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Involvement of TP53
In osteosarcoma -
challenges and prospects
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Shandong, China, *Yantai Yuhuangding Hospital, Yantai, Shandong, China

Osteosarcoma (OS), the most common primary malignant bone tumor, remains
a therapeutic challenge because of its high metastatic potential,
chemoresistance, and poor prognosis. Mutations in the TP53 tumor suppressor
gene, including loss-of-function (LOF) and gain-of-function (GOF) mutations,
play a central role in OS progression by disrupting cell cycle regulation, DNA
repair, and apoptosis and promoting immune evasion and metabolic
reprogramming. This review provides an in-depth analysis of p53 biology in
OS, highlighting its impact on therapeutic resistance and tumor progression. We
discuss advancements in radiotherapy, chemotherapy, and immunotherapy,
emphasizing strategies targeting mutant TP53 and its associated pathways.
Emerging approaches, including metabolic reprogramming, noncoding RNA
regulation, and precision biomarkers such as miRNAs and histone
modifications, offer promising tools for diagnosis, risk stratification, and
treatment optimization. By linking the molecular mechanisms of p53 with
novel therapeutic strategies, this review underscores opportunities for
translational research aimed at improving the clinical outcomes of OS patients.
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1 Introduction

Osteosarcoma is a malignant tumor arising from mesenchymal tissues and displays a
bimodal age distribution: the first peak occurs between ages 10 and 14, whereas the second
peak appears after age 60 (1). The pathogenesis of osteosarcoma primarily involves
mutations or inactivation of tumor suppressor genes, particularly TP53, and
overexpression of oncogenes such as MDM2 (mouse double minute 2 protein) (2). The
TP53 gene, located on chromosome 17 (17pl13.1), encodes a transcription factor that
regulates key cellular processes, including cell cycle arrest, DNA repair, and apoptosis.

Under normal physiological conditions, the negative regulator MDM2 ubiquitinates
the C-terminal lysine residues of p53, promoting its proteasomal degradation and
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maintaining low intracellular p53 levels. However, during
carcinogenesis, The p53 ubiquitination is inhibited, leading to its
accumulation and hyperactivation. Posttranslational modifications
such as phosphorylation and acetylation stabilize p53 and increase
its transcriptional activity, thereby modulating downstream
signaling pathways (3).

Notably, the majority of human cancers harbor TP53
mutations, predominantly missense mutations within the DNA-
binding domain. These mutations are categorized into structural
mutations, which disrupt protein folding, and contact mutations,
which alter interactions with DNA. More than half of TP53
mutations exhibit gain-of-function (GOF) properties, enabling
oncogenic activities such as drug resistance and immune evasion.
In osteosarcoma, these mutant p53 proteins not only lose their
tumor-suppressive abilities but also acquire functions that actively
promote tumor progression (4).

Like mutant p53, wild-type p53 is also regulated by MDM2.
Elevated levels of MDM2 confer an adaptive advantage against
chemotherapy by persistently suppressing wild-type p53, which
prevents p53-mediated cell cycle arrest in response to DNA-
damaging agents, ultimately facilitating chemoresistance (5).

This review consolidates current knowledge on the molecular
mechanisms of p53 in osteosarcoma, highlighting its role in
tumorigenesis and therapeutic resistance. Furthermore, we
propose novel strategies for targeting p53 and its regulatory
pathways to inform future research and clinical applications in
osteosarcoma treatment.

2 Type and role of p53 in
osteosarcoma

Since its discovery in 1979, p53 has been the subject of extensive
and detailed research. In 1993, mutant p53 was first confirmed to
promote tumor progression through a gain-of-function (GOF)
mechanism. Subsequent studies have demonstrated its
multifaceted roles in regulating tumor cell motility, genomic
instability, differentiation and stemness, metabolic
reprogramming, the tumor microenvironment, immune
responses, and resistance to cancer therapies (4).

2.1 Wild-type p53

The wild-type p53 protein is maintained at low steady-state
levels through continuous ubiquitination by the MDM2 E3 ligase,
followed by proteasomal degradation (3, 6). This tightly controlled
degradation ensures cellular homeostasis. However, most missense
mutations in TP53 occur in its core domain, an intrinsically
unstable region characterized by low thermodynamic and kinetic
stability. This inherent instability enables rapid transitions between
folded and unfolded states, which contributes to the antitumor
properties of wtp53 and its sensitivity to conventional
chemotherapy and radiotherapy (7).
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2.2 Mutant-type p53

The majority of TP53 mutations in OS are missense mutations
within the DNA-binding domain. These mutations not only impair
the tumor-suppressive functions of wtp53 but also endow mutp53
with oncogenic properties independent of wtp53 activity. The most
commonly mutated codons in TP53—R175, R248, and R273—are
broadly classified into structural mutations and contact mutations,
depending on the integrity of the protein’s conformation (8).

