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Objective: To establish and validate a radiomics nomogram that incorporated
tumor habitat and peritumor features to predict tumor progression in patients
with soft tissue sarcoma (STS).

Methods: MRI data (fat-suppressed T2-weighted and contrast-enhanced fat-
suppressed T1l-weighted images) from 148 STS patients treated in four
institutions were retrospectively enrolled. Patients were divided into a training
cohort (n = 108) and validation cohort (n = 40). K-means clustering was applied
to splitintratumoral voxels into three habitats according to signal intensity values.
A large number of radiomics features were extracted from numerous tumor-
associated regions (tumor lesion, peritumor, tumor expansion, and intratumoral
habitats) to construct a series of radiomics signatures. A nomogram integrating
clinical predictors and radiomics signature was established and its value for
predicting progression was validated.

Results: The nomogram yielded superior prediction performance and less
predictive error in the validation cohort (C-index, 0.777; median area under the
receiver operating characteristic curve, 0.808; integrated Brier score, 0.135).
When patients were stratified according to risk of progression (low and high)
based on the nomogram in both the training and validation cohorts, Kaplan—
Meier survival analysis demonstrated significant differences in progression-free
survival between the groups. In addition, it could attach incremental value to
histopathological grade system in progression risk evaluation.
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Conclusion: A nomogram based on intratumoral habitat and peritumor
radiomics predicts tumor progression in STS patients and stratifies them
according to risk of progression.

KEYWORDS

habitat imaging, magnetic resonance imaging, progression, radiomics nomogram, soft

tissue sarcoma

Introduction

Soft tissue sarcomas (STSs) are histologically heterogeneous and
account for less than 1% of all malignant tumors (1). Radical resection
is the standard treatment for patient with localized disease. Even after
resection, the prognosis is poor, as reported recurrence rates range
from 33% to 50% (2, 3) and the rate of distant metastasis is
approximately 46% (4). Early identification of patients with a
high risk of recurrence or metastasis after surgical resection to
enable optimal use of standard or intensified neoadjuvant
chemoradiotherapy might improve outcomes. This would require
formulation of an accurate model for risk stratification in STS patients.

Despite their limitations, the TNM, Fedération Nationale des
Centres de Lutte Contre Le Cancer (FNCLCC), and National
Cancer Institute (NCI) staging systems are commonly used to
guide STS prognostication and treatment (5). Several statistical
models based on clinical and pathological data have been
constructed and examined in previous studies to predict
outcomes in STS patients (5-7). However, these models were
based on low-dimensional clinical information and overlooked
massive high-dimensional imaging characteristics. Therefore, their
performance and generalized applicability are controversial (5, 8).

Radiomics extracts more detailed imaging features than
traditional visual interpretation and can provide more data for
clinical decision making (9). Radiomics-based models constructed
using carefully screened features have the potential to predict STS
outcomes (8, 10-13). In previous studies, radiomics data of tumor
regions were analyzed as a whole and neglected intratumoral
subregions (tumor habitats) with similar radiological phenotypes
(14). Aggressive habitats might be crucial for tumor prognosis
determination (14, 15). Several studies have demonstrated that
tumor habitat analysis has high value in predicting tumor
outcomes, both alone (16, 17) and in combination with radiomics
analysis (18). Previous studies mainly concentrated on evaluation of
the primary tumor and overlooked subtle changes in the
peritumoral microenvironment (19, 20). However, the

Abbreviations: STS, soft tissue sarcoma; FNCLCC, Fédération Nationale des
Centres de Lutte Contre le Cancer; NCI, National Cancer Institute; PFS,
progression-free-survival; FS-T2WI, fat-suppressed T2 weighted imaging; CE-
T1WI, contrast enhanced fat-suppressed T1 weighted imaging; RPRS, radiomics

progression risk score; IBS, integrated Brier score; C-index, concordance index.
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peritumoral microenvironment can explain aggressive biological
behavior (21). Therefore, both tumor habitat and peritumoral
environment should be evaluated to depict a tumor’s behavior
and potential for invasion (14, 22).

