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Background: The overall incidence of liver metastasis in colorectal cancer is as
high as 50%, and surgery remains the only potentially curative approach for the
metastatic disease. The recurrence rate of liver metastases within one year after
surgery is still 60%-70% in clinical practice. Whether we can accurately predict
the early recurrence of patients after surgery is one of the most important
considerations in formulating the overall treatment strategy.

Methods: In this study, we combined radiomics feature extraction with machine
learning classification methods to develop a novel strategy for predicting
intrahepatic metastases based on imaging radiomics and machine learning. We
constructed and systematically evaluated multiple machine learning models to
assess their performance. By validating these models on a test set, we
determined the effectiveness of each predictive model and selected the one
with the highest predictive accuracy.

Results: The integration of radiomics and machine learning methods
demonstrated significant potential in predicting intrahepatic recurrence within
one year after surgery in patients with colorectal cancer liver metastases. The
Gradient Boosting, LightGBM, and Random Forest models all achieved
classification accuracies (ACC) exceeding 65% across all classification tasks.
Notably, the Random Forest model exhibited the best performance; while its
classification accuracy was 65.52% in the imaging-only group, it increased to
75.86% when both imaging and clinical information were combined, with an area
under the receiver operating characteristic curve (AUC) of 70.83%, indicating
strong predictive capability. These findings suggest that these models have
potential application value in supporting the diagnostic work of clinical
radiologists, potentially helping to reduce workload and decrease the risk
of misdiagnosis.
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Conclusions: The imaging omics model and the combined model have good
predictive efficacy for the recurrence of colorectal cancer liver metastases within
one year, and can be used to assist in the clinical stratification of postoperative
patients and identify high-risk factors for poor prognosis.

colorectal liver metastasis, CT radiomics, machine learning, intrahepatic
recurrence, prediction

1 Introduction

Colorectal cancer (CRC) ranks as the third most frequently
diagnosed cancer, with more than 1.92 million newly diagnosed
cases and 903,800 deaths worldwide in 2022 (1), and its high
mortality rate is mainly attributed to metastasis (2, 3). The liver is
the most common site of metastasis, accounting for approximately
50% of colorectal cancer metastases (4). Liver metastasis is one of
the major causes of death for CRC with 6.9 months of median
survival receiving only palliative care (5, 6). Despite decades of
advances in systemic and local therapies, hepatectomy remains the
only curative treatment for patients with resectable colorectal liver
metastases (7, 8). However, around 30% patients experience
intrahepatic recurrence within a year of post-hepatectomy (9),
which have worse outcomes than that late recurrence (10, 11).
Therefore, accurate predictive models for early recurrence risk in
patients with colorectal liver metastases are of significant
clinical value.

With the advance rise of artificial intelligence technology, there
are more and more researches on the application of imaging omics
and machine learning to predict the prognosis of colorectal cancer
liver metastasis, especially recurrence (12-14). Specifically, Lam
CSN et al. employed a machine learning model for colorectal liver
metastasis post-hepatectomy prognostications, presenting a better
prediction ability compared to Fong Clinical Risk Score (12).
Miihlberg A et al. established a imaging-based prediction model

for 1-year survival of colorectal liver metastasis patients, which
showed a better discriminative performance than clinical
models (15).

This study aimed to develop and validate a predictive model
that integrates radiomics features with machine learning algorithms
to forecast intrahepatic recurrence within one year after surgery in
patients with colorectal cancer liver metastases. We utilized CT
radiomics data combined with an expert-annotated patient dataset,
extracting radiomics features from tumor regions delineated by
specialists on CT images. Two models were constructed: one using
only radiomics features, and another that combines radiomics
features with clinical information. Fifteen machine learning
algorithms were employed for feature recognition and
classification, and the most effective model was identified through
performance comparison. This approach aims to predict the
likelihood of recurrence in patients using radiomics technology.
The workflow of this study is illustrated in Figure 1.

