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Background: The overall incidence of liver metastasis in colorectal cancer is as

high as 50%, and surgery remains the only potentially curative approach for the

metastatic disease. The recurrence rate of liver metastases within one year after

surgery is still 60%-70% in clinical practice. Whether we can accurately predict

the early recurrence of patients after surgery is one of the most important

considerations in formulating the overall treatment strategy.

Methods: In this study, we combined radiomics feature extraction with machine

learning classification methods to develop a novel strategy for predicting

intrahepatic metastases based on imaging radiomics and machine learning. We

constructed and systematically evaluated multiple machine learning models to

assess their performance. By validating these models on a test set, we

determined the effectiveness of each predictive model and selected the one

with the highest predictive accuracy.

Results: The integration of radiomics and machine learning methods

demonstrated significant potential in predicting intrahepatic recurrence within

one year after surgery in patients with colorectal cancer liver metastases. The

Gradient Boosting, LightGBM, and Random Forest models all achieved

classification accuracies (ACC) exceeding 65% across all classification tasks.

Notably, the Random Forest model exhibited the best performance; while its

classification accuracy was 65.52% in the imaging-only group, it increased to

75.86% when both imaging and clinical information were combined, with an area

under the receiver operating characteristic curve (AUC) of 70.83%, indicating

strong predictive capability. These findings suggest that these models have

potential application value in supporting the diagnostic work of clinical

radiologists, potentially helping to reduce workload and decrease the risk

of misdiagnosis.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1613093/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1613093/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1613093/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1613093/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1613093/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1613093&domain=pdf&date_stamp=2025-11-14
mailto:fengxiaobin200708@aliyun.com
mailto:chunkang129@fjmu.edu.cn
https://doi.org/10.3389/fonc.2025.1613093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1613093
https://www.frontiersin.org/journals/oncology


Lin et al. 10.3389/fonc.2025.1613093

Frontiers in Oncology
Conclusions: The imaging omics model and the combined model have good

predictive efficacy for the recurrence of colorectal cancer liver metastases within

one year, and can be used to assist in the clinical stratification of postoperative

patients and identify high-risk factors for poor prognosis.
KEYWORDS

colorectal liver metastasis, CT radiomics, machine learning, intrahepatic
recurrence, prediction
1 Introduction

Colorectal cancer (CRC) ranks as the third most frequently

diagnosed cancer, with more than 1.92 million newly diagnosed

cases and 903,800 deaths worldwide in 2022 (1), and its high

mortality rate is mainly attributed to metastasis (2, 3). The liver is

the most common site of metastasis, accounting for approximately

50% of colorectal cancer metastases (4). Liver metastasis is one of

the major causes of death for CRC with 6.9 months of median

survival receiving only palliative care (5, 6). Despite decades of

advances in systemic and local therapies, hepatectomy remains the

only curative treatment for patients with resectable colorectal liver

metastases (7, 8). However, around 30% patients experience

intrahepatic recurrence within a year of post-hepatectomy (9),

which have worse outcomes than that late recurrence (10, 11).

Therefore, accurate predictive models for early recurrence risk in

patients with colorectal liver metastases are of significant

clinical value.

With the advance rise of artificial intelligence technology, there

are more and more researches on the application of imaging omics

and machine learning to predict the prognosis of colorectal cancer

liver metastasis, especially recurrence (12–14). Specifically, Lam

CSN et al. employed a machine learning model for colorectal liver

metastasis post-hepatectomy prognostications, presenting a better

prediction ability compared to Fong Clinical Risk Score (12).

Mühlberg A et al. established a imaging-based prediction model
02
for 1-year survival of colorectal liver metastasis patients, which

showed a better discriminative performance than clinical

models (15).

This study aimed to develop and validate a predictive model

that integrates radiomics features with machine learning algorithms

to forecast intrahepatic recurrence within one year after surgery in

patients with colorectal cancer liver metastases. We utilized CT

radiomics data combined with an expert-annotated patient dataset,

extracting radiomics features from tumor regions delineated by

specialists on CT images. Two models were constructed: one using

only radiomics features, and another that combines radiomics

features with clinical information. Fifteen machine learning

algorithms were employed for feature recognition and

classification, and the most effective model was identified through

performance comparison. This approach aims to predict the

likelihood of recurrence in patients using radiomics technology.