2.2.1 Structural mutation

Comprehensive genomic and transcriptomic analyses of 148
osteosarcoma patients revealed that structural variations, loss of
coding regions, while the promoter region is preserved and
repositioned, frequently occur in the TP53 gene (9). This
rearrangement often generates recurrent driver mutations by
fusing the TP53 promoter with oncogenic genes, enabling tumor
cells to bypass DNA damage checkpoints and evade surveillance
mechanisms (10). Notably, in younger patients, where somatic
mutation accumulation is limited, these structural alterations—
such as enhancer repositioning or copy number changes affecting
TP53 intron 1—compensate for the deficit (11). Although such
strategies can activate unrelated genes, they also highlight the
complexity of TP53 regulation (9). Notably, introns 5 and 7
exhibit relatively high break frequencies, as reported by the
International Cancer Genome Consortium (ICGC), suggesting
that selective advantages are conferred by these breaks.
Conversely, introns 2, 3, and 8 remain intact across all tumor
samples, underscoring a molecular basis for this preferential
selection (12). Future efforts to precisely identify ectopic
reconnection points will be crucial for understanding the
oncogenic potential of these mutations.

2.2.2 Contact mutation

Contact mutations alter the DNA-binding residues of p53 while
preserving the protein’s conformation. For example, the p53R270H
mutation in female mice results in significantly greater GOF activity
than structural mutants such as p53R172H (13). Moreover, BACH1
(BTB domain and CNC homologue 1) interacts with mutant
p53R175H, forming a complex with SLC7A11 (xCT) and p53
that accelerates ferroptosis pathways (14). In mouse models, the
R270C mutation (corresponding to human R273C) replaces the
wild-type allele with a mutant allele, thereby suppressing residual
wtp53 function through a dominant-negative mechanism, resulting
in loss of heterozygosity. Despite these oncogenic properties, the
absence of R270C does not impair metastatic progression,
indicating limited therapeutic value for targeting this mutation
alone (15). Recent studies have identified a dominant subclone in
patients with recurrent osteosarcoma with a novel TP53-KPNA3
translocation and deletion of the wild-type TP53 allele, suggesting
its prognostic significance (16).

The inefficacy of the MAP (methotrexate, adriamycin, cisplatin)
chemotherapy regimen in certain osteosarcoma patients is often
linked to mutp53-mediated chemoresistance. For example, a 2023
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study utilizing multimodal-targeted next-generation sequencing
(mmNGS) revealed the instability of the homozygous variant
TP53 rs1642785 in U20S/MTX-resistant cells. Additionally, the
study identified significant allelic variations in SLC19A1 (solute
carrier family 19 member 1) and rs1051266, as well as fusion
transcripts of DHFR (ex4) and MSH3 (ex9). Together, these
findings provide foundational insights into methotrexate
resistance mechanisms (17).

In a pig model of early-onset osteosarcoma, a p2-driven mutant
subtype, R167H-D152p53, was shown to impair the expression of
CTR1 (copper transporter 1, SLC31A1) by preventing the
transcription factor SP1 from translocating to the nucleus. This
disruption leads to cisplatin resistance (18). Interestingly, the zinc
finger and glutamine domains of SP1 act as copper sensors,
suggesting its therapeutic potential for copper-induced cell death
in osteosarcoma. Furthermore, frameshift mutants such as
1332fs*14 predominantly exist as monomers, retaining the N-
terminal domain that binds MDM2 and inhibits TP53
transcription. Compared with wtp53, this mutant has significantly
reduced clonal migration ability and similar drug sensitivity,
suggesting that p53 oligomerization is a promising novel
therapeutic strategy (6).

3 Degradable and modification of p53
3.1 Degradation of p53 in osteosarcoma

3.1.1 The core role of MDM2 in p53 degradation

MDM?2 antagonizes p53 via two principal mechanisms: it
suppresses TP53’s transactivating structural domain and facilitates
the ubiquitin-dependent degradation of p53-chromatin interactions
(19). Interestingly, murine embryos deficient in MDM?2 are
embryonically lethal, a condition that can be rescued by
simultaneous p53 deletion, underscoring the critical balance
between these two proteins (13). In osteosarcoma, mutant p53
(mutp53) forms a complex with heat shock protein 90 (HSP90),
thereby inhibiting MDM2 and CHIP (carboxy-terminus of Hsp70-
interacting protein) E3 ligase activity. This interaction stabilizes
mutp53, allowing it to engage in pro-oncogenic processes. The
HSP90 inhibitor analogue 17-AAG (17-allylamino-17-
demethoxygeldanamycin) disrupts the HSP90-mutp53 complex,
reactivating endogenous MDM?2 and CHIP activity, which
promotes mutp53 degradation and exerts tumor-suppressive
effects (20).

In addition to these canonical pathways, RBM10, an RNA-
binding motif protein, enhances p53 stability by disrupting the
MDM2-p53 feedback loop and inhibiting ubiquitination (21).
Recent therapeutic advances have identified novel MDM?2
inhibitors, such as RG-7388 and Nutlin-3, which induce apoptosis
in SJSA-1 osteosarcoma cells through complementary mechanisms
(22). Additionally, VIP116, a scaffold-binding peptide that targets
MDM2-P53 interactions, has demonstrated promising potential as
a therapeutic intervention (23).