2 Method
2.1 Data acquisition
2.1.1 Ethical approval

All research processes were conducted in accordance with
Helsinki Declaration (revised in 2013). This study was approved

CT images

ROI delineation Feature Extraction

| Feature Selection | Clinical Information|  [Clinical Decision)

FIGURE 1
The workflow of this study.
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by the Institutional Review Committee of the Clinical Oncology
School of Fujian Medical University.

2.1.2 Data source and variables

The data utilized in the experiment is sourced from the Cancer
Imaging Archive dataset(TCIA). TCIA is a public database
dedicated to cancer research, encompassing medical imaging
and clinical data of various cases. Patients were excluded for
the following:(I) liver metastasis assessment unresectable,(II)
patients who cannot tolerate surgery or died perioperatively, and
(IIT) extrahepatic recurrence. Collect the basic information of the
patient, including age, gender, major comorbidity, body mass index,

10.3389/fonc.2025.1613093

regional lymph node, multiple metastase, carcinoembryonic antigen
(CEA) levels, max tumor size, lobar involvement and preoperative
portal vein embolization. This study included a total of 197 patients
with colorectal cancer liver metastasis after surgery, including 117
males (59.4%) and 80 females (40.6%); 110 patients (55.8%) were
aged 260 years; 41 patients (20.8%) had liver metastatic tumors with
a diameter of =5 cm; 122 patients (61.9%) received systemic
chemotherapy before surgery; and 23 patients (11.7%) received
portal vein embolization therapy before surgery. During the follow-
up period, 122 patients experienced intrahepatic recurrence, and 37
patients experienced intrahepatic recurrence within one year after
surgery (Table 1).

TABLE 1 Demographic and tumor characteristics of patients with colorectal liver metastasis.

Early intrahepatic recurrence

Variables Total,n (%) (n=197)
Yes No
Gender 0.135
Male 117 (59.4) 26 91
Female 80 (40.6) 11 69
Age 0.808
<60 87 (44.2) 17 70
=60 110 (55.8) 20 90
BMI (kg/m?) 0.129
<24 55 (27.9) 15 40
24-28 62 (31.5) 8 54
>28 80 (40.6) 14 66
Major comorbidity 0.203
Yes 109 (55.3) 17 92
No 88 (44.7) 20 68
Regional lymph node 0.691
Positive 69 (35.0) 14 55
Negative 128 (65.0) 23 105
synchronous_crlm 0.429
Yes 111 (56.3) 23 88
No 86 (43.7) 14 72
multiple metastases 0.339
Yes 114 (57.9) 24 90
No 83 (42.1) 13 70
clinrisk stratified 0.527
Yes 51 (25.9) 12 39
No 117 (59.4) 21 96
unknown 29 (14.7) 4 25
CEA (ng/mL) 0.702
(Continued)
Frontiers in Oncology 03 frontiersin.org


https://doi.org/10.3389/fonc.2025.1613093
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Lin et al.

TABLE 1 Continued
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Early intrahepatic recurrence

Total,n (%) (n=197)

Variables Yes No
<5 66 (33.5) 12 54
>5 102 (51.8) 21 81
unknown 29 (14.7) 4 25
Max tumor size (cm) 0.301
<5 156 (79.2) 27 129
>5 41 (20.8) 10 31
Lobar involvement 0.075
Yes 86 (43.7) 21 65
No 111 (56.3) 16 95
Preoperative chemotherapy 0.008
Yes 122 (61.9) 30 92
No 75 (38.1) 7 68
Preoperative' p(frtal vein 0.128
embolization
Yes 23 (11.7) 7 16
No 174 (88.3) 30 144
NASH 0.413
Yes 70 (35.5) 11 59
No 127 (64.5) 26 101

CEA, Carcinoembryonic antigen.

2.1.3 Follow-up criteria

The day of liver metastasis surgery is used as the starting point
for follow-up, and follow-up is conducted by means of follow-up
visits and telephone follow-up. Early intrahepatic recurrence is
defined as intrahepatic recurrence within one year after resection
of liver metastases, and no extra-hepatic recurrence. Patients
with intrahepatic recurrence within one year after surgery are
included in the recurrence group. Patients without intrahepatic
recurrence within one year after surgery are included in the non-
recurrence group. Follow-up is conducted every 3 months after
surgery, including serum markers, abdominal B-ultrasound,
abdominal CT, magnetic resonance imaging of the liver,
and colonoscopy.

