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Background: Osteosarcoma (OS) patients face the challenge of having few
effective therapeutic drugs. Solasonine(SS)is an active component of TCM
against OS cells. This study aims to identify the key targets of solasonine in
treating OS.

Methods: In this study, the transcriptome data and related gene sets were first
downloaded from public databases. Subsequently, candidate targets were
obtained by intersecting differentially expressed genes (DEGs) with solasonine
and OS disease targets. Key targets were then identified through regression
analyses, and a prognostic model was constructed. A homogram was
subsequently constructed using the key targets. The functions and immune
microenvironment, as well as the structure, regulatory network, and molecular
docking of these key targets, were then analyzed. The expression level of the
candidate targets in osteosarcoma cells was verified in RT-gPCR experiments,
and the effect of solasonine on the malignant biological behavior of
osteosarcoma cells was verified.

Results: DEGs, targets corresponding to solasonine, and OS-related disease
targets were intersected to obtain 37 candidate targets. Subsequent regression
analyses identified 5 key targets (ATP1Al1, CLK1, SIGMAR1, PYGM, HSP90BI). It
was further demonstrated that the OS prognostic model constructed using these
key targets was robust. The constructed nomogram provided an excellent
predictive model. Moreover, some pathways, such as cytokine-cytokine
receptor interaction, were significantly enriched, and there were 4 significantly
differentimmune cells and 3 significantly different immune checkpoints (P<0.05).
Additionally, natural killer cells and activated B cells were significantly positively
correlated (cor = 0.68, P < 0.001). The subsequent regulatory network included
transcription factors regulating the 5 targets. All key targets showed favorable
molecular docking effects with SS. The target genes all exhibited higher
expression in osteosarcoma cell lines(P<0.05). Solasonine can inhibit the
malignant biological behavior of cell proliferation, migration and invasion.
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Conclusion: In this study, ATP1A1, CLK1, SIGMAR1, PYGM, and HSP90B1 were
identified as key targets of solasonine in the treatment of OS, and they were
found to have reference significance for the treatment of OS. SS can be a
potential drug for the treatment of osteosarcoma.

solasonine, osteosarcoma, network pharmacology, transcriptomics, experimental validation

1 Introduction

Osteosarcoma (OS) is a primary malignant bone tumor
predominantly occurring in adolescents, characterized by a high
tendency for recurrence and metastasis (1-5). Despite significant
advancements in OS treatment globally, the 5-year survival rate for
metastatic cases remains below 30% (6, 7). At present, the treatment
of osteosarcoma involves surgery combined with chemotherapy.
However, the high recurrence and metastasis rates of osteosarcoma
limit the effectiveness of surgical intervention (8). Additionally,
chemotherapy-related side effects and drug resistance persist as
significant clinical challenges. OS continues to face issues such as
high metastasis rates, limited effective therapeutic drugs, a unique
tumor microenvironment, high heterogeneity, and a lack of specific
therapeutic targets (9). These challenges underscore the need to
identify potential drug-active components as novel therapeutic
agents for OS. Traditional Chinese Medicine (TCM) has been
used in China for thousands of years, and its antitumor effects, as
well as its ability to enhance efficacy and reduce toxicity, have been
increasingly validated (10). Solanum nigrum L. (Long Kui), a
traditional Chinese medicine, is known for its anti-inflammatory,
swelling-reducing, and anti-tumor properties (11). Solasonine (SS),
a steroidal glycoalkaloid, is one of the primary active components of
the traditional Chinese medicine Long Kui. It has been shown to
have anti-tumor effects in various cancers, including prostate
cancer, liver cancer, breast cancer, and bladder cancer. The
chemical structure of solasonine is C45H73NO16, consisting of a
steroidal alkaloid aglycone and a sugar chain. Solasonine has
various pharmacological effects such as anti-tumor, anti-
inflammatory and neuroprotection (12). In several studies,
solasonine can induce apoptosis of cancer cells and inhibit the
proliferation of tumor cells (13, 14). Solasonine can regulate the

Abbreviations: OS,Osteosarcoma; SS, Solasonine; TCM, Traditional Chinese
Medicine; RT-qPCR, Reverse Transcription Quantitative Polymerase Chain
Reaction; AUC, Area under the curve;ROC, Receiver operating characteristic;
PPI, Protein-Protein Interaction; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; KM, Kaplan-Meier; GSEA, Gene Set
Enrichment Analysis; STAT3, Signal Transducer and Activator of
Transcription 3; SLUG,Snail family transcriptional repressor 2; TPI1,Triose
phosphate isomerase 1;MMP2,Matrix metalloproteinase 2; HSP, Heat

shock protein.
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expression of Bax, Bcl-2, Bcl-xL and other proteins, change the
mitochondrial membrane permeability, release cytochrome c,
activate Caspase-3 and so on, induce a variety of tumor cells
apoptosis,such as breast cancer Bcap-37 cells, lung cancer H446
cells (12, 15). Solasonine can induce ferroptosis in tumor cells. As
an inducer of ferroptosis, solasonine can promote ferroptosis of
hepatoma carcinoma cells via glutathione peroxidase 4-induced
destruction of the glutathione redoxsystem (16). Although
numerous studies have explored the anti-tumor effects of
solasonine, very few have focused on its target in osteosarcoma,
with only one relevant report. Wang et al. suggest that SS
suppressed cancer stem-like properties and epithelial-
mesenchymal transition (EMT) by inhibiting aerobic glycolysis in
OS cells in an ALDOA-dependent manner (17). The literature does
not provide detailed elaboration or research on the drug target.
Therefore, considering the difficulty of treating osteosarcoma and
the role of SS in tumor treatment, we need to continue exploring its
pharmacological mechanisms, clarify its interactions with various
biomolecules in vivo, identify the SS anti-osteosarcoma target and
related molecular mechanisms, evaluate its safety, efficacy, and
optimal treatment regimen, thus laying a solid foundation for the
clinical application of solasonine in osteosarcoma.

