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Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China, 2Center for Reproductive
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Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
Introduction: To develop and validate a dynamic clinical prediction model

integrating prostate-specific antigen (PSA) and peripheral blood biomarkers for

distinguishing benign from malignant prostate diseases in patients with elevated

PSA levels.

Methods: A retrospective study was conducted of clinicopathological data and

preoperative blood specimen information of patients who underwent

ultrasound-guided prostate biopsy in The First Affiliated Hospital of Zhejiang

Chinese Medical University due to elevated PSA between January 2018 and

November 2024.Univariate analysis, Least Absolute Shrinkage and Selection

Operator regression, and multifactorial logistic regression analysis were utilized

to identify independent risk factors associated with benign or malignant prostate

disease in patients with elevated PSA (PSA > 4.0ng/ml). The construction of a

clinical prediction model was then undertaken, with the subsequent calibration

and integration into a network calculator.

Results: A total of 529 patients were included based on predefined inclusion and

exclusion criteria, comprising 268 (50.7%) with benign pathology and 261 (49.3%)

with malignancy. After analysis, independent risk factors associated with benign

or malignant prostatic diseases in patients with elevated PSA levels were

identified, including PSA, white blood cell, neutrophil-to-lymphocyte ratio,

lymphocyte-to-monocyte ratio, eosinophil count, basophil count, and serum

albumin. Utilizing these independent risk factors, a clinical prediction model for

the risk of PSA-elevated prostate benign-malignant disease was constructed,

yielding an area under the curve of 0.906, a predictive model specificity of 77.6%,

and a sensitivity of 95%. The calibration curve and clinical decision curve

indicated that the model exhibited superior calibration ability. A dynamic

prediction model was formulated based on the clinical prediction model

integrated into a network calculator.
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Conclusion: This study establishes a non-invasive prediction model integrating

PSA and peripheral blood biomarkers, providing a clinically practical tool for risk

stratification in patients with elevated PSA levels.
KEYWORDS

prostate biopsy, prostate-specific antigen, prostate cancer, prediction model, risk
stratification, neutrophil-to-lymphocyte ratio, LASSO
1 Introduction

Prostate cancer (PCa) is the most prevalent malignancy in the

male genitourinary system. According to the Global Cancer

Statistics 2022, PCa was estimated to account for approximately

1.47 million new cases and 397,000 deaths globally, representing

7.3% of all incident cancer cases and 4.1% of cancer-related

mortality in 2022, underscoring its significant burden on men’s

health (1). Prostate-specific antigen (PSA) remains the most widely

used biomarker for PCa screening (2). However, elevated PSA levels

are not specific to malignancy and may also occur in benign

prostatic conditions such as prostatitis and benign prostatic

hyperplasia (BPH) (3). Therefore, magnetic resonance imaging

(MRI) and ultrasound-guided prostate biopsy remain the gold

standard for definitive diagnosis. Prostate biopsy is an invasive

and complex procedure that demands significant operator expertise.

Moreover, its potential for false-negative results and patient

discomfort contribute to its limited acceptance among some

individuals in clinical practice. Gilbert et al. analyzed 36,316

prostate biopsy cases and found a positivity rate of 30.08% when

PSA levels ranged between 4–10 ng/mL. However, even when PSA

exceeded 10 ng/mL, the positivity rate only increased to 40.58% (4).

As a result, the proper selection of candidates for prostate biopsy is

crucial for both preventing missed diagnoses and minimizing

unnecessary invasive procedures. According to the 2025 European

Association of Urology guidelines, men with elevated PSA levels

should undergo further evaluation, including PSA density (PSAD),

digital rectal examination, and multiparametric MRI before

deciding on biopsy. In patients with PI-RADS ≤2 and PSAD

<0.15–0.20 ng/mL/cm³, prostate biopsy can generally be deferred.

For PI-RADS 3 lesions, a PSAD <0.10 ng/mL/cm³ may be

considered as a criterion to delay biopsy in selected cases,

particularly when clinical suspicion remains low (5). Nevertheless,

the interpretation of PI-RADS is still influenced by the experience of

the radiologist and image quality, while PSAD values are affected by

errors in prostate volume estimation. These factors may lead to

variability and inconsistency in screening results. Consequently,

developing additional diagnostic methods to assist in distinguishing

benign from malignant prostate conditions in patients with elevated

PSA levels remains a critical clinical challenge.