2.2 Data preprocessing

Prior to feature extraction, this study systematically
preprocessed the acquired CT images using the SimpleITK
package in Python. Histogram equalization was applied as a
technique aimed at enhancing the contrast of images, making the
details more pronounced and clear. By adjusting the grayscale
distribution, histogram equalization enhances details in low
contrast areas, thereby improving the visibility and analytical
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quality of the images. Subsequently, the images were processed
using a Gaussian high-pass filter. This filter eliminates low-
frequency noise, enhancing the visibility of edges and texture
features within the image, which are crucial for extracting
boundary information. “low-frequency noise” refers to areas in
the image where the background grayscale changes slowly, such as
large areas of uniform blur, brightness drift, or artifacts, which often
obscure high-frequency details such as edges and textures. These
boundary details were reintegrated into the original image to further
enhance the representation of texture features. These preprocessing
steps significantly enhanced the expression of detail information in
CT images, thereby effectively improving the model’s performance.

Furthermore, to address the issue of class imbalance in the
dataset, this study implemented data augmentation. Synthetic
Minority Over-sampling Technique (SMOTE) was used to
enhance the training data by generating new samples to balance
the number of samples across different classes. This process
effectively mitigated the challenges posed by class imbalance,
enhancing the model’s generalization ability and predictive
performance. SMOTE in this study is limited to the radiomics
feature space. Specifically, after delineating and extracting features
from CT image ROIs, the extracted structural features are
oversampled, rather than synthesizing new images at the original
image or texture level.

frontiersin.org
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2.3 Manual region of interest annotation

Images of colorectal cancer liver metastases were exported from
the TCIA database and imported into ITK-SNAP software in
DICOM format. Regions of interest for lesions on the images
were manually delineated layer by layer by two radiologists with
5-10 years’ experience in abdominal imaging diagnosis. In case of
differing opinions, the decision was made by a radiology
department deputy chief physician with over 15 years” experience.
All physicians involved in the delineation were unaware of the
patient’s prognosis (Figure 2).

2.4 Feature extraction and selection

In this study, the feature extraction process utilized the
pyradiomics library in Python, an advanced open-source tool
designed to extract comprehensive radiomic features from two-
dimensional (2D) and three-dimensional (3D) medical imaging
data, encompassing aspects such as shape, intensity, and texture
(16). Given the large number of radiomic features directly extracted
by the pyradiomics library, a series of feature selection steps were
implemented to optimize the feature set. Initially, features outside
the 95% confidence interval were excluded via T-tests to reduce
dimensionality and noise, thereby decreasing the computational
burden in subsequent feature selection stages. This approach not
only enabled the feature selection model to more effectively identify
features that significantly contribute to the predictive target but also
enhanced the model’s performance and predictive accuracy.
Subsequent to this initial reduction, lasso regression was
employed for further feature selection. This autoregressive
technique filtered out significantly contributive features, effectively
preventing overfitting and enhancing the interpretability and
performance of subsequent machine learning models.
Additionally, a combined clinical+radiomic group was established
by integrating postoperative one-year clinical information of

10.3389/fonc.2025.1613093

patients with colorectal cancer liver metastases with radiomic
features. This approach was designed to utilize a more extensive
set of data for model building, combining a wide range of features to
facilitate personalized and precision medicine, ultimately aiming to
improve model performance.

2.5 Construction of machine learning
models

This research employed fifteen machine learning models—
Random Forest (RF), Light GBM, Gradient Boosting, K-Nearest
Neighbors (KNN), Decision Tree, AdaBoost, Extra Trees, Latent
Dirichlet Allocation (LDA), Bootstrap Aggregating (Bagging),
Bernoulli Naive Bayes (Bernoulli NB), Calibrated Classifier,
Gaussian Naive Bayes (GNB), Logistic Regression, Multilayer
Perceptron (MLP), and Quadratic Discriminant Analysis (QDA)
—to process and classify selected radiomics features for predicting
intrahepatic recurrence within one year post-surgery in patients
with colorectal cancer liver metastases.

