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Predicting EGFR gene mutation
in lung adenocarcinoma using
spectral CT combined with AI
parameters: a diagnostic
accuracy study
Lilan She, Min Xie, Guolin Xu, Xiangmei Zhan, Meilan Huang
and Yunjing Xue*

Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
Purpose: Epidermal growth factor receptor(EGFR) mutation is one of the most

critical biomarkers in non-small cell lung cancer (NSCLC), holding significant

clinical implications for guiding targeted therapy selection and prognostic

assessment in patients. This study aims to evaluate the predictive value of

spectral CT parameters, artificial intelligence (AI)-derived parameters, and

clinical indicators for EGFR mutation in lung adenocarcinoma.

Methods: This retrospective study analyzed 150 patients with pathologically

confirmed lung adenocarcinoma. All patients underwent EGFR genotyping,

non-contrast CT, and spectral contrast-enhanced CT. Spectral parameters

included spectral curve slope (lHU), iodine concentration (IC), water

concentration (WC), Effective atomic number (Effective-Z), and CT values at 70

keV. An AI-assisted diagnostic system automatically extracted quantitative AI

parameters: The three-dimensional (3D) radiomic features(including long-axis

diameter, short-axis diameter, surface area, 3D long-axis diameter, maximum

cross-sectional area, volume), CT attenuation histogram features(including solid

component percentage, mean CT value, median CT value, CT value standard

deviation, maximum CT values, minimum CT values, kurtosis, skewness, energy,

and entropy)and morphological characteristics(including compactness,

sphericity). Correlations between spectral CT parameters, AI parameters,

clinical variables, and EGFR mutation status were assessed. Independent

predictors were identified via multivariate analysis to construct a

predictive model.

Results: Univariate analysis revealed associations between EGFR mutation and

gender (P = 0.013), smoking history (P = 0.001), lHU (P = 0.049), and tumor

surface area (P = 0.043). Multivariate analysis identified smoking history

(P = 0.012), lHU (P = 0.015), and surface area (P = 0.029) as independent

predictors. The predictive model integrating these three factors achieved an AUC

of 0.713 (95% CI: 0.628–0.797), a specificity of 0.754, and a sensitivity of 0.600,

demonstrating moderate diagnostic accuracy. Calibration curves indicated good

agreement between predicted and observed probabilities, while decision curve

analysis confirmed clinical utility.

Conclusion: The integration of spectral CT and AI-derived quantitative

parameters with clinical indicators demonstrates significant potential for
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noninvasive prediction of EGFR mutation in lung adenocarcinoma. This non-

invasive predictive approach could reduce unnecessary invasive biopsies.

Particularly in patients with contraindications to invasive procedures, this

model offers a viable alternative.
KEYWORDS

spectral CT, artificial intelligence, lung adenocarcinoma, EGFR mutation,
predictive model
1 Introduction

Lung cancer remains one of the most prevalent malignancies

worldwide, ranking second in incidence and exhibiting persistently

high mortality rates (1). NSCLC constitutes the predominant

histological subtype, with lung adenocarcinoma being the most

common form of NSCLC. EGFR mutations represent the most

frequent driver genetic alterations in Asian populations (2, 3). Non-

smokers exhibit a significantly higher prevalence of EGFR

mutations compared to smokers, with these mutations

predominantly manifesting as pure ground-glass nodules (GGNs)

or part-solid nodules—particularly among Asian females.

Consequently, low-dose CT (LDCT) screening is critically

important in this population, as it may reflect EGFR status

through discernible CT characteristics (4, 5).Tyrosine kinase

inhibitors (TKIs) have demonstrated significant efficacy in

suppressing. EGFR-mediated oncogenic signaling (6–8),

underscoring the clinical imperative to accurately predict EGFR

mutation status for guiding therapeutic decision-making. However,

current methods for obtaining EGFR genotypic information

predominantly rely on postoperative or biopsy specimens, which

are invasive, cost-prohibitive, and poorly tolerated by certain

patients. In recent years, novel EGFR detection methodologies

have emerged, exemplified by liquid biopsy platforms

incorporating circulating tumor cells (CTCs), circulating tumor

DNA (ctDNA), and exosomes. However, their ultra-low

concentrations in biofluids and suboptimal detection rates

necessitate stringent technical requirements. Compared to

histological biopsy, liquid biopsy demonstrates elevated false-

negative rates and compromised sensitivity profiles (9–11). In

contrast, predictions based on non-invasive imaging show

promise, such as quantitative parameters from CT radiomics or

deep learning, but they usually focus on single-modality features

(12, 13).