Network pharmacology is centered on constructing networks
that link drugs, targets, and diseases to systematically reveal the
mechanisms of drug action and their multi-target characteristics
(18, 19). The development of transcriptomics has empowered
researchers to observe gene functions and regulatory networks
from databases, uncovering intricate molecular interactions and
signaling pathways (20). By integrating phenotypic and molecular-
level information, transcriptomics offers new perspectives for
fundamental biological research and disease mechanism studies.
The integration of network pharmacology and transcriptomics
enhances the systematic, accurate, and efficient screening of drug
targets corresponding to diseases. This combined approach not only
identifies potential therapeutic targets but also elucidates the
underlying molecular mechanisms, paving the way for the
advancement of more effective and targeted therapies.

Therefore, this study, based on network pharmacology
combined with transcriptomic data, identified five key targets of
solasonine against OS through differential gene screening and
univariate, multivariate, and stepwise regression analyses. The five
targets were ATP1A1, CLK1, SIGMARI, PYGM, and HSP90B1. A
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prognostic model constructed using these key targets demonstrated
their prognostic value, and subsequent analyses highlighted the
significance of these targets. Furthermore, RT-qPCR experiments
validated the expression levels of these targets in osteosarcoma cells.
In vitro experiments confirmed that solasonine influences the
malignant biological behaviors of osteosarcoma cells. It is
speculated that ATP1A1, CLK1, SIGMARI1, PYGM, and
HSP90B1 may serve as therapeutic targets for solasonine in the
treatment of osteosarcoma. These findings lay the preliminary
foundation for elucidating the molecular mechanisms of
solasonine’s anti-osteosarcoma effects and suggest that SS could
be a potential drug for osteosarcoma treatment.

2 Materials and methods
2.1 Data collection

The Cancer Genome Atlas (TCGA) database was applied to
download the TCGA-OS cohort, which included gene expression
profiles, clinical information, and survival information of 85
osteosarcoma (OS) tumor tissue samples (training set 1) (access
time: 24-7-2024). When dealing with missing values, we only retain
genes expressed in at least 80% of the TCGA-OS data, filter out
genes with low expression or excessive missing values, remove
samples with a survival time of 0, and remove duplicate samples.
Check whether the distribution of survival status is reasonable,
remove invalid samples with a survival time of 0, and identify
variables that do not conform to the hypothesis through
proportional hazards (PH) hypothesis testing. Use the
surv_cutpoint function to determine the optimal risk cutoff point
to avoid the influence of outliers on grouping. Subsequently, the
Gene Expression Omnibus (GEO) database was applied to
download the OS-related transcriptome dataset (GSE99671 and
GSE39055). GSE99671 (platform: GPL20148, training set 2)
consisted of tumour tissue from 18 OS and 18 control bone tissue
samples. On the other hand, GSE39055 (platform: GPL14951) was
used as the validation cohort, consisting of 37 tumor tissue samples
with survival information. GSE99671: Remove genes with
expression levels exceeding 50% from all samples and filter out
low expression genes to ensure sufficient data to support differential
analysis. GSE39055: Use na.omit() to remove incomplete samples
when merging expression and survival data, ensuring that
expression data samples match clinical data samples exactly.

The MOL2 structure of solasonine was obtained from TCMSP
and imported into the PharmMapper database (Z-score > 0) to
predict targets for solasonine. In addition, the target names were
corrected and unified using the UniProt database, resulting in 93
targets. In the SEA database, 24 targets for solasonine were
identified, and in the SwissTargetPrediction database, 103 targets
for solasonine were identified. Subsequently, a union of all targets
was generated and duplicate genes were removed to obtain 210
targets for solasonine (Supplementary Table 1). Subsequently, OS-
related disease targets were screened in OMIM, CTD, and
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DisGeNET databases, resulting in 11, 42852, and 30 targets,
respectively. The gene data obtained were combined, and
duplicates were removed to obtain the final 28050 OS-related
disease targets (Supplementary Table 2).

2.2 Acquisition of candidate targets

By using the limma package (v 1.38.0) (21), we analyzed the
differentially expressed genes (DEGs) between OS and control
tissue samples in GSE99671 (|log,FC|> 0.5, P.adj<0.05). Then the
ggplot2 (v 3.4.1) (22) and ComplexHeatmap (v 2.18.0) (23)
packages were applied to visualize the results by plotting a
volcano plot and heatmap for the top 10 up- and down-regulated
genes. Concurrently, the intersection of DEGs, targets
corresponding to solasonine, and OS-related disease targets was
taken to obtain candidate targets.

2.3 Enrichment analysis and construction
of protein-protein interaction based on
candidate targets

Subsequently, by using clusterProfiler package (v 4.4.4) (24),
potential biological functions and pathways on candidate targets
were elucidated through Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (adj.P <0.05). The
10 most significantly enriched pathways in KEGG were selected for
display. The 10 most significant items from each category in GO
were then selected for display. Additionally, candidate targets were
input into the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (a confidence score threshold of > 0.4) to
explore the protein-level interactions of these genes, which were
visualized by using Cytoscape software (v 3.1.1) (25).

2.4 Construction and validation of the
prognostic model

In TCGA-OS, by using the survival package (v 3.5-3) (26),
univariate and multivariate Cox regression analyses (hazard ratio
(HR) # 1, P <0.05) were performed on candidate targets, results of
the regression analyses were separately subjected to proportional
hazards (PH) assumption tests (P > 0.05). Subsequently, forest plots
were drawn using the forestplot package (v 2.0.1) (27) to display the
results of the univariate and multivariate Cox regression analyses.
Finally, the key genes were identified through stepwise
regression analysis.

Based on the relative expression levels of key targets and the risk
coefficients obtained from stepwise regression analysis, risk scores
for OS patients were calculated using the following formula:

Risk score = > coef (gene;) x expr (gene;)
-1
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vThe coefficients (coef) were obtained as weights from the
stepwise regression analysis. These weights represented the
contribution of each gene expression level to the overall risk
score, while expression (expr) indicated the expression level of the
i-th gene. Subsequently, OS patients were divided into high-risk and
low-risk groups using the optimal cutoff value of the risk score.
Next, the survival package (v 3.5-3) was used to draw risk curves
and survival status plots to analyze the distribution of OS patients in
different datasets. Additionally, the Kaplan-Meier (K-M) curve was
plotted to evaluate the overall survival between the 2 groups. The
receiver operating characteristic (ROC) curve (1/2/3 years) was
visualized to evaluate diagnostic value of the prognostic model (area
under the curve (AUC) >0.7) by using the survivalROC package (v
1.0.3) (28). In addition, our risk model was validated in the TCGA-
OS cohort.

