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Novel deep learning-based
prediction of HER2 expression in
breast cancer using multimodal
MRI, nomogram, and decision
curve analysis
Shi Qiu1, Qianqian Zhao1 and Yun Zhao2*

1Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China,
2Echocardiography Department, The Second Affiliated Hospital of Shandong First Medical University,
Tai’an, Shandong, China
Objective: This study aimed to develop a robust, automated framework for

predicting HER2 expression in breast cancer by integrating multi-sequence

breast MRI with deep learning-based feature extraction and clinical data. The

goal was to improve prediction accuracy for HER2 status, which is crucial for

guiding targeted therapies.

Materials and Methods: A retrospective analysis was conducted on 6,438 breast

cancer patients (2006–2024), with 2,400 cases (1,286 HER2-positive, 1,114

HER2-negative) selected based on complete imaging and molecular data.

Patients underwent 3T MRI scans with T1, T2, and contrast-enhanced (DCE)

sequences. Imaging data from four medical centers were standardized through

preprocessing steps, including intensity normalization, registration, and motion

correction. Deep learning feature extraction utilized ResNet50, VGG16,

EfficientNet-B0, and ViT-Small, followed by ICC filtering (≥0.9) and LASSO

regression for feature selection. Nomogram construction, ROC analysis, and

DCA evaluation were performed to assess model performance. Statistical

analyses were conducted using Python and R, with significance set at p < 0.05.

Results: In this study, we developed an integrated predictive model for HER2

status in breast cancer by combining deep learning-based MRI features and

clinical data. The model achieved an AUC of 0.94, outperforming traditional

methods. Analysis revealed significant differences between HER2-positive and

HER2-negative groups in tumor size, lymph node involvement, and

microcalcifications. Imaging features, such as washout enhancement and

peritumoral edema, were indicative of HER2 positivity. After applying ICC

filtering and LASSO regression, the selected features were used to construct a

nomogram, which demonstrated strong predictive accuracy and calibration. The

DCA confirmed the model’s clinical utility, offering enhanced decision-making

for personalized treatment.
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Conclusions: This study demonstrates that integrating deep learning with multi-

sequence breast MRI and clinical data provides a highly effective and reliable tool

for predicting HER2 expression in breast cancer. The model’s performance,

validated through rigorous evaluation, offers significant potential for clinical

implementation in personalized oncology, improving decision-making and

treatment planning for breast cancer patients.
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1 Introduction

Breast cancer is a heterogeneous disease with multiple

molecular subtypes, among which the overexpression of human

epidermal growth factor receptor 2 (HER2) plays a crucial role in

prognosis and treatment strategies. HER2-positive breast cancer,

characterized by the amplification of the ERBB2 gene, accounts for

approximately 15–20% of all breast cancer cases and is associated

with aggressive tumor behavior and poor prognosis (1, 2). Accurate

determination of HER2 expression is essential for guiding targeted

therapies, such as trastuzumab and pertuzumab, which have

significantly improved patient outcomes. Traditional methods for

HER2 evaluation, including immunohistochemistry (IHC) and

fluorescence in situ hybridization (FISH), are labor-intensive and

prone to interobserver variability, necessitating more objective and

automated approaches for precise HER2 classification (3).

Deep learning has emerged as a powerful tool in medical

imaging, capable of extracting high-dimensional, discriminative

features from radiological data. Unlike conventional radiomics,

which relies on handcrafted features, deep learning models

autonomously learn hierarchical representations, improving

classification performance (4, 5). In this study, four deep learning

architectures—ResNet50, VGG16, EfficientNet-B0, and Vision

Transformer (ViT-Small)—were employed for feature extraction

from multi-sequence breast MRI scans. Each model offers unique

advantages: ResNet50 effectively captures complex spatial features

through residual learning, VGG16 provides a structured feature

hierarchy, EfficientNet-B0 optimizes computational efficiency while

maintaining high accuracy, and Vision Transformer leverages self-

attention mechanisms for enhanced feature encoding. These

extracted deep features provide a robust basis for distinguishing

HER2 expression levels in breast cancer (6).

To enhance clinical interpretability and decision-making, a

nomogram was developed by integrating deep learning-derived

features with statistically significant clinical variables. Nomograms

offer a user-friendly graphical representation of predictive models,

facilitating individualized risk assessment. Additionally, decision

curve analysis (DCA) was performed to evaluate the net clinical

benefit of the developed models, ensuring their applicability across
02
different probability thresholds. Furthermore, model performance

was rigorously validated using Receiver Operating Characteristic

(ROC) analysis, with the Area Under the Curve (AUC) serving as a

key metric for assessing discriminative ability. This comprehensive

approach bridges the gap between computational modeling and

practical clinical application, promoting precision oncology (5–10).