Spectral CT, utilizing rapid voltage switching between high- and

low-energy spectra (80 keV and 140 keV), provides quantitative

multiparametric data, including spectral curve analysis, iodine-

water decomposition maps, Effective-Z, and monoenergetic

imaging. These parameters offer critical insights into tumor
02
compositional heterogeneity. Concurrently, AI has achieved

remarkable advancements in medical imaging, enabling

automated extraction of high-dimensional tumor features (14).

AI-based systems not only reduce radiologists’ workload but also

enhance the detection accuracy of pulmonary nodules (15, 16). The

integration of AI-derived quantitative parameters with spectral CT

biomarkers demonstrates synergistic advantages, significantly

reinforcing the theoretical foundation of predictive models. AI

excels at capturing high-dimensional morphological and textural

features, which reflect macroscopic tumor architecture and

intratumoral heterogeneity. These parameters correlate with

tumor growth patterns and aggressiveness, potentially linked to

EGFR-driven oncogenic pathways. In contrast, spectral CT

generates IC, lHU, and Effective-Z, providing functional insights

into tumor biology. These parameters are directly influenced by

EGFR-mediated angiogenesis. The complementary value of these

modalities lies in their ability to address distinct aspects of tumor

characteristics. Furthermore, in spectral CT analysis, where ROI

delineation is inherently observer-dependent, AI-driven

automation provides maximal assurance of standardized and

reproducible parameter extraction. This study aims to integrate

spectral CT parameters, AI-derived quantitative biomarkers, and

clinical indicators to investigate their correlations with EGFR

mutation status. By constructing a predictive model, we seek to

establish a noninvasive approach for precise EGFR mutation

profiling in lung adenocarcinoma.
2 Materials and methods

2.1 Study population

This retrospective study enrolled 150 patients with lung

adenocarcinoma treated at our institution’s Department of

Thoracic Surgery between January 2019 and July 2023. Inclusion

criteria: (1) completion of contrast-enhanced chest CT within 1

month preoperatively or pre-biopsy; (2) pathological confirmation

of lung adenocarcinoma with comprehensive genetic profiling; (3)

diagnostic-quality imaging. Exclusion criteria: (1) prior tumor-
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modifying interventions before CT; (2) coexisting extra-thoracic

malignancies; (3) EGFR mutations co-occurring with other driver

mutations. Clinical variables included sex, age, smoking history,

family history of lung cancer, and prior malignancies. Smoking

history was defined as either current smoking (≥1 cigarette/day for

>6 consecutive months) or former smoking (cessation duration >6

months). This study is a retrospective observational study approved

by the hospital’s ethics committee. In accordance with the

Declaration of Helsinki, informed consent was waived due to the

use of existing anonymized data, the non-interference with

established treatment plans, and the absence of additional risk to

the participants.
2.2 CT acquisition protocol

All scans were performed using a Revolution CT scanner (GE

Healthcare, USA). Non-contrast and spectral contrast-enhanced

scans covered the entire thorax during breath-hold after deep

inspiration. Standard non-contrast parameters: 120 kV tube

voltage, automatic tube current modulation, pitch 0.992, rotation

time 0.5 s. Spectral imaging used Gemstone Spectral Imaging (GSI)

mode: 445 mA tube current, pitch 0.992, rotation time 0.5 s. All

patients received intravenous administration of ioversol contrast

agent (350 mgI/mL) via the antecubital vein using the following

protocol: injection volume 1.0 mL/kg (60–80 mL total dose) at a rate

of 2.5 mL/s. Scan initiation was delayed for 55 seconds post-

injection to ensure sufficient time for contrast agent perfusion of

the lesions, thereby enabling more accurate assessment of

tumor vascularity.
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2.3 Spectral image analysis

Reconstructed 1.25-mm spectral images (mediastinal window

settings: width 400 HU; level 40 HU) were transferred to an AW 4.7

workstation for GSI analysis. Regions of interest (ROI) were

manually delineated on the largest cross-sectional area of tumor

solid components, avoiding cavitations, blood vessels, and

calcifications (ROI area ≥2/3 of solid components). Quantitative

parameters derived from material decomposition maps included

iodine concentration (IC), water concentration (WC), and CT

values at 70 keV. Spectral curve slope (lHU) was calculated as:

lHU=(CT40 keV-CT100 keV)/(100keV-40keV). lHU represents

the rate of change in X-ray attenuation between the low-energy

(40 keV) and high-energy (100 keV) levels. A higher lHU value

indicates a greater capacity for iodine uptake within the tumor.