The workflow of this study is illustrated in Figure 1.
2 Method

2.1 Data acquisition

2.1.1 Ethical approval
All research processes were conducted in accordance with

Helsinki Declaration (revised in 2013). This study was approved
FIGURE 1

The workflow of this study.
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by the Institutional Review Committee of the Clinical Oncology

School of Fujian Medical University.

2.1.2 Data source and variables
The data utilized in the experiment is sourced from the Cancer

Imaging Archive dataset(TCIA). TCIA is a public database

dedicated to cancer research, encompassing medical imaging

and clinical data of various cases. Patients were excluded for

the following:(I) liver metastasis assessment unresectable,(II)

patients who cannot tolerate surgery or died perioperatively, and

(III) extrahepatic recurrence. Collect the basic information of the

patient, including age, gender, major comorbidity, body mass index,
Frontiers in Oncology 03
regional lymph node, multiple metastase, carcinoembryonic antigen

(CEA) levels, max tumor size, lobar involvement and preoperative

portal vein embolization. This study included a total of 197 patients

with colorectal cancer liver metastasis after surgery, including 117

males (59.4%) and 80 females (40.6%); 110 patients (55.8%) were

aged ≥60 years; 41 patients (20.8%) had liver metastatic tumors with

a diameter of ≥5 cm; 122 patients (61.9%) received systemic

chemotherapy before surgery; and 23 patients (11.7%) received

portal vein embolization therapy before surgery. During the follow-

up period, 122 patients experienced intrahepatic recurrence, and 37

patients experienced intrahepatic recurrence within one year after

surgery (Table 1).
TABLE 1 Demographic and tumor characteristics of patients with colorectal liver metastasis.

Variables Total,n (%) (n=197)
Early intrahepatic recurrence

P
Yes No

Gender 0.135

Male 117 (59.4) 26 91

Female 80 (40.6) 11 69

Age 0.808

<60 87 (44.2) 17 70

≥60 110 (55.8) 20 90

BMI (kg/m2) 0.129

<24 55 (27.9) 15 40

24-28 62 (31.5) 8 54

>28 80 (40.6) 14 66

Major comorbidity 0.203

Yes 109 (55.3) 17 92

No 88 (44.7) 20 68

Regional lymph node 0.691

Positive 69 (35.0) 14 55

Negative 128 (65.0) 23 105

synchronous_crlm 0.429

Yes 111 (56.3) 23 88

No 86 (43.7) 14 72

multiple metastases 0.339

Yes 114 (57.9) 24 90

No 83 (42.1) 13 70

clinrisk stratified 0.527

Yes 51 (25.9) 12 39

No 117 (59.4) 21 96

unknown 29 (14.7) 4 25

CEA (ng/mL) 0.702

(Continued)
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2.1.3 Follow-up criteria
The day of liver metastasis surgery is used as the starting point

for follow-up, and follow-up is conducted by means of follow-up

visits and telephone follow-up. Early intrahepatic recurrence is

defined as intrahepatic recurrence within one year after resection

of liver metastases, and no extra-hepatic recurrence. Patients

with intrahepatic recurrence within one year after surgery are

included in the recurrence group. Patients without intrahepatic

recurrence within one year after surgery are included in the non-

recurrence group. Follow-up is conducted every 3 months after

surgery, including serum markers, abdominal B-ultrasound,

abdominal CT, magnetic resonance imaging of the liver,

and colonoscopy.
2.2 Data preprocessing

Prior to feature extraction, this study systematically

preprocessed the acquired CT images using the SimpleITK

package in Python. Histogram equalization was applied as a

technique aimed at enhancing the contrast of images, making the

details more pronounced and clear. By adjusting the grayscale

distribution, histogram equalization enhances details in low

contrast areas, thereby improving the visibility and analytical
Frontiers in Oncology 04
quality of the images. Subsequently, the images were processed

using a Gaussian high-pass filter. This filter eliminates low-

frequency noise, enhancing the visibility of edges and texture

features within the image, which are crucial for extracting

boundary information. “low-frequency noise” refers to areas in

the image where the background grayscale changes slowly, such as

large areas of uniform blur, brightness drift, or artifacts, which often

obscure high-frequency details such as edges and textures. These

boundary details were reintegrated into the original image to further

enhance the representation of texture features. These preprocessing

steps significantly enhanced the expression of detail information in

CT images, thereby effectively improving the model’s performance.

