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Predicting EGFR gene mutation
In lung adenocarcinoma using
spectral CT combined with Al
parameters: a diagnostic
accuracy study

Lilan She, Min Xie, Guolin Xu, Xiangmei Zhan, Meilan Huang
and Yunjing Xue*

Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China

Purpose: Epidermal growth factor receptor(EGFR) mutation is one of the most
critical biomarkers in non-small cell lung cancer (NSCLC), holding significant
clinical implications for gquiding targeted therapy selection and prognostic
assessment in patients. This study aims to evaluate the predictive value of
spectral CT parameters, artificial intelligence (Al)-derived parameters, and
clinical indicators for EGFR mutation in lung adenocarcinoma.

Methods: This retrospective study analyzed 150 patients with pathologically
confirmed lung adenocarcinoma. All patients underwent EGFR genotyping,
non-contrast CT, and spectral contrast-enhanced CT. Spectral parameters
included spectral curve slope (AHU), iodine concentration (IC), water
concentration (WC), Effective atomic number (Effective-Z), and CT values at 70
keV. An Al-assisted diagnostic system automatically extracted quantitative Al
parameters: The three-dimensional (3D) radiomic features(including long-axis
diameter, short-axis diameter, surface area, 3D long-axis diameter, maximum
cross-sectional area, volume), CT attenuation histogram features(including solid
component percentage, mean CT value, median CT value, CT value standard
deviation, maximum CT values, minimum CT values, kurtosis, skewness, energy,
and entropy)and morphological characteristics(including compactness,
sphericity). Correlations between spectral CT parameters, Al parameters,
clinical variables, and EGFR mutation status were assessed. Independent
predictors were identified via multivariate analysis to construct a
predictive model.

Results: Univariate analysis revealed associations between EGFR mutation and
gender (P = 0.013), smoking history (P = 0.001), AHU (P = 0.049), and tumor
surface area (P = 0.043). Multivariate analysis identified smoking history
(P = 0.012), AHU (P = 0.015), and surface area (P = 0.029) as independent
predictors. The predictive model integrating these three factors achieved an AUC
of 0.713 (95% ClI: 0.628-0.797), a specificity of 0.754, and a sensitivity of 0.600,
demonstrating moderate diagnostic accuracy. Calibration curves indicated good
agreement between predicted and observed probabilities, while decision curve
analysis confirmed clinical utility.

Conclusion: The integration of spectral CT and Al-derived quantitative
parameters with clinical indicators demonstrates significant potential for
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noninvasive prediction of EGFR mutation in lung adenocarcinoma. This non-
invasive predictive approach could reduce unnecessary invasive biopsies.
Particularly in patients with contraindications to invasive procedures, this
model offers a viable alternative.

spectral CT, artificial intelligence, lung adenocarcinoma, EGFR mutation,

predictive model

1 Introduction

Lung cancer remains one of the most prevalent malignancies
worldwide, ranking second in incidence and exhibiting persistently
high mortality rates (1). NSCLC constitutes the predominant
histological subtype, with lung adenocarcinoma being the most
common form of NSCLC. EGFR mutations represent the most
frequent driver genetic alterations in Asian populations (2, 3). Non-
smokers exhibit a significantly higher prevalence of EGFR
mutations compared to smokers, with these mutations
predominantly manifesting as pure ground-glass nodules (GGNs)
or part-solid nodules—particularly among Asian females.
Consequently, low-dose CT (LDCT) screening is critically
important in this population, as it may reflect EGFR status
through discernible CT characteristics (4, 5).Tyrosine kinase
inhibitors (TKIs) have demonstrated significant efficacy in
suppressing. EGFR-mediated oncogenic signaling (6-8),
underscoring the clinical imperative to accurately predict EGFR
mutation status for guiding therapeutic decision-making. However,
current methods for obtaining EGFR genotypic information
predominantly rely on postoperative or biopsy specimens, which
are invasive, cost-prohibitive, and poorly tolerated by certain
patients. In recent years, novel EGFR detection methodologies
have emerged, exemplified by liquid biopsy platforms
incorporating circulating tumor cells (CTCs), circulating tumor
DNA (ctDNA), and exosomes. However, their ultra-low
concentrations in biofluids and suboptimal detection rates
necessitate stringent technical requirements. Compared to
histological biopsy, liquid biopsy demonstrates elevated false-
negative rates and compromised sensitivity profiles (9-11). In
contrast, predictions based on non-invasive imaging show
promise, such as quantitative parameters from CT radiomics or
deep learning, but they usually focus on single-modality features
(12, 13).