To address this issue, novel biomarkers such as the Prostate

Health Index (PHI), SelectMDx, 4Kscore, and ExoDx Prostate
02
IntelliScore (EPI) have been developed. These tools integrate

multiple biomarkers to improve diagnostic accuracy for

distinguishing benign from malignant prostate conditions (6).

However, these models also present certain limitations. Firstly,

most models rely on expensive equipment and complex

technologies, which restrict their widespread use in low-resource

settings (7). Secondly, due to racial and clinical differences, the

predictive accuracy of these models in Eastern Asian populations

may differ from that in Western populations, leading to limited

applicability and effectiveness in Asian populations (8). Finally,

although these models have demonstrated good performance in

patients within the PSA “gray zone”, the negative predictive values

vary substantially across studies, suggesting that predictive accuracy

may fluctuate in populations with lower PSA levels or reduced

tumor burden (9).

In recent years, peripheral blood markers have been widely used

in clinical research in oncology. Blood routine indicators such as

white blood cell count, lymphocyte count and platelet count can

reveal the immune function and inflammation level of cancer

patients, and show great potential in the early diagnosis,

prognosis assessment and treatment monitoring of tumors (10–

12). Furthermore, serum biochemical markers including calcium,

phosphorus, alkaline phosphatase, and lipid metabolism indicators

are routinely used to assess tumor progression or metastasis (13,

14). Although peripheral blood markers have been widely applied in

cancer risk prediction studies, their predictive performance varies

considerably across different populations, cancer types, and

research settings. First, these markers generally lack organ

specificity and are susceptible to various non-malignant

influences, such as low-grade chronic inflammation, baseline

metabolic differences, and dietary patterns (15). Second, certain

biochemical indicators, such as lipid profiles, calcium, and

phosphorus, may exhibit notable short-term variability, which

could compromise the stability and generalizability of predictive

models (16). Moreover, the cut-off values used for these markers

differ significantly among studies, and no standardized threshold

has been established, limiting the applicability of such models

across diverse populations (17). Therefore, while peripheral blood

markers hold promise in cancer risk prediction, their clinical utility

requires further validation and optimization under standardized

conditions and within specific population contexts. This study

systematically evaluated multiple peripheral blood biomarkers in
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individuals with elevated PSA levels and developed a PCa risk

prediction model based on a Chinese male population. The model

aims to improve the accuracy of early diagnosis, reduce unnecessary

invasive procedures, and ensure both clinical feasibility and regional

applicability, thereby serving as a valuable supplement to existing

risk stratification strategies.
2 Materials and methods

2.1 Study population

Clinical and pathological data were retrospectively analyzed from

patients who underwent ultrasound-guided prostate biopsy at The First

Affiliated Hospital of Zhejiang Chinese Medical University between

January 2018 and November 2024 due to elevated PSA levels.

Participants were stratified into benign or malignant groups based

on post-biopsy histopathological results. Inclusion criteria: (1)

PSA>4ng/ml; (2) underwent prostate aspiration biopsy. Exclusion

criteria: (1) history of other malignancies or prior cancer-related

therapies; (2) hematologic disorders; (3) autoimmune diseases; (4)