The robustness and generalizability of predictive models depend

on the diversity of the study population. This study leverages a

multicenter dataset spanning 6,438 patients from 2006 to 2024,

ensuring a heterogeneous representation of breast cancer cases.

Multicenter studies mitigate biases associated with single-

institution datasets, enhance model external validity, and improve

generalizability to broader clinical settings. By incorporating diverse

imaging protocols, genetic backgrounds, and clinical characteristics,

the findings of this study are more applicable to real-world scenarios,

strengthening the reliability of the proposed methodology.

This study presents a novel, large-scale, multicenter approach to

distinguishing HER2 expression levels in breast cancer using deep

learning and nomogram-based predictive modeling. The key

contributions of this research are:
1. First study to integrate deep learning-based feature

extraction from multi-sequence breast MRI with HER2

classification using four state-of-the-art models

( R e s N e t 5 0 , VGG 1 6 , E f fi c i e n t N e t - B 0 , a n d

Vision Transformer).

2. Application of a comprehensive feature selection strategy,

including intraclass correlation coefficient (ICC) filtering

and LASSO dimensionality reduction, ensuring optimal

feature extraction.

3. Development of a nomogram incorporating deep learning

features and clinical biomarkers to facilitate practical

implementation in clinical settings.

4. Evaluation of model performance using DCA and ROC

analysis, ensuring clinical utility and reliability of the

predictive framework.

5. First large-scale multicenter study (n = 6,438) on HER2

classification using deep learning and radiomics, enhancing

the generalizability and robustness of results.
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By integrating deep learning with clinical decision-support

tools, this study advances the field of radiogenomics and

personalized breast cancer management, offering a novel,

automated framework for HER2 classification.
2 Materials and methods

2.1 Study design and patient population

The dataset was collected from four anonymized tertiary

referral centers between 2006 and 2024. A total of 6,438 patients

with breast cancer were initially screened. Inclusion criteria were: (i)

confirmed invasive breast cancer with HER2 status determined by

IHC and/or FISH; (ii) availability of complete three-sequence breast

MRI (T1, T2, DCE); and (iii) presence of corresponding clinical and

molecular data. Exclusion criteria were: (i) incomplete imaging

data; (ii) prior neoadjuvant therapy before imaging; (iii) low-quality

MRI scans with artifacts affecting analysis; and (iv) missing or

indeterminate HER2 classification.

To enhance transparency while preserving site anonymity, we

provide a center-level breakdown of patient enrollment:
Fron
• Center A: screened 1,800 → included 671 (HER2+: 360;

HER2–: 311); excluded 1,129 (Incomplete MRI: 480;

Missing/indeterminate HER2: 370; Low-quality artifacts:

210; Neoadjuvant therapy: 69).

• Center B: screened 1,650 → included 615 (HER2+: 330;

HER2–: 285); excluded 1,035 (Incomplete MRI: 430;

Missing/indeterminate HER2: 320; Low-quality artifacts:

210; Neoadjuvant therapy: 65; Others 10).

• Center C: screened 1,520 → included 567 (HER2+: 304;

HER2–: 263); excluded 953 (Incomplete MRI: 385; Missing/

indeterminate HER2: 300; Low-quality artifacts: 200;

Neoadjuvant therapy: 68).

• Center D: screened 1,468 → included 547 (HER2+: 292;

HER2–: 255); excluded 921 (Incomplete MRI: 360; Missing/

indeterminate HER2: 290; Low-quality artifacts: 200;

Neoadjuvant therapy: 71).
In total, 2,400 patients were included in the final analysis