Furthermore, to address the issue of class imbalance in the

dataset, this study implemented data augmentation. Synthetic

Minority Over-sampling Technique (SMOTE) was used to

enhance the training data by generating new samples to balance

the number of samples across different classes. This process

effectively mitigated the challenges posed by class imbalance,

enhancing the model’s generalization ability and predictive

performance. SMOTE in this study is limited to the radiomics

feature space. Specifically, after delineating and extracting features

from CT image ROIs, the extracted structural features are

oversampled, rather than synthesizing new images at the original

image or texture level.
TABLE 1 Continued

Variables Total,n (%) (n=197)
Early intrahepatic recurrence

P
Yes No

<5 66 (33.5) 12 54

≥5 102 (51.8) 21 81

unknown 29 (14.7) 4 25

Max tumor size (cm) 0.301

<5 156 (79.2) 27 129

≥5 41 (20.8) 10 31

Lobar involvement 0.075

Yes 86 (43.7) 21 65

No 111 (56.3) 16 95

Preoperative chemotherapy 0.008

Yes 122 (61.9) 30 92

No 75 (38.1) 7 68

Preoperative portal vein
embolization

0.128

Yes 23 (11.7) 7 16

No 174 (88.3) 30 144

NASH 0.413

Yes 70 (35.5) 11 59

No 127 (64.5) 26 101
CEA, Carcinoembryonic antigen.
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2.3 Manual region of interest annotation

Images of colorectal cancer liver metastases were exported from

the TCIA database and imported into ITK⁃SNAP software in

DICOM format. Regions of interest for lesions on the images

were manually delineated layer by layer by two radiologists with

5–10 years’ experience in abdominal imaging diagnosis. In case of

differing opinions, the decision was made by a radiology

department deputy chief physician with over 15 years’ experience.

All physicians involved in the delineation were unaware of the

patient’s prognosis (Figure 2).
2.4 Feature extraction and selection

In this study, the feature extraction process utilized the

pyradiomics library in Python, an advanced open-source tool

designed to extract comprehensive radiomic features from two-

dimensional (2D) and three-dimensional (3D) medical imaging

data, encompassing aspects such as shape, intensity, and texture

(16). Given the large number of radiomic features directly extracted

by the pyradiomics library, a series of feature selection steps were

implemented to optimize the feature set. Initially, features outside

the 95% confidence interval were excluded via T-tests to reduce

dimensionality and noise, thereby decreasing the computational

burden in subsequent feature selection stages. This approach not

only enabled the feature selection model to more effectively identify

features that significantly contribute to the predictive target but also

enhanced the model’s performance and predictive accuracy.

Subsequent to this initial reduction, lasso regression was

employed for further feature selection. This autoregressive

technique filtered out significantly contributive features, effectively

preventing overfitting and enhancing the interpretability and

performance of subsequent machine learning models.

Additionally, a combined clinical+radiomic group was established

by integrating postoperative one-year clinical information of
Frontiers in Oncology 05
patients with colorectal cancer liver metastases with radiomic

features. This approach was designed to utilize a more extensive

set of data for model building, combining a wide range of features to

facilitate personalized and precision medicine, ultimately aiming to

improve model performance.
2.5 Construction of machine learning
models

This research employed fifteen machine learning models—

Random Forest (RF), Light GBM, Gradient Boosting, K-Nearest

Neighbors (KNN), Decision Tree, AdaBoost, Extra Trees, Latent

Dirichlet Allocation (LDA), Bootstrap Aggregating (Bagging),

Bernoulli Naive Bayes (Bernoulli NB), Calibrated Classifier,

Gaussian Naive Bayes (GNB), Logistic Regression, Multilayer

Perceptron (MLP), and Quadratic Discriminant Analysis (QDA)

—to process and classify selected radiomics features for predicting

intrahepatic recurrence within one year post-surgery in patients

with colorectal cancer liver metastases.