Frontiers in Oncology

10.3389/fonc.2025.1605080

Emerging evidence highlights the role of miR-15a in regulating
p53 degradation. When delivered via serum-derived exosomes,
miR-15a is internalized by osteosarcoma (OS) cells, where it
directly targets GATA-binding protein 2 (GATA2), inhibiting
transcription and binding to the MDM2 promoter. This reduces
p53 degradation, suggesting that optimizing exosome-mediated
delivery of miR-15a could serve as a novel strategy to develop p53
agonists (24).

Notably, while affecting tumor cell proliferation by suppressing
p53, MDM2 also promotes tumor immune escape by regulating
immune cell function (25). In the osteosarcoma microenvironment,
MDM2 overexpression can inhibit the survival and effector function
of CD8" T cells, leading to the reduced the activity of tumor-
infiltrating lymphocytes (TILs), and promoted macrophage
polarization toward the M2 phenotype, thereby enhancing the
immunosuppressive microenvironment. Clinical data indicate that
MDM?2 expression levels correlate positively with immune
checkpoint molecules such as PD-L1, suggesting it may influence
patient prognosis by modulating the immune microenvironment
(26, 27). Further studies revealed that M2 macrophages secrete
factors such as IL-10 and TGF-B to suppress T-cell antitumor
activity and express immune checkpoints like PD-1 and CD47,
further weaken the immune response. Targeting MDM2 reverses
macrophage polarization states. For instance, combining MDM?2
inhibitors with CSF1IR inhibitors reduces M2 macrophage
infiltration and improves the immune microenvironment in
osteosarcoma (28-30). Additionally, by reducing the expression of
NK cell activation receptor ligands (such as NKG2D and DNAM-1)
on tumor cell surfaces, MDM2 suppresses p53 function, which
diminishes NK cell-mediated osteosarcoma cells eradication. Whilst
using MDM2 inhibitors (e.g., Nutlin-3a) to restore p53 activity,
upregulates ligand expression and enhances NK cell-mediated
tumor lysis were observed. Preclinical studies demonstrate that
combining MDM2 inhibitors with adoptive NK cell therapy
significantly suppresses osteosarcoma growth (31, 32).

3.1.2 The synergistic role of MDM4 in p53
degradation

In contrast to MDM2, MDM4 lacks intrinsic E3 ubiquitin ligase
activity but forms heterodimers with MDM2 to increase p53
degradation (33). Small-molecule inhibitors, such as bicyclic
B-amino acids (Abh-AAs), effectively disrupt p53-MDM2 and
p53-MDM4 interactions. Among these, tAbh-AA, characterized
by an all-trans amide bond and a left-handed extended helix
structure, has shown promise as an intracellular protein-protein
interaction (PPI) modulator owing to its hydrophobicity and low
molecular weight (34). Similarly, spiropyrazoline oxindoles, dual
inhibitors of PPIs, have emerged as potential anticancer agents (35).

3.1.3 Other degradation pathways of p53

In addition to the MDM2 family, RFWD2 (ring finger and WD
domain 2), also known as COP1 (constitutive photomorphogenic 1),
acts as an E3 ubiquitin ligase for p53. In HOS (p53mut/-) and U20S
(p53wt/wt) cells, RFWD2-mediated p53 degradation influences
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osteosarcoma progression (36). Verteporfin (VP), an FDA-approved
drug with autophagy-modulating properties, inhibits autophagic
processes and disrupts autophagosome-lysosome fusion in OS
cells, leading to the formation of high-molecular-weight p53
aggregates. These aggregates impair cellular proteostasis, and their
effects are amplified when they are combined with MG-132, a
proteasome inhibitor that routes p53 to the lysosome (37). Overall,
modulating autophagy and protein homeostasis represents a
promising therapeutic avenue for osteosarcoma treatment.

3.2 Modification of p53 in osteosarcoma

Posttranscriptional modifications of p53 are critical to its
function and stability. Forkhead box P1 (FOXP1), a transcription
factor in the forkhead family, directly interacts with p53 to inhibit
its transcriptional activation within the nucleus (38). Among these
modifications, phosphorylation plays a central role. For example,
chitooligosaccharide (COS), a drug carrier, significantly enhances
p53 phosphorylation in the p53/mTOR pathway, thereby
promoting autophagy and apoptosis in osteosarcoma cells (39).
Similarly, in the p53/Myc pathway, disrupting the Runx consensus
site mR1 in the Myc promoter or impairing Runx3 reduces Myc
expression, effectively decreasing tumorigenicity in p53-deficient
osteosarcoma cells. RUNX3 coactivates p53 by regulating DNA
damage-induced phosphorylation at Ser15, increasing p53 stability
and promoting apoptosis (40).