acute or chronic inflammatory diseases, or other diseases affecting

routine blood tests or biochemical tests; (5) Incomplete clinical or

pathological records.
2.2 Clinical data extraction

General clinical information of enrolled patients was collected,

including age, height, weight, and body mass index (BMI) was

calculated. Fasting peripheral blood samples were collected within

one week prior to biopsy for automated complete blood count

analysis. All tests were conducted in the clinical laboratory of our

hospital using standardized procedures and uniform automated

analyzers. All reagents were supplied by the same manufacturer,

with batch numbers recorded for traceability. Quality control

comparisons were performed upon batch replacement to

minimize potential batch-to-batch variability. Manually recorded

parameters included: absolute counts of white blood cells (WBC),

lymphocytes (LYM), monocytes (MONO), neutrophils (NEUT),

platelets (PLT), eosinophils (EOS), basophils (BASO), and red

blood cells (RBC); mean corpuscular volume (MCV); hemoglobin

(HB); serum calcium (Ca); serum phosphorus (P); total cholesterol

(TC); triglycerides (TG); high-density lipoprotein (HDL); low-

density lipoprotein (LDL); albumin (ALB); and alkaline

phosphatase (ALP). Derived ratios were calculated: neutrophil-to-

lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),

lymphocyte-to-monocyte ratio (LMR), and systemic immune-

inflammation index (SII = [PLT × NEUT]/LYM).
2.3 Statistical analysis

Continuous variables are presented as mean ± standard

deviation (± S), while categorical variables are expressed as
Frontiers in Oncology 03
frequencies and percentages. Statistical analyses were performed

using SPSS (v26.0) and R Studio (v1.4) with relevant packages.

Independent samples t-tests were applied to compare continuous

variables between groups, and variables with statistically significant

differences (P <0.05) were selected as candidate risk factors. The

relevant factors were used in the least absolute shrinkage and

selection operator (LASSO) regression algorithm to create a

dummy variable. The appropriate adjustment parameter (l) for

the LASSO regression was determined using cross-validation. The

model fitting effect was evaluated at different l values, and the

maximum l value was selected as the value of “lambda. 1se” when

the average error was within one standard deviation. That is to say,

the risk factors with non-zero regression coefficients when l was

“lambda. 1se” were screened. A subsequent logistic regression

analysis was performed on the screened risk factors to further

identify factors associated with risk stratification. The odds ratio

(OR) and 95% confidence interval (95% CI) were determined to

identify independent risk factors for the malignancy of the prostate

with elevated PSA.
2.4 Model construction and verification

A clinical prediction model was constructed to evaluate the

predictive efficacy and discriminant ability of the model using the

receiver operating characteristic (ROC) curve, area under the curve

(AUC) value, 95%CI, Youden index, sensitivity and specificity. The

established clinical prediction model was internally validated using

the Bootstrap method with 1,000 samples, and a calibration plot was

drawn to verify the consistency between the model prediction

results and the actual results. A decision curve analysis (DCA)

was drawn to evaluate the clinical net benefit rate of the model in

the modeling group. The above methods were used to verify the

calibration ability of the model. Based on the establishment and

verification of the clinical prediction model, an online calculator

was launched using the R language to establish a dynamic

prediction model.
3 Results

3.1 Sample size estimation and study
population characteristics

This study involved a predictive model for categorical

outcomes, and the required sample size was estimated using the

formula: n = EPV × k/p, where EPV refers to the minimum number

of outcome events required per predictor, typically ranging from

10~20. An EPV value of 20 was adopted in this study. k represents

the number of predictors, which was determined to be 7 based on

preliminary experiments. p refers to the incidence of malignant

prostate tumors, reported in previous studies as 30.08%. Thus, the

minimum required sample size was calculated as n = 20 × 7/0.3008

≈ 466 cases. Based on the inclusion and exclusion criteria, 529

patients undergoing prostate biopsy were enrolled in the study.
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Pathological results confirmed 268 benign cases (50.7%) and 261

malignant cases (49.3%). General patient information is

summarized in Table 1.
3.2 Results of LASSO regression and
logistic regression analysis

The results of the univariate t-test analysis demonstrated that

PSA, WBC, NLR, LMR, PLR, SII, EOS, BASO, RBC, HB, Ca, and

ALB were significantly associated with the discrimination between

benign and malignant prostate conditions in the context of elevated

PSA levels (P <0.05). While Age, height, weight, BMI, free PSA

(fPSA), NEUT, LYM, MONO, MCV, PLT, P, TC, TG, HDL, LDL,

and ALP showed no statistical significance (Table 2).

The LASSO regression analysis set the cross-validation seed

value to 123, and the optimal adjustment parameter l value was

0.000072.The relationship between coefficients and l values is

shown in Figure 1A. Using 3-fold cross-validation to evaluate the

model, Figure 1B displays the cross-validation curve illustrating the

change in deviance with l values. The “lambda. 1se” (the largest l
value within one standard error of the minimum mean error) was

selected, identifying 8 variables with non-zero regression

coefficients at this l value: PSA, WBC, NLR, LMR, PLR, EOS,

BASO, and ALB.

