationale des Centres de Lutte Contre le Cancer; NCI, National Cancer Institute; AJCC, American Joint Committee on Cancer; SI, signal
intensity; FS-T2WI, fat-suppressed T2-weighted imaging; CE-T1WI, contrast-enhanced fat-suppressed T1-weighted imaging.
*Data are median [inter-quartile range]; #Data are means ± standard deviation.
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study. The RPRS was calculated according to the input features and

corresponding regression coefficients in the Peri-tumor + Habitat

_combined signature (Figure 3A).
Model construction and performance
evaluation

Age was the only significant clinical prognostic predictor of

progression in the univariable Cox regression analysis

(Supplementary Table S6) on which the clinical model was based.

The nomogram for individualized risk assessment integrating the

RPRS and age is shown in Figure 3B.
Frontiers in Oncology 07
The predictive performance of the radiomics signature, clinical

model, and nomogram is shown in Table 4. The C-index for

prediction of progression in the training and validation cohorts was

highest for the nomogram (0.874 [95% CI, 0.819–0.930] and 0.777

[95% CI, 0.660–0.894], respectively). In the validation cohort, the

AUC was slightly higher for the nomogram (0.808) than the

radiomics model (0.775, P = 0.005) and the clinical model (0.278,

P = 0.293; Figures 4A, B). The predictive error of the models is shown

in Figures 4C, D. In the validation cohort, the IBS for the nomogram

was 0.135, which was lower than that of the clinical model (0.175); the

IBS of the nomogram and radiomics model (0.131) were similar.

Decision curve analysis of the nomogram showed a good clinical

benefit within the full range of threshold probability (Figure 5C).
TABLE 2 Predictive performance of baseline habitat signatures.

Signature Training cohort Validation cohort

C-index 95%CI AUC IBS C-index 95%CI AUC IBS

Voxel-number_1 0.548 0.451-0.645 0.526 0.191 0.510 0.341-0.680 0.521 0.182

Voxel-number_2 0.490 0.374-0.607 0.515 0.189 0.469 0.318-0.620 0.512 0.180

Voxel-number_3 0.525 0.408-0.643 0.562 0.189 0.480 0.316-0.645 0.470 0.179

Voxel-number_ combined 0.624 0.523-0.724 0.598 0.189 0.425 0.285-0.566 0.395 0.183

Voxel-fraction _1 0.591 0.496-0.687 0.585 0.188 0.494 0.352-0.637 0.527 0.182

Voxel-fraction _2 0.515 0.416-0.614 0.581 0.188 0.520 0.400-0.639 0.423 0.180

Voxel-fraction _3 0.576 0.480-0.672 0.608 0.192 0.517 0.378-0.656 0.500 0.178

Voxel-fraction _combined 0.592 0.496-0.689 0.580 0.188 0.499 0.364-0.634 0.439 0.181

Voxel_combined 0.602 0.500-0.705 0.601 0.188 0.448 0.300-0.597 0.412 0.182
95%CI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.
TABLE 3 Predictive performance of conventional radiomics signatures and habitat radiomics signatures.

Signature Training cohort Validation cohort

C-index 95%CI AUC IBS C-index 95%CI AUC IBS

Conventional radiomics signatures

Tumor region 0.756 (0.673-0.840) 0.808 0.140 0.494 (0.346-0.643) 0.505 0.180

Peri-tumor 0.829 (0.757-0.901) 0.886 0.101 0.639 (0.502-0.776) 0.636 0.182

Tumor expansion 0.775 (0.698-0.852) 0.803 0.148 0.618 (0.531-0.705) 0.672 0.180

Tumor region + peri-tumor
_combined

0.832 (0.757-0.907) 0.887 0.096 0.572 (0.459-0.686) 0.558 0.185

Habitat radiomics signatures

Habitat1 0.707 (0.625-0.789) 0.734 0.158 0.609 (0.490-0.728) 0.629 0.181

Habitat2 0.699 (0.608-0.790) 0.717 0.175 0.554 (0.422-0.686) 0.603 0.180

Habitat3 0.675 (0.566-0.784) 0.733 0.173 0.547 (0.421-0.673) 0.544 0.181

Habitat _ combined 0.758 (0.677-0.838) 0.741 0.157 0.563 (0.449-0.677) 0.570 0.180