This study aimed to establish and validate a radiomics
nomogram that incorporated tumor habitat and peritumoral
features to predict progression-free-survival (PFS) in patients with
STS. We hypothesized that such a nomogram would show
enhanced prognostic value.

Materials and methods
Patients

The study was approved by the review boards of all
participating institutions. The requirement for written informed
consent was waived.

We reviewed preoperative MRI data of 309 patients who
underwent resection of STS from January 2007 to July 2022 in
one of four participating hospitals. A diagnosis of STS was
confirmed histopathologically in all. Patients were included if: (i)
they had integrated medical data; (ii) STS was confirmed
pathologically (with immunohistochemical examination); and (iii)
MRI examination was performed within 2 weeks before surgery or
preoperative neoadjuvant radiotherapy/chemotherapy, and
included FS-T2WI and CE-T1WI. Patients were excluded if
medical or imaging data was inadequate or imaging was of poor
quality (signal-to-noise ratio<1.0). We also excluded those with a
second malignancy and patients who lacked follow-up data.

After applying criteria, 148 patients (average age + standard
deviation, 54 years + 17) were included for analysis. The training
cohort comprised 108 patients from the Affiliated Hospital of
Qingdao University and the Puyang Oilfield General Hospital.
The validation cohort comprised 40 patients from the Shandong
Provincial Hospital Affiliated to Shandong First Medical University
and the Third Hospital of Hebei Medical University. The process of
patient enrollment is shown in Figure 1. The pathological findings
are shown in Supplementary Table S1.

PES was defined as the time from surgery to local recurrence,
detection of new distant metastases on imaging, death, or last
follow-up. Follow-up surveys were conducted every 3 to 6 months
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Institution 1: The Institution 2:The Institution 3: The Institution 4: The
Affiliated Hospital of Puyang Oilfield General Shandong Provincial Third Hospital of Hebei
Qingdao University Hospital Hospital Affiliated to Medical University
Shandong First Medical
University
(n=221) (n=16) (n=48) (n=24)
( Inclusion criteria \

1. Integrated medical data and confirmation by pathology
2. Undertaking MRI examination within two weeks previous to surgery
3. Available for pre-treatment FS-T2WI and CE-T1WI

( . .
Exclusion criteria

1. Low quality images (the SNR was less than 1.0)
\_ 2. Lack of follow-up information

!

Training cohort:
Institution 1 + Institution 2
(n=103) (n=15)

FIGURE 1

imaging; SNR, signal-to-noise ratio.

Study inclusion and exclusion criteria. FS-T2WI, fat-suppressed T2-weighted imaging; CE-T1WI, contrast enhanced fat-suppressed T1-weighted

|

Validation cohort:
Institution 3 + Institution 4
(n=27) (n=13)

for the first 2 years after surgery and every 6 months thereafter. The
censoring date was set as December 17, 2022.

MRI protocol

MRI included axial fat-suppressed T2-weighted imaging (FS-
T2WI) and axial contrast-enhanced fat-suppressed T1-weighted
imaging (CE-T1WI). Scans were performed using the following
scanners: HDx 1.5 T/3.0 T (GE Healthcare, Chicago, IL, USA),
Magnetom Skyra 3.0 T (Siemens, Munich, Germany), Achieva 1.5 T
(Philips Healthcare, Amsterdam, Netherlands), and Prisma
(Siemens). Scanner parameters are listed in Supplementary
Table S2.

Clinical data collection and semantic MRI
evaluation
Twenty characteristics were collected from among the clinical

baseline information, postoperative histopathological indicators
and semantic MRI features (Supplementary Al).

Image preprocessing and lesion
segmentation

The study flowchart is shown in Figure 2. Image preprocessing
and segmentation of tumor-associated regions were performed as a

Frontiers in Oncology

four-step procedure which included image registration, N4-bias-
field-correction, tumor-associated region segmentation, and spatial
resampling (Supplementary A2).