2.5 Nomogram model construction and
evaluation

Subsequently, a nomogram was constructed for the key targets
in the training set using the rms package (v 6.8-1) (29). The
constructed nomogram model was then evaluated through
calibration and ROC curves.

2.6 Gene set enrichment analysis (GSEA)

In TCGA-OS, differential expression analysis was performed on the
2 groups in the prognostic model using the DESeq2 package (v 3.19)
(30), and log,FC was calculated and ranked from highest to lowest.
Based on the ranking results, using “c2.cp.kegg.v2022.1.Hs.symbols.gmt”
as the reference gene set, GSEA analysis was conducted. The top 5
significantly enriched pathways (adj.p <0.05) were then selected
for display.

2.7 Immune microenvironment analysis

Meanwhile, in TCGA-OS, the ssGSEA algorithm was applied to
calculate the differences in immune cell infiltration levels between the
high-risk and low-risk groups in each OS patient sample, which were
compared to identify differential immune cells (Wilcoxon rank sum
test P <0.05). Subsequently, differential immune cells in OS were
displayed as box plots drawn using the ggplot2 package (v 3.4.1).
Additionally, Further investigation of differential immune cells was
conducted. Spearman correlation analysis (|cor| > 0.3, P <0.05) was
conducted on differential immune cells and immune cells, immune
cells and key targets, immune cells and risk score. At the same time,
The expression differences of 46 immune checkpoints (31) between
two groups (P <0.05) were then evaluated. Finally, the immune score,
stromal score, and ESTIMATE score of each patient sample were
calculated using the ESTIMATE algorithm (P <0.05).
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2.8 Structural analysis of key targets and
construction of TF-mRNA regulatory
network

Subsequently, the gene information and structure of key targets
were obtained from the Gene database (https://www.ncbi.nlm.nih.gov/
gene/) and the UniProt database. Then, the Exon-Intron Graphic
Maker (http://www.wormweb.org/exonintron) was used to input
the gene’s 5’UTR, 3°UTR, exons, and introns to obtain a simplified
structure of gene transcript. Additionally, the protein domains were
illustrated using the IBS tool (http://ibs.biocuckoo.org/) based on
target information provided by the UniProt database. Key targets’
transcription factors were identified using FunRich (http://
www.funrich.org), and the results were visualized with Cytoscape
software (v 3.7.2) (25).

2.9 Molecular docking

Molecular docking was performed between solasonine and key
targets to determine their binding affinity. The 3D structures of the
key target proteins and solasonine were downloaded from the
Research Collaboratory for RSCB PDB and PubChem,
respectively, and molecular docking was conducted using the CB-
Dock database. The binding affinity between solasonine and key
targets was determined through molecular docking. RSCB PDB and
PubChem were separately applied to download 3D structures of the
key target proteins and solasonine, and molecular docking was
conducted using the CB-Dock database (docking score < -5
kcal/mol).

2.10 Experimental validation of key targets

2.10.1 Cell culture

The human osteoblast cell line hFOB 1.19 and osteosarcoma cell lines
143B, U20s, Saos, and MG63 (Saiba, Shanghai, China) were maintained
in the laboratory of Ningxia Medical University. Each cell line was
cultured in its specific growth medium and incubated in a humidified
incubator at 37°C with 5% CO, to ensure optimal growth conditions.

2.10.2 Reverse transcription quantitative
polymerase chain reaction

Total RNA was extracted using the UltraPure RNA Extraction
Kit (CW0581M, CWBIO) according to the manufacturer’s
instructions. The concentration and purity of the RNA were then
measured. cDNA was synthesized from the RNA using a reverse
transcription kit following the provided protocol. For RT-qPCR
detection, 2xSuperStar Universal SYBR Master Mix was used as the
fluorescent dye. The primers for ATP1Al, CLK1, SIGMARI,
PYGM, HSP90BI, and the internal reference gene P-actin were
synthesized by General Biosystems (Anhui, China) Co., Ltd.
(Supplementary Table 3).
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2.11 Cell proliferation and viability assays

Reagent and source: Solasonine was purchased from
MedChemExpress (MCE, Cat. No.: HY-N0070), CCK-8 detection
kit (KeyGEN BioTECH,China,Cat.No.: KGA9305-500). The
proliferation and cell viability of 143B cells were detected by CCK
8: until the cell density was grown to about 90%, the cells were
passaged, collected, counted, and spread in about 10,000 cells per
well in 100puL per well, and cultured in an incubator overnight. The
next day, different concentrations of Solasonine were added so that
the final concentrations in the wells were 40,20,10,5,2.5,1,0 uM and
placed in an incubator for 24 h, 48 h. Then 10uL CCKS of reagent
was added to each well and incubated in an incubator for 2 h. The
absorbance of each well was detected by an enzyme marker at
450 nm.

2.12 Assessment of cell migration and
invasive capacity

2.12.1 Wound healing assays

143 B and MG63 cells were inoculated in 6-well plates
overnight, and when the cell density reached 80% fusion, the cells
were vertically scratched with a 200uL sterile pipette tip and washed
with PBS to remove detached cells. The cells were then incubated
with 10uM solasonine for 24h, 48h and cell migration was detected.

2.12.2 Transwell assays

The matrix gel (KeyGEN BioTECH, Jiangsu, China) was
prediluted at 1:8 in the Transwell upper chamber (PC membrane
6.5 mm, pore diameter 8 microns) and polymerized at 37°C for 4 h.
When 143B cells were starved for 24 hours, 100uL of cell suspension
was added to the upper chamber (serum-free medium). After the cells
were attached, 200uL of serum-free medium containing 10uM of
solasoline were added, and the lower chamber was filled with a
complete medium containing 20% FBS. After 24 h of incubation, cells

10.3389/fonc.2025.1614058

were fixed with 4% paraformaldehyde and stained with 0.1% crystal
violet, and five randomly were selected.