Spectral CT, utilizing rapid voltage switching between high- and
low-energy spectra (80 keV and 140 keV), provides quantitative
multiparametric data, including spectral curve analysis, iodine-
water decomposition maps, Effective-Z, and monoenergetic
imaging. These parameters offer critical insights into tumor
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compositional heterogeneity. Concurrently, AI has achieved
remarkable advancements in medical imaging, enabling
automated extraction of high-dimensional tumor features (14).
Al-based systems not only reduce radiologists” workload but also
enhance the detection accuracy of pulmonary nodules (15, 16). The
integration of Al-derived quantitative parameters with spectral CT
biomarkers demonstrates synergistic advantages, significantly
reinforcing the theoretical foundation of predictive models. Al
excels at capturing high-dimensional morphological and textural
features, which reflect macroscopic tumor architecture and
intratumoral heterogeneity. These parameters correlate with
tumor growth patterns and aggressiveness, potentially linked to
EGFR-driven oncogenic pathways. In contrast, spectral CT
generates IC, AHU, and Effective-Z, providing functional insights
into tumor biology. These parameters are directly influenced by
EGFR-mediated angiogenesis. The complementary value of these
modalities lies in their ability to address distinct aspects of tumor
characteristics. Furthermore, in spectral CT analysis, where ROI
delineation is inherently observer-dependent, AI-driven
automation provides maximal assurance of standardized and
reproducible parameter extraction. This study aims to integrate
spectral CT parameters, Al-derived quantitative biomarkers, and
clinical indicators to investigate their correlations with EGFR
mutation status. By constructing a predictive model, we seek to
establish a noninvasive approach for precise EGFR mutation
profiling in lung adenocarcinoma.

2 Materials and methods
2.1 Study population

This retrospective study enrolled 150 patients with lung
adenocarcinoma treated at our institution’s Department of
Thoracic Surgery between January 2019 and July 2023. Inclusion
criteria: (1) completion of contrast-enhanced chest CT within 1
month preoperatively or pre-biopsy; (2) pathological confirmation
of lung adenocarcinoma with comprehensive genetic profiling; (3)
diagnostic-quality imaging. Exclusion criteria: (1) prior tumor-
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modifying interventions before CT; (2) coexisting extra-thoracic
malignancies; (3) EGFR mutations co-occurring with other driver
mutations. Clinical variables included sex, age, smoking history,
family history of lung cancer, and prior malignancies. Smoking
history was defined as either current smoking (=1 cigarette/day for
>6 consecutive months) or former smoking (cessation duration >6
months). This study is a retrospective observational study approved
by the hospital’s ethics committee. In accordance with the
Declaration of Helsinki, informed consent was waived due to the
use of existing anonymized data, the non-interference with
established treatment plans, and the absence of additional risk to
the participants.

2.2 CT acquisition protocol

All scans were performed using a Revolution CT scanner (GE
Healthcare, USA). Non-contrast and spectral contrast-enhanced
scans covered the entire thorax during breath-hold after deep
inspiration. Standard non-contrast parameters: 120 kV tube
voltage, automatic tube current modulation, pitch 0.992, rotation
time 0.5 s. Spectral imaging used Gemstone Spectral Imaging (GSI)
mode: 445 mA tube current, pitch 0.992, rotation time 0.5 s. All
patients received intravenous administration of ioversol contrast
agent (350 mgl/mL) via the antecubital vein using the following
protocol: injection volume 1.0 mL/kg (60-80 mL total dose) at a rate
of 2.5 mL/s. Scan initiation was delayed for 55 seconds post-
injection to ensure sufficient time for contrast agent perfusion of
the lesions, thereby enabling more accurate assessment of
tumor vascularity.

ND STHD/

FIGURE 1
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2.3 Spectral image analysis

Reconstructed 1.25-mm spectral images (mediastinal window
settings: width 400 HU; level 40 HU) were transferred to an AW 4.7
workstation for GSI analysis. Regions of interest (ROI) were
manually delineated on the largest cross-sectional area of tumor
solid components, avoiding cavitations, blood vessels, and
calcifications (ROI area >2/3 of solid components). Quantitative
parameters derived from material decomposition maps included
iodine concentration (IC), water concentration (WC), and CT
values at 70 keV. Spectral curve slope (AHU) was calculated as:
Au=(CT40 keV-CT100 keV)/(100keV-40keV). AHU represents
the rate of change in X-ray attenuation between the low-energy
(40 keV) and high-energy (100 keV) levels. A higher AHU value
indicates a greater capacity for iodine uptake within the tumor.
Effective-Z was computed using spectral CT material
decomposition technology. It represents the mean atomic number
value when the tissue within the ROI is equivalent to a single
element. This parameter quantifies differences in the elemental
composition of tumor tissue. Therefore, both AHU and Effective-
Z were included in our analysis.