Prior to habitat analysis of tumor regions, signal intensity on the
FS-T2WI and CE-TIWI images was normalized using the
histogram intensity normalization method in Python (23). After
applying the K-means clustering module, the voxels in FS-T2WI
and CE-T1WI images were aggregated after normalization into
three clusters standing for functionally coherent tumor subregions.
Two distinct signal intensity maps of the FS-T2WT and CE-T1WI
sequences defined the clusters and separated the whole tumor
region into 3 intratumoral habitats: habitat 1, a low-enhancing
solid subregion with low CE-T1WI and FS-T2WTI signal intensity;
habitat 2, an enhancing viable subregion with high CE-TIWI and
FS-T2WT signal intensity; and habitat 3, a hypoactive subregion
with s medium CE-T1WI and FS-T2WTI signal intensity.

Radiomics feature extraction

Feature extraction was processed using PyRadiomics in Python.
For the tumor region, peritumoral, and tumoral expansion masks,
1906 conventional radiomics features (containing first-order, shape,
textural, and wavelet features) were extracted from each sequence.
For the three intratumoral habitats, 93 radiomics features
(containing first-order and textural features) were extracted. In
addition, voxel number and voxel fraction of each habitat for every
patient were recorded as baseline habitat features.
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FIGURE 2
Flowchart of radiomics analysis.
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Standardization and normalization of
features

Radiomics features were standardized using combat
compensation methodology, which can reduce technical
inconsistencies resulting from different scanner protocols (24).
Then, they were normalized into a Z-score referring to their
mean value and standard deviation.

Progression predictive survival signature
determination

The process of survival signatures determination was detailed in
Supplementary A3. In total, 18 signatures of three sets were built:
conventional radiomics signature set, habitat baseline signature set,
and habitat radiomics signature set (Supplementary Table S3).

The radiomics progression risk score (RPRS) of the best
performing radiomics signature was calculated using the
following formula:

Frontiers in Oncology

N
RPRS = 3'C; X V;
i=0
where N is the number of features enrolled into the signature, V;
is the value of the i feature, and C; is the regression coefficient in
the signature.

Survival model development and validation

The process of clinical model and nomogram construction was
detailed in Supplementary A4.

Statistics

Statistical analyses were performed using R software version
4.1.0 (The R Foundation, Vienna, Austria). Continuous data were
compared using the t-test. Categorical data were compared using
the chi-square or Fisher exact test as appropriate. For survival
signatures and models, predictive performance was evaluated using
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the concordance index (C-index) and receiver operating
characteristic curve analysis (25). Prediction errors were estimated
using the integrated Brier score (IBS). The IBS was evaluated using
the “Boot632plus” splitting method (26). Calibration curves and
decision curve analysis were used to assess model fitting, clinical
reliability, and practicability. Patients were divided into subgroups
with different risks of progression based on optimal cut-off values
that were determined using X-tile software version 3.6.1 (Yale
University School of Medicine, New Haven, CT, USA) (27). PES
was estimated using the Kaplan-Meier method and compared using

TABLE 1 Patient baseline characteristics.

10.3389/fonc.2025.1619704

the log-rank test. Areas under the ROC curve (AUCs) were
compared using the DeLong test. P<0.05 was considered significant.

Results

Median PFS overall 148 patients was 12.5 months (range, 1-88).
Mean PES in patients who experienced STS progression and those
who did not was 11 months and 13 months, respectively. Patients
from the training and validation cohorts had similar baseline

Training cohort Validation cohort

Frontiers in Oncology

No. of patients 108 40

Prognosis None-progression 67 (45.3) 23 (15.5) 0.616
Progression 41 (27.7) 17 (11.5)

PES (month) * 11.5 [5, 21.5] 23[9, 46.5] 0.001

Clinical baseline information

Age (year) # 56 + 16 28 + 21 0.002

Gender Male 57 (38.5) 26 (17.5) 0.183
Female 51 (34.5) 14 (9.5)

Postoperative histopathological indicators

FNCLCC I 16 (10.8) 16 (10.8) 0.001
I 32 (21.6) 11 (7.4)
111 60 (40.5) 13 (8.8)