2.13 Statistical analysis

The R programming language (v 4.2.2) was used for bioinformatics
analyses. Differences between two groups were compared by the
Wilcoxon rank sum test (P <0.05). The log-rank test was used to
evaluate the differences between groups in survival analysis (P <0.05).
All experiments were repeated in triplicates. Data were presented as
mean + SD. Statistical differences between each group were compared
using the Student’s t-test. P <0.05 was considered statistically significant.
The one-way analysis of variance (ANOVA) was used to compare
multiple groups. Statistical significance was defined as P <0.05.

3 Results
3.1 Acquisition of 37 candidate targets

Differential expression analysis was performed using the
GSE99671 dataset, including 965 upregulated and 989
downregulated genes in the OS group (Figure 1A). Additionally, a
heatmap constructed with the top genes demonstrated that these
genes could effectively distinguish between the OS and control
groups (Figure 1B). Finally, the intersection of DEGs, 210 targets
corresponding to solasonine, and 28050 OS-related disease targets
resulted in 37 candidate targets (Figure 1C, Supplementary Table 4).

3.2 Function enrichment and PPI analysis
of candidate targets

The GO analysis conducted on 37 candidate targets separately
enriched 95, 29, and 44 terms of biological process (BP), molecular
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Screening of candidate targets. (A) Volcano plots of 1954 DEGs between the OS and control groups; (B) Heatmap of expression of 1954 DEGs
between OS and control groups; (C) The Venn diagram showing 37 targets corresponding to osteosarcoma.
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function (MF), and cellular component (CC), such as response to
xenobiotic stimulus and peptidyl-threonine phosphorylation (adj.p
<0.05) (Figure 2A). Additionally, 33 KEGG pathways were
enriched, such as th PI3K-Akt signaling pathway (Figure 2B). The
PPI network consisted of 34 nodes and 96 edges, including
HSP90A1, MMP2, HSPAS, and TPI1 (Figure 2C).

3.3 Identification of key targets and
construction of prognostic model

9 survival-related genes were identified after univariate and
multivariate Cox regression analyses, and PH assumption tests (P >
0.05) were conducted separately for the regression analysis results
(Figures 3A, B) (Tables 1, 2). Then, through stepwise regression
analysis, 5 key targets (ATP1Al, CLK1, SIGMARI, PYGM,
HSP90B1) were finally determined (Table 3).

Based on the relative expression levels of key targets and the risk
coefficients obtained from stepwise regression analysis, the risk model
was constructed: Risk score = 0.8217ATP1A1 + 1.0601CLK1 + 1.1048
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SIGMARI + 0.3120PYGM + 1.0248HSP90B1. Using the optimal
cutoff value (cutpoint = 0.1395293) for the risk score, the 2 groups
(high-risk: 38 samples, low-risk: 46 samples) among OS patients were
determined (Figure 3C). Moreover, the survival status plot indicated
that the higher the risk score, the greater the number of deceased OS
cases (Figure 3D). Concurrently, it was found that, in the high-risk
group, patients had lower survival rates through the K-M curve (p =
0.0001) (Figure 3E). The ROC curve indicated that the constructed
prognostic model could effectively predict the survival rates of OS
patients (the AUCs were all greater than 0.7) (Figure 3F).

Through GSE39055, the reliability of the prognostic model was
then validated. A model was applied to calculate optimal threshold
(45.79048), 2 groups (high-risk: 12 samples, low-risk: 25 samples)
were determined (Figure 4A) The results of the survival status plot
and the K-M curve (P <0.05) were consistent with those of the
TCGA-OS (Figures 4B, C). Furthermore, the ROC analysis
demonstrated AUCs exceeding 0.6 for 1 and 2 years, respectively,
while the AUC for 3 years approached 0.6 (Figure 4D). These
outcomes confirmed the robustness of the risk model in assessing
the prognostic risk of OS patients.

D Description
G0:0009410
G0:0018107
G0:0018210
G0:0043627
G0:0015844
G0:0038003 G protein-coupled opioid receptor signaling pathway
G0:0097305
G0:0043279
G0:0009314
G0:0051937

response to xenobiotic stimulus
peptidyl-threonine phosphorylation
peptidyl-threonine modification
response to estrogen
monoamine transport

response to alcohol
response to alkaloid
response to radiation
catecholamine transport

Function enrichment and PPI analysis of candidate targets. (A) GO enrichment analysis; (B) KEGG enrichment analysis; (C) Protein-protein interaction

of candidate targets.

Frontiers in Oncology 06

frontiersin.org


https://doi.org/10.3389/fonc.2025.1614058
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wei et al.

10.3389/fonc.2025.1614058

GeneName P value Hazard Ratio(95% CI)

PYGM 0.0061 151(1.12-2.02) o
ATPIAL 0.0124 2.77(125-6.15) —_———
HSP90BI 0.0215 3.62(1.21-10.80)
CLKI 0.0217 224(113-447) —————
CHEK1 0.0231 2.66(1.14-6.19) —————
PRNP 0.0318 0.410.18-0.92) 1o
SIGMARI 0.0424 2.22(1.03-4.79) ———
ANXAS 0.0448 0.370.14-0.98)  1o—i
RNASEL 0.0466 0.64042-099) 1o

—r T

o1 2 A5
Hazard Ratio

C

Train Dataset Risk Score Distribution

° igh
2] © Low

i -~

Risk Score

50
Patients(increasing risk score)

Survival Curves
Based on Kaplan—Meier Estimates

Risk Score == Highrisk =t= Low risk

1.00 - -'*W

o e = = = b b = i = =
a '
E 0.7 -
s | v lddeem==
B
8,050
3
H
T Log-rank
E =0.0001
3 P

0.00
0 1000 2000 3000 4000
Overall Survival(day)
Number at risk
»
§ Highrisk{ 38 13 6 3 1
©
=
g Lowrisky 46 28 14 6 0
&
0 1000 2000 3000 4000
Overall Survival(day)

FIGURE 3

Gene P value Hazard Ratio(95% Cl)