Subsequent multivariable logistic regression analysis identified

eight independent risk factors for prostate malignancy associated

with elevated PSA levels: PSA (P = 0.028, OR: 1.081, 95% CI: 1.047-

1.117), WBC (P <0.001, OR: 0.684, 95% CI: 0.572-0.818), NLR (P

<0.001, OR: 0.464, and 95% CI: 1.356-1.866), LMR (P <0.001, OR:

0.687, 95% CI: 1.709-2.314), EOS (P = 0.015, OR: 17.302, 95% CI:

1.758-170.238), BASO (P = 0.030, OR: 1918955.36, 95% CI: 4.079-

9.027E+11), and ALB (P <0.001, OR: 0.891, 95% CI: 0.839-0.946).
3.3 Model construction and evaluation

A clinical prediction model for distinguishing benign from

malignant prostate disease in patients with elevated PSA was

established by integrating independent risk factors identified

through logistic regression analysis: PSA, WBC, NLR, LMR, EOS,

BASO, and ALB (Figure 2). ROC curve analysis demonstrated an

AUC of 0.906 (95% CI: 0.8791–0.9323), with sensitivity and

specificity of 95.0% and 77.6%, respectively, at the maximum

Youden index (Figure 3). The precision–recall (PR) curve yielded

an average precision (AP) of 0.45 (Figure 4), indicating that the

model possesses a certain degree of discriminative ability in

identifying positive cases.

The calibration curve revealed strong agreement between

predicted and observed probabilities of malignancy (Figure 5),

with a mean absolute error of 0.038, confirming robust

cal ibrat ion accuracy. Decis ion curve analys is (DCA)
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TABLE 1 Baseline characteristics of the study population.

Characteristics Total Benign Malignancy

529 268 261

Gleason Score

6 19

7 149

8 31

9 60

10 2

Age 69.9 ± 7.7 69.5 ± 8.5 70.3 ± 6.7

Height 160.1 ± 5.5 168.5 ± 5.4 167.6 ± 5.6

Weight 67.1 ± 9.2 67.5 ± 9.0 66.6 ± 9.4

BMI 23.7 ± 2.8 23.8 ± 2.8 23.7 ± 2.9

fPSA 2.1 ± 2.0 2.1 ± 2.1 2.1 ± 1.9

PSA* 14.1 ± 15.8 10.1 ± 6.6 18.2 ± 20.7

WBC* 5.9 ± 1.6 6.1 ± 1.7 5.8 ± 1.5

NEUT 3.8 ± 1.5 3.9 ± 1.5 3.7 ± 1.4

LYM 1.5 ± 0.5 1.6 ± 0.5 1.4 ± 0.6

MONO 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2

NLR* 2.0 ± 2.1 1.1 ± 2.2 2.8 ± 1.6

LMR* 2.4 ± 2.2 1.1 ± 1.9 3.6 ± 1.8

PLR* 134.4 ± 847.8 51.3 ± 86.5 219.9 ± 1199.0

SII* 413.3 ± 438.1 272.9 ± 437.9 557.5 ± 389.4

EOS* 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1

BASO* 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

RBC* 4.5 ± 0.6 4.6 ± 0.5 4.4 ± 0.6

MCV 91.5 ± 6.5 91.5 ± 5.1 91.5 ± 7.8

HB* 138.3 ± 15.5 139.8 ± 15.6 136.7 ± 15.3

PLT 199.8 ± 65.2 204.5 ± 68.1 195.0 ± 62.0

Ca* 2.3 ± 0.2 2.3 ± 0.3 2.3 ± 0.1

P 1.1 ± 0.3 1.0 ± 0.2 1.1 ± 0.3

TC 4.4 ± 0.9 4.4 ± 0.8 4.4 ± 1.0

TG 1.6 ± 0.9 1.6 ± 1.0 1.6 ± 0.9

HDL 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3

LDL 2.4 ± 0.7 2.3 ± 0.6 2.4 ± 0.7

ALB* 39.4 ± 4.6 40.7 ± 4.5 38.2 ± 4.5

ALP 78.5 ± 31.9 80.5 ± 39.3 76.5 ± 21.7
This table summarizes the baseline characteristics of all enrolled patients who underwent
prostate biopsy, categorized into benign and malignant groups based on final pathological
results. Variables marked with an asterisk (*) indicate statistically significant differences
between the benign and malignant groups (P < 0.05), with specific P-values detailed in the
univariate analysis column of Table 2.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1599266
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2025.1599266
demonstrated superior net clinical benefit across a threshold

probability range of 0–0.8 compared to “treat-all” or “treat-none”

strategies, underscoring the model’s clinical utility (Figure 6).
3.4 Web calculator prediction modeling