Lesion delineation was independently performed by two
radiologists (one attending radiologist and one resident radiologist),
both blinded to patients™ clinical information and EGFR mutation
status. The consistency of the observers’ measurement results was
analyzed using the ICC. Final results were derived from the average
measurements of both radiologists. In cases of significant interobserver
discrepancy, a third senior radiologist with subspecialty expertise in
thoracic imaging arbitrated the final determination. Representative

images are shown in Figure 1.

Spectral HU Curve 2

Spectral enhancement image with ROI delineation and spectral curves. ROls were placed at the largest cross-sectional dimension of the tumor,
encompassing the majority of solid components within the lesion. (a, b) EGFR wild-type (female, 45 years old; AHU = 1.59); (c, d) EGFR mutation-

positive (female, 50 years old; AHU = 2.21).
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2.4 Al parameter extraction

Non-contrast CT images (1.25 mm slice thickness, lung
window: width 1200~1500 HU, level -600~-800 HU) were
processed using an Al-powered pulmonary nodule analysis
system (Infervision V4.0, Beijing, China). The system employs a
pre-trained convolutional neural network to extract quantitative
features from lesions in routine pulmonary CT examinations, with
prior training and validation performed on CT datasets
encompassing diverse acquisition parameters. The system
automatically segmented tumors and generated 18 quantitative
biomarkers: Three-dimensional (3D) radiomic features(including
long-axis diameter, short-axis diameter, surface area, 3D long-axis
diameter, maximum cross-sectional area, volume), CT attenuation
histogram features(including solid component percentage, mean
CT value, median CT value, CT value standard deviation,
maximum CT values, minimum CT values, kurtosis, skewness,
energy, and entropy)and morphological characteristics(including
compactness, sphericity). Three-dimensional (3D) radiomic
features enable a more comprehensive quantification of tumor
burden. CT attenuation histogram features reflect intratumoral
density variations, potentially indicative of pathological alterations
such as necrosis, hemorrhage, or cellular proliferation. While
morphological characteristics capture shape complexity, which
may correlate with aggressive growth patterns and spatial

Solid component

FIGURE 2

Non-solid component
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heterogeneity. The Al-based pulmonary nodule diagnostic system
leverages a deep learning algorithm to perform automatic
segmentation of nodule boundaries and identification of typical
radiological signs. For component analysis, the algorithm applies a
threshold of -145 HU to differentiate solid from non-solid
components within the nodule. It then calculates the number of
voxels corresponding to each CT attenuation value, storing this data
in a histogram. Subsequently, volumetric and other three-
dimensional metrics are computed based on voxel counting
(Figure 2) (17-19). Two board-certified radiologists
independently validated Al-derived tumor segmentation accuracy
through consensus review, ensuring spatial correspondence
between imaging findings and postoperative histopathology.

2.5 EGFR mutation analysis

Pretreatment tumor specimens were obtained via surgical
resection or needle biopsy. Formalin-fixed paraffin-embedded
(FFPE) tumor tissue sections were subjected to microdissection to
ensure a tumor cell content of >20%. EGFR mutations were
detected using AmoyDx diagnostic kits(Xiamen, China), which
employs the amplification refractory mutation system (ARMS)
combined with fluorescent polymerase chain reaction (PCR) to
identify EGFR mutations in tumor-derived DNA. This assay detects

Max CT value 52 Compactness 0032%

Min CT value .52 Sphericity (7223
Mean CT value -3 Kurtosis -101
Median CT value -3 Skewness ({1
Standard deviation {31075 Energy §179%1%05

Solid component 6.%%

Entropy 5403

Al-derived CT histogram parameters. The solid component percentage was defined as the total number of voxels with CT attenuation > -145
Hounsfield Units (representing the solid component) divided by the total number of voxels encompassing the entire tumor.
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multiple EGFR mutation types, including exon 19 deletions (19-
del), L858R, T790M, exon 20 insertions (20-Ins), G719X, S768I, and
L861Q. All testing procedures were performed in strict accordance
with the manufacturer’s protocols.