Peri-tumor + Habitat
_combined

0.868 (0.809-0.927) 0.914 0.091 0.761 (0.647-0.875) 0.775 0.131
C-index, concordance index; 95%CI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.
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Progression risk stratification and survival
analysis

In the training cohort, the optimal cutoff for nomogram risk score to

divide patients into two risk classifications was 1.28. Kaplan–Meier curves
Frontiers in Oncology 08
of patients in both the training and validation cohorts grouped according

to risk of progression are shown in Figures 6A, B. PFS significantly

differed between the groups in both cohorts (P<0.01). In addition, the

nomogram could stratify patients in the overall cohort for PFS in both low

and high histopathological grade subgroup (Figures 6C, D).
FIGURE 3

The input features and corresponding regression coefficients of radiomics progression risk score (RPRS) and the nomogram. (A) The features and
corresponding coefficients for RPRS calculation. The feature with greatest predictive contribution was a wavelet transformed feature derived from
the peritumor region on fat-suppressed T2-weighted imaging. (B) Nomogram for prediction of progression risk.
TABLE 4 Predictive performance of radiomics signature, clinical model, and nomogram.

Model Training cohort Validation cohort

C-index 95%CI AUC IBS P C-index 95%CI AUC IBS P

Radiomics 0.868 0.809-0.927 0.923 0.091 0.145 0.761 0.647-0.875 0.775 0.131 0.293

Clinical 0.668 0.563-0.773 0.681 0.183 <0.001 0.336 0.212-0.459 0.278 0.175 0.005

Nomogram 0.874 0.819-0.930 0.919 0.090 ref 0.777 0.660-0.894 0.808 0.135 ref
fro
C-index, concordance index; 95%CI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.
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Discussion

In this study, we verified that a radiomics model combining

intratumoral habitat features and peritumor features can predict

tumor progression in patients with STS. PFS in our cohort ranged

from less than 1 month (5 patients) to over 5 years (7 patients).

Compared with analyzing radiomics features derived from

intratumoral habitats or regions, the peritumor region, or tumoral

expansion, the combined radiomics features signature yielded better

predictive performance. Moreover, in the validation cohort, the

nomogram showed a convincing level of performance (C-index,

0.777), less prediction error (IBS ≤0.135), good calibration, and

convincing clinical usefulness.

Conventionally, radiomics has focused on analyzing the

primary tumor as a whole. However, in consideration of the

inherent internal heterogeneity and peritumoral aggressiveness of

the tumor, it is conceivable that subregions within the tumor and

regions surrounding it contain complementary useful information

(28). In a previous study, the survival prediction performance of

integrated features was better with integrated features than with

intra- and peritumoral features alone (22). Another study suggested
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that a radiomics model based on tumor region habitats enabled

accurate patient risk stratification (18). In our study, intra- and

peritumoral features were integrally analyzed to construct a survival

prediction model, which achieved a convincing performance and

revealed that comprehensive analysis of multi-regional and multi-

scale radiomics information can quantify tumor heterogeneity. The

integrated model appears to have considerable potential in

prognostication of STS patients.

Emp i r i c a l e v i d en c e ha s shown tha t t h e t umor

microenvironment might have an indispensable role in STS

tumo r r e l ap s e ( 2 9 ) . Morpho l o g i c ch ang e s i n t h e

microenvironment that influence survival can be detected by

peritumoral radiomics and peritumoral radiomics has potential

for predicting progression (28). Dou et al. (30) analyzed

radiomics features derived from a 3 to 9 mm region outside the

tumor margin to predict distant metastasis of lung adenocarcinoma.

Other studies have suggested that radiomics based on a region

15 mm outside of the tumor can stratify patients according to

prognosis and predict the response to neoadjuvant therapy (21, 22).