Phosphorylation is complemented by acetylation. p53 is a
substrate for wild-type p53-induced phosphatase 1 (WIP1), which
inhibits its phosphorylation at Ser15 and acetylation at Lys382.
Interestingly, WIP1 also regulates p53 acetylation by modulating its
interaction with p300, an acetyltransferase (40). DBC1 (deleted in
breast cancer gene 1), a substrate for WIP1, indirectly affects p53
acetylation, although depletion of DBC1 does not disrupt WIP1-

10.3389/fonc.2025.1605080

mediated suppression. Actinomycin D (ActD) further modulates
this pathway by inhibiting SIRT1, an NAD+-dependent deacetylase,
resulting in increased p53 acetylation. This triggers the upregulation
of proapoptotic proteins such as NOXA and BAX and increases the
expression of the antiproliferative protein p21, ultimately inducing
cell cycle arrest (41). A summary of the major molecular
mechanisms of p53 dysregulation discussed in this chapter and
their corresponding therapeutic strategies is provided in Table 1.

4 The p53-mediated osteosarcoma
treatment approach

While surgical advancements, including ablation techniques,
have shifted from focusing solely on survival to preserving limb
functionality, and innovations in bone tissue engineering and
material science have improved the repair and reconstruction of
bone and soft tissue defects (1), patients often experience a decline in
quality of life postsurgery. Moreover, postoperative recurrence rates
remain alarmingly high (53). As previously highlighted, mutant p53
(mutp53) plays a central role in osteosarcoma (OS) progression, with
no evident correlation to clinical factors (54). Current therapeutic
strategies target either the restoration of wild-type p53 tumor
suppressor functions or the inhibition of mutp53 oncogenic
activities. Secondary approaches focus on disrupting critical
downstream pathways and interactions of mutp53 to suppress its
gain-of-function (GOF) effects (4) As shown in Figure 1 and Table 2.

4.1 Radiotherapy

Osteosarcoma (OS) is notably resistant to ionizing radiation
(IR), which poses a significant challenge for effective treatment. The
peptide Pep7-PSAASPV, a 7-amino acid fragment, competes with

TABLE 1 Major molecular mechanisms of p53 dysregulation in osteosarcoma and corresponding therapeutic strategies.

Molecular mechanism Therapeutic strategy

MDM2-mediated p53 degradation MDM2 inhibitors

MDM4-enhanced p53 degradation Dual MDM2/MDM4 inhibitors

Mutant p53 stabilization by HSP90 HSP90 inhibitors

Autophagy-mediated p53 aggregation Autophagy modulation

p53 mutation-induced radioresistance Radiosensitizers

ABCB1/P-gp inhibitors, SP1

P53 mutation-induced chemoresistance .
modulation

Mutant p53 GOF promoting immune evasion Immunotherapy combinations

p53-mediated metabolic reprogramming Glycolysis inhibitors

53 loss promoting stemness ERo-targeted therapy, SKP2
P P & inhibition

53 mitochondrial tosis path
P53 mi ?c ondrial apoptosis pathway Apoptosis inducers
dysfunction
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Key agents/targets Reference
RG-7388, Nutlin-3, VIP116, miR-15a (22-24)
Abh-AAs, spiropyrazoline oxindoles (34, 35)
17-AAG (20)
Verteporfin (VP), MG-132 (37)
Pep7-PSAASPV, APE1/ATM inhibitors (42, 43)
_ (44, 45)
MDM?2 inhibitors + anti-PD-1/PD-L1, OBP-702 + anti- (46-50)
CTLA-4 7
Pramlintide, GLUT1 inhibitors (51)
— (36, 37)
Panax notoginseng saponins (PNS) (52)
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FIGURE 1
Schematic diagram of p53 (wtp53/mutp53) molecular mechanisms and therapeutic targets in osteosarcoma. This image is a schematic diagram

illustrating the molecular mechanisms of p53 (encoded by the TP53 gene) in osteosarcoma (OS) and the corresponding therapeutic strategies,
grounded in the core content of the document Involvement of P53 in Osteosarcoma - Challenges and Prospects. Centrally, the diagram
differentiates between two key forms of p53: wild-type p53 (wtp53) and mutant p53 (mutp53). For wtp53, it highlights its regulation by MDM2,
depicting MDM2's role in mediating wtp53 ubiquitination and proteasomal degradation— a process that maintains low intracellular wtp53 levels
under normal physiological conditions, but is disrupted during OS development to allow wtp53 accumulation or dysfunction. For mutp53, the
diagram categorizes its mutations into functional types: Gain-of-Function (GOF) and Loss-of-Function (LOF), as the document emphasizes that over
50% of OS cases harbor TP53 mutations with these dual functional impacts, which drive tumor progression, chemoresistance, and immune evasion.
The diagram also details critical posttranslational modifications (PTMs) of p53, specifically phosphorylation and acetylation— two key modifications
highlighted in the document that stabilize p53 and enhance its transcriptional activity, thereby regulating downstream pathways like cell cycle arrest
and apoptosis. Additionally, it identifies p53 DNA Binding Domain Mutations (a major mutational hotspot in OS, per the document) and links specific
mutations (e.g., R175, R248, R273) to pathogenic effects. Therapeutically, the diagram maps targeted strategies aligned with the document'’s focus:
MDM2 inhibitors (e.g., Nutlin-3, RG-7388), dual MDM2/MDM4 inhibitors (e.g., Abh-AAs), HSP90 inhibitors (e.g., 17-AAG) that disrupt mutp53
stabilization, immune checkpoint inhibitors (e.g., anti-PD-1/PD-L1, anti-CTLA-4) to reverse mutp53-mediated immune evasion, and exosome-
mediated delivery systems (e.g., for miR-15a) that modulate p53 activity. It also references biomarkers like miRNA signatures (e.g., miR-15a, miR-34a)
and immune-related targets (e.g., CD47 on tumor-associated macrophages) that the document identifies as critical for OS diagnosis, prognosis, and
treatment stratification. Overall, the diagram synthesizes the document’s key insights, visually connecting p53's molecular behavior in OS to
translational therapeutic approaches.