The Random Forest model leverages ensemble learning
techniques, incorporating randomness during the training phase
by training each tree on slightly different subsets of data and
selecting the best features from randomly chosen subsets at split
nodes. This significantly enhances model diversity, reduces
overfitting risks, and improves generalization capabilities (17).
Light GBM, an efficient gradient boosting framework, optimizes
the speed and memory efficiency of traditional GBDT using a
histogram-based decision tree algorithm, while maintaining high
accuracy. Gradient Boosting models iteratively train decision trees
to minimize loss functions, with each tree learning from the
prediction residuals of the previous tree, thereby reducing model
bias and enhancing accuracy on training data (18).

The KNN algorithm, a basic yet widely used method for
classification and regression, predicts the value of unknown data
points by referencing information from the nearest samples. In

Normal

FIGURE 2
The schematic of colorectal-liver-metastases database.
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classification tasks, the category of a sample is determined by one or
more of its nearest neighbors (19). Decision Tree, a non-
parametric supervised learning method applicable for
classification and regression tasks, predicts target values by
learning decision rules from features, offering excellent
interpretability due to its ability to visualize and simulate human
decision-making processes (20).

AdaBoost is an ensemble learning algorithm that aims to build a
strong learner by combining multiple weak learners. It reweights
training samples in each round to increase the weights of previously
misclassified samples, thus focusing subsequent learners on more
challenging samples (21). Extra Trees, a variant of Random Forest,
introduces additional randomness by selecting thresholds randomly
for each feature rather than calculating the optimal thresholds,
thereby enhancing tree diversity and reducing both model variance
and, typically, computation time (22).

Although LDA is inherently an unsupervised learning model
primarily used for identifying topic distributions in document
collections, it can also be indirectly applied to classification tasks
by transforming documents into topic-based representations and
using these topic distributions as features for classifier training (23).
Bootstrap Aggregating is a classic ensemble learning method that
combines multiple models to enhance the accuracy of predictions
and reduce model variance, using multiple training subsets to
stabilize and improve the accuracy of final predictions (24).

BernoulliNB is a specific type of Naive Bayes classifier, designed
for binary feature classification tasks. It performs well in text data
handling, such as document classification or other binary
classification problems, by assuming conditional independence of
features within each class, simplifying computation. The Calibrated
Classifier is an adjusted classifier that refines prediction
probabilities to more accurately reflect the likelihood of actual
events, providing more reliable probability estimates that enhance
decision-making and risk assessment (25).

GNB is a classification algorithm based on Naive Bayes theory,
particularly suitable for scenarios where features adhere to a
Gaussian (normal) distribution. It excels in medical predictions
and other areas, effectively handling continuous data and providing
classification results based on normal distributions. Logistic
Regression is a widely used linear classification algorithm that
predicts the probability of sample membership in a category. As a
simple yet effective model, it performs well in many classification
tasks, especially when the relationship between features and the
target variable is approximately linear (26).

MLP is a feed-forward neural network used for both classification
and regression problems. By learning complex patterns and features
through multiple hidden layers (“multilayers”), MLP handles highly
nonlinear prediction tasks and finds broad applications in image
recognition, natural language processing, and more (27). QDA
extends LDA by allowing different covariance matrices for each
class, effectively managing cases with complex nonlinear
boundaries between categories, particularly suitable for predictions
where classes exhibit varying covariance structures (28).

These models have been extensively studied and applied in the
field of radiomics, demonstrating their excellent performance and

Frontiers in Oncology

10.3389/fonc.2025.1613093

high generalization capabilities (29-31). By utilizing these models
for the prediction and classification of radiomics features, we
achieved prediction of intrahepatic recurrence in colorectal cancer
liver metastasis patients within one year post-surgery, explored the
application of integrated models in clinical decision support
systems, and aimed to reduce misdiagnosis rates and patient loss
through high-precision radiomics grading methods.