ANXAS 0.427 062(0.19-2)  +————t
RNASE1 0275 0.74(0.43-13)  +——t

CHEK1 0.841 088(026-3)  +—e——t

PRNP 0.922 0.95(0.36-2.5)  +—e—t

PYGM 0213 1.3(0.87-1.9) —

ATP1A1 0.146 1.8(0.82-3.8) —

CLK1 0.027 2.7(1.1-6.5) —_—
SIGMART ~ 0.020 2.7(1.2-6.2) L ——
HSP90B1  0.078 3.2(0.88-11)

T
0051152
Hazard Ratio

Train Dataset Overall Survival (days) Distribution

e
001 H .
£ . S
F w0 . ! .
g : .
] . . :
g . H
£ . . : .
z .. .
5 2w . h
@ . e o .
= . . . 0 . . .
A H .
2 Ve
& . . ! ..
o H .o woo o
i )
Patients(increasing risk score)
0OS-train, Method = KM
Year=1,2,3
o | —
- i
« | ’7‘l\
2 _
<
8
8 @
e o
2
3
T I
(0]
=
=
N
° — AUC of 1 year = 0.833
— AUC of 2 year = 0.798
— AUC of 3 year = 0.786
< |
o

T T
0.0 0.2 04 0.6 0.8 1.0
False Positive Fraction

Identification of key targets and construction of prognostic model. (A, B) Forest plots demonstrate the acquisition of 9 candidate genes by univariate
COX regression analysis and multivariate COX regression analysis based on 37 candidate genes; (C) Train dataset risk score distribution based on 5-
targets risk scoring model(high-risk: 38 samples, low-risk: 46 samples); (D) The survival status distribution map of the high and low risk groups
shows that the higher the risk score, the shorter the survival time; (E) The training set K-M curve indicate low survival in the high-risk group; (F) The
ROC curve in the training set (AUC greater than 0.7) suggests that the prognostic model has good predictive performance.

3.4 Construction and evaluation of OS
prediction model

Meanwhile, the results of the Nomogram showed that CLK1
had the greatest contribution to patient survival, followed by
SIGMARI1, HSP90BI1, ATP1Al, and PYGM (Figure 5A). The
calibration curve showed that the slopes of the nomogram-
predicted survival probabilities for different years were close to 1
(Figure 5B). Furthermore, the AUC values were all greater than 0.7
(1-, 2-, and 3-year) (Figure 5C), indicating that the nomogram had
good predictive performance.

Frontiers in Oncology

3.5 Risk score-based GSEA analysis

Subsequent GSEA analysis identified 34 pathways that showed
significant differences between the 2 groups (adj.p <0.05), such as
ribosome (Figure 6). These functions still require further investigation.

3.6 Description of the immune
microenvironment in OS

Subsequently, the Wilcoxon test indicated that activated B cells,
memory B cells, natural killer cells, and central memory CD8 T cells
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TABLE 1 Univariate pH test results.

ATPIA1 0.927415916
CLK1 0.651164851
ANXAS5 0.126637277
SIGMARI 0.997159862
PYGM 0.298314958
CHEK1 0.482730991
HSP90B1 0.138982571
RNASE1 0.696916477
PRNP 0.501966222

in the high-risk group were all significantly less abundant than
those in the low-risk group (P <0.05) (Figure 7A). The correlation
analysis between key targets and different immune cells showed that
ATP1A1 was weakly negatively correlated with natural killer cells
and activated B cells (|cor| < 0.3, P <0.05) (Figure 7B). ATP1A1 was
then weakly negatively correlated with activated B cells and natural
killer cells (|cor| < 0.3, P <0.05) (Figure 7C). The correlation analysis
between the risk scores and different immune cells showed that only
memory B cells were weakly negatively related to risk scores (|cor| <
0.3, P <0.05) (Figure 7D). Simultaneously, in the high-risk group the
immune checkpoints CD244 and TNFSF18 were significantly
overexpressed, while CD44 was significantly underexpressed
(Figure 7E). Additionally, stromal score of the high-risk group
was significantly lower (Figure 7F).

3.7 Exon-intron and protein structure
presentation of key targets

The full-length gene transcripts showed that ATPIAl
(Figure 8A), CLK1, SIGMARI1 (Figure 8B), PYGM (Figure 8C),
and HSP90B1 (Figure 8D) contained 21, 14, 4, 18, and 18 exons,
respectively. The full-length gene transcript of CLK1 included non-

TABLE 2 Multivariate pH test results.

id chisq df p
ATP1A1 0345049318 1 0556929059
CLK1 0.106957524 1 0.7436349
ANXAS5 034721792 1 0.555692239
SIGMARI 0.090021544 1 0764149769

PYGM 0202826396 1 0.652449068
CHEK1 0028542881 1 0.865838814
HSP90B1 1.766064941 1 0.183869824
RNASE1 0701225796 1 0.402372115

PRNP 0.013312638 1 0.908143608
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coding regions, making it impossible to visualize the gene structure
of CLK1. The protein structures showed that all proteins contained
domains characteristic of themselves (ATP1A1: sodium/potassium-
transporting ATPase subunit alpha-1; CLK1: dual specificity
protein kinase CLK1; SIGMARI: sigma non-opioid intracellular
receptor 1; PYGM: glycogen phosphorylase, muscle form;
HSP90B1: Endoplasmin) (Figures 8E-H). Among them, the
PYGM gene had no domain information in the Uniprot database,
making it impossible to visualize. The gene and protein information
of the key targets were summarized (Table 4).

3.8 Construction of TF-mRNA regulatory
network and molecular docking

The TF-mRNA network contained 136 nodes and 214 edges.
ATPI1AI, CLK1, SIGMARI1, PYGM, and HSP90B1 were predicted
to have 78, 42, 33, 22, and 38 transcription factors, respectively.
Among them, transcription factors such as GATA3 were found to
co-regulate these 5 key targets (Figure 9).

It was then found that 5 key targets with solasonine indicated
good binding performance (binding energies were all less than -5
kcal/mol) (Figures 10A-E) (Table 5). Among them, PYGM had the
best binding effect with solasonine (docking score = -10.1 kcal/mol).

3.9 Expression of key targets in
osteosarcoma cell lines

In the results of the RT-qPCR experiment, compared with the
hFOBI1.19 cells in the control group, PYGM showed lower
expression in the 143B cell line and higher expression in the
U208, Sao-2 and MG63 cell lines(P<0.05). The rest of the target
genes all exhibited high expression in the four osteosarcoma cell
lines (P<0.05), indicating statistically significant differences
(Figures 11A-E).