Effective-Z was computed using spectral CT material

decomposition technology. It represents the mean atomic number

value when the tissue within the ROI is equivalent to a single

element. This parameter quantifies differences in the elemental

composition of tumor tissue. Therefore, both lHU and Effective-

Z were included in our analysis.

Lesion delineation was independently performed by two

radiologists (one attending radiologist and one resident radiologist),

both blinded to patients’ clinical information and EGFR mutation

status. The consistency of the observers’ measurement results was

analyzed using the ICC. Final results were derived from the average

measurements of both radiologists. In cases of significant interobserver

discrepancy, a third senior radiologist with subspecialty expertise in

thoracic imaging arbitrated the final determination. Representative

images are shown in Figure 1.
FIGURE 1

Spectral enhancement image with ROI delineation and spectral curves. ROIs were placed at the largest cross-sectional dimension of the tumor,
encompassing the majority of solid components within the lesion. (a, b) EGFR wild-type (female, 45 years old; lHU = 1.59); (c, d) EGFR mutation-
positive (female, 50 years old; lHU = 2.21).
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2.4 AI parameter extraction

Non-contrast CT images (1.25 mm slice thickness, lung

window: width 1200~1500 HU, level -600~-800 HU) were

processed using an AI-powered pulmonary nodule analysis

system (Infervision V4.0, Beijing, China). The system employs a

pre-trained convolutional neural network to extract quantitative

features from lesions in routine pulmonary CT examinations, with

prior training and validation performed on CT datasets

encompassing diverse acquisition parameters. The system

automatically segmented tumors and generated 18 quantitative

biomarkers: Three-dimensional (3D) radiomic features(including

long-axis diameter, short-axis diameter, surface area, 3D long-axis

diameter, maximum cross-sectional area, volume), CT attenuation

histogram features(including solid component percentage, mean

CT value, median CT value, CT value standard deviation,

maximum CT values, minimum CT values, kurtosis, skewness,

energy, and entropy)and morphological characteristics(including

compactness, sphericity). Three-dimensional (3D) radiomic

features enable a more comprehensive quantification of tumor

burden. CT attenuation histogram features reflect intratumoral

density variations, potentially indicative of pathological alterations

such as necrosis, hemorrhage, or cellular proliferation. While

morphological characteristics capture shape complexity, which

may correlate with aggressive growth patterns and spatial
Frontiers in Oncology 04
heterogeneity. The AI-based pulmonary nodule diagnostic system

leverages a deep learning algorithm to perform automatic

segmentation of nodule boundaries and identification of typical

radiological signs. For component analysis, the algorithm applies a

threshold of -145 HU to differentiate solid from non-solid

components within the nodule. It then calculates the number of

voxels corresponding to each CT attenuation value, storing this data

in a histogram. Subsequently, volumetric and other three-

dimensional metrics are computed based on voxel counting

(Figure 2) (17–19) . Two board-cert ified radiologis ts

independently validated AI-derived tumor segmentation accuracy

through consensus review, ensuring spatial correspondence

between imaging findings and postoperative histopathology.
2.5 EGFR mutation analysis

Pretreatment tumor specimens were obtained via surgical

resection or needle biopsy. Formalin-fixed paraffin-embedded

(FFPE) tumor tissue sections were subjected to microdissection to

ensure a tumor cell content of ≥20%. EGFR mutations were

detected using AmoyDx diagnostic kits(Xiamen, China), which

employs the amplification refractory mutation system (ARMS)

combined with fluorescent polymerase chain reaction (PCR) to

identify EGFR mutations in tumor-derived DNA. This assay detects
FIGURE 2

AI-derived CT histogram parameters. The solid component percentage was defined as the total number of voxels with CT attenuation ≥ -145
Hounsfield Units (representing the solid component) divided by the total number of voxels encompassing the entire tumor.
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multiple EGFR mutation types, including exon 19 deletions (19-

del), L858R, T790M, exon 20 insertions (20-Ins), G719X, S768I, and

L861Q. All testing procedures were performed in strict accordance

with the manufacturer’s protocols.
2.6 Statistical analysis

Statistical analysis was performed using IBM SPSS 23.0 software

and R language (version 4.0.5). In univariate analysis, the normality

of continuous variables was assessed using the Shapiro-Wilk test.