TABLE 2 Potential biomarkers for diagnosis, prognosis, and treatment stratification in osteosarcoma.

Biomarker type Biomarker Clinical utility Reference
TP53 structural variants Prognosis, therapeutic targeting 9, 12)
Genetic Alterations
TP53-KPNA3 fusion Prognostic significance in recurrence (16)
miR-34a, miR-192, miR-215 Risk stratification, prognosis (55)
miRNA Signatures
miR-539 Early diagnosis, targets TRIAP1 (56)
Histone Modifications H4K20me3 status, SUV420H2 Early detection (57)
TYROBP, TLR4, ITGAM Predict ICI sensitivity, immune stratification (26, 49)
Immune Microenvironment
CD8" T cell infiltration Prognostic marker for OS and PFS (58)
IncRNA/miRNA Axes LINC-PINT, GAS5, SNHGI15 Therapeutic targets, chemosensitivity predictors (59-62)
Metabolic Markers GLUT]1 expression Indicator of glycolytic activity, target for metabolic therapy (18)
Macrophage Polarization M2 macrophage markers Immunosuppressive microenvironment indicator (28-30)
05 frontiersin.org
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the RNA-binding protein RBM38 for binding to eukaryotic
translation initiation factor 4E (eIF4E) on p53 mRNA. This high-
affinity interaction allows Pep7-PSAASPV to disrupt the binding of
RBM38, which inhibits p53 mRNA translation. Consequently, this
action promotes p53 expression and may help overcome the
radiation resistance observed in osteosarcoma cells (42). In the
context of the IR-induced DNA damage response, ataxia-
telangiectasia mutated (ATM) functions as a key initiator that
mediates radioresistance in cancer. APE1/Ref-1 (apurinic/
apyrimidinic endonuclease-reduction/oxidation factor 1) is a
multifunctional protein involved in DNA repair and redox
activities. Upon exposure to IR, osteosarcoma cells upregulate
APE1 expression, which activates ATM through its redox activity.
This activation leads to a marked reduction in p53 expression,
thereby enhancing the radiation resistance of tumor cells. As a
potential therapeutic strategy, the combined use of an APEI redox
inhibitor and an ATM inhibitor may effectively sensitize OS cells to
IR (43).

4.2 Chemotherapy

In terms of chemotherapy, incomplete expression of p53 is
notably associated with a reduced response to DNA-damaging
agents, representing a primary mechanism of drug resistance (63).
Multiple mechanisms of multidrug resistance (MDR) have been
identified in osteosarcoma, including the overexpression of drug
efflux pumps, decreased drug uptake, enhanced DNA damage
response (DDR), dysregulation of apoptosis, and epithelial-
mesenchymal transition (44). Notably, p53 does not play a role in
apoptosis induced by severe DNA damage, protein turnover
dysfunction, or spindle misassembly in osteosarcoma cells (64, 65).
Recent findings from a 2023 study involving SaOS-2_DoxR
(doxorubicin-resistant SaOS-2 subline) indicated that gain-of-
function mutations in p53 can increase the expression of the ATP-
binding cassette (ABC) family member ABCBI, leading to increased
P-glycoprotein expression. This protein facilitates ATP-dependent
drug efflux without impacting cellular permeability (44, 45).