(HER2-positive: 1,286; HER2-negative: 1,114), while 4,038

patients were excluded. This center-level distribution ensures

proportional representation of HER2-positive and HER2-negative

cases across institutions, consistent with the study’s inclusion and

exclusion criteria (Supplementary Figure S1).
tiers in Oncology 03
To assess potential selection bias, baseline characteristics of

excluded patients (n = 6,438) were compared with those of included

patients (n = 2,400). Results of this comparison are summarized in

Supplementary Table S3.
2.2 Imaging data acquisition and
preprocessing

2.2.1 MRI protocols and sequences
All breast MRI scans were obtained using 3T MRI scanners

across the four participating medical centers, following

standardized imaging protocols to maintain consistency across

institutions. Each patient underwent three essential MRI

sequences: T1-weighted (T1), T2-weighted (T2), and T2-weighted

with contrast enhancement (T2+contrast). For contrast-enhanced

imaging, a gadolinium-based contrast agent was administered at a

standardized dose of 0.1 mmol/kg, followed by a 20 mL saline flush

to ensure optimal vascular distribution. All imaging was performed

in the axial plane, providing high spatial resolution necessary for

accurate tumor characterization and feature extraction. Detailed

MRI acquisition parameters, including scanner models, voxel sizes,

and contrast agent types used at each center, are summarized

in Table 1.

2.2.2 Image preprocessing, standardization, and
image segmentation

To ensure consistency and comparability across imaging data, a

series of preprocessing steps were applied prior to feature

extraction. Intensity normalization was performed to standardize

voxel intensity values and mitigate scanner-related variations. To

correct for positional discrepancies between sequences, rigid-body

registration was applied, aligning images within each patient.

Motion-related distortions were addressed through automated

artifact detection and correction algorithms, enhancing image

quality. Additionally, all MRI scans were resampled to a uniform

voxel size of 0.5 × 0.5 × 3 mm³, ensuring consistency across datasets.

Finally, images were converted into the NIfTI format, facilitating

structured data input for deep learning analysis. These

preprocessing steps collectively ensured high-quality, standardized

imaging data, minimizing variations arising from differences in

acquisition protocols and scanner specifications (11–13).

Image Segmentation was conducted by two experienced

radiologists with 14 and 17 years of expertise in breast imaging.

Each radiologist independently delineated the tumor regions onMRI

scans, ensuring precise segmentation. Discrepancies between the two
TABLE 1 MRI acquisition parameters across centers.

Parameter Center A Center B Center C Center D

MRI Scanner Model Siemens Prisma GE Discovery Philips Ingenia Siemens Skyra

Voxel Size (mm³) 0.5 × 0.5 × 3 0.6 × 0.6 × 3 0.5 × 0.5 × 3 0.6 × 0.6 × 3

Slice Thickness (mm) 3 3 3 3

In-Plane Resolution 512 × 512 512 × 512 512 × 512 512 × 512
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experts were resolved through consensus review, minimizing

interobserver variability. This manual segmentation approach

ensured accurate identification of tumor boundaries, providing

high-quality input for deep learning-based feature extraction and

subsequent analysis (14). To evaluate preprocessing effectiveness,

voxel intensity histograms and feature reproducibility metrics were

compared before and after harmonization. Intensity normalization

and resampling reduced inter-scanner variance, and subsequent ICC

filtering ensured retention of stable features (ICC ≥ 0.9).
2.3 Deep learning-based feature extraction

2.3.1 Overview of deep learning models
Deep learning models were employed to extract high-

dimensional imaging features from breast MRI scans. Unlike

traditional radiomics, which relies on manually engineered

features, deep learning-based feature extraction enables automatic

learning of hierarchical representations, capturing complex spatial

and textural patterns. In this study, four state-of-the-art deep

learning architectures were utilized for feature extraction:

ResNet50, VGG16, EfficientNet-B0, and Vision Transformer

(ViT-Small). These models were selected based on their

demonstrated effectiveness in medical image analysis and their

ability to capture both local and global image features.

2.3.2 Feature extraction using ResNet50, VGG16,
EfficientNet-B0, and ViT-Small

Each MRI sequence (T1, T2, and T2+contrast) was processed

through the pre-trained deep learning models, which were modified

to extract deep features from the final fully connected layers.

Feature extraction was restricted to the radiologist-delineated

tumor regions of interest (ROIs) rather than entire breast

volumes, ensuring that the learned features corresponded to

tumor-specific morphology, enhancement kinetics, and

peritumoral characteristics. The models were pretrained on

ImageNet and then adapted for feature extraction without fine-

tuning, ensuring robust feature extraction without the need for

additional training on limited medical datasets. Pilot experiments

comparing fine-tuned versus frozen-weight strategies indicated that

fine-tuning led to overfitting, while frozen-weight feature extraction

provided more stable cross-center generalization. Detailed results of

this comparison are presented in Supplementary Table S1. The

extracted feature vectors were high-dimensional, capturing a

diverse range of spatial, textural, and structural characteristics

from the MRI images.