Based on the clinical prediction model of PSA elevated prostate

benign-malignant, it was constructed in the R language

environment and put on the website (https://zzz030.shinyapps.io/

Prostate-cancer-DynNomapp/). The web calculator will

automatically calculate the risk of PSA elevated prostate benign-
Frontiers in Oncology 05
malignant after inputting the clinical information of the patient.

Extensive simulation testing with multiple datasets confirmed the

platform’s operational stability, demonstrating robust performance

of the dynamic prediction model (Figure 7).
4 Discussion

This study innovatively combined PSA with several peripheral

blood markers to build a predictive model. The results

demonstrated that in addition to PSA, WBC, NLR, LMR, EOS,

BASO, and ALB were independent risk factors for the diagnosis of
TABLE 2 Results of univariate and logistic analysis of the benign and malignant groups of prostate biopsies.

Characteristics P (univariate analysis) P (multivariate analysis) B OR 95% CI

Age 0.261

Height 0.429

Weight 0.144

BMI 0.301

fPSA 0.806

PSA <0.001 0.028 0.078 1.081 1.047-1.117

WBC 0.019 <0.001 -0.380 0.684 0.572-0.818

NEUT 0.093

LYM 0.063

MONO 0.341

NLR <0.001 <0.001 0.464 1.591 1.356-1.866

LMR <0.001 <0.001 0.687 1.988 1.709-2.314

PLR 0.022 0.057

SII <0.001 0.896

EOS 0.027 0.015 2.851 17.302 1.758-170.238

BASO <0.001 0.030 14.467 1918955.36 4.079-9.027E+11

RBC 0.003 0.804

MCV 0.959

HB 0.019 0.367

PLT 0.096

Ca 0.035 0.860

P 0.097

TC 0.534

TG 0.695

HDL 0.762

LDL 0.280

ALB <0.001 <0.001 -0.116 0.891 0.839-0.946

ALP 0.151
This table presents P-values from univariate and multivariate analyses, regression coefficients (B), OR, and 95% CI for each variable. Variables with statistically significant associations in the
multivariate model (P < 0.05) included PSA, WBC, NLR, LMR, EOS, BASO and ALB.
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benign and malignant prostate disease in patients with elevated

PSA. The constructed prediction model showed excellent

performance in discriminating benign from malignant prostate

disease (AUC = 0.906) and achieved a good balance between

sensitivity (95.0%) and specificity (77.6%).

The inflammatory response within the tumor microenvironment

is exceptionally complex, serving not only as one of the initiating

factors for carcinogenesis but also participating in tumor progression,
Frontiers in Oncology 06
metastasis, and immune evasion (18). Immune cells such as NEUT

support tumor growth and metastasis by promoting inflammation,

forming neutrophil extracellular traps (NETs), and interacting with T

cells (19, 20); LYM are involved in anti-tumor immunity, especially

cytotoxic T cells, which inhibit tumor spread by recognizing and

killing tumor cells (21); MONO differentiate into tumor-associated

macrophages (TAMs) within the tumor microenvironment, which

secrete immunosuppressive factors to facilitate tumor growth and
FIGURE 2

Nomogram for predicting the risk of malignant prostate disease in patients with elevated PSA. The nomogram was developed based on a
multivariate logistic regression model, incorporating seven variables: PSA, WBC, NLR, LMR, EOS, BASO, and ALB. For each patient, a point is assigned
for each variable value by projecting upward to the “Points” scale. The sum of all points gives a “Total Points” score, which corresponds to the
predicted probability of malignancy at the bottom “Risk” scale.
FIGURE 1