4.3 Combination immunotherapy

Immunotherapy is another promising avenue, particularly with
the role of immunogenic cell death (ICD) in releasing damage-
associated molecular patterns (DAMPs), such as ATP and
HMGBI. Compared with chemotherapy, ICD preferentially
induces ATP release, activating antitumor immune responses.
Given the aforementioned immunoregulatory role of MDM?2, the
immunosuppressive microenvironment of osteosarcoma limits the
efficacy of monotherapy with immune checkpoint inhibitors (ICI). A
combination strategy is required: MDM2 inhibitors (such as
RG7388) restore p53 function and enhance tumor antigen
presentation, while concurrent administration with anti-PD-1/PD-
L1 inhibitors can release T-cell suppression, synergistically inducing
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antitumor immunity (46, 47). Targeting immune checkpoints on
tumor-associated macrophages (TAMs) such as PD-1 and CD47, or
employing Colony Stimulating Factor 1 Receptor (CSF1R) inhibitors,
can reduce M2 macrophage infiltration and enhance T cell function
(48, 49). The p53-armed telomerase-specific oncolytic adenovirus
OBP-702 enhanced the infiltration of cytotoxic CD8+ T cells and
induced systemic effects on untreated tumors, outperforming naked
OBP-301, which combination with anti-CTLA-4 (Cytotoxic T-
Lymphocyte-Associated protein 4) produces distant antitumor
effects (50). The presence of CD8+ T cells significantly impacts
overall survival (OS) and progression-free survival (PFS), with
particularly strong effects noted in male patients. Additionally, a
notable correlation exists between tumor-infiltrating CD4+ T cells
and CD44 expression in tumor samples, suggesting that these
infiltrating T cells provide protective effects for OS patients.
Analyzing tumor-infiltrating lymphocytes (TILs) and associated
tumor markers may aid in stratifying patients and monitoring
therapeutic responses, ultimately facilitating the development of
improved immunotherapy strategies to increase the efficacy of
cytotoxic TILs in targeting tumor cells (58).

It is worth noting that, the p53 shift mutant 1332fs*14 retains
some antiproliferative capacity and displays exclusive nuclear
localization, making it a candidate for targeted therapies (6).
Estrogen receptor alpha (ERo)-targeted therapies show promise
in augmenting existing chemotherapies for p53-positive
osteosarcoma (36). Additionally, SKP2 (S-phase kinase-associated
protein 2), which encodes a substrate recognition factor for the SCF
E3 ubiquitin ligase, has been implicated in the immune
microenvironment. In TKO (Rbl-/-; p53-/-; SKP2-/-) tumors,
increased expression of immune microenvironment-infiltrating
genes was observed, suggesting that SKP2 may facilitate immune
rejection of OS tumors and promote antitumor immunity (66).
Furthermore, the mutational status of TP53 significantly influences
clinical responses in canine osteosarcoma, as missense TP53
mutations and low pretreatment blood monocyte counts correlate
with longer disease-free intervals (DFIs). Patients with extended
DFIs also exhibit increased transcript levels of genes related to
antitumor immune responses, indicating that these factors should
be considered in the development of alternative therapeutic
strategies for human OS (67). Finally, the long noncoding RNA
PURPL, which is induced by CD14+ peripheral blood mononuclear
cells to form tumor-associated macrophage-like cells in MG-63
osteosarcoma cells, plays a regulatory role in p53 expression and
may facilitate tumor development (68).

4.4 Other therapeutic prospects

4.4.1 Application of a mitotic catastrophe

While low levels of chromosomal instability (CIN) can promote
tumor development, paclitaxel (PTX) exerts its anticancer effects by
inducing spindle misassembly (SM), resulting in CIN that exceeds the
maximum tolerance threshold within tumor cells. Importantly, this
elevated CIN-mediated tumor suppression occurs independently of
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p53, and the combination of the Bcl-2 inhibitor ABT-263 with
paclitaxel merely accelerates the transition of cells into the late
apoptotic phase. Interestingly, p53 heterozygous females exhibit a
shorter tumor latency and reduced survival than their male
counterparts do, a trend also observed in human malignancies,
even when analyses exclude sex-differentiated tumors (64, 69). This
raises the question of whether sex-specific factors, often overlooked,
should be considered in the development of new drug therapies.
Furthermore, RanGAPI is expressed at low levels in human
osteosarcoma (OS) and recurrent pancancer. In a RanGAP1
knockout mouse model, aneuploidy was observed, with some
chromosomes displaying tetraploid characteristics typical of high-
grade OS. This resulted in hyperactivation of the spindle assembly
checkpoint (SAC), amplifying the divisive chrlq chromosome,
which contains MDM4, leading to p53 degradation and
inactivation of the DNA damage checkpoint (DDC), ultimately
enabling tumor escape (13). In these mice, deletion of RanGAP1
induced chromosome missegregation, specifically affecting chrlq
and chrl4q, which inhibited the expression of crucial genes
involved in key signaling pathways involved in skeletal
development, such as TGF-B/BMP and PI3K/AKT. Consequently,
this dysregulation disrupts skeletal development (70). Thus,
exploring the upregulation of RanGAP1 or its enhancers may
provide a novel perspective in the treatment of osteosarcoma.