Variables conforming to normal distribution were analyzed by

independent samples t-test and expressed as mean ± standard

deviation, while non-normally distributed variables were analyzed

using the Mann-Whitney U test and presented as median (P25,

P75). Categorical variables were compared using Pearson’s chi-

square test or Fisher’s exact test. Variables demonstrating statistical

significance in univariate analysis were subsequently incorporated

into multivariate analysis. A binary logistic regression model with

enter method was employed to identify independent influencing

factors and construct a predictive model for EGFR mutations. The

model’s discriminatory power, calibration, and clinical utility were

assessed using Receiver Operating Characteristic (ROC) curve

analysis, the Hosmer-Lemeshow goodness-of-fit test, and

Decision Curve Analysis (DCA), respectively. For the comparison

of inter-observer consistency of continuous variables, the intraclass

correlation coefficient (ICC) is used. An ICC greater than 0.75

indicates good consistency. A p-value <0.05 was considered

statistically significant.
3 Results

3.1 Clinical characteristics

A total of 150 lung adenocarcinoma patients were enrolled

based on the inclusion and exclusion criteria, comprising 89 EGFR-

mutant cases and 61 wild-type cases, with 72 males and 78 females
Frontiers in Oncology 05
(mean age 60.02 ± 9.15 years). Comparative analysis between the

EGFR-mutant and wild-type groups revealed no statistically

significant differences in age (P = 0.092), family history of lung

cancer (P = 1.000), or previous cancer history (P = 0.202). However,

statistically significant differences were observed in gender

distribution (P = 0.013) and smoking history (P = 0.001) between

the two groups (Table 1).
3.2 Comparison of the consistency of
measurement results among observers

The measurement results of lHU, IC, WC, Effective-Z, and CT

values at 70 keV by the two radiologists are shown in Table 2. The

consistency of the data was good (ICC > 0.90).
3.3 Spectral parameter comparison

The EGFR-mutant group demonstrated significantly higher

lHU values compared to the wild-type group (P = 0.049).

However, no statistically significant differences were observed

between the two groups in iodine concentration (P = 0.130),

water concentration (P = 0.219), Effective-Z (P = 0.096), or 70

keV monochromatic imaging parameters (P = 0.650) (Table 3).
3.4 AI-derived parameter comparison

Review by two physicians confirmed accurate spatial

correspondence between the AI-identified tumor location and the

postoperative histopathology findings. The EGFR-mutant group

exhibited a significantly larger tumor surface area compared to the

wild-type group (P = 0.043). However, no statistically significant

differences were observed between the two groups in mean CT

value (P = 0.830), median CT value (P = 0.789), solid component

proportion (P = 0.995), maximum CT value (P = 0.431), minimum

CT value (P = 0.895), CT value standard deviation (P = 0.477), longest
TABLE 1 Univariable logistic regression analysis of demographic characteristics.

Clinical characteristics Group
Univariate logistic regression analysis

b-value OR 95% CI P-value

Age -0.032 0.969 0.934-1.005 0.093

Gender
Male Reference

0.011
Female 0.867 2.379 1.221-4.634

Smoking history
No Reference

0.001
Yes -1.274 0.280 0.136-0.575

Family history of lung cancer
No Reference

0.975
Yes 0.029 1.029 0.167-6.349

prior malignancies
No Reference

0.186
Yes 1.069 2.914 0.597-14.222
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diameter (P = 0.287), shortest diameter (P = 0.364), 3D longest

diameter (P = 0.478), maximum cross-sectional area (P = 0.370),

volume (P = 0.508), compactness (P = 0.056), sphericity (P = 0.055),

kurtosis (P = 0.382), skewness (P = 0.576), energy (P = 0.243), or

entropy (P = 0.356) (Table 4).
3.5 Multivariate analysis

Variables demonstrating statistical significance in univariate

analysis, including sex, smoking history, lHU, and tumor surface

area, were subsequently subjected to multicollinearity evaluation.

Linear regression confirmed variance inflation factors (VIF) of

1.999, 1.999, 1.336, and 1.319 for these variables, respectively,

demonstrating the absence of significant collinearity or

multicollinearity (VIF<2 threshold), thus warranting their inclusion

in the multivariate regression model. The analysis identified smoking

history (P = 0.012), lHU (P = 0.015), and tumor surface area

(P = 0.029) as independent predictors of EGFR mutations,

retaining statistical significance in the final model (Table 5).
3.6 Construction and evaluation of the
EGFR mutation prediction model