2.6 Statistical analysis

Statistical analysis was performed using IBM SPSS 23.0 software
and R language (version 4.0.5). In univariate analysis, the normality
of continuous variables was assessed using the Shapiro-Wilk test.
Variables conforming to normal distribution were analyzed by
independent samples t-test and expressed as mean * standard
deviation, while non-normally distributed variables were analyzed
using the Mann-Whitney U test and presented as median (P25,
P75). Categorical variables were compared using Pearson’s chi-
square test or Fisher’s exact test. Variables demonstrating statistical
significance in univariate analysis were subsequently incorporated
into multivariate analysis. A binary logistic regression model with
enter method was employed to identify independent influencing
factors and construct a predictive model for EGFR mutations. The
model’s discriminatory power, calibration, and clinical utility were
assessed using Receiver Operating Characteristic (ROC) curve
analysis, the Hosmer-Lemeshow goodness-of-fit test, and
Decision Curve Analysis (DCA), respectively. For the comparison
of inter-observer consistency of continuous variables, the intraclass
correlation coefficient (ICC) is used. An ICC greater than 0.75
indicates good consistency. A p-value <0.05 was considered
statistically significant.

3 Results
3.1 Clinical characteristics
A total of 150 lung adenocarcinoma patients were enrolled

based on the inclusion and exclusion criteria, comprising 89 EGFR-
mutant cases and 61 wild-type cases, with 72 males and 78 females

10.3389/fonc.2025.1611759

(mean age 60.02 + 9.15 years). Comparative analysis between the
EGFR-mutant and wild-type groups revealed no statistically
significant differences in age (P = 0.092), family history of lung
cancer (P = 1.000), or previous cancer history (P = 0.202). However,
statistically significant differences were observed in gender
distribution (P = 0.013) and smoking history (P = 0.001) between
the two groups (Table 1).

3.2 Comparison of the consistency of
measurement results among observers

The measurement results of AHU, IC, WC, Effective-Z, and CT
values at 70 keV by the two radiologists are shown in Table 2. The
consistency of the data was good (ICC > 0.90).

3.3 Spectral parameter comparison

The EGFR-mutant group demonstrated significantly higher
Agu values compared to the wild-type group (P = 0.049).
However, no statistically significant differences were observed
between the two groups in jodine concentration (P = 0.130),
water concentration (P = 0.219), Effective-Z (P = 0.096), or 70
keV monochromatic imaging parameters (P = 0.650) (Table 3).

3.4 Al-derived parameter comparison

Review by two physicians confirmed accurate spatial
correspondence between the Al-identified tumor location and the
postoperative histopathology findings. The EGFR-mutant group
exhibited a significantly larger tumor surface area compared to the
wild-type group (P = 0.043). However, no statistically significant
differences were observed between the two groups in mean CT
value (P = 0.830), median CT value (P = 0.789), solid component
proportion (P = 0.995), maximum CT value (P = 0.431), minimum
CT value (P = 0.895), CT value standard deviation (P = 0.477), longest

TABLE 1 Univariable logistic regression analysis of demographic characteristics.

Clinical characteristics

Univariate logistic regression analysis

(0] 95% ClI
Age 0.032 ‘ 0.969 0.934-1.005 0.093
Male Reference
Gender 0.011
Female 0.867 ‘ 2.379 1.221-4.634
No Reference
Smoking history 0.001
Yes -1.274 ‘ 0.280 0.136-0.575
No Reference
Family history of lung cancer 0.975
Yes 0.029 ‘ 1.029 0.167-6.349
No Reference
prior malignancies 0.186
Yes 1.069 ‘ 2914 0.597-14.222
Frontiers in Oncology 05 frontiersin.org
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TABLE 2 Measurement results and consistency between two observers.

Spectral CT parameters = Observerl Observer2 ICC-value P-value
e 241 (1.92, 2.99) 237 (1.91, 2.89) 0.951 (95%CI:0.931-0.965) <0.001
IC (mg/cm3) 20.02 (16.21, 25.34) 19.98 (16.18, 24.98) 0.948 (95%CI:0.928-0.963) <0.001
WC (mg/cm3) 1008.29 (989.83, 1024.89) 1014.84 (991.69, 1025.18) 0.943 (95%CI:0.921-0.959) <0.001
Effective-Z 8.81 (8.55, 9.06) 8.79 (8.52, 9.01) 0.938 (95%CI:0.913-0.956) <0.001
70keV (HU) 62.13 (51.13, 73.67) 61.39 (48.96, 72.08) 0.946 (95%CI:0.924-0.961) <0.001

diameter (P = 0.287), shortest diameter (P = 0.364), 3D longest  difference between the model-predicted values and actual observed
diameter (P = 0.478), maximum cross-sectional area (P = 0.370), values. Furthermore, the calibration curve indicated favorable
volume (P = 0.508), compactness (P = 0.056), sphericity (P = 0.055),  goodness-of-fit, and decision curve analysis revealed substantial
kurtosis (P = 0.382), skewness (P = 0.576), energy (P = 0.243), or  clinical net benefit for patients when the threshold probability