The Random Forest model leverages ensemble learning

techniques, incorporating randomness during the training phase

by training each tree on slightly different subsets of data and

selecting the best features from randomly chosen subsets at split

nodes. This significantly enhances model diversity, reduces

overfitting risks, and improves generalization capabilities (17).

Light GBM, an efficient gradient boosting framework, optimizes

the speed and memory efficiency of traditional GBDT using a

histogram-based decision tree algorithm, while maintaining high

accuracy. Gradient Boosting models iteratively train decision trees

to minimize loss functions, with each tree learning from the

prediction residuals of the previous tree, thereby reducing model

bias and enhancing accuracy on training data (18).

The KNN algorithm, a basic yet widely used method for

classification and regression, predicts the value of unknown data

points by referencing information from the nearest samples. In
FIGURE 2

The schematic of colorectal-liver-metastases database.
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classification tasks, the category of a sample is determined by one or

more of its nearest neighbors (19). Decision Tree, a non-

parametric supervised learning method applicable for

classification and regression tasks, predicts target values by

learning decision rules from features, offering excellent

interpretability due to its ability to visualize and simulate human

decision-making processes (20).

AdaBoost is an ensemble learning algorithm that aims to build a

strong learner by combining multiple weak learners. It reweights

training samples in each round to increase the weights of previously

misclassified samples, thus focusing subsequent learners on more

challenging samples (21). Extra Trees, a variant of Random Forest,

introduces additional randomness by selecting thresholds randomly

for each feature rather than calculating the optimal thresholds,

thereby enhancing tree diversity and reducing both model variance

and, typically, computation time (22).

Although LDA is inherently an unsupervised learning model

primarily used for identifying topic distributions in document

collections, it can also be indirectly applied to classification tasks

by transforming documents into topic-based representations and

using these topic distributions as features for classifier training (23).

Bootstrap Aggregating is a classic ensemble learning method that

combines multiple models to enhance the accuracy of predictions

and reduce model variance, using multiple training subsets to

stabilize and improve the accuracy of final predictions (24).

BernoulliNB is a specific type of Naive Bayes classifier, designed

for binary feature classification tasks. It performs well in text data

handling, such as document classification or other binary

classification problems, by assuming conditional independence of

features within each class, simplifying computation. The Calibrated

Classifier is an adjusted classifier that refines prediction

probabilities to more accurately reflect the likelihood of actual

events, providing more reliable probability estimates that enhance

decision-making and risk assessment (25).

GNB is a classification algorithm based on Naive Bayes theory,

particularly suitable for scenarios where features adhere to a

Gaussian (normal) distribution. It excels in medical predictions

and other areas, effectively handling continuous data and providing

classification results based on normal distributions. Logistic

Regression is a widely used linear classification algorithm that

predicts the probability of sample membership in a category. As a

simple yet effective model, it performs well in many classification

tasks, especially when the relationship between features and the

target variable is approximately linear (26).

MLP is a feed-forward neural network used for both classification

and regression problems. By learning complex patterns and features

through multiple hidden layers (“multilayers”), MLP handles highly

nonlinear prediction tasks and finds broad applications in image

recognition, natural language processing, and more (27). QDA

extends LDA by allowing different covariance matrices for each

class, effectively managing cases with complex nonlinear

boundaries between categories, particularly suitable for predictions

where classes exhibit varying covariance structures (28).