2.6 Evaluation metrics

This research employs a comprehensive suite of evaluation
metrics to ensure objective and thorough assessment of machine
learning models, utilizing Accuracy (ACC), Precision (PRE), Recall
(REC), and the Receiver Operating Characteristic (ROC) curve
with the Area Under the Curve (AUC). These metrics, based on
True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN), offer a multifaceted evaluation of
model performance. The formula of ACC (Equation 1), PRE
(Equation 2) and REC (Equation 3):

TP + TN
ACC = 1
TP + FP + TN + FN )
PRE = i )
" TP+ FP
REC = Lk (3)
" TP+FN

3 Results

3.1 Experimental set-up

To rigorously evaluate the models developed in this study, the
dataset was divided into an 80:20 training-to-test ratio for
independent testing of model efficacy. During the feature
selection phase, to ensure the statistical significance of the
features and mitigate computational demands associated with
high-dimensionality, a T-test was applied to retain data within a
95% confidence interval. Feature selection was further refined using
the Lasso method with an alpha setting of 0.65, aimed at balancing
model complexity against performance for optimal feature
dimensionality. Additionally, careful adjustments were made to
the iterations of various machine learning models to train them
to convergence without overfitting, setting each model to run for 50
iterations with a batch size of 512 to ensure comprehensive learning
and efficient allocation of computational resources.

All experiments were conducted on a Windows 11 Professional
Edition, using Python 3.6.0. The architecture design and validation
of models were supported by packages such as Pyradiomics 3.0.1,
Scikit-learn 0.24.2, scipy 1.5.4, and matplotlib. The hardware setup
included an Intel Core i7 10750H CPU (base frequency 2.6GHz,
turbo up to 5GHz, six cores/twelve threads) and an NVIDIA
GeForce GTX 4060Ti GPU (16GB memory, 128-bit memory bus).
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3.2 Results of feature extraction and
selection

In this study, we leveraged expert-annotated three-dimensional
CT images of patients with colorectal cancer liver metastases to
extract radiomic features. Utilizing the Pyradiomics package in
Python, we initially extracted 995 radiomic features from the raw
CT images. However, due to the large volume and potential
irrelevance of many features to the model’s decision-making
process, feature selection was imperative to reduce noise and
improve model performance.
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Initially, features with a significance level below 0.05 were
excluded via T-tests, filtering out features significantly related to
the target variable. This T-test yielded 72 features. However, some
remaining features irrelevant to the machine learning models could
still impact performance. Further feature refinement was conducted
using LASSO regression, identifying key predictive features through
10-fold cross-validation. The cross-validation curve and regression
coefficient path for LASSO are illustrated in Figure 3.

Ultimately, LASSO regression selected 8 essential features, as
depicted in the feature contribution curve in Figure 4. These
features were adequate for training the machine learning model,

~
(=5
Q=g

7

0
|
B

Coefficients

-2000
1

2

Log Lambda

The results of lasso feature selection. (A) The cross-validation curve of LASSO. (B) The regression coefficient path of LASSO.
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effectively eliminating the interference from noise and irrelevant
features, thus significantly enhancing the model’s performance.

3.3 Results of intrahepatic recurrence
models

To build more comprehensive models for predicting intrahepatic
recurrence within one year post-surgery in patients with colorectal
cancer liver metastases, we developed and compared two
methodologies: a radiomics-only model and a combined radiomics-
clinical model. The radiomics-only model employs radiomic features
extracted from CT images, which are input into a machine learning
model after feature selection. Conversely, the combined radiomics-
clinical model incorporates selected radiomic features with clinical
attributes as model inputs. These clinical attributes include patient
age, BMI, tumor size, and preoperative chemotherapy status. This
integrative approach enables the model to simultaneously consider
patient information and clinical indicators of tumor condition, thus
enhancing the model’s interpretability and improving its
predictive performance.