entropy (P = 0.356) (Table 4). ranged between 6% and 54% (Figure 3).
3.5 Multivariate analysis 4 Discussion
Variables demonstrating statistical significance in univariate EGFR mutations represent the most prevalent genetic alterations

analysis, including sex, smoking history, AHU, and tumor surface  in lung cancer among Asian populations, with an overall mutation
area, were subsequently subjected to multicollinearity evaluation.  rate ranging from 20% to 76% (2, 20).The prevalence of EGFR
Linear regression confirmed variance inflation factors (VIF) of mutations is significantly increased in specific subpopulations,
1.999, 1.999, 1.336, and 1.319 for these variables, respectively,  particularly among females (female vs. male: 43.7% vs. 24.0%; OR
demonstrating the absence of significant collinearity or 2.7, 95% CI 2.5-2.9) and never-smokers (never-smokers vs. former/
multicollinearity (VIF<2 threshold), thus warranting their inclusion  current smokers: 49.3% vs. 21.5%; OR 3.7, 95% CI 3.4-4.0), compared
in the multivariate regression model. The analysis identified smoking  to other demographic groups (2, 3, 20). Studies have demonstrated a
history (P = 0.012), AHU (P = 0.015), and tumor surface area  markedly elevated EGFR mutation rate in never-smokers and light
(P = 0.029) as independent predictors of EGFR mutations, smokers (21). This phenomenon may be attributed to the
retaining statistical significance in the final model (Table 5). mechanisms through which tobacco smoking influences EGFR
pathway activation, including oxidative stress induction and
alterations in the cellular microenvironment, which subsequently
3.6 Construction and evaluation of the modify EGFR functionality and activity (22, 23). In the present study,
EGFR mutation prediction model female gender and absence of smoking history were significantly
more prevalent in the EGFR mutation group, with multivariate
Independent risk factors identified through multivariate  analysis identifying smoking history as an independent predictive
regression analysis (including smoking history, AHU, and tumor  factor for EGFR mutations. These findings align consistently with
surface area) were integrated to develop a predictive model, with a  established research outcomes.
nomogram constructed to visualize the results. The prediction The EGEFR signaling cascade governs cellular differentiation and
model demonstrated strong discriminatory ability, as evidenced  division, playing a regulatory role in tumorigenesis and progression.
by an area under the ROC curve (AUC) of 0.713 (95% CI: 0.628-  Upon ligand binding, EGFR activation induces receptor
0.797). The model demonstrated a sensitivity of 0.600 and a  dimerization and tyrosine autophosphorylation, thereby
specificity of 0.754. The Hosmer-Lemeshow goodness-of-fit test ~ promoting vascular endothelial growth, tumor neovascularization,
yielded y? = 2.295 (P = 0.971), indicating no statistically significant  cellular proliferation, and enhanced tumor invasiveness (24).

TABLE 3 Comparison of intergroup differences in spectral parameters.

Spectral CT parameters EGFR mutant group (n=89) EGFR wild-type group (n=61) Z P-value
Miu 2.51 (1.98, 3.02) 2.19 (1.78, 2.90) 1.965 0.049
IC (mg/cm3) 21.21 (16.74, 25.47) 18.88 (15.44, 24.54) 1513 0.130
WC (mg/cm3) 1009.35 (989.75, 1021.15) 1016.04 (993.04, 1024.87) 1.230 0219
Effective-Z 8.83 (8.61, 9.10) 8.72 (8.51, 9.03) 1.666 0.096
70keV (HU) 61.38 (51.94, 73.75) 61.20 (48.86, 71.46) 0.453 0.650
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TABLE 4 Comparison of intergroup differences in Al parameters.

Al quantitative parameters

EGFR mutant group(n=89)

10.3389/fonc.2025.1611759

EGFR wild-type group(n=61)