These models have been extensively studied and applied in the

field of radiomics, demonstrating their excellent performance and
Frontiers in Oncology 06
high generalization capabilities (29–31). By utilizing these models

for the prediction and classification of radiomics features, we

achieved prediction of intrahepatic recurrence in colorectal cancer

liver metastasis patients within one year post-surgery, explored the

application of integrated models in clinical decision support

systems, and aimed to reduce misdiagnosis rates and patient loss

through high-precision radiomics grading methods.
2.6 Evaluation metrics

This research employs a comprehensive suite of evaluation

metrics to ensure objective and thorough assessment of machine

learning models, utilizing Accuracy (ACC), Precision (PRE), Recall

(REC), and the Receiver Operating Characteristic (ROC) curve

with the Area Under the Curve (AUC). These metrics, based on

True Positives (TP), True Negatives (TN), False Positives (FP),

and False Negatives (FN), offer a multifaceted evaluation of

model performance. The formula of ACC (Equation 1), PRE

(Equation 2) and REC (Equation 3):

ACC =
TP + TN

TP + FP + TN + FN
(1)

PRE =
TP

TP + FP
(2)

REC =
TP

TP + FN
(3)
3 Results

3.1 Experimental set-up

To rigorously evaluate the models developed in this study, the

dataset was divided into an 80:20 training-to-test ratio for

independent testing of model efficacy. During the feature

selection phase, to ensure the statistical significance of the

features and mitigate computational demands associated with

high-dimensionality, a T-test was applied to retain data within a

95% confidence interval. Feature selection was further refined using

the Lasso method with an alpha setting of 0.65, aimed at balancing

model complexity against performance for optimal feature

dimensionality. Additionally, careful adjustments were made to

the iterations of various machine learning models to train them

to convergence without overfitting, setting each model to run for 50

iterations with a batch size of 512 to ensure comprehensive learning

and efficient allocation of computational resources.

All experiments were conducted on a Windows 11 Professional

Edition, using Python 3.6.0. The architecture design and validation

of models were supported by packages such as Pyradiomics 3.0.1,

Scikit-learn 0.24.2, scipy 1.5.4, and matplotlib. The hardware setup

included an Intel Core i7 10750H CPU (base frequency 2.6GHz,

turbo up to 5GHz, six cores/twelve threads) and an NVIDIA

GeForce GTX 4060Ti GPU (16GB memory, 128-bit memory bus).
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3.2 Results of feature extraction and
selection

In this study, we leveraged expert-annotated three-dimensional

CT images of patients with colorectal cancer liver metastases to

extract radiomic features. Utilizing the Pyradiomics package in

Python, we initially extracted 995 radiomic features from the raw

CT images. However, due to the large volume and potential

irrelevance of many features to the model’s decision-making

process, feature selection was imperative to reduce noise and

improve model performance.
Frontiers in Oncology 07
Initially, features with a significance level below 0.05 were

excluded via T-tests, filtering out features significantly related to

the target variable. This T-test yielded 72 features. However, some

remaining features irrelevant to the machine learning models could

still impact performance. Further feature refinement was conducted

using LASSO regression, identifying key predictive features through

10-fold cross-validation. The cross-validation curve and regression

coefficient path for LASSO are illustrated in Figure 3.

Ultimately, LASSO regression selected 8 essential features, as

depicted in the feature contribution curve in Figure 4. These

features were adequate for training the machine learning model,
FIGURE 4

The feature contribution of selected features.
FIGURE 3

The results of lasso feature selection. (A) The cross-validation curve of LASSO. (B) The regression coefficient path of LASSO.
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effectively eliminating the interference from noise and irrelevant

features, thus significantly enhancing the model’s performance.
3.3 Results of intrahepatic recurrence
models

To build more comprehensive models for predicting intrahepatic

recurrence within one year post-surgery in patients with colorectal

cancer liver metastases, we developed and compared two

methodologies: a radiomics-only model and a combined radiomics-

clinical model. The radiomics-only model employs radiomic features

extracted from CT images, which are input into a machine learning

model after feature selection. Conversely, the combined radiomics-

clinical model incorporates selected radiomic features with clinical

attributes as model inputs. These clinical attributes include patient

age, BMI, tumor size, and preoperative chemotherapy status. This

integrative approach enables the model to simultaneously consider

patient information and clinical indicators of tumor condition, thus

enhancing the model’s interpretability and improving its

predictive performance.

3.3.1 Results of radiomics models
In this research, features extracted via radiomics were used to

train and validate machine learning models for predicting

intrahepatic recurrence within one year after surgery in patients

with colorectal cancer liver metastases. The performance of these

radiomics models is detailed in Table 2.