3.10 Solasonine affects the malignant
biological behavior of osteosarcoma cells

3.10.1 Solasonine inhibits the proliferation of
143B and MG63 cells

The results of the CCK 8 assay showed that solasonine inhibited
the proliferation of 143B and MG63 cells.Compared with the
control group, cell viability decreased significantly in a dose- and
time-dependent manner.After 24 h,the difference in 143B cell
viability from the concentration of 2.5 wmol/L (P <0.05) and
gradually decreased with increasing concentration. After 48 h,
tthe difference in 143B cell viability from the concentration of
Ipmol/L (P <0.05) and gradually decreased with increasing
concentration (Figures 12A-D). The IC50 of 143B cells for 24h
and 48h was calculated to be 12.27umol/L and 5.395umol/L,
respectively (Figures 12E, F). The subsequent trials were set with
IC50 as reference.
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TABLE 3 Risk coefficients of key targets.

id coef exp(coef) se(coef) z
ATPIA1 0.821685013 2.274328884 0.340209492 2.415232475
CLK1 1.060058641 2.886540254 0.379213922 2.795410665
SIGMARI1 1.104832742 3.018719523 0.430319273 2.567472137
PYGM 0.319977557 1.377096858 0.16187365 1.976711817
HSP90B1 1.024809469 2.786564482 0.56253301 1.821776591

3.10.2 Solasonine inhibited the invasion and
migration of 143B and MG63 cells

The inhibitory effects of Solasonine on invasion and migration
in 143B and MG63 cells were also examined. The data of wound
healing revealed the bigger scratch areas in treated cells
(Figures 13A-D), indicating the inhibitory effect of Solasonine on
migration. The further transwell assay also showed less invaded
cells in solasonine-treated groups (Figures 13E, F), which was
consistent with the wound healing results.

4 Discussion

Osteosarcoma is a common primary bone malignancy in
children and adolescents (32). In recent years, despite the

10.3389/fonc.2025.1614058

remarkable development of early diagnosis and treatment of
osteosarcoma, the overall survival rate of osteosarcoma patients
has not been significantly improved due to its low sensitivity and
resistance to chemotherapeutic drugs (33). How to further enhance
the sensitivity of osteosarcoma chemotherapy drugs and reduce the
occurrence of drug resistance without increasing chemotherapy
toxicity and economic burden on patients is still a difficult
problem in current clinical treatment. Solasonine is a natural
alkaloid, one of the main components of traditional Chinese
medicine, Solanum nigrum L.(Long kui). It has various
pharmacological effects such as anti-tumor, anti-inflammatory,
and neuroprotection. Although previous research (17) has
explored Solasonine’s role in osteosarcoma, there is still a lack of
comprehensive understanding of all its anti - osteosarcoma targets
and the associated molecular mechanisms. In this study, for the first
time, we screened the candidate genes of SS against osteosarcoma by
network pharmacology combined with transcriptomics and
performed KEGG and GO analysis on the candidate genes, as
well as PPI network construction to identify five key targets, and
the prognostic value of the key targets could be clearly defined by
constructing a prognostic model of the key target. The importance
of these key targets was demonstrated in the subsequent relevant
analyses. Then we further verified the expression of the targets in
osteosarcoma cells and the malignant biological behaviors of
osteosarcoma cells affected by Solasonine.

The in-depth exploration of the pathological mechanisms of
osteosarcoma and its related signaling pathways, the development

0S-Verify
© n ..
N * High , e *
o €A ..11~ T
a ceeee® i
8 - e :
é g s
'3
o |
- .
T T T T T t T T
0 5 10 15 20 25 30 35
Patients (increasing risk socre)
Survival Curves
Based on Kaplan—Meier Estimates
Group = Highrisk == Lowrisk
100
-
& S e e b e e +
Fon '
2 L= | seeake
s
2,050 +
T it
Foxs Log—rank
0.05
3 7
000
0 4 8 12 16
Overall Survival (years)
Number at risk
High risk1—12- 4 0 0 0
H
S
S Lovise] 25 13 5 3 2
0 12 16

8
Overall Survival (years)

FIGURE 4

0OS-Verify
7 2
5 | © Dead
kS &9 o Alive
o &4
£ o .
R . o*
s e
@ o e . e °. Cee®
od e -'. ¢ . '-. e®eioee PR
T T T T T T T
0 5 10 15 20 25 30 35
Patients (increasing risk socre)
0S-Verify, Method = KM
Year =1,2,3
24 r’_/
|
s \
° |
5 —
g o |
‘LI: o
g
3.
e <
S o
E
=
o
° — AUC of 1 year = 0.672
— AUC of 2 year = 0736
— AUC of 3 year = 0583
< |
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Fraction

The validation set verifies the reliability of the prognostic model. (A) Risk score distribution of the high and low risk groups; (B) The survival status
distribution of validation set; (C, D) The validation set K-M curves and ROC curves illustrate the robust performance of the prognostic model.

Frontiers in Oncology

09

frontiersin.org


https://doi.org/10.3389/fonc.2025.1614058
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wei et al.

and metastasis of osteosarcoma are closely related to several cell
signaling pathways, including Wnt/B-catenin, PI3K/Akt, RAF/
MEK/ERK and mTOR (34), which is consistent with the results
of this study.

According to the results of the GO and KEGG analysis in this
study, the biological process was enriched to response to xenobiotic
stimulus. The molecular function was enriched to carbon-oxygen
lyase activity, which suggested that Solasonine may activate the
cellular stress defense mechanism to clear the exogenous toxic
substances and regulate energy metabolism of osteosarcoma cells
and Apoptosis sensitivity. There are also studies confirming that
solasonine regulate osteosarcoma glucose metabolism through the
Wnt/B-Catenin/Snail pathway. This also proves the reliability of
our results.