Long-axis diameter(cm) 3.07 (2.23,4.39) 2.62 (1.89,4.54) 1.064 0.287
Short-axis diameter(cm) 2.27 (1.65,3.31) 2.11 (1.35,3.24) 0.909 0.364
3D long-axis diameter(cm) 3.69 (2.66,5.21) 3.40 (2.38,5.39) 0.710 0.478
Maximum cross-sectional area(cm2) 5.03 (2.91,10.96) 4.15 (2.12,10.59) 0.897 0.370
Surface area(cm?2) 28.57 (15.55,60.59) 18.63 (9.96,54.35) 2.026 0.043*
Volume (mm3) 7251.68 (2396.02,18434.39) 5384.57 (1585.68,19721.51) 0.662 0.508
Solid component percentage (%) 91.72 (57.79,100.00) 88.34 (64.57,100.00) 0.006 0.995
Mean CT value(HU) 33.00 (-36.00,61.00) 23.00 (-33.00,63.00) 0.214 0.830
Median CT value(HU) 36.00 (-3.00,55.50) 36.00 (-8.50,54.00) 0.268 0.789
CT value standard deviation 99.23 (77.83,143.68) 93.48 (69.40,139.35) 0.712 0.477
Maximum CT values(HU) 554.00 (436.00,682.00) 524.00 (415.50,651.50) 0.788 0.431
Minimum CT values(HU) -213.00 (-372.00,-67.50) -250.00 (-374.50,-53.00) 0.132 0.895
Compactness 0.0281 (0.0251,0.0326) 0.0312 (0.0255,0.0343) 1913 0.056
Sphericity 0.6549 (0.6065,0.7230) 0.7026 (0.6134,0.7467) 1917 0.055
Kurtosis -0.87 (-1.01,-0.60) -0.81 (-1.04,-0.56) 0.874 0.382
Skewness 0.17 (0.10,0.32) 0.18 (0.06,0.29) 0.559 0.576
Energy(xlos) 6.42 (3.57,15.33) 5.03 (2.14,12.97) 1.167 0.243
Entropy 4.78 (4.42,5.20) 4.60 (4.31,5.08) 0.922 0.356

Consequently, administration of iodinated contrast agents reveals
significant enhancement disparities between tumor vasculature and
normal tissues (25). Clarifying EGFR mutation status provides
crucial guidance for initiating and selecting therapeutic strategies
in lung adenocarcinoma (26). Spectral CT leverages atomic
number-dependent variations in X-ray attenuation coefficients to
precisely analyze differences in material composition. The spectral
curve illustrates continuous dynamic variations in material
attenuation across different X-ray energy levels. A steeper spectral
curve slope indicates greater dynamic attenuation changes,
reflecting higher tumor enhancement intensity and vascular
supply. Quantified by measuring CT value differences at two
distinct monochromatic energy levels, this slope critically informs
tumor composition analysis, enabling early diagnosis and

TABLE 5 Results of multivariate regression analysis.

Variables (0]} 95%Cl P-value

Male Reference Reference 0.879
Gender

Female 0.926 0.344-2.495

No Reference Reference 0.012
Smoking history

Yes 0.256 0.088-0.744
Aty 1.972 1.144-3.399 0.015
Surface area 1.010 1.001-1.019 0.029

Frontiers in Oncology

therapeutic decision-making. Although iodine concentration and
effective atomic number may partially reflect tumor vascularity, the
current study found no statistically significant associations for these
parameters. In contrast, the spectral curve slope demonstrated
superior discriminatory capacity, with the EGFR mutation group
exhibiting significantly steeper slopes than the EGFR wild-type
group. We speculate that this may be attributed to the fact that
the spectral curve slope reflects the dynamic attenuation changes in
CT values across different monochromatic energy levels and is
highly sensitive to detecting differences in the internal composition
of lesions. Particularly in scenarios where precise monitoring of
internal lesion changes is required, it provides more physical
parameters than single iodine concentration or effective atomic
number alone, thereby aiding in the comprehensive analysis of
lesion characteristics from multiple perspectives. Multivariate
analysis confirmed the spectral curve slope as an independent
predictive factor for EGFR mutations, retaining superior
predictive performance after adjusting for confounders.

EGER promotes vascular endothelial cell proliferation, endowing
tumor tissues with abundant blood supply and facilitating rapid tumor
cell proliferation. Consequently, tumor burden correlates closely with
tumor size, where larger dimensions typically indicate higher
invasiveness. However, conflicting evidence from several studies
(27-30) suggests that EGFR-mutant lung adenocarcinomas may
exhibit smaller diameters compared to wild-type counterparts. This
raises uncertainty regarding the reliability of tumor diameter as a
predictor of EGFR mutation status. A critical limitation of
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(a) Nomogram of the EGFR mutation prediction model; (b) Receiver
operating characteristic (ROC) curve; (c) Calibration curve;
(d) Decision curve analysis (DCA).