Independent risk factors identified through multivariate

regression analysis (including smoking history, lHU, and tumor

surface area) were integrated to develop a predictive model, with a

nomogram constructed to visualize the results. The prediction

model demonstrated strong discriminatory ability, as evidenced

by an area under the ROC curve (AUC) of 0.713 (95% CI: 0.628–

0.797). The model demonstrated a sensitivity of 0.600 and a

specificity of 0.754. The Hosmer-Lemeshow goodness-of-fit test

yielded c² = 2.295 (P = 0.971), indicating no statistically significant
Frontiers in Oncology 06
difference between the model-predicted values and actual observed

values. Furthermore, the calibration curve indicated favorable

goodness-of-fit, and decision curve analysis revealed substantial

clinical net benefit for patients when the threshold probability

ranged between 6% and 54% (Figure 3).
4 Discussion

EGFR mutations represent the most prevalent genetic alterations

in lung cancer among Asian populations, with an overall mutation

rate ranging from 20% to 76% (2, 20).The prevalence of EGFR

mutations is significantly increased in specific subpopulations,

particularly among females (female vs. male: 43.7% vs. 24.0%; OR

2.7, 95% CI 2.5-2.9) and never-smokers (never-smokers vs. former/

current smokers: 49.3% vs. 21.5%; OR 3.7, 95% CI 3.4-4.0), compared

to other demographic groups (2, 3, 20). Studies have demonstrated a

markedly elevated EGFR mutation rate in never-smokers and light

smokers (21). This phenomenon may be attributed to the

mechanisms through which tobacco smoking influences EGFR

pathway activation, including oxidative stress induction and

alterations in the cellular microenvironment, which subsequently

modify EGFR functionality and activity (22, 23). In the present study,

female gender and absence of smoking history were significantly

more prevalent in the EGFR mutation group, with multivariate

analysis identifying smoking history as an independent predictive

factor for EGFR mutations. These findings align consistently with

established research outcomes.

The EGFR signaling cascade governs cellular differentiation and

division, playing a regulatory role in tumorigenesis and progression.

Upon ligand binding, EGFR activation induces receptor

dimerization and tyrosine autophosphorylation, thereby

promoting vascular endothelial growth, tumor neovascularization,

cellular proliferation, and enhanced tumor invasiveness (24).
TABLE 2 Measurement results and consistency between two observers.

Spectral CT parameters Observer1 Observer2 ICC-value P-value

lHU 2.41 (1.92, 2.99) 2.37 (1.91, 2.89) 0.951 (95%CI:0.931-0.965) <0.001

IC (mg/cm3) 20.02 (16.21, 25.34) 19.98 (16.18, 24.98) 0.948 (95%CI:0.928-0.963) <0.001

WC (mg/cm3) 1008.29 (989.83, 1024.89) 1014.84 (991.69, 1025.18) 0.943 (95%CI:0.921-0.959) <0.001

Effective-Z 8.81 (8.55, 9.06) 8.79 (8.52, 9.01) 0.938 (95%CI:0.913-0.956) <0.001

70keV (HU) 62.13 (51.13, 73.67) 61.39 (48.96, 72.08) 0.946 (95%CI:0.924-0.961) <0.001
TABLE 3 Comparison of intergroup differences in spectral parameters.

Spectral CT parameters EGFR mutant group (n=89) EGFR wild-type group (n=61) Z P-value

lHU 2.51 (1.98, 3.02) 2.19 (1.78, 2.90) 1.965 0.049

IC (mg/cm3) 21.21 (16.74, 25.47) 18.88 (15.44, 24.54) 1.513 0.130

WC (mg/cm3) 1009.35 (989.75, 1021.15) 1016.04 (993.04, 1024.87) 1.230 0.219

Effective-Z 8.83 (8.61, 9.10) 8.72 (8.51, 9.03) 1.666 0.096

70keV (HU) 61.38 (51.94, 73.75) 61.20 (48.86, 71.46) 0.453 0.650
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Consequently, administration of iodinated contrast agents reveals

significant enhancement disparities between tumor vasculature and

normal tissues (25). Clarifying EGFR mutation status provides

crucial guidance for initiating and selecting therapeutic strategies

in lung adenocarcinoma (26). Spectral CT leverages atomic

number-dependent variations in X-ray attenuation coefficients to

precisely analyze differences in material composition. The spectral

curve illustrates continuous dynamic variations in material

attenuation across different X-ray energy levels. A steeper spectral

curve slope indicates greater dynamic attenuation changes,

reflecting higher tumor enhancement intensity and vascular

supply. Quantified by measuring CT value differences at two

distinct monochromatic energy levels, this slope critically informs

tumor composition analysis, enabling early diagnosis and
Frontiers in Oncology 07
therapeutic decision-making. Although iodine concentration and

effective atomic number may partially reflect tumor vascularity, the

current study found no statistically significant associations for these

parameters. In contrast, the spectral curve slope demonstrated

superior discriminatory capacity, with the EGFR mutation group

exhibiting significantly steeper slopes than the EGFR wild-type

group. We speculate that this may be attributed to the fact that

the spectral curve slope reflects the dynamic attenuation changes in

CT values across different monochromatic energy levels and is

highly sensitive to detecting differences in the internal composition

of lesions. Particularly in scenarios where precise monitoring of

internal lesion changes is required, it provides more physical

parameters than single iodine concentration or effective atomic

number alone, thereby aiding in the comprehensive analysis of

lesion characteristics from multiple perspectives. Multivariate

analysis confirmed the spectral curve slope as an independent

predictive factor for EGFR mutations, retaining superior

predictive performance after adjusting for confounders.