The feature dimensions extracted from each MRI sequence

varied across the deep learning models used in this study. ResNet50

generated a 2048-dimensional feature vector per sequence, while

VGG16 produced a higher-dimensional representation with 4096

features per sequence. EfficientNet-B0, known for its efficiency in

feature extraction, provided a 1280-dimensional feature set per

sequence. In contrast, the Vision Transformer (ViT-Small),

leveraging self-attention mechanisms, extracted a 384-
Frontiers in Oncology 04
dimensional feature vector per sequence. These varying feature

dimensions reflect the unique architectures and representation

capabilities of each model, influencing their ability to capture

spatial and textural characteristics from breast MRI scans.

2.3.3 Intraclass correlation coefficient selection
To ensure the reliability and reproducibility of the extracted

deep features, an Intraclass Correlation Coefficient (ICC) analysis

was performed. Features with an ICC above 0.9 were considered

highly reproducible and retained for further analysis, while those

with lower ICC values were excluded. This step was crucial in

eliminating non-robust features and enhancing the stability of the

predictive model.

2.3.4 LASSO dimensionality reduction
Given the high dimensionality of deep learning-derived features,

Least Absolute Shrinkage and Selection Operator (LASSO)

regression was applied for feature selection. LASSO is a sparsity-

inducing method that reduces collinearity and retains only the most

relevant features by enforcing L1 regularization. This step

significantly reduced the feature set while preserving the most

informative predictors, improving the interpretability and

efficiency of the model in distinguishing HER2 expression levels in

breast cancer. Beyond statistical relevance, several of the retained

features demonstrated strong biological and clinical interpretability.

Notably, features corresponding to washout enhancement kinetics,

peritumoral edema, irregular tumormargins, and microcalcifications

were among the final predictors. This convergence highlights that

the LASSO-selected feature set not only optimized predictive

performance but also aligned with known mechanistic correlates of

HER2-driven tumor biology.
2.4 Clinical feature selection and
integration

2.4.1 Statistical analysis of clinical features
To identify the most relevant clinical features for HER2

classification, a statistical analysis was performed on the available

clinical dataset. Each clinical feature was assessed for its association

with HER2 status using univariate analysis, where features with a p-

value < 0.05 were considered statistically significant. This threshold

ensured that only features with a meaningful relationship to HER2

expression were retained. As a result, three clinical features were

selected for integration into the predictive model.

2.4.2 Regression model development and feature
scoring

The selected clinical features were incorporated into a

regression model alongside the extracted deep learning-based

imaging features. A predictive equation was generated based on

patient labels, where each patient had a unique equation derived

from the model. This approach enabled the calculation of a Deep

Score for every individual, representing their likelihood of HER2
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positivity or negativity. By integrating both deep learning-based

imaging features and statistically significant clinical variables, the

model aimed to improve the accuracy and interpretability of HER2

classification in breast cancer.
2.5 Nomogram development and validation

2.5.1 Construction of the nomogram
A nomogram was developed to provide an individualized

prediction model for HER2 status by integrating deep learning-

based imaging features and selected clinical variables. The

nomogram was constructed using a multivariate logistic

regression model, where each predictive factor was assigned a

weighted score based on its contribution to HER2 classification.

The final model incorporated the most relevant deep features

extracted from MRI scans, along with the three statistically

significant clinical features identified in the previous step. The

nomogram visually represents the relationship between these

predictive variables and the probability of HER2 positivity,

allowing for intuitive clinical interpretation.

2.5.2 Calibration and internal validation
To assess the reliability and predictive accuracy of the nomogram,

calibration and internal validation were performed. Calibration was

evaluated using a calibration curve, comparing the predicted HER2

probabilities with actual HER2 status across different probability

thresholds. Model performance was further validated using

bootstrapping with 1,000 resamples to minimize overfitting and

estimate the model’s generalizability. The Hosmer-Lemeshow

goodness-of-fit test was conducted to measure how well the

predicted probabilities aligned with observed outcomes. These

validation techniques ensured the robustness of the nomogram,

enhancing its potential for clinical application in HER2 classification.
2.6 Model performance evaluation

The performance of the predictive models was assessed using

ROC analysis. The Area Under the Curve (AUC) was used as the

primary metric to evaluate the discriminative ability of the models

in distinguishing HER2-positive from HER2-negative cases. Higher

AUC values indicate better classification performance. ROC curves

were generated for each deep learning model (ResNet50, VGG16,

EfficientNet-B0, and ViT-Small) as well as for the integrated

nomogram. Comparisons were made to determine the most

effective approach for HER2 classification (15–17).