4.4.2 Screening of disease development markers

TRIAPI (TP53-regulated inhibitor of apoptosis 1) is a key target
of miR-539 and is significantly upregulated by p53 in response to
low levels of genotoxic stress. It interacts with Hsp70 to inhibit the
formation of the Apaf-1/procaspase-9 complex, demonstrating a
notable inhibitory effect on osteosarcoma cells (56). Future research
may focus on the potential of miR-539 as a tool for early tumor
diagnosis. Additionally, modifications by SUV420H2 (lysine
methyltransferase 5C) and the trimethylation status of histone H4
at lysine 20 (H4K20me3), which are implicated in several pathways,
including mitogen-activated protein kinase and p53 signaling, have
been proposed as candidate biomarkers for the early detection of
osteosarcoma (57). Furthermore, recent studies indicate that miR-
34a, miR-192, and miR-215 may serve as prognostic markers for
risk stratification in osteosarcoma (55). Risk scoring models based
on immune-related genes, such as TYRO protein tyrosine kinase-
binding protein (TYROBP), Toll-Like Receptor 4 (TLR4) and
Integrin Subunit Alpha M (ITGAM) can predict sensitivity to
immune checkpoint inhibitors (ICIs) in osteosarcoma patients.
Patients in the low-risk group exhibit high infiltration of tumor-
associated macrophages (TAMs) and high expression of immune
checkpoint molecules, along with significantly improved prognosis.
This suggests that immune microenvironment characteristics may
serve as biomarkers for treatment stratification (26, 49).

4.4.3 miRNA-mRNA functional axes

TP53 is situated at the heart of a complex molecular regulatory
network that orchestrates cell cycle arrest and apoptosis by
modulating the transcription of various genes, including
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microRNAs (miRNAs/miRs) (71). For example, miR-125b targets
the MDM2 inhibitor p14ARF, whereas miR-34c, a transcriptional
target of p53, plays a role in downregulating Notchl (16, 72, 73).
Additionally, p53 inhibits its own transcription by targeting the
promoter region of miR-181b, a member of the miR-181 family,
which is known to activate Wnt signaling (commonly referred to as
the Wnt/beta-catenin signaling pathway). Correspondingly, miR-
181b can bind to the 3’-UTR (untranslated region) of TP53, thereby
suppressing p53 expression; this reciprocal regulatory mechanism
establishes a negative feedback loop that governs the proliferation
and invasive capabilities of osteosarcoma (OS) cells (71). Similarly,
miR-203, which is also involved in regulating the Wnt pathway,
indirectly modulates this pathway by increasing the level of DKK-1
(Dickkopf Wnt signaling pathway inhibitor 1) (72).

LINC-PINT (long intragenic noncoding RNA p53-induced
transcript) suppresses cancer cell proliferation, invasion, and
migration in osteosarcoma by downregulating miRNA-21 (59).
GAS5 (growth arrest-specific transcript 5), a long noncoding RNA
(IncRNA) with a stable circular structure, acts as a sponge for miR-
26b-5p, increasing the expression of its target gene TP53INP1 (tumor
protein p53-induced nuclear protein 1) and thereby increasing the
sensitivity of osteosarcoma cells to cisplatin (DDP) through the
GAS5/miR-26b-5p/TP53INP1 axis (60). Similarly, p53 binds to the
-2000- to -1500-bp region of SNHGI15 (small nucleolar RNA host
gene 15), which leads to a reduction in SNHGI5 expression and the
sponging of miR-335-3p, resulting in the upregulation of ZNF32
(zinc finger protein 32). Through this mechanism, p53 downregulates
SNHGI15 expression in OS, and SNHG15 further inhibits cisplatin-
induced apoptosis and reactive oxygen species (ROS) accumulation
via the miR-335-3p/ZNF32 pathway (61). Moreover, the
overexpressed IncRNA NR_027471 functions as a sponge for miR-
8055, impacting TP53INP1 levels and consequently inhibiting the
proliferation and progression of osteosarcoma cells (62).

4.4.4 Metabolic reprogramming

In addition, an FDA-approved medication for type 2 diabetes has
been shown to inhibit tumor growth in osteosarcoma cells that
express full-length homologous isoforms of p53 (TAp63 and
TAp73) by upregulating islet amyloid polypeptide (IAPP)-regulated
metabolic programming (51). Furthermore, p53-regulated SP1
activates the GLUT1 promoter, which plays a critical role in
regulating aerobic glycolysis in osteosarcoma and consequently
promotes carcinogenesis (18). Given the high glycolytic capacity
(GC) of osteosarcoma cells, the ability of PramLide to enhance
IAPP-regulated metabolic programming provides a promising
avenue for inhibiting tumor growth. This metabolic intervention
highlights the potential for further research into glycolytic
modulation as a therapeutic strategy in osteosarcoma.

4.4.5 Stem cell differentiation

Induced pluripotent stem cells (iPSCs) have emerged as
promising models for studying disease (74). Skeletal stem cells
(SSCs) residing in the endoskeletal region of the bone marrow are
now recognized for their ability to efficiently generate osteosarcoma

frontiersin.org


https://doi.org/10.3389/fonc.2025.1605080
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shen et al.

(OS) and serve as potent progenitor cells, particularly under
conditions of p53 deficiency (75). Notably, fibroblast growth
factor receptor 3-positive (Fgfr3+) endosteal stromal cells develop
aggressive OS-like lesions following the loss of p53 (76).