EGFR promotes vascular endothelial cell proliferation, endowing

tumor tissues with abundant blood supply and facilitating rapid tumor

cell proliferation. Consequently, tumor burden correlates closely with

tumor size, where larger dimensions typically indicate higher

invasiveness. However, conflicting evidence from several studies

(27–30) suggests that EGFR-mutant lung adenocarcinomas may

exhibit smaller diameters compared to wild-type counterparts. This

raises uncertainty regarding the reliability of tumor diameter as a

predictor of EGFR mutation status. A critical limitation of
TABLE 5 Results of multivariate regression analysis.

Variables OR 95%CI P-value

Gender
Male Reference Reference 0.879

Female 0.926 0.344-2.495

Smoking history
No Reference Reference 0.012

Yes 0.256 0.088-0.744

lHU 1.972 1.144-3.399 0.015

Surface area 1.010 1.001-1.019 0.029
TABLE 4 Comparison of intergroup differences in AI parameters.

AI quantitative parameters EGFR mutant group(n=89) EGFR wild-type group(n=61) Z P-value

Long-axis diameter(cm) 3.07 (2.23,4.39) 2.62 (1.89,4.54) 1.064 0.287

Short-axis diameter(cm) 2.27 (1.65,3.31) 2.11 (1.35,3.24) 0.909 0.364

3D long-axis diameter(cm) 3.69 (2.66,5.21) 3.40 (2.38,5.39) 0.710 0.478

Maximum cross-sectional area(cm2) 5.03 (2.91,10.96) 4.15 (2.12,10.59) 0.897 0.370

Surface area(cm2) 28.57 (15.55,60.59) 18.63 (9.96,54.35) 2.026 0.043*

Volume (mm3) 7251.68 (2396.02,18434.39) 5384.57 (1585.68,19721.51) 0.662 0.508

Solid component percentage (%) 91.72 (57.79,100.00) 88.34 (64.57,100.00) 0.006 0.995

Mean CT value(HU) 33.00 (-36.00,61.00) 23.00 (-33.00,63.00) 0.214 0.830

Median CT value(HU) 36.00 (-3.00,55.50) 36.00 (-8.50,54.00) 0.268 0.789

CT value standard deviation 99.23 (77.83,143.68) 93.48 (69.40,139.35) 0.712 0.477

Maximum CT values(HU) 554.00 (436.00,682.00) 524.00 (415.50,651.50) 0.788 0.431

Minimum CT values(HU) -213.00 (-372.00,-67.50) -250.00 (-374.50,-53.00) 0.132 0.895

Compactness 0.0281 (0.0251,0.0326) 0.0312 (0.0255,0.0343) 1.913 0.056

Sphericity 0.6549 (0.6065,0.7230) 0.7026 (0.6134,0.7467) 1.917 0.055

Kurtosis -0.87 (-1.01,-0.60) -0.81 (-1.04,-0.56) 0.874 0.382

Skewness 0.17 (0.10,0.32) 0.18 (0.06,0.29) 0.559 0.576

Energy(×108) 6.42 (3.57,15.33) 5.03 (2.14,12.97) 1.167 0.243

Entropy 4.78 (4.42,5.20) 4.60 (4.31,5.08) 0.922 0.356
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conventional size measurement lies in its exclusive focus on the

maximum cross-sectional diameter, neglecting multidimensional

tumor characteristics. To address this, the present study employed
Frontiers in Oncology 08
an artificial intelligence (AI)-assisted diagnostic system to

automatically identify tumors and perform integrated classification.

This system generates multiple AI-quantified parameters, capturing

not only one-dimensional (long-axis and short-axis diameters) and

two-dimensional (area) metrics but also three-dimensional volumetric

data, thereby overcoming the limitations of manual visual assessment.

In univariate analysis, tumor surface area was significantly greater in

the EGFR mutation group than in the wild-type group (P = 0.043),

while other AI-derived parameters showed no statistical significance.