The Gradient Boosting classifier showed the highest accuracy

among the evaluated models, achieving an average ACC of 72.41%

and an AUC of 66.15%. In contrast, the Calibrated Classifier model

recorded the lowest misdiagnosis rate, with ACC, PRE, and AUC

values of 65.52%, 93.75%, and 71.46%, respectively. The ROC
Frontiers in Oncology 08
curves and Calibration curves of the radiomics models, depicted

in Figure 5, reveal that the ROC curve of the Calibrated Classifier

model is closest to the upper left corner, while its Calibration curve

nears the ideal 45-degree line, demonstrating its outstanding

clinical utility.

3.3.2 Results of radiomics-clinical models
To utilize more comprehensive information for training

models, we established a radiomics-clinical dataset for training
FIGURE 5

The visualization of model result of radiomics models. (A) The ROC curve of radiomics models. (B) The Calibration curves of the radiomics models.
TABLE 2 The result of radiomics models.

Models ACC PRE REC AUC

AdaBoost 62.07% 84.21% 66.67% 63.23%

Bagging 63.80% 86.49% 66.67% 55.62%

BernoulliNB 17.24% 0 0 50.00%

Calibrated Classifier 65.52% 93.75% 62.50% 71.46%

Decision Tree 63.80% 82.93% 70.83% 50.42%

Extra Tree 62.07% 84.21% 66.67% 56.77%

Gaussian NB 53.45% 92.00% 47.92% 70.83%

Gradient Boosting 72.41% 88.10% 77.08% 66.15%

Kneighbors 55.17% 92.31% 50.00% 60.00%

LightGBM 67.24% 89.19% 68.75% 62.29%

LDA 63.80% 90.91% 62.50% 63.54%

Logistic Regression 50% 82.76% 50.00% 67.50%

MLP 27.59% 100% 12.50% 56.67%

QDA 67.24% 85.37% 72.92% 67.29%

Random Forest 65.52% 83.33% 72.92% 58.33%
fro
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machine learning models. This dataset significantly enhanced

model performance compared to using solely radiomic features,

as shown in Table 3.

In the radiomics-clinical model, the Random Forest classifier

exhibited the best performance, achieving an ACC of 75.86% and

AUC of 70.83%. It was closely followed by the Gradient Boosting,

LightGBM, and Extra Trees models. The ROC curves and

Calibration curves of the radiomics-clinical models, displayed in

Figure 6, show that the ROC curve of the Random Forest model is

nearer to the upper left corner and its Calibration curve is closer to

the ideal 45-degree line, demonstrating higher reliability and

clinical suitability. The use of radiomics-clinical features in the

Random Forest model has promising prospects for clinical

application, potentially assisting doctors in diagnosis, reducing

the workload of radiologists, and minimizing the potential harm

caused by diagnostic errors and omissions.
4 Discussion

Radiomics facilitates the automatic analysis of numerous image

features in a short duration, many of which are difficult to assess

visually (32). Integrating radiomics with machine learning models

allows for objective and rapid disease classification. This combination

provides clinicians with a valuable tool, aiding in the selection of

appropriate treatment plans and avoiding unnecessary interventions

(33). In this study, the Pyradiomics library was used to extract

radiomic data from one-year postoperative CT images of colorectal

cancer liver metastasis patients, combined with clinical data, to predict

intrahepatic recurrence within one year post-surgery. Fifteen machine

learning models were developed and evaluated. The radiomics-clinical

model, particularly the Random Forest classifier, demonstrated the
Frontiers in Oncology 09
highest predictive performance, with an accuracy (ACC) of 75.86%

and an area under the curve (AUC) of 70.83%. These promising

results have potential clinical applications, helping physicians in

diagnosis, reducing the workload of radiologists, identifying features

not easily visible to the eye, lowering the rate of misdiagnoses, and

ultimately reducing harm to patients.

Colorectal cancer has become the third most common

malignant tumor worldwide (1).Liver metastasis is the most
TABLE 3 The result of radiomics-clinical models.