NCI I 15 (10.1) 15 (10.1) 0.002
il 35 (23.6) 14 (9.5)
I 58 (39.2) 11 (7.4)

AJCC ! 18 (12.2) 13 (8.8) 0.028
I 13 (8.8) 9 (6.1)
111 61 (41.2) 13 (8.8)
v 16 (10.8) 5(3.4)

Histopathological grade Low 16 (10.8) 16 (10.8) 0.001
High 92 (62.2) 24 (16.2)

Semantic MRI features

Number Solitary 85 (57.4) 28 (18.9) 0.268
Multiple 23 (15.5) 12 (8.1)

Depth Deep 34 (23.0) 23 (15.5) 0.004
Superficial 74 (50.0) 17 (11.5)

Heterogeneous SI at FS-T2WI <50% 64 (43.2) 12 (8.1) 0.002
>50% 44 (29.7) 28 (18.9)

Tumor volume with MRI signal compatible with necrosis 0 31 (20.9) 7 (4.7) 0.276
1%-50% 57 (38.5) 22 (14.9)

(Continued)
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TABLE 1 Continued

10.3389/fonc.2025.1619704

Validation cohort

Training cohort

Semantic MRI features
>50% 20 (13.5) 11 (7.4)

Margin definitions at CE-T1WI Well-defined>90% 47 (31.8) 15 (10.1) 0.15
Well-defined50%-90% 50 (33.8) 16 (10.8)
Well-defined<50% 11 (7.4) 9 (6.1)

Peritumoral edema No 22 (14.9) 8 (5.4) 0.602
Limited 76 (51.4) 26 (17.6)
Extensive 10 (6.8) 6 (4.1)

Peritumoral enhancement + 54 (36.5) 14 (9.5) 0.104
- 54 (36.5) 26 (17.6)

T-stage 1 22 (14.9) 6 (4.1) 0.422
2 34 (23.0) 18 (12.2)
3 21 (14.2) 8 (5.4)
4 31 (20.9) 8 (5.4)

N-stage 0 89 (60.1) 34 (23.0) 0.709
1 19 (12.8) 6 (4.1)

M-stage 0 87 (58.8) 34 (23.0) 0.534
1 21 (14.2) 6 (4.1)

Surgical margins RO- 89 (60.1) 36 (24.3) 0.258
R1 19 (12.8) 4(2.7)

Radiotherapy No 77 (52.0) 12 (8.1) 0.001
Adjuvant 31 (20.9) 28 (18.9)

Chemotherapy No 73 (49.3) 17 (11.5) 0.005
Adjuvant 35 (23.6) 23 (15.5)

Location Limbs 80 (54.1) 17 (11.5) 0.001
Trunk wall 6 (4.1) 6 (4.1)
Head and neck 11 (7.4) 3(2.0)
Internal trunk 11 (7.4) 14 (9.5)

Data are numbers of participants; data in parentheses are percentages.

PFS, progression-free-survival; FNCLCC, Federation Nationale des Centres de Lutte Contre le Cancer; NCI, National Cancer Institute; AJCC, American Joint Committee on Cancer; SI, signal
intensity; FS-T2WT, fat-suppressed T2-weighted imaging; CE-T1WI, contrast-enhanced fat-suppressed T1-weighted imaging.

*Data are median [inter-quartile range]; #Data are means * standard deviation.

characteristics except for age, FNCLCC grade, NCI grade, American
Joint Committee on Cancer (AJCC) stage, histopathological grade,
depth, heterogeneous signal intensity on T2WI, radiotherapy,
chemotherapy, and tumor location (Table 1).