Multivariate analysis further confirmed tumor surface area as an

independent predictive factor for EGFR mutations. From a

histopathological perspective, the EGFR gene mediates vascular

endothelial cell growth and promotes neovascularization, thereby

facilitating rapid aggressive tumor progression. During this process,

tumor cells within the lesion demonstrate asynchronous growth rates

in different directions, leading to varying degrees of fibrotic

contraction and progressive infiltration into surrounding tissues.

Consequently, highly aggressive tumors tend to develop

characteristic spiculation and lobulation on their surfaces (28, 31).

When tumors exhibit prominent spiculation and lobulation, this

morphological alteration significantly increases the overall tumor

surface area.

Dual-energy CT provides comprehensive tissue composition

information, with its quantitative parameters reflecting tumor

microstructural characteristics including vascularization, cellular

density, and histopathological components - features potentially

associated with EGFR mutation status. AI-driven CT parameter

analysis enables extraction of radiomic features imperceptible

through conventional methods. Our predictive model integrating

spectral CT parameters, AI-quantified imaging biomarkers, and

clinical indicators demonstrated discriminative capability for

EGFR-mutant versus wild-type lung adenocarcinoma, achieving

an AUC of 0.713 (95% CI: 0.628-0.797). Our findings align with and

extend previous research on non-invasive EGFR mutation

prediction using medical imaging. While CT radiomics has

demonstrated substantial predictive capability in prior studies (32,

33), our work advances this field by incorporating functional

insights from spectral CT parameters that quantify iodine uptake

and tumor vascularity beyond conventional CT. Although PET/CT

radiomics has shown excellent performance as reported by Deng

et al. (34), our spectral CT approach provides complementary

functional information within standard CT protocols. This

multimodal integration strategy enables more comprehensive

tumor characterization than single-modality approaches.

Liquid biopsy demonstrates a sensitivity of 35%–80% and

specificity of 96%–100% for detecting EGFR mutations in lung

cancer (35, 36). However, it exhibits false-positive rates of 6%–16%

and false-negative rates as high as 42%–52% (36, 37). Our integrated

model achieved moderate discriminative accuracy (AUC: 0.713) but

offers distinct advantages over liquid biopsy: it circumvents the latter’s

prohibitive costs and high false-negative rates, enables real-time

integration into routine CT workflows, and proves more feasible for

patients with insufficient DNA samples. Traditional CT radiomics

studies typically rely on single-modality CT data and often utilize

highly selected cohorts (e.g., stage IV lung cancer) (38, 39).
FIGURE 3

(a) Nomogram of the EGFR mutation prediction model; (b) Receiver
operating characteristic (ROC) curve; (c) Calibration curve;
(d) Decision curve analysis (DCA).
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Innovatively, this study combines multiparametric spectral CT physics

with 3D AI-quantified features within a broader clinical population

(stages I–IV), potentially conferring superior model generalizability.

AI-derived parameters are automatically extracted during routine CT

interpretation without significantly prolonging image analysis time.

Crucially, the model leverages pre-acquired spectral CT data,

eliminating the need for additional scans or associated costs. This

non-invasive approach reduces unnecessary biopsies, particularly

offering a viable alternative for patients contraindicated for invasive

procedures. For suspected lung adenocarcinoma cases undergoing

spectral CT, the model provides real-time EGFR mutation

probability scoring during initial radiological evaluation. This enables

clinicians to prioritize molecular testing for high-probability cases,

thereby reducing diagnostic delays and optimizing resource allocation

through streamlined precision oncology workflows. Continuous

application during CT surveillance allows dynamic monitoring of

EGFR mutation probability evolution, particularly valuable for cases

with inconclusive biopsy results or those developing resistance to initial

therapies. Such longitudinal assessment facilitates proactive therapeutic

planning, securing critical treatment windows for patients. It is

imperative to acknowledge, however, the inherent limitations of

spectral CT as an imaging-based surrogate for direct molecular

profiling. Unlike liquid biopsy or tissue genotyping, which directly

detect genetic alterations, spectral CT infers mutation status indirectly

through tumor phenotypic characteristics. This fundamental

distinction implies that imaging features may not fully capture the

complex genetic landscape of tumors. In summary, spectral CT

and liquid biopsy should be regarded as complementary rather

than competing modalities. The former provides rich structural

and functional context, whereas the latter offers direct genetic

evidence. Future research exploring the synergistic combination of

radiomic features from spectral CT with circulating biomarkers may

pave the way for more robust and comprehensive non-invasive

tumor genotyping.