conventional size measurement lies in its exclusive focus on the
maximum cross-sectional diameter, neglecting multidimensional
tumor characteristics. To address this, the present study employed
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an artificial intelligence (AI)-assisted diagnostic system to
automatically identify tumors and perform integrated classification.
This system generates multiple Al-quantified parameters, capturing
not only one-dimensional (long-axis and short-axis diameters) and
two-dimensional (area) metrics but also three-dimensional volumetric
data, thereby overcoming the limitations of manual visual assessment.
In univariate analysis, tumor surface area was significantly greater in
the EGFR mutation group than in the wild-type group (P = 0.043),
while other Al-derived parameters showed no statistical significance.
Multivariate analysis further confirmed tumor surface area as an
independent predictive factor for EGFR mutations. From a
histopathological perspective, the EGFR gene mediates vascular
endothelial cell growth and promotes neovascularization, thereby
facilitating rapid aggressive tumor progression. During this process,
tumor cells within the lesion demonstrate asynchronous growth rates
in different directions, leading to varying degrees of fibrotic
contraction and progressive infiltration into surrounding tissues.
Consequently, highly aggressive tumors tend to develop
characteristic spiculation and lobulation on their surfaces (28, 31).
When tumors exhibit prominent spiculation and lobulation, this
morphological alteration significantly increases the overall tumor
surface area.

Dual-energy CT provides comprehensive tissue composition
information, with its quantitative parameters reflecting tumor
microstructural characteristics including vascularization, cellular
density, and histopathological components - features potentially
associated with EGFR mutation status. Al-driven CT parameter
analysis enables extraction of radiomic features imperceptible
through conventional methods. Our predictive model integrating
spectral CT parameters, Al-quantified imaging biomarkers, and
clinical indicators demonstrated discriminative capability for
EGFR-mutant versus wild-type lung adenocarcinoma, achieving
an AUC of 0.713 (95% CI: 0.628-0.797). Our findings align with and
extend previous research on non-invasive EGFR mutation
prediction using medical imaging. While CT radiomics has
demonstrated substantial predictive capability in prior studies (32,
33), our work advances this field by incorporating functional
insights from spectral CT parameters that quantify iodine uptake
and tumor vascularity beyond conventional CT. Although PET/CT
radiomics has shown excellent performance as reported by Deng
et al. (34), our spectral CT approach provides complementary
functional information within standard CT protocols. This
multimodal integration strategy enables more comprehensive
tumor characterization than single-modality approaches.

Liquid biopsy demonstrates a sensitivity of 35%-80% and
specificity of 96%-100% for detecting EGFR mutations in lung
cancer (35, 36). However, it exhibits false-positive rates of 6%-16%
and false-negative rates as high as 42%-52% (36, 37). Our integrated
model achieved moderate discriminative accuracy (AUC: 0.713) but
offers distinct advantages over liquid biopsy: it circumvents the latter’s
prohibitive costs and high false-negative rates, enables real-time
integration into routine CT workflows, and proves more feasible for
patients with insufficient DNA samples. Traditional CT radiomics
studies typically rely on single-modality CT data and often utilize
highly selected cohorts (e.g., stage IV lung cancer) (38, 39).
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Innovatively, this study combines multiparametric spectral CT physics
with 3D Al-quantified features within a broader clinical population
(stages I-1V), potentially conferring superior model generalizability.
Al-derived parameters are automatically extracted during routine CT
interpretation without significantly prolonging image analysis time.
Crucially, the model leverages pre-acquired spectral CT data,
eliminating the need for additional scans or associated costs. This
non-invasive approach reduces unnecessary biopsies, particularly
offering a viable alternative for patients contraindicated for invasive
procedures. For suspected lung adenocarcinoma cases undergoing
spectral CT, the model provides real-time EGFR mutation
probability scoring during initial radiological evaluation. This enables
clinicians to prioritize molecular testing for high-probability cases,
thereby reducing diagnostic delays and optimizing resource allocation
through streamlined precision oncology workflows. Continuous
application during CT surveillance allows dynamic monitoring of
EGFR mutation probability evolution, particularly valuable for cases
with inconclusive biopsy results or those developing resistance to initial
therapies. Such longitudinal assessment facilitates proactive therapeutic
planning, securing critical treatment windows for patients. It is
imperative to acknowledge, however, the inherent limitations of
spectral CT as an imaging-based surrogate for direct molecular
profiling. Unlike liquid biopsy or tissue genotyping, which directly
detect genetic alterations, spectral CT infers mutation status indirectly
through tumor phenotypic characteristics. This fundamental
distinction implies that imaging features may not fully capture the
complex genetic landscape of tumors. In summary, spectral CT
and liquid biopsy should be regarded as complementary rather
than competing modalities. The former provides rich structural
and functional context, whereas the latter offers direct genetic
evidence. Future research exploring the synergistic combination of
radiomic features from spectral CT with circulating biomarkers may
pave the way for more robust and comprehensive non-invasive
tumor genotyping.