3.3.1 Results of radiomics models

In this research, features extracted via radiomics were used to
train and validate machine learning models for predicting
intrahepatic recurrence within one year after surgery in patients
with colorectal cancer liver metastases. The performance of these
radiomics models is detailed in Table 2.

The Gradient Boosting classifier showed the highest accuracy
among the evaluated models, achieving an average ACC of 72.41%
and an AUC of 66.15%. In contrast, the Calibrated Classifier model
recorded the lowest misdiagnosis rate, with ACC, PRE, and AUC
values of 65.52%, 93.75%, and 71.46%, respectively. The ROC
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TABLE 2 The result of radiomics models.

Models ACC PRE REC AUC
AdaBoost 62.07% 84.21% 66.67% 63.23%
Bagging 63.80% 86.49% 66.67% 55.62%
BernoulliNB 17.24% 0 0 50.00%
Calibrated Classifier 65.52% 93.75% 62.50% 71.46%
Decision Tree 63.80% 82.93% 70.83% 50.42%
Extra Tree 62.07% 84.21% 66.67% 56.77%
Gaussian NB 53.45% 92.00% 47.92% 70.83%
Gradient Boosting 72.41% 88.10% 77.08% 66.15%
Kneighbors 55.17% 92.31% 50.00% 60.00%
LightGBM 67.24% 89.19% 68.75% 62.29%
LDA 63.80% 90.91% 62.50% 63.54%
Logistic Regression 50% 82.76% 50.00% 67.50%
MLP 27.59% 100% 12.50% 56.67%

QDA 67.24% 85.37% 72.92% 67.29%
Random Forest 65.52% 83.33% 72.92% 58.33%

curves and Calibration curves of the radiomics models, depicted
in Figure 5, reveal that the ROC curve of the Calibrated Classifier
model is closest to the upper left corner, while its Calibration curve
nears the ideal 45-degree line, demonstrating its outstanding
clinical utility.

3.3.2 Results of radiomics-clinical models

To utilize more comprehensive information for training
models, we established a radiomics-clinical dataset for training
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machine learning models. This dataset significantly enhanced
model performance compared to using solely radiomic features,
as shown in Table 3.

In the radiomics-clinical model, the Random Forest classifier
exhibited the best performance, achieving an ACC of 75.86% and
AUC of 70.83%. It was closely followed by the Gradient Boosting,
LightGBM, and Extra Trees models. The ROC curves and
Calibration curves of the radiomics-clinical models, displayed in
Figure 6, show that the ROC curve of the Random Forest model is
nearer to the upper left corner and its Calibration curve is closer to
the ideal 45-degree line, demonstrating higher reliability and
clinical suitability. The use of radiomics-clinical features in the
Random Forest model has promising prospects for clinical
application, potentially assisting doctors in diagnosis, reducing
the workload of radiologists, and minimizing the potential harm
caused by diagnostic errors and omissions.

4 Discussion

Radiomics facilitates the automatic analysis of numerous image
features in a short duration, many of which are difficult to assess
visually (32). Integrating radiomics with machine learning models
allows for objective and rapid disease classification. This combination
provides clinicians with a valuable tool, aiding in the selection of
appropriate treatment plans and avoiding unnecessary interventions
(33). In this study, the Pyradiomics library was used to extract
radiomic data from one-year postoperative CT images of colorectal
cancer liver metastasis patients, combined with clinical data, to predict
intrahepatic recurrence within one year post-surgery. Fifteen machine
learning models were developed and evaluated. The radiomics-clinical
model, particularly the Random Forest classifier, demonstrated the

10.3389/fonc.2025.1613093

TABLE 3 The result of radiomics-clinical models.