In a study conducted by Braman et al. (21), the peritumoral

radiomics features included in the final prediction signatures were
FIGURE 4

Time-dependent receiver operating characteristic curves and prediction error curves for the radiomics signature, nomogram, and clinical models in
the training (A, C) and validation (B, D) cohorts.
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all derived from the region within 12 mm of the tumor margin; no

feature from beyond 12 mm was included. In our study, the region

15 mm outside the STS lesion contained a large amount of bone,

large vessels and air; therefore, we defined the peritumoral region

boundary as 10 mm from the tumor margin. The peritumoral

signature yielded better performance than other single-region

signatures, demonstrating that the peritumoral region contains

important information regarding STS progression.

Considering the significant variability observed across

intratumoral regions, image-based partitioning has been used to

identify relevant subregions important for prediction of tumor
Frontiers in Oncology 10
biological behavior (15, 16). High-throughput radiomics features

can be screened for constructing quantitative models for oncology

diagnostics. Verma et al. manually partitioned subregions within

glioblastomas on the basis of multi-sequence MRI and analyzed the

radiomics features derived from each subregion to predict tumor

progression (18). However, manual partitioning is reliant on

radiologist experience and can only be applied in partitioning of

contiguous subregions, which may result in poor reproducibility

and objectivity. The clustering of voxels in multi-sequence MRI is a

data-based analysis method that enables segmentation of

subregions of similar tissue at a voxel-wise level (31). Previous
FIGURE 5

(A) Calibration curves of the radiomics signature, nomogram, and clinical models in the training cohort. (B) Calibration curves in the validation
cohort. (C) Decision curve analysis for the entire cohort.
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studies have demonstrated that voxel number or fraction of cluster-

segmented habitats in functional or structural MRI is an efficient

biomarker for tumor biological behavior prediction (32, 33).

Nevertheless, these studies focused on analyzing a small number

of habitat baseline characteristics and neglected high-dimensional

radiomics features that depict tumor habitat heterogeneity. In our

study, we considered the potential of integrating high-throughput

radiomics feature analysis and voxel-based habitat segmentation to

predict STS progression. We showed that the combination of

radiomics features derived from intratumoral cluster-segmented

habitats and peritumoral features yielded the best predictive

performance, validating that intratumoral habitat radiomics

features at the voxel level adds predictive value.

Neoadjuvant radiotherapy treatment plays a dominant role in

improving prognosis in STS patients (34). Hence, it is vital to

identify patients with high risk of progression and treat them

accordingly. Our study demonstrated that the radiomics

nomogram, which integrated voxel-based and multiregional

radiomics features with clinical information, yielded favorable

performance for PFS prediction and provided convincing risk

stratification ability. Our nomogram generated two risk
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stratifications (low or high risk of progression) and should help

fellow clinicians with management of individual STS patients. For

patients with a low risk of progression, surgery without adjuvant

therapy might be considered initially to avoid the side effects of

chemoradiotherapy. For those with a high risk, postoperative

systemic adjuvant chemoradiotherapy and targeted therapy

should be considered. In current clinical practice, the most

important prognostic indicator for STS is histopathological grade

(35). According to our study, the stratification ability of the

nomogram was further proved by the sub-cohort analysis in the

low- and high-grade patients defined by histopathological grade

system. Thus, use of our nomogram can provide incremental

information to clinicians and STS patients and help guide

treatment decisions.

Several study limitations should be mentioned. First, owing to

its retrospective design, selection bias was probably present. Second,

the radiomics generalizability and robustness across inconsistent

MRI parameters and multiple institutions should be validated.

Although we used standardization processes at the imaging and

feature levels, more prospective data is needed to validate our

findings. Finally, tumor boundaries were defined manually (first
FIGURE 6

Kaplan–Meier curves of progression-free survival in the patients with low and high risk of progression based on the nomogram. (A) Training cohort.
(B) Validation cohort. (C) The Low histopathological grade group of the entire cohort; (D) The high histopathological grade group of the entire
cohort.
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outlined by a junior radiologist and corrected by a senior one).

Semi-automatic or automatic delineation should be used in future

studies to minimize delineator bias.

In conclusion, we constructed a nomogram based on

intratumoral habitat and peritumor radiomics that predicts tumor

progression in STS patients and stratifies them according to risk of

progression. Performance of the nomogram was superior to that of

other habitat- and radiomics-based models.
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