To assess the clinical utility and net benefit of the developed

models, DCA was performed. DCA evaluates the model’s

effectiveness across a range of probability thresholds, providing

insight into its potential impact in clinical decision-making. The net

benefit was calculated by incorporating both true-positive and false-

positive classifications, ensuring that the models provide

meaningful risk stratification for HER2 classification. By

comparing the DCA curves of individual deep learning models
Frontiers in Oncology 05
and the final nomogram, the most clinically applicable model

was identified.
2.7 Statistical analysis

2.7.1 Software and tools used
All statistical analyses and model evaluations were conducted

using Python (version 3.9.12) and R (version 4.2.2). Deep learning-

based feature extraction was performed using TensorFlow (version

2.10.0) and PyTorch (version 1.13.0). The scikit-learn (version

1.1.1) library was utilized for machine learning and statistical

modeling, including LASSO regression and logistic regression

analysis. Nomogram construction and validation were carried out

using the rms (version 6.4-0) package in R. ROC curve analysis and

AUC calculations were performed using the pROC (version 1.18.0)

package, while DCA was conducted with the dcurves (version

0.3.1) package.

2.7.2 Statistical tests and significance criteria
Descriptive statistics were used to summarize patient

characteristics. Chi-square tests and Fisher’s exact tests were

applied to compare categorical variables, while independent t-

tests and Mann-Whitney U tests were used for continuous

variables. The ICC was calculated to assess feature reproducibility,

with an ICC threshold of 0.9 for feature selection. LASSO regression

was employed for dimensionality reduction, and multivariate

logistic regression was used to construct the predictive model.

Calibration of the nomogram was assessed using the Hosmer-

Lemeshow goodness-of-fit test, and statistical significance was

defined as p < 0.05 for all analyses.
3 Results

3.1 Patient characteristics and clinical
feature analysis

Based on a retrospective study, which provides a detailed

comparison of demographic, clinicopathological, molecular,

transcriptomic, and proteomic characteristics between HER2-

positive (n = 1,286) and HER2-negative (n = 1,114) breast cancer

patients (Figure 1). Baseline characteristics across the four centers

were compared and found to be well-balanced (Supplementary

Table S2). No significant inter-center differences were observed for

age, menopausal status, tumor size, histological type, or molecular

subtype (all p > 0.05). In addition, supplementary analysis

confirmed that preprocessing (intensity normalization,

resampling, registration) effectively reduced inter-scanner

variability, as demonstrated by improved consistency in voxel

intensity distributions and feature reproducibility metrics.

Baseline characteristics of excluded patients were similar to

those of the final cohort, with no significant differences in age,

menopausal status, or histological subtype. Tumor size was slightly

smaller among excluded patients (2.4 cm vs. 2.6 cm, p = 0.08), but
frontiersin.org

https://doi.org/10.3389/fonc.2025.1593033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2025.1593033
this was not clinically significant. These findings suggest minimal

risk of selection bias (Supplementary Table S3).

3.1.1 Demographic and clinical data distribution
The mean age of patients with HER2-positive tumors was 54.7 ±

10.9 years, while HER2-negative patients had a mean age of 55.1 ±

11.2 years, showing no statistically significant difference (p = 0.719).

Similarly, the menopausal status distribution was comparable

between both groups (p = 0.165). Tumor laterality (left vs. right

breast) was evenly distributed, with no significant association with

HER2 status (p = 0.372). The mean tumor size was slightly larger in

HER2-positive cases (2.7 ± 1.1 cm) compared to HER2-negative

tumors (2.5 ± 1.0 cm), but the difference was not statistically

significant (p = 0.642). The predominant histological subtype in

both groups was invasive ductal carcinoma (92.5% in HER2-

positive vs. 90.7% in HER2-negative, p = 0.142), and lymph node
Frontiers in Oncology 06
involvement rates were comparable (p = 0.294). HER2-positive

tumors were more frequently classified as Grade 3 (poorly

differentiated) (33.1% vs. 20.1%), although this difference was not

statistically significant (p = 0.362) (Table 2).