Wang et al. (35) showed that estrogen receptoraiexpression can
be used as a prognostic factor to predict the response to

10.3389/fonc.2025.1614058

chemotherapy and inhibit the proliferation of tumors. The dual
enrichment of response to estrogen and estrogen signaling pathway
in this study implies that solasonine may intervene with candidate
genes to inhibit the proliferation or drug resistance of osteosarcoma
through the non-genomic effects mediated by estrogen receptor
(ESR1/ESR2) or membrane-associated estrogen receptor (GPER1),
which also provides some theoretical bases for the direction of the
subsequent research on Solasonine to enhance the sensitivity
of chemotherapy.

In addition, the association of serine/threonine kinase (Ser/Thr
kinase) with the PI3K-Akt pathway suggests that Solasonine may
form an estrogen-kinase-PI3K regulatory axis in inhibiting the
progression of osteosarcoma cells by inhibiting the
phosphorylation modifications (for example, AKT1 Thr308/
Ser473) and the downstream mRNA of AKT1 Thr308/Ser473 and
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survival; (B) The calibration curve for the Nomogram predicts patient survival at 1-year, 2-year, and 3-year; (C) ROC curves suggest good predictive

performance of the nomogram (AUC > 0.7).
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downstream mTOR, thereby inhibiting tumor invasion, a
mechanism confirmed in other tumor studies (36).

In previous studies, HSP90AA1 was able to mediate autophagy
in osteosarcoma to promote drug resistance (37). Combined with
the PPI network in this study, it is hypothesized that Solasonine
may synergistically regulate the “stress-responsive-molecular
chaperone cluster’(HSP90AA1, HSPA8, HSP90B1) and
the”metabolism-invasive synergistic network”(TPI1, MMP2) (38,
39), which could promote apoptosis and inhibit proliferation of
osteosarcoma cells, and enhance the sensitivity of chemotherapy.

In this study, five possible key targets of SS against
osteosarcoma were finally identified: ATP1A1, CLK1, SIGMARI,
PYGM, and HSP90B1. ATP1A1 belongs to the subfamily of Na+/K
+ -ATP enzyme. It has been shown that disruption of ion gradients
in tumor cells caused by ATP1Al, can synergize with MAPK
pathway inhibitors to promote tumor regression (40, 41). Some
studies suggest that ATP1A1 may be used as a diagnostic marker for
renal cancer and breast cancer, which is related to the prognosis of
tumor (42, 43). CLK1 encodes a member of the CDC2-like (or
LAMMER) family of dual-specificity protein kinases, which has
been found to influence almost all the aspects of tumor biology
including: angiogenesis, apoptosis, cell cycle control, invasion,
metastasis, and metabolism (44, 45). SIGMARI is a 25kDa stress-

10.3389/fonc.2025.1614058

activated molecular chaperone protein involved in the regulation of
calcium homeostasis, endoplasmic reticulum stress response,
mitochondrial function, and autophagy (46). SigmaR1 is
overexpressed in cancer samples from colorectal cancer (CRC)
patients, is associated with higher tumor grade and promotes
tumor invasion and angiogenesis (47, 48).PYGM plays a role in
insulin and glucagon signaling as well as insulin resistance pathways
involved in the regulation of glycogen levels, and its expression level
is closely associated with survival prognosis in many cancers (49,
50). HSP90B1 is a conserved member of the heat shock protein
family involved in protein folding and translocation. HSP90B1 is
highly expressed in various types of tumors and is usually associated
with poor prognosis (51). Inhibition of HSP90B1 expression
enhances chemotherapy in breast cancer studies (52). HSP90BI is
a direct target of miR-223 and miR-223 may have a tumor
suppressor function in osteosarcoma through the PI3K/Akt/
mTOR pathway and could be used in anticancer therapies in
osteosarcoma (53). All five targets have unique biological
functions, and solasonine may intervene in the development of
osteosarcoma cells through these targets. This further demonstrates
the effectiveness of the selected target genes, providing effective help
for the treatment of OS, and verifying potential therapeutic targets
for other malignant tumors.
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Based on the above five prediction targets, we constructed a
disease prognostic model through TCGA-OS data and verified the
generalizability of the prognostic model. In the training and
validation sets, the risk model was evaluated by drawing K-M

10.3389/fonc.2025.1614058

curves and ROC curves, and the results showed that the AUC
values of the ROC curves for years 1, 2, and 3 were more than 0.7,
which indicated that the constructed model was more effective and
that the risk model constructed in this study had good predictive
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performance. From the results of the Nomogram, CLK1 has the
greatest contribution to the prediction of overall survival, followed
by SIGMARI, and the total points derived from the combination of
the five targets are more predictive of the prognosis of the disease.

ATP1A1

SIGMAR1

PYGM

HSP90B1

10.3389/fonc.2025.1614058

This indicates that the Nomogram constructed based on the five
targets has a good predictive performance. It can be used to evaluate
the prognosis of patients with osteosarcoma, and It also suggests
that these five targets are valuable for further research.
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TABLE 4 The gene and protein information of the key targets.

Name - . .
/ Aliases Exon count Protein names Location
gene ID
ATPIAL CMT2DD, HOMGSMR2 21 Sodlu@/potassmm-transportmg ATPase 1p13.1
subunit alpha-1
CLK1 CLK, CLK/STY, STY 14 Dual specificity protein kinase CLK1 2q33.1

ALS16, DSMA2, HMNR2, OPRS1, SIG-1R, SR-BP, SR-BP1, SRBP, . L
SIGMAR1 . i 4 Sigma non-opioid intracellular receptor 1 9p13.3
hSigmaR1, sigmalR

PYGM GSD5 18 Glycogen phosphorylase, muscle form 11q13.1
HSP90B1 ECGP, GP96, GRP94, HEL-S-125m, HEL35, TRA1 18 Endoplasmin 12q23.3
[ 1 SMAD2/3

FIGURE 9
The TF-mRNA regulatory network of 5 key targets.

Frontiers in Oncology 14 frontiersin.org


https://doi.org/10.3389/fonc.2025.1614058
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wei et al.

10.3389/fonc.2025.1614058

FIGURE 10

Molecular docking diagrams of Solasonine with ATP1A1 (A), CLK1 (B), SIGMAR1 (C), PYGM (D), and HSP90BL1 (E).