LASSO regression analysis for feature selection. (A) LASSO coefficient path plot with the x-axis representing the log-transformed regularization
parameter log(l) and the y-axis showing the regression coefficients of each variable. As l increases, most coefficients shrink toward zero, indicating
reduced predictive contribution. (B) Three-fold cross-validation curve with the x-axis showing log(l) and the y-axis showing the binomial deviance.
Red dots represent the mean deviance for each l, with error bars indicating the standard error. The vertical dotted line marks the optimal l selected
using the 1-standard error rule (lambda.1se), which achieves a parsimonious model with good predictive performance. Eight variables with non-zero
coefficients were retained for model construction.
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metastasis (22). In recent years, increasing research has focused on

alterations in inflammation-related cells and mediators during cancer

initiation and progression, exploring their predictive value in tumor

diagnosis and prognosis. Studies by Xinyu Yi (23) and Tian-Bao

Huang (24) identified the NLR as a robust predictive biomarker for
Frontiers in Oncology 07
PCa, particularly in patients with PSA levels between 4 and 10 ng/mL.

Further investigations by Matteo Ferro (25) and Mehmet Ilker Gokce

(26) demonstrated that NLR predicts Gleason score (GS) upgrading,

with higher NLR values correlating with higher-grade PCa. Our

findings also validate NLR as an effective PCa predictor. However,
FIGURE 3

ROC curves comparing individual predictors and the combined prediction model. This figure presents the diagnostic performance of PSA, WBC,
NLR, LMR, EOS, BASO, ALB, and the integrated model in differentiating benign from malignant prostate disease. The x-axis represents the false
positive rate (1-specificity), and the y-axis represents the true positive rate (sensitivity). The red curve indicates the combined prediction model,
which achieves the highest AUC, outperforming all single predictors. The diagonal reference line represents the performance of a non-informative
classifier, and serves as a baseline for comparison. At the point of maximum Youden index, the model achieved a specificity of 77.6% and a sensitivity
of 95.0%, indicating excellent discriminative capacity.
FIGURE 4

The PR curve illustrates the model’s ability to identify malignant prostate cases among patients with elevated PSA, based on the trade-off between
precision and recall across different thresholds. The AP was 0.454, reflecting the model’s predictive performance in detecting positive cases.
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Sat Prasad Nepal (27) reported limited diagnostic value of NLR in

PCa. Emerging evidence suggests the monocyte-to-lymphocyte ratio

(MLR) exhibits comparable diagnostic utility. By retrospectively

analyzing data from 100 PCa patients and 103 healthy controls,

Zhanping Xu et al. found that MLR was significantly elevated in

patients with PCa and had high sensitivity and specificity in the

diagnosis of PCa. In addition, MLR can provide higher predictive

value than PSA when combined with PSA and free/total (f/tPSA)

(28). Similarly, Meikai Zhu et al. identified MLR as an independent

predictor for PCa and clinically significant PCa (CSPCa) in patients
Frontiers in Oncology 08
with PSA levels of 4–20 ng/mL (29). In an analysis of the National

Health and Nutrition Examination Survey (NHANES) data by Lanyu

Wang et al, MLR outperformed other inflammatory markers

including NLR and PLR in PCa prediction (30). These findings are

highly consistent with our LMR analysis, further validating the

importance of MONO versus LYM in PCa prediction. However,

compared with MLR, LMR focuses more on the dominant role of

LYM, which may more directly reflect the strength of anti-tumor

immune responses. In our study, we found that LMR showed some

independent predictive value in the differentiation of benign and
FIGURE 5

The calibration curve assesses the agreement between predicted probabilities and actual outcomes. The dashed line represents perfect prediction,
while the solid line shows the model’s calibration based on 1,000 bootstrap resamples. The result indicates good consistency between predicted and
observed outcomes, with a mean absolute error of 0.038.
FIGURE 6