Although our integrated model achieved statistical significance and
demonstrated moderate discriminatory power (AUC: 0.713), we
acknowledge that its diagnostic performance, particularly the
sensitivity of 60.0%, may currently limit its standalone utility in
clinical practice. This moderate performance could be attributed to
several factors. Firstly, despite extracting a comprehensive set of 18 Al-
derived quantitative features and 5 spectral CT parameters, only a
limited number (tumor surface area and AHU) were ultimately selected
as independent predictors in the final multivariate model. This suggests
that while high-dimensional feature spaces are explored, the most robust
signals for EGFR mutation prediction might be concentrated in a few
key characteristics. Many radiomic features, such as texture parameters
(e.g., entropy, energy) and histogram metrics (e.g., kurtosis, skewness),
which potentially reflect intratumoral heterogeneity, did not show
significant univariate associations in our cohort. This could be due to
the inherent biological complexity of lung adenocarcinoma, where the
imaging phenotype influenced by EGFR mutation may be subtle and
confounded by other genetic and microenvironmental factors. Second,
our model construction relied on conventional binary logistic
regression. Although robust and interpretable, this linear modeling
approach may not fully capture potential nonlinear relationships or
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complex higher-order interactions among the imaging and clinical
features. Future studies with larger sample sizes could employ more
advanced machine learning algorithms to better decipher these intricate
patterns and potentially improve predictive accuracy. Therefore, in its
current form, the model is best positioned as a valuable non-invasive
screening tool for risk stratification. It can help triage patients with a
high probability of mutation for prioritized invasive testing, thereby
optimizing resource allocation, rather than serving as a definitive
substitute for tissue-based genotyping.

This study has several limitations. Firstly, this single-center
retrospective study has a limited sample size (n=150), which may
affect the generalizability of our model. To address this, we are
currently collaborating with two tertiary hospitals to initiate a
prospective multi-center validation study. While our integrated model
demonstrates potential for the noninvasive prediction of EGFR
mutations, several technical and practical considerations warrant
careful attention prior to its clinical application. As indicated by our
findings, the predictive accuracy of spectral CT is contingent upon both
scan quality and the precision of region-of-interest (ROI) delineation.
Variations in patient factors, scanner calibration, and contrast
administration protocols can influence the quantification of spectral
parameters. Such variability may affect the reproducibility of
measurements across different institutions and scanner models.
Furthermore, although our study employed a dual-observer approach
with good interobserver consistency (ICC > 0.90), ROI placement
remains inherently operator-dependent. Manual delineation
introduces subjectivity, particularly in heterogeneous lesions or those
with ill-defined margins. To mitigate this, we utilized consensus review
and third-party arbitration in cases of discrepancy. Therefore, although
our model offers a promising non-invasive alternative to biopsy, its real-
world applicability must be validated in multi-center settings with
standardized imaging protocols to ensure generalizability and
consistency. Secondly, this study included cases across all TNM stages
without subgroup analysis based on radiological nodule type, limiting
deeper insight into EGFR prediction in early-stage disease. Multiple
studies (28, 31-43) indicate that ground-glass nodules (GGNSs) exhibit
higher EGFR mutation rates than solid or part-solid nodules in
pulmonary lesions <3 cm. However, as tumor stage advances and
invasiveness intensifies, the proportion of solid components
progressively increases. Whether this progression correlates with
alterations in EGFR status remains to be elucidated. We will address
this question in our multicenter study by performing stratified analyses
according to tumor size (e.g, <3 c¢m vs. >3 cm), solid component
proportion (e.g., pure GGN, part-solid), and T stage to refine prediction
accuracy for specific clinical subgroups. Therefore, follow-up studies will
further select cases based on different T stages. Thirdly, due to the
current limitations of spectral analysis software, lesion region-of-interest
(ROI) delineation is constrained to single-plane measurements that
maximize two-dimensional lesion coverage. However, spatial variations
across orthogonal tumor planes remain uncaptured, potentially
resulting in loss of critical heterogeneity information. Future studies
will employ integrated spectral-ct and radiomics approaches to
implement three-dimensional volumetric tumor segmentation,
enabling comprehensive heterogeneity quantification and enhancing
the biological interpretability of predictive models.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1611759
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

She et al.

In conclusion, spectral CT-derived quantitative parameters, Al-
generated metrics, and clinical data demonstrate potential utility in
predicting EGFR mutation status. Compared to invasive molecular
testing techniques such as biopsy, the integration of spectral CT and
artificial intelligence offers a safe, cost-effective, and non-invasive
approach to assess tumor molecular profiles, thereby facilitating
personalized therapeutic decision-making for patients.
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