3.1.2 Comparison of selected clinical features
between HER2-positive and HER2-negative
groups

In terms of hormone receptor status, estrogen receptor (ER)-

negative tumors were more common among HER2-positive cases

(30.0% vs. 20.1%), whereas progesterone receptor (PR) expression

showed no significant variation between the groups. Regarding

molecular subtypes, HER2-positive tumors were classified into

Luminal B (HER2+) (35.8%) and HER2-Enriched (64.2%), while

HER2-negative cases included Luminal A (57.4%), Luminal B

(HER2-) (30.0%), and Triple-Negative (12.6%) subtypes.
FIGURE 1

Overview of the proposed framework.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1593033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2025.1593033

Frontiers in Oncology 07
Genomic alterations were significantly different between HER2-

positive and HER2-negative groups. PIK3CA mutations were more

frequent in HER2-positive tumors (54.4% vs. 30.5%, p = 0.003), as

were TP53 mutations (35.8% vs. 24.2%). The hallmark feature of

HER2-positive cases was ERBB2 amplification, detected in 91.8% of

HER2-positive tumors compared to only 5.7% of HER2-negative

cases. BRCA1/BRCA2 mutation rates were slightly higher in HER2-

positive cases, but this difference was not statistically significant. At

the transcriptomic and proteomic levels, HER2 (ERBB2) mRNA

expression was elevated in 100% of HER2-positive tumors, while it

was low in 100% of HER2-negative cases (p = 0.006). Similarly,

HER2 protein expression was consistently higher in HER2-positive

tumors but low in HER2-negative tumors (p = 0.015). Additionally,

P53 protein expression was observed more frequently in HER2-

positive cases (35.8% vs. 24.2%), further distinguishing the

two groups.

3.1.3 Imaging and tumor characteristics in HER2-
positive vs. HER2-negative breast cancer

The imaging characteristics of HER2-positive and HER2-

negative breast cancers exhibited distinct patterns across various

modalities, as summarized in Table 3. HER2-positive tumors were

significantly larger than HER2-negative tumors, with a mean size of

2.7 ± 1.1 cm vs. 2.5 ± 1.0 cm, respectively (p = 0.03). Although single

tumors were more frequently observed in HER2-negative cases

(63.7% vs. 52.1% in HER2-positive cases), this difference was not

statistically significant (p = 0.07). Axillary lymph node involvement

was notably higher in HER2-positive tumors (63.0% vs. 44.0%, p <

0.001), and these tumors more frequently exhibited cortical

thickness ≥3 mm (48.2% vs. 35.0%, p = 0.06), suggesting a greater

likelihood of nodal metastasis.

Microcalcifications were significantly more common in HER2-

positive tumors (60.7% vs. 42.2%, p = 0.002), highlighting their

potential role as an imaging biomarker for HER2 classification. On

ultrasound imaging, HER2-positive tumors more frequently

displayed irregular margins (82.5% vs. 76.3%, p = 0.04), indicative
TABLE 2 Demographic characteristics of patients.

Feature
HER2-
positive
(n = 1286)

HER2-
negative
(n = 1114)

P value

Age (years, mean ± SD) 54.7 ± 10.9 55.1 ± 11.2 0.719

Menopausal Status 0.165

- Postmenopausal 820 (63.8%) 720 (64.6%)

- Premenopausal 466 (36.2%) 394 (35.4%)

Tumor Location 0.372

- Left Breast 670 (52.1%) 590 (53.0%)

- Right Breast 616 (47.9%) 524 (47.0%)

Tumor Size (cm, mean
± SD)

2.7 ± 1.1 2.5 ± 1.0 0.642

Histological Type 0.142

- Invasive Ductal
Carcinoma

1190 (92.5%) 1010 (90.7%)

- Other Types 96 (7.5%) 104 (9.3%)

Hormone Receptor
Status

0.891

- ER-Positive 900 (70.0%) 890 (79.9%)

- ER-Negative 386 (30.0%) 224 (20.1%)

- PR-Positive 860 (66.9%) 780 (70.0%) 0.538

- PR-Negative 426 (33.1%) 334 (30.0%)

Lymph Node
Involvement

0.294

- Positive 640 (49.8%) 520 (46.7%)

- Negative 646 (50.2%) 594 (53.3%)

Molecular Subtype 0.189

- Luminal B (HER2+) 460 (35.8%) –

- HER2-Enriched 826 (64.2%) –

- Luminal A – 640 (57.4%)

- Luminal B (HER2-) – 334 (30.0%)

- Triple-Negative – 140 (12.6%)

Tumor Grade 0.362

- Grade 1 (Well
Differentiated)