The decision curve illustrates the net clinical benefit of the model across a range of high-risk threshold probabilities. The red line represents the
prediction model, while the black and gray lines correspond to the “treat-all” and “treat-none” strategies, respectively. The model demonstrates
superior net benefit within the threshold range of 0.01 to 0.76, indicating promising clinical utility.
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malignant prostate diseases, but the predictive ability of NLR was

more significant, which may be due to the fact that NLR is sensitive to

reflecting the dual signals of systemic inflammation level and

immune depletion of the body and has a higher stability of the

assay, whereas LMR is susceptible to the fluctuation of MONO

dynamics. The diagnostic value of PLR and SII for PCa remains

controversial. While some studies associate elevated PLR with higher

PCa detection rates (31, 32), but others (33) did not find a significant

association between the two. Similar inconsistencies exist in SII-

related research (30, 34, 35). Our analysis did not identify clear

diagnostic significance for PLR or SII in PCa, thus excluding them

from predictive models. We hypothesize that these divergent findings

may arise from variations in study population characteristics,

heterogeneity in inflammatory response patterns, and inconsistent

clinical risk stratification across studies. Although previous large-scale

cohort studies have not demonstrated a significant association

between EOS or BASO and the diagnosis of PCa (36, 37), and no

existing research has incorporated them as independent variables in

PCa risk prediction models, emerging evidence suggests that these

two cell types may play important roles in immune regulation related

to PCa progression. EOS can be recruited into the tumor

microenvironment under the influence of chemokines, where they

upregulate E-cadherin to inhibit cancer cell proliferation and secrete

cytotoxic granules and various pro-inflammatory mediators (e.g., IL-

2, IL-4, IL-5, TNF-a, TGF-b), thereby modulating T cell phenotypes
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and affecting tumor development (38–40). BASO can be activated by

pro-inflammatory cytokines and growth factors, subsequently

inducing Th2-type inflammation and M2 macrophage polarization

(41, 42). They also release multiple tumor-associated mediators (e.g.,

IL-13, TNF-a, VEGFA, HGF), contributing to immunosuppression

and tumor angiogenesis (43, 44). Therefore, based on the above

biological mechanisms, this study is the first to innovatively

incorporate EOS and BASO as individual indicators into the

analysis, and the results ultimately confirmed their potential value

in PCa risk assessment.

ALB and RBC-related parameters, as crucial biomarkers

reflecting systemic physiological status, have garnered extensive

attention in oncology research. These indicators mirror factors

closely associated with tumorigenesis and progression, including

chronic inflammatory responses, immune function alterations, and

hormone level changes (45, 46). The study by Kailiang Xu et al.

revealed a nonlinear relationship between ALB and PSA,

particularly demonstrating an inverse correlation when serum

ALB levels exceed 41 g/L. This phenomenon may be attributed to

elevated ALB concentrations reducing free testosterone levels,

thereby suppressing PSA expression. These findings further

support ALB’s potential role in prostate disease risk assessment,

with lower levels potentially indicating higher tumor burden (47).

Additionally, research by Kaya C et al. demonstrated significantly

lower ALB levels in PCa patients compared to those with BPH. ROC
FIGURE 7

Web-based interface of the dynamic nomogram for predicting prostate malignancy risk. Users can interactively input clinical parameters to obtain
individualized risk predictions. The right panel displays the predicted probability with 95% confidence intervals, enhancing interpretability and
potential clinical applicability of the model. (https://zzz030.shinyapps.io/Prostate-cancer-DynNomapp/).
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curve analysis indicated superior diagnostic performance of ALB

over PSA (48). Prostate-specific membrane antigen (PSMA) probes

conjugated with ALB not only enhance stability in circulation but

also improve tumor accumulation, providing robust support for

early PCa diagnosis, treatment monitoring, and targeted therapy

(49). Other ALB-derived indices, including the albumin-to-globulin

ratio (AGR) and hemoglobin-albumin-lymphocyte-platelet

(HALP) score, have shown significant associations with

progression-free survival (PFS) and cancer-specific survival (CSS)

in metastatic PCa patients, emerging as valuable prognostic

indicators (50, 51). Our findings corroborate ALB’s value as an

independent predictor, with lower ALB levels significantly

associated with PCa detection.