Models ACC PRE REC AUC
AdaBoost 72.41% 86.36% 79.17% 63.54%
Bagging 70.69% 86.05% 77.08% 54.37%
BernoulliNB 70.69% 87.80% 75.00% 65.52%
Calibrated Classifier 56.90% 84.85% 58.33% 66.25%
Decision Tree 67.24% 87.18% 70.83% 60.42%
Extra Tree 74.14% 83.67% 85.42% 67.50%
Gaussian NB 55.17% 89.29% 52.08% 65.62%
Gradient Boosting 75.86% 85.42% 85.42% 63.54%
Kneighbors 56.90% 82.86% 60.42% 45.62%
LightGBM 77.59% 83.02% 91.67% 62.08%
LDA 62.07% 88.24% 62.50% 73.33%
Logistic Regression 51.72% 83.33% 52.08% 61.04%
MLP 44.83% 86.36% 39.58% 63.96%

QDA 82.76% 82.76% 100.00% 49.48%
Random Forest 75.86% 84.00% 87.50% 70.83%

highest predictive performance, with an accuracy (ACC) of 75.86%
and an area under the curve (AUC) of 70.83%. These promising
results have potential clinical applications, helping physicians in
diagnosis, reducing the workload of radiologists, identifying features
not easily visible to the eye, lowering the rate of misdiagnoses, and
ultimately reducing harm to patients.

Colorectal cancer has become the third most common
malignant tumor worldwide (1).Liver metastasis is the most
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common distant metastasis pathway in patients with advanced
colorectal cancer. 20% to 25% of patients with colorectal cancer
have liver metastases at the time of diagnosis, and up to 50% of
patients with colorectal cancer will develop synchronous liver
metastases after resection of the primary tumor (34). Surgical
radical resection of liver metastases is currently the best way to
cure colorectal cancer liver metastases (35).

In clinical practice, some patients with colorectal cancer liver
metastases still have a high recurrence rate after surgery, and the
benefits of surgery are not obvious. The clinical and pathological
characteristics of patients with colorectal cancer liver metastases,
including patient characteristics, preoperative treatment, primary
tumor and liver metastasis characteristics, and surgical factors, are
all related to postoperative recurrence. Currently, the CRS score is
the most commonly used evaluation system in clinical practice to
predict recurrence and survival in patients with colorectal cancer
liver metastases. It is of great value in guiding the timing of surgery
and the choice of perioperative treatment, but it is not sufficient to
predict the risk of recurrence after resection of liver metastases (36).

Imaging informatics is widely used in the diagnosis, grading and
staging, efficacy evaluation and prognosis prediction of tumors by
extracting a large number of imaging features from imaging images
and analyzing image information in detail (37). This study
combined imaging and clinical characteristics to initially establish
a visual machine learning prediction model that can predict early
intrahepatic recurrence after resection of liver metastases in patients
with colorectal cancer liver metastases, thereby providing an
effective basis for developing more accurate individualized
treatment plans for patients with colorectal cancer liver
metastases. For patients in the high-risk group for early
recurrence identified by the model, we should take more active
measures to check and treat the disease to increase disease control.

This study has several limitations. First, recurrence was
evaluated only within a fixed 1-year timeframe; extending follow-
up duration and incorporating diverse evaluation criteria would
strengthen future analyses. Second, the absence of key biomarkers
(RAS/BRAF mutations, MSI status, HER-2 expression) precluded
assessment of their prognostic impact. Third, the single-center
retrospective design with limited sample size constrains external
validity. While genomic integration remains clinically imperative,
its implementation requires resource-adaptive methodologies. We
propose targeted genetic profiling (e.g., RAS/BRAF PCR) coupled
with imaging biomarkers as a pragmatic solution. Our planned pilot
study (N = 50-80) will validate this approach using propensity-
weighted methods to establish scalable multimodal frameworks.

5 Conclusion

CT image omics combined with clinical parameters can predict
the risk of early intrahepatic recurrence after surgery in patients
with colorectal cancer liver metastases, showing high sensitivity and
specificity. It can be used to stratify the risk of recurrence in this
group of patients, and more active examination measures and
adjuvant treatment can be considered for patients in the high-risk
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group. In addition, a prospective prediction model combining
multiple omics may have higher accuracy, which is also the
direction of future research on prediction models.
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