310 (24.1%) 480 (43.1%)

- Grade 2 (Moderately
Differentiated)

550 (42.8%) 410 (36.8%)

- Grade 3 (Poorly
Differentiated)

426 (33.1%) 224 (20.1%)

Genomic Alterations 0.003

- PIK3CA Mutation 700 (54.4%) 340 (30.5%)

- TP53 Mutation 460 (35.8%) 270 (24.2%)

- ERBB2 Amplification 1180 (91.8%) 64 (5.7%)

(Continued)
TABLE 2 Continued

Feature
HER2-
positive
(n = 1286)

HER2-
negative
(n = 1114)

P value

- BRCA1/BRCA2
Mutation

280 (21.8%) 210 (18.9%)

Transcriptomic Features 0.006

- ESR1 (Estrogen
Receptor)

High in 860
(66.9%)

High in 890
(79.9%)

- HER2 (ERBB2) mRNA
Level

High in 1286
(100%)

Low in 1114
(100%)

Proteomic Features 0.015

- HER2 Protein
Expression

High in 1286
(100%)

Low in 1114
(100%)

- P53 Protein Expression
High in 460
(35.8%)

High in 270
(24.2%)
fro
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of a more aggressive growth pattern, while posterior acoustic

shadowing was observed at similar rates in both groups (p =

0.10). MRI characteristics also revealed key differences between

HER2 subtypes. HER2-positive tumors demonstrated a slightly

higher prevalence of irregular shapes (84.0% vs. 80.8%, p = 0.09)

and a washout enhancement curve, which was significantly more

frequent (40.4% vs. 27.8%, p = 0.003), suggesting more aggressive

contrast uptake and rapid contrast clearance. Heterogeneous

enhancement was present in 73.9% of HER2-positive cases

compared to 81.7% of HER2-negative cases (p = 0.06), while

nonmass enhancement (NME) frequency was comparable

between groups (31.9% vs. 28.7%, p = 0.08). Moreover,

peritumoral edema, a marker associated with increased tumor

invasiveness, was significantly more common in HER2-positive

tumors (77.0% vs. 65.5%, p = 0.001).

These findings suggest that tumor size, axillary lymph node

involvement, microcalcifications, and specific MRI enhancement

patterns may serve as key imaging biomarkers for HER2

classification. The higher prevalence of washout enhancement,

peritumoral edema, and irregular tumor margins in HER2-

positive tumors aligns with their more aggressive biological

behavior. The integration of these imaging features with

molecular, transcriptomic, and proteomic profiles may enhance

precision oncology strategies, aiding in targeted therapy selection

and prognostic assessment.
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3.2 Deep learning feature analysis

3.2.1 ICC-based feature selection results
To ensure the reliability of extracted imaging features, Intraclass

Correlation Coefficient (ICC) analysis was performed for each deep

learning model across the three MRI sequences (T1-weighted, T2-

weighted, and contrast-enhanced (DCE) MRI). Features with ICC ≥

0.9 were retained, ensuring high reproducibility. The number of

selected features varied across models, reflecting differences in their

representational capacity and sensitivity to imaging sequences.

VGG16 preserved the highest number of features, with 819, 1228,

and 1024 features retained from T1-W, T2-W, and DCE,

respectively. In contrast, ViT-Small, which uses an attention-

based approach, retained the lowest number of features, with 96,

116, and 134 features extracted from the respective sequences.

ResNet50 demonstrated a balanced extraction pattern, preserving

308, 204, and 246 features, while EfficientNet-B0 exhibited a more

selective feature extraction process, particularly in T2-W imaging,

where it retained 384 features, significantly more than in T1-W (64

features). These results highlight VGG16’s capacity for high-

dimensional feature extraction, while ViT-Small’s selective

attention mechanism leads to a more compact representation.

Figure 2, 3, 4, 5 illustrates the ICC filtering process, showing the

proportion of retained features for each model and MRI sequence.

3.2.2 Analysis of feature selection using LASSO
The feature selection process using LASSO regression is a

critical step to ensure that only the most relevant and

reproducible features are retained for further analysis. In this

study, LASSO was applied to the features extracted from four

deep learning models (ResNet50, VGG16, EfficientNet-B0, and

ViT-Small) across three MRI sequences (T1-weighted, T2-

weighted, and DCE) to identify the most significant features for

predicting HER2 status in breast cancer.