Lipid metabolism is intricately linked to tumor biology. Tumor

cells provide essential lipid components for membrane biosynthesis

and energy supply by enhancing the synthesis of fatty acids from

scratch to meet their rapid value-added requirements (52). Lipids

such as cholesterol and phospholipids not only serve as structural

elements of cellular membranes but also act as signaling molecule

carriers, regulating critical pathways like PI3K/AKT/mTOR to

influence tumor cell proliferation and survival (53). Furthermore,

tumor cells reprogram lipid metabolism to promote the secretion of

immunosuppressive factors (e.g., TGF-b1), thereby inhibiting T-cell
activity and facilitating immune evasion (54). In recent years, the

predictive value of lipid metabolic markers in cancer risk

assessment has garnered increasing attention. While Fu Feng

et al. suggested that elevated TG and LDL levels may correlate

with increased PCa risk (55), Hanxu Guo et al. paradoxically

identified high TG as a potential protective factor (56).

Conversely, Anna Ioannidou et al. found no significant

association between HDL, TG concentrations and PCa risk (57).

In our study, lipid metabolic parameters failed to demonstrate

significant predictive value for PCa risk. This discrepancy may

arise from the inherent complexity of lipid metabolic networks

including dynamic regulation, individual heterogeneity, and

multidimensional interactions which likely diminishes the

predictive efficacy of single lipid biomarkers.

Research findings on Ca, P, and ALP in PCa also remain

contentious. Sepehr Salem et al. noted that higher serum total

and ionized Ca concentrations were negatively correlated with a

lower risk of PCa (58). Additionally, severe hypocalcemia has been

proposed as a potential indicator of bone metastasis in PCa (59).

However, James Yarmolinsky et al. found a weak association

between serum Ca and PCa risk by Mendelian randomization

(MR) analysis and did not find a significant effect of serum Ca on

advanced PCa (60). Similarly, Linshuoshuo Lv et al. employed MR

to demonstrate a potential causal relationship between serum P and

PCa risk, indicating a 19% increase in PCa risk per 1-standard

deviation (SD) rise in serum phosphorus (61). In clinical practice,

elevated ALP levels in PCa patients are commonly utilized as

biomarkers for bone metastasis, reflecting tumor invasion into

bone tissue and associated osteolytic activity (62). Our study

found that Ca, P and ALP have limited diagnostic value in PCa

risk assessment, probably because changes in these markers reflect

more metabolic abnormalities or severity of bone metastases in
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advanced stages of the disease, related to the limited proportion of

patients with advanced PCa in the sample.

Collectively, current research trends demonstrate that

integrating multiple peripheral blood biomarkers with PSA levels

can significantly enhance diagnostic accuracy for PCa. Our study

not only enriches existing research on the combined application of

blood biomarkers and PSA but also offers a comprehensive and

dynamic risk assessment approach, facilitating precise early

diagnosis and personalized therapeutic decision-making in clinical

practice. Compared with existing tools, a study by Yuhua Huang

et al. evaluated the diagnostic performance of the PHI in a Chinese

population and reported an AUC of 0.766, which is notably lower

than the AUC of 0.906 achieved by our model (63). Although the

4Kscore, SelectMDx, and EPI have been extensively studied

internationally and demonstrated favorable predictive

performance, there is a lack of systematic validation in Chinese

populations. Therefore, the predictive model developed and

validated in this study serves as a meaningful complement to

existing mainstream models by addressing their limitations in

population applicability and demonstrates notable potential and

localized advantages in Chinese populations. However, this study

also has several limitations: (1) The dataset originated from a single

institution with regional sample characteristics. Future studies

should incorporate multicenter data for external validation to

improve the model’s generalizability and reliability. (2) While

focusing on conventional peripheral blood biomarkers and PSA

integration, future research should incorporate additional relevant

markers and imaging data. MRI provides critical information such

as prostate volume, lesion diameter, signal abnormalities, and

extracapsular extension. Integrating these parameters could

further enhance the model’s discriminative capacity in complex

cases. (3) Certain blood biomarkers (e.g., PLR and SII) showed

statistical associations with prostate disease risk in univariate

analysis but failed to emerge as independent predictors in

multivariate analysis. This discrepancy may stem from indirect

correlations within patient subgroups or insufficient statistical

power due to limited sample size. Larger-scale studies are

warranted to validate the potential value of these markers.
5 Conclusion

This study developed a dynamic clinical prediction model

integrating PSA and multiple peripheral blood biomarkers for

distinguishing benign and malignant prostate diseases. The model

serves as an effective tool for assessing malignancy risk in patients

with elevated PSA levels, thereby optimizing clinical decision-

making in diagnosis and treatment.
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