The GSEA analysis graph shows the changes in the enrichment
scores of different gene sets. Studies have found that the ribosomal
protein RPL7A is significantly downregulated in osteosarcoma
samples. Low RPL7A expression is associated with elevated serum
alkaline phosphatase (ALP) levels in osteosarcoma patients and
serves as an independent predictor of poor prognosis in lung
metastasis cases (54). Additionally, research has shown that
knocking down the ribosomal protein S15A (RPSI15A) using a
lentiviral-mediated RNA interference system can significantly
inhibit the proliferation and colony formation of human
osteosarcoma U20S cells, causing them to arrest in the G0/G1

TABLE 5 Binding energy of key targets with solasodine.

Docking score

SYMBOL

(kcal/mol)
ATPIA1 7E1Z 9.9
CLK1 6Q8K -8.6
SIGMARI 5HK2 93
PYGM 178D -10.1
HSP90B1 4NH9 7.8
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phase of the cell cycle (55). In this study, ribosomes were
significantly enriched in the high-risk group, suggesting that
ribosome-related biological processes may be more active in high-
risk osteosarcoma, promoting protein synthesis and providing a
material basis for rapid tumor cell proliferation, invasion, and
metastasis. Moreover, among our predicted targets, such as
HSP90AA1, HSP90BI, which are related to the protein synthesis
process, so we hypothesize that SS acts on the targets to regulate
protein synthesis, which in turn affects the progression of
osteosarcoma. Of course, there is no single mechanism for the
anti-osteosarcoma effect of SS, and the mechanism of action may be
multifaceted, involving multiple biological processes such as protein
synthesis (ribosome-related), immune regulation (cytokines,
primary immunodeficiency-related), neuromodulation and cell
adhesion. There may be interactions and synergistic regulation
between these targets and pathways, which together affect the
development of osteosarcoma.

In the target-based analysis of the immune microenvironment
for high and low -risk subgroups, the tumor microenvironment in
the high-risk group was characterized by immunosuppression
(decreased immune cells, abnormal immune checkpoints) and
alterations in the stromal microenvironment. Abnormal
activation of immune checkpoints enables tumor cells to evade
recognition and attack by the host immune system and promotes
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tumor progression (56, 57). Moreover correlation analysis of key
targets with different immune cells showed that ATP1Al was
moderately negatively correlated with natural killer cells and
activated B cells. These findings provide a theoretical basis for
therapeutic strategies targeting the tumor immune
microenvironment and the ATP1A1l pathway, but further
experiments are needed to validate the function and mechanism
of ATP1Al. There were significant differences in the matrix
components of the tumor microenvironment between high and
low risk groups, suggesting that stromal cells and their
microenvironment may be involved in the malignant progression
and prognostic differentiation of osteosarcoma. It provides a
direction for further study of the mechanism and therapeutic
intervention of stromal microenvironment in osteosarcoma.

To explore the molecular binding of Solasonine to candidate
genes, we did gene structure analysis and molecular docking of 5
targets. In the TF-mRNA network, GATA3, which regulates 5 key
targets, is an oncogenic factor and has been reported to be lowly
expressed in osteosarcoma, inhibiting OS progression and

10.3389/fonc.2025.1614058

metastasis by regulating slug (58, 59). In molecular docking, when
the binding energy was less than -5 kcal/mol, it indicated a good
binding ability, and the 5 key targets had a better binding
performance with SS, among which PYGM and SS had the
highest binding energy, which indicated that it had the best
binding effect.

The combined analysis of transcriptomics and network
pharmacology enables deeper insights into the potential targets of
solasonine for the treatment of osteosarcoma. As verified by some
experiments, the five targets were highly expressed in osteosarcoma cell
lines, suggesting that the five targets may jointly serve as potential
diagnostic targets for osteosarcoma, Their importance for the
development of osteosarcoma needs to be verified by further
experiments. Meanwhile, in the drug-intervention osteosarcoma cell
phenotype experiment, solasonine is able to inhibit the malignant
biological behavior of osteosarcoma. The experimental results showed
that 143B cells had a stronger migration and invasion ability than MG63
cells, and the migration ability was reduced after drug action, indicating
the complexity of the migration regulation mechanism between the two.
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Expression of key targets in osteosarcoma cell lines (A) ATP1A1; (B) CLK1; (C) SIGMARZ; (D) PYGM; (E) HSP90B1). *p < 0.05, **p < 0.01, ***P< 0.001,

****p < 0.0001.
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5 Conclusion

Based on network pharmacology and transcriptomics, we
identified ATP1A1, CLK1, SIGMARI, PYGM, and HSP90BI as the
key targets of solasonine that influence the progression of osteosarcoma
cells. Solasonine, the main component of Solanum nigrum L. (Long
kui), targets multiple pathways to regulate various biological behaviors
in osteosarcoma cells, including proliferation, apoptosis, migration, and
invasion. SS can be a potential drug for the treatment of osteosarcoma.
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6 Limitations

Due to resource limitations, the main limitation of this study is
that the depth of mechanism verification is insufficient: only RT-
qPCR was used to verify the high expression of the target at the
mRNA level, but no protein level verification was conducted by
Western blot, and no knockdown/overexpression experiments were
carried out to clarify the causal relationship between the target and
the effect of australoxamine.
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curves of 143B cells treated with different concentrations of solasonine.
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(A-D) wound-healing migration of SS-treated 143B (A, C), MG63 (B, D) cells and the quantitative assays were examined. (E, F) transwell invasion of
the SS-treated cell lines and the quantitative assays were examined (***P<0.0001, ###P<0.0001).

7 Future directions

Future research can be expanded in three areas: (1) Verify the
expression of target proteins using Western Bloting and
immunofluorescence, and observe changes in cell phenotypes
through shRNA knockdown experiments; (2) Validate the function
of the target in multiple osteosarcoma cell lines and nude mouse
models, and correlate the expression in clinical samples with
prognosis; (3) Enhance the synergistic effect of solasonine with
chemotherapeutic drugs to improve chemotherapy sensitivity and
reduce toxicity; (4) Design solasonine derivatives based on the target
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structure, optimize their pharmacokinetic properties, and promote
their clinical application. These studies will solidify the value of
targets predicted by network pharmacology and provide a more
comprehensive evidence base for the anti-osteosarcoma mechanism
of solasonine.
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