Habitat analysis and radiomics signature
development

Baseline habitat features are shown in Supplementary Table S4.
Nine baseline habitat features-based predictive signatures yielded

Frontiers in Oncology 06

unconvincing performance in the validation cohort (Table 2). The
selected radiomics features in each predictive signature are shown
in Supplementary Table S5. As shown in Table 3, among all the
radiomics signatures, the Peri-tumor + Habitat _combined
signature yielded relatively stable and excellent performance for
prediction progression: in the training cohort, the C-index was
0.868 (95% confidence interval [CI], 0.809-0.927), median AUC
was 0.914, and IBS was 0.091; in the validation cohort, the C-index
was 0.761 (95% CI, 0.647-0.875), median AUC was 0.775, and IBS
was 0.131. As a result, this signature was identified as the best
performing radiomics signature and was entered into the follow-up
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TABLE 2 Predictive performance of baseline habitat signatures.

10.3389/fonc.2025.1619704

Signature Training cohort Validation cohort

C-index 95%Cl AUC C-index 95%Cl AUC
Voxel-number_1 0.548 0.451-0.645 0.526 0.191 0.510 0.341-0.680 0.521 0.182
Voxel-number_2 0.490 0.374-0.607 0515 0.189 0.469 0.318-0.620 0512 0.180
Voxel-number_3 0525 0.408-0.643 0.562 0.189 0.480 0.316-0.645 0.470 0.179
Voxel-number_ combined 0.624 0.523-0.724 0.598 0.189 0.425 0.285-0.566 0395 0.183
Voxel-fraction _1 0.591 0.496-0.687 0.585 0.188 0.494 0.352-0.637 0527 0.182
Voxel-fraction _2 0515 0.416-0.614 0.581 0.188 0.520 0.400-0.639 0423 0.180
Voxel-fraction _3 0.576 0.480-0.672 0.608 0.192 0.517 0.378-0.656 0.500 0.178
Voxel-fraction _combined 0.592 0.496-0.689 0.580 0.188 0.499 0.364-0.634 0439 0.181
Voxel_combined 0.602 0.500-0.705 0.601 0.188 0.448 0.300-0.597 0412 0.182

95%ClI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.

study. The RPRS was calculated according to the input features and
corresponding regression coefficients in the Peri-tumor + Habitat
_combined signature (Figure 3A).

Model construction and performance
evaluation

Age was the only significant clinical prognostic predictor of
progression in the univariable Cox regression analysis
(Supplementary Table S6) on which the clinical model was based.
The nomogram for individualized risk assessment integrating the
RPRS and age is shown in Figure 3B.

The predictive performance of the radiomics signature, clinical
model, and nomogram is shown in Table 4. The C-index for
prediction of progression in the training and validation cohorts was
highest for the nomogram (0.874 [95% CI, 0.819-0.930] and 0.777
[95% CI, 0.660-0.894], respectively). In the validation cohort, the
AUC was slightly higher for the nomogram (0.808) than the
radiomics model (0.775, P = 0.005) and the clinical model (0.278,
P =0.293; Figures 4A, B). The predictive error of the models is shown
in Figures 4C, D. In the validation cohort, the IBS for the nomogram
was 0.135, which was lower than that of the clinical model (0.175); the
IBS of the nomogram and radiomics model (0.131) were similar.
Decision curve analysis of the nomogram showed a good clinical
benefit within the full range of threshold probability (Figure 5C).

TABLE 3 Predictive performance of conventional radiomics signatures and habitat radiomics signatures.

Signature Training cohort Validation cohort
C-index 95%ClI AUC C-index 95%ClI AUC
Conventional radiomics signatures
Tumor region 0.756 (0.673-0.840) 0.808 0.140 0.494 (0.346-0.643) 0.505 0.180
Peri-tumor 0.829 (0.757-0.901) 0.886 0.101 0.639 (0.502-0.776) 0.636 0.182
Tumor expansion 0.775 (0.698-0.852) 0.803 0.148 0.618 (0.531-0.705) 0.672 0.180
T;::;i:f;on + peri-tumor 0.832 (0.757-0.907) 0.887 0.096 0.572 (0.459-0.686) 0.558 0.185
Habitat radiomics signatures
Habitat1 0.707 (0.625-0.789) 0.734 0.158 0.609 (0.490-0.728) 0.629 0.181
Habitat2 0.699 (0.608-0.790) 0.717 0.175 0.554 (0.422-0.686) 0.603 0.180
Habitat3 0.675 (0.566-0.784) 0.733 0.173 0.547 (0.421-0.673) 0.544 0.181
Habitat _ combined 0.758 (0.677-0.838) 0.741 0.157 0.563 (0.449-0.677) 0.570 0.180
Peri-tumor + Habitat
" combined 0.868 (0.809-0.927) 0.914 0.091 0.761 (0.647-0.875) 0.775 0.131