Although our integrated model achieved statistical significance and

demonstrated moderate discriminatory power (AUC: 0.713), we

acknowledge that its diagnostic performance, particularly the

sensitivity of 60.0%, may currently limit its standalone utility in

clinical practice. This moderate performance could be attributed to

several factors. Firstly, despite extracting a comprehensive set of 18 AI-

derived quantitative features and 5 spectral CT parameters, only a

limited number (tumor surface area and lHU) were ultimately selected

as independent predictors in the final multivariate model. This suggests

that while high-dimensional feature spaces are explored, themost robust

signals for EGFR mutation prediction might be concentrated in a few

key characteristics. Many radiomic features, such as texture parameters

(e.g., entropy, energy) and histogram metrics (e.g., kurtosis, skewness),

which potentially reflect intratumoral heterogeneity, did not show

significant univariate associations in our cohort. This could be due to

the inherent biological complexity of lung adenocarcinoma, where the

imaging phenotype influenced by EGFR mutation may be subtle and

confounded by other genetic and microenvironmental factors. Second,

our model construction relied on conventional binary logistic

regression. Although robust and interpretable, this linear modeling

approach may not fully capture potential nonlinear relationships or
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complex higher-order interactions among the imaging and clinical

features. Future studies with larger sample sizes could employ more

advanced machine learning algorithms to better decipher these intricate

patterns and potentially improve predictive accuracy. Therefore, in its

current form, the model is best positioned as a valuable non-invasive

screening tool for risk stratification. It can help triage patients with a

high probability of mutation for prioritized invasive testing, thereby

optimizing resource allocation, rather than serving as a definitive

substitute for tissue-based genotyping.

This study has several limitations. Firstly, this single-center

retrospective study has a limited sample size (n=150), which may

affect the generalizability of our model. To address this, we are

currently collaborating with two tertiary hospitals to initiate a

prospective multi-center validation study. While our integrated model

demonstrates potential for the noninvasive prediction of EGFR

mutations, several technical and practical considerations warrant

careful attention prior to its clinical application. As indicated by our

findings, the predictive accuracy of spectral CT is contingent upon both

scan quality and the precision of region-of-interest (ROI) delineation.

Variations in patient factors, scanner calibration, and contrast

administration protocols can influence the quantification of spectral

parameters. Such variability may affect the reproducibility of

measurements across different institutions and scanner models.

Furthermore, although our study employed a dual-observer approach

with good interobserver consistency (ICC > 0.90), ROI placement

remains inherently operator-dependent. Manual delineation

introduces subjectivity, particularly in heterogeneous lesions or those

with ill-defined margins. To mitigate this, we utilized consensus review

and third-party arbitration in cases of discrepancy. Therefore, although

our model offers a promising non-invasive alternative to biopsy, its real-

world applicability must be validated in multi-center settings with

standardized imaging protocols to ensure generalizability and

consistency. Secondly, this study included cases across all TNM stages

without subgroup analysis based on radiological nodule type, limiting

deeper insight into EGFR prediction in early-stage disease. Multiple

studies (28, 31–43) indicate that ground-glass nodules (GGNs) exhibit

higher EGFR mutation rates than solid or part-solid nodules in

pulmonary lesions <3 cm. However, as tumor stage advances and

invasiveness intensifies, the proportion of solid components

progressively increases. Whether this progression correlates with

alterations in EGFR status remains to be elucidated. We will address

this question in our multicenter study by performing stratified analyses

according to tumor size (e.g., ≤3 cm vs. >3 cm), solid component

proportion (e.g., pure GGN, part-solid), and T stage to refine prediction

accuracy for specific clinical subgroups. Therefore, follow-up studies will

further select cases based on different T stages. Thirdly, due to the

current limitations of spectral analysis software, lesion region-of-interest

(ROI) delineation is constrained to single-plane measurements that

maximize two-dimensional lesion coverage. However, spatial variations

across orthogonal tumor planes remain uncaptured, potentially

resulting in loss of critical heterogeneity information. Future studies

will employ integrated spectral-ct and radiomics approaches to

implement three-dimensional volumetric tumor segmentation,

enabling comprehensive heterogeneity quantification and enhancing

the biological interpretability of predictive models.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1611759
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


She et al. 10.3389/fonc.2025.1611759
In conclusion, spectral CT-derived quantitative parameters, AI-

generated metrics, and clinical data demonstrate potential utility in

predicting EGFR mutation status. Compared to invasive molecular

testing techniques such as biopsy, the integration of spectral CT and

artificial intelligence offers a safe, cost-effective, and non-invasive

approach to assess tumor molecular profiles, thereby facilitating

personalized therapeutic decision-making for patients.
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