4.4.6 Mitochondrial pathway of apoptosis

Panax notoginseng saponins (PNS) have been shown to activate
the p53 mitochondrial pathway, resulting in a dose-dependent
increase in the opening of the mitochondrial permeability
transition pore (MPTP) and a concomitant reduction in the
mitochondrial membrane potential (MMP). p53 influences the
mitochondrial pathway by regulating the protein expression of
Bcl-2 and Bax. This regulation can lead to a decreased MMP,
increased MPTP opening, and subsequent mitochondrial
dysfunction. Consequently, the release of cytochrome c into the
cytoplasm activates Apaf-1, which then triggers caspase 9 and
caspase 3, initiating the apoptotic pathway (52).

5 Conclusion

The pivotal role of p53 dysregulation in osteosarcoma
pathogenesis and therapeutic resistance is now well-established.
Mutant p53 proteins, particularly those with gain-of-function
mutations, contribute significantly to disease progression and are
present in over 50% of osteosarcoma cases. These mutations are
categorized into structural and contact types based on their distinct
mechanisms of disrupting p53 function, with structural mutations
frequently involving non-random intronic breakpoints that may
confer selective advantages during tumor evolution. The precise
characterization of these genetic alterations provides not only
insights into tumor biology but also critical opportunities for
clinical translation.

From a diagnostic perspective, the recurrent identification of
specific mutant alleles in patients experiencing sequential relapses—
as well as in experimentally validated drug-resistant models—offers a
strong rationale for developing mutation-specific prognostic
biomarkers and targeted therapeutic strategies. These findings are
particularly relevant for overcoming methotrexate resistance, a major
clinical challenge in osteosarcoma management. The translation of
these molecular insights into clinically applicable tools represents a
promising direction for personalized treatment approaches.

Therapeutically, significant progress has been made in
developing agents that target p53 pathways, including novel
MDM2 inhibitors and p53-stabilizing compounds, several of
which are currently in preclinical and early clinical development.
Beyond conventional chemotherapy, contemporary research
emphasizes combinatorial strategies that address resistance
mechanisms through immunomodulation, metabolic targeting,
and stem cell pathway inhibition. Emerging approaches such as
mutation-specific promoter editing, enhancer reprogramming, and
functional genetic screens offer additional avenues for identifying
therapeutic vulnerabilities. Collectively, these advances are shaping
a new paradigm of precision medicine in osteosarcoma, providing
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hope for improved outcomes through biologically rational and
individualized treatment strategies.
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MDM2
miRNA/miR
HSP90
CHIP
17-AAG
RBM10
elF4E

ATM
APE1/Ref-1
DDR
ABCB1
P-gp

ICD
DAMPs
HMGBI1
ICI

PD-1
PD-L1
CTLA-4
TILs

ERo

SKP2

Osteosarcoma

Tumor Protein P53

Loss-of-Function

Gain-of-Function

Mouse Double Minute 2 Homolog
MicroRNA

Heat Shock Protein 90

Carboxy-terminus of Hsp70-Interacting Protein
17-Allylamino-17-demethoxygeldanamycin
RNA Binding Motif Protein 10

Eukaryotic Translation Initiation Factor 4E
Ataxia Telangiectasia Mutated
Apurinic/Apyrimidinic Endonuclease 1/Redox Factor 1
DNA Damage Response

ATP Binding Cassette Subfamily B Member 1
P-glycoprotein

Immunogenic Cell Death

Damage-Associated Molecular Patterns

High Mobility Group Box 1

Immune Checkpoint Inhibitor

Programmed Cell Death Protein 1
Programmed Death-Ligand 1

Cytotoxic T-Lymphocyte-Associated Protein 4
Tumor-Infiltrating Lymphocytes

Estrogen Receptor Alpha

S-Phase Kinase-Associated Protein 2
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DFI
IncRNA
CIN
PTX

SM

SAC
DDC
TRIAP1
H4K20me3
TYROBP
TLR4
ITGAM
GAS5
TP53INP1
SNHG15
ZNF32
ROS
IAPP
GLUT1
GC
iPSCs
SSCs
Fgfr3
PNS
MPTP

MMP
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Disease-Free Interval

Long Non-Coding RNA

Chromosomal Instability

Paclitaxel

Spindle Misassembly

Spindle Assembly Checkpoint

DNA Damage Checkpoint

TP53 Regulated Inhibitor of Apoptosis 1
Histone H4 Lysine 20 Trimethylation
TYRO Protein Tyrosine Kinase Binding Protein
Toll-Like Receptor 4

Integrin Subunit Alpha M

Growth Arrest-Specific Transcript 5

Tumor Protein P53 Induced Nuclear Protein 1
Small Nucleolar RNA Host Gene 15

Zinc Finger Protein 32

Reactive Oxygen Species

Islet Amyloid Polypeptide

Glucose Transporter 1

Glycolytic Capacity

Induced Pluripotent Stem Cells

Skeletal Stem Cells

Fibroblast Growth Factor Receptor 3

Panax Notoginseng Saponins
Mitochondrial Permeability Transition Pore

Mitochondrial Membrane Potential
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