C-index, concordance index; 95%CI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.
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FIGURE 3

The input features and corresponding regression coefficients of radiomics progression risk score (RPRS) and the nomogram. (A) The features and
corresponding coefficients for RPRS calculation. The feature with greatest predictive contribution was a wavelet transformed feature derived from
the peritumor region on fat-suppressed T2-weighted imaging. (B) Nomogram for prediction of progression risk.

Progression risk stratification and survival of patients in both the training and validation cohorts grouped according
analysis to risk of progression are shown in Figures 6A, B. PFS significantly

differed between the groups in both cohorts (P<0.01). In addition, the
In the training cohort, the optimal cutoff for nomogram risk score to  nomogram could stratify patients in the overall cohort for PES in both low
divide patients into two risk classifications was 1.28. Kaplan-Meier curves  and high histopathological grade subgroup (Figures 6C, D).

TABLE 4 Predictive performance of radiomics signature, clinical model, and nomogram.

Model Training cohort Validation cohort

C-index 95%Cl C-index 95%Cl
Radiomics 0.868 0.809-0.927 0.923 0.091 0.145 0.761 0.647-0.875 0.775 0.131 0.293
Clinical 0.668 0.563-0.773 0.681 0.183 <0.001 0.336 0.212-0.459 0.278 0.175 0.005
Nomogram 0.874 0.819-0.930 0919 0.090 ref 0.777 0.660-0.894 0.808 0.135 ref

C-index, concordance index; 95%CI, 95% confidence interval of C-index; AUC, median AUC of the time-dependent receiver operating characteristic curve; IBS, integrated Brier score.
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Time-dependent receiver operating characteristic curves and prediction error curves for the radiomics signature, nomogram, and clinical models in
the training (A, C) and validation (B, D) cohorts.

Discussion

In this study, we verified that a radiomics model combining
intratumoral habitat features and peritumor features can predict
tumor progression in patients with STS. PFS in our cohort ranged
from less than 1 month (5 patients) to over 5 years (7 patients).
Compared with analyzing radiomics features derived from
intratumoral habitats or regions, the peritumor region, or tumoral
expansion, the combined radiomics features signature yielded better
predictive performance. Moreover, in the validation cohort, the
nomogram showed a convincing level of performance (C-index,
0.777), less prediction error (IBS <0.135), good calibration, and
convincing clinical usefulness.

Conventionally, radiomics has focused on analyzing the
primary tumor as a whole. However, in consideration of the
inherent internal heterogeneity and peritumoral aggressiveness of
the tumor, it is conceivable that subregions within the tumor and
regions surrounding it contain complementary useful information
(28). In a previous study, the survival prediction performance of
integrated features was better with integrated features than with
intra- and peritumoral features alone (22). Another study suggested
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that a radiomics model based on tumor region habitats enabled
accurate patient risk stratification (18). In our study, intra- and
peritumoral features were integrally analyzed to construct a survival
prediction model, which achieved a convincing performance and
revealed that comprehensive analysis of multi-regional and multi-
scale radiomics information can quantify tumor heterogeneity. The
integrated model appears to have considerable potential in
prognostication of STS patients.