Models ACC PRE REC AUC

AdaBoost 72.41% 86.36% 79.17% 63.54%

Bagging 70.69% 86.05% 77.08% 54.37%

BernoulliNB 70.69% 87.80% 75.00% 65.52%

Calibrated Classifier 56.90% 84.85% 58.33% 66.25%

Decision Tree 67.24% 87.18% 70.83% 60.42%

Extra Tree 74.14% 83.67% 85.42% 67.50%

Gaussian NB 55.17% 89.29% 52.08% 65.62%

Gradient Boosting 75.86% 85.42% 85.42% 63.54%

Kneighbors 56.90% 82.86% 60.42% 45.62%

LightGBM 77.59% 83.02% 91.67% 62.08%

LDA 62.07% 88.24% 62.50% 73.33%

Logistic Regression 51.72% 83.33% 52.08% 61.04%

MLP 44.83% 86.36% 39.58% 63.96%

QDA 82.76% 82.76% 100.00% 49.48%

Random Forest 75.86% 84.00% 87.50% 70.83%
fro
FIGURE 6

The visualization of model result of radiomics-clinical models. (A) The ROC curve of radiomics-clinical models. (B) The Calibration curves of the
radiomics-clinical models.
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common distant metastasis pathway in patients with advanced

colorectal cancer. 20% to 25% of patients with colorectal cancer

have liver metastases at the time of diagnosis, and up to 50% of

patients with colorectal cancer will develop synchronous liver

metastases after resection of the primary tumor (34). Surgical

radical resection of liver metastases is currently the best way to

cure colorectal cancer liver metastases (35).

In clinical practice, some patients with colorectal cancer liver

metastases still have a high recurrence rate after surgery, and the

benefits of surgery are not obvious. The clinical and pathological

characteristics of patients with colorectal cancer liver metastases,

including patient characteristics, preoperative treatment, primary

tumor and liver metastasis characteristics, and surgical factors, are

all related to postoperative recurrence. Currently, the CRS score is

the most commonly used evaluation system in clinical practice to

predict recurrence and survival in patients with colorectal cancer

liver metastases. It is of great value in guiding the timing of surgery

and the choice of perioperative treatment, but it is not sufficient to

predict the risk of recurrence after resection of liver metastases (36).

Imaging informatics is widely used in the diagnosis, grading and

staging, efficacy evaluation and prognosis prediction of tumors by

extracting a large number of imaging features from imaging images

and analyzing image information in detail (37). This study

combined imaging and clinical characteristics to initially establish

a visual machine learning prediction model that can predict early

intrahepatic recurrence after resection of liver metastases in patients

with colorectal cancer liver metastases, thereby providing an

effective basis for developing more accurate individualized

treatment plans for patients with colorectal cancer liver

metastases. For patients in the high-risk group for early

recurrence identified by the model, we should take more active

measures to check and treat the disease to increase disease control.

This study has several limitations. First, recurrence was

evaluated only within a fixed 1-year timeframe; extending follow-

up duration and incorporating diverse evaluation criteria would

strengthen future analyses. Second, the absence of key biomarkers

(RAS/BRAF mutations, MSI status, HER-2 expression) precluded

assessment of their prognostic impact. Third, the single-center

retrospective design with limited sample size constrains external

validity. While genomic integration remains clinically imperative,

its implementation requires resource-adaptive methodologies. We

propose targeted genetic profiling (e.g., RAS/BRAF PCR) coupled

with imaging biomarkers as a pragmatic solution. Our planned pilot

study (N = 50-80) will validate this approach using propensity-

weighted methods to establish scalable multimodal frameworks.
5 Conclusion

CT image omics combined with clinical parameters can predict

the risk of early intrahepatic recurrence after surgery in patients

with colorectal cancer liver metastases, showing high sensitivity and

specificity. It can be used to stratify the risk of recurrence in this

group of patients, and more active examination measures and

adjuvant treatment can be considered for patients in the high-risk
Frontiers in Oncology 10
group. In addition, a prospective prediction model combining

multiple omics may have higher accuracy, which is also the

direction of future research on prediction models.
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