Empirical evidence has shown that the tumor
microenvironment might have an indispensable role in STS
tumor relapse (29). Morphologic changes in the
microenvironment that influence survival can be detected by
peritumoral radiomics and peritumoral radiomics has potential
for predicting progression (28). Dou et al. (30) analyzed
radiomics features derived from a 3 to 9 mm region outside the
tumor margin to predict distant metastasis of lung adenocarcinoma.
Other studies have suggested that radiomics based on a region
15 mm outside of the tumor can stratify patients according to
prognosis and predict the response to neoadjuvant therapy (21, 22).
In a study conducted by Braman et al. (21), the peritumoral
radiomics features included in the final prediction signatures were
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FIGURE 5
(A) Calibration curves of the radiomics signature, nomogram, and clinical models in the training cohort. (B) Calibration curves in the validation
cohort. (C) Decision curve analysis for the entire cohort.

all derived from the region within 12 mm of the tumor margin; no
feature from beyond 12 mm was included. In our study, the region
15 mm outside the STS lesion contained a large amount of bone,
large vessels and air; therefore, we defined the peritumoral region
boundary as 10 mm from the tumor margin. The peritumoral
signature yielded better performance than other single-region
signatures, demonstrating that the peritumoral region contains
important information regarding STS progression.

Considering the significant variability observed across
intratumoral regions, image-based partitioning has been used to
identify relevant subregions important for prediction of tumor
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biological behavior (15, 16). High-throughput radiomics features
can be screened for constructing quantitative models for oncology
diagnostics. Verma et al. manually partitioned subregions within
glioblastomas on the basis of multi-sequence MRI and analyzed the
radiomics features derived from each subregion to predict tumor
progression (18). However, manual partitioning is reliant on
radiologist experience and can only be applied in partitioning of
contiguous subregions, which may result in poor reproducibility
and objectivity. The clustering of voxels in multi-sequence MRI is a
data-based analysis method that enables segmentation of
subregions of similar tissue at a voxel-wise level (31). Previous
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studies have demonstrated that voxel number or fraction of cluster-
segmented habitats in functional or structural MRI is an efficient
biomarker for tumor biological behavior prediction (32, 33).
Nevertheless, these studies focused on analyzing a small number
of habitat baseline characteristics and neglected high-dimensional
radiomics features that depict tumor habitat heterogeneity. In our
study, we considered the potential of integrating high-throughput
radiomics feature analysis and voxel-based habitat segmentation to
predict STS progression. We showed that the combination of
radiomics features derived from intratumoral cluster-segmented
habitats and peritumoral features yielded the best predictive
performance, validating that intratumoral habitat radiomics
features at the voxel level adds predictive value.

Neoadjuvant radiotherapy treatment plays a dominant role in
improving prognosis in STS patients (34). Hence, it is vital to
identify patients with high risk of progression and treat them
accordingly. Our study demonstrated that the radiomics
nomogram, which integrated voxel-based and multiregional
radiomics features with clinical information, yielded favorable
performance for PES prediction and provided convincing risk
stratification ability. Our nomogram generated two risk
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stratifications (low or high risk of progression) and should help
fellow clinicians with management of individual STS patients. For
patients with a low risk of progression, surgery without adjuvant
therapy might be considered initially to avoid the side effects of
chemoradiotherapy. For those with a high risk, postoperative
systemic adjuvant chemoradiotherapy and targeted therapy
should be considered. In current clinical practice, the most
important prognostic indicator for STS is histopathological grade
(35). According to our study, the stratification ability of the
nomogram was further proved by the sub-cohort analysis in the
low- and high-grade patients defined by histopathological grade
system. Thus, use of our nomogram can provide incremental
information to clinicians and STS patients and help guide
treatment decisions.

Several study limitations should be mentioned. First, owing to
its retrospective design, selection bias was probably present. Second,
the radiomics generalizability and robustness across inconsistent
MRI parameters and multiple institutions should be validated.
Although we used standardization processes at the imaging and
feature levels, more prospective data is needed to validate our
findings. Finally, tumor boundaries were defined manually (first
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outlined by a junior radiologist and corrected by a senior one).
Semi-automatic or automatic delineation should be used in future
studies to minimize delineator bias.

In conclusion, we constructed a nomogram based on
intratumoral habitat and peritumor radiomics that predicts tumor
progression in STS patients and stratifies them according to risk of
progression. Performance of the nomogram was superior to that of
other habitat- and radiomics-based models.
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