After the initial ICC filtering, 758 features were retained. The

application of LASSO regression resulted in 56 final features. These

selected features indicate that, while ResNet50 initially captured a

large number of features (6,144), LASSO successfully reduced the

feature set, focusing on the most predictive features (Figure 6). This

indicates that the ResNet50 model has a broad range of features but

requires further refinement through LASSO to improve specificity

and avoid overfitting. VGG16 extracted the highest number of

features (12,288), and after ICC filtering, 3,071 features remained.

However, after LASSO optimization, only 124 features were retained.

This suggests that VGG16, although capable of extracting a large

feature space, still benefits from LASSO’s ability to select a subset of

the most relevant features. Despite the large initial feature set, LASSO

significantly reduced the complexity, highlighting the power of

VGG16 in capturing complex patterns that can be distilled down

to a smaller, more manageable set for predictive modeling (Figure 7).

EfficientNet-B0 extracted 3,840 features, and after ICC filtering,

768 features remained. Post-LASSO selection, 80 features were

retained. While EfficientNet-B0 captured fewer features overall,

the final feature set after LASSO was still significant, indicating

that the model focuses on a relatively smaller subset of highly
TABLE 3 Imaging characteristics of patients.

Feature
HER2-
positive
(n = 1286)

HER2-
negative
(n = 1114)

P value

Tumor Size (cm) Mean 2.7 ± 1.1 Mean 2.5 ± 1.0 0.03

Number of Tumors
Single in 670
(52.1%)

Single in 710
(63.7%)

0.07

Abnormal Axillary
Lymph Nodes

Present in 810
(63.0%)

Present in 490
(44.0%)

<0.001

Cortical Thickness of
Axillary Lymph Nodes

≥3mm in 620
(48.2%)

≥3mm in 390
(35.0%)

0.06

Presence of
Microcalcifications

Present in 780
(60.7%)

Present in 470
(42.2%)

0.002

Posterior Acoustic
Features on Ultrasound

Shadowing in
730 (56.8%)

Shadowing in
600 (53.9%)

0.10

Tumor Margin on
Ultrasound

Irregular in 1060
(82.5%)

Irregular in 850
(76.3%)

0.04

Tumor Shape on MRI
Irregular in 1080
(84.0%)

Irregular in 900
(80.8%)

0.09

MRI Enhancement
Pattern

Heterogeneous in
950 (73.9%)

Heterogeneous in
910 (81.7%)

0.06

Enhancement Curve on
MRI

Washout in 520
(40.4%)

Washout in 310
(27.8%)

0.003

Nonmass Enhancement
Present in 410
(31.9%)

Present in 320
(28.7%)

0.08

Distribution of Nonmass
Enhancement

Segmental in 330
(25.7%)

Segmental in 290
(26.0%)

0.95
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predictive features. The ability to reduce feature dimensionality

efficiently with LASSO underscores EfficientNet-B0’s effectiveness

in feature selection, even with a lower feature count compared to

other models (Figure 8).

ViT-Small, with the lowest total feature count (1,152), had 346

features after ICC filtering, and only 42 features were selected after

LASSO optimization. The low number of features retained in ViT-

Small further demonstrates its more focused and sparse feature

representation compared to the other models. This may indicate
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that ViT-Small, while less comprehensive in its feature extraction, is

highly efficient in identifying the most relevant features for the task at

hand, ensuring minimal redundancy and overfitting. The LASSO

regression step is crucial for refining the model’s feature space,

ensuring that the final feature sets consist only of the most

informative features for the classification task. The process not only

reduces dimensionality but also enhances model interpretability,

focusing on the most relevant features while eliminating noise. The

differences in feature selection results across the models (with VGG16
FIGURE 2

ICC filtering process for ResNet50 model - proportion of retained features across T1-W, T2-W, and DCE sequences.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1593033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qiu et al. 10.3389/fonc.2025.1593033
retaining the most features and ViT-Small retaining the least)

highlight the varying capabilities and sensitivities of each model to

the imaging data (Figure 9). Overall, the LASSO-selected features

provide a more robust foundation for the subsequent model

development, reducing complexity and increasing the focus on

features that are most likely to contribute to accurate predictions of

HER2 status in breast cancer on Deep Features Extracted from ViT-

Small Model Across Total Features (Figure 10).
Frontiers in Oncology 10
The AUC analysis reveals that the deep learning models

performed differently across various MRI sequences (Figure 11).

For T1-weighted images, ViT-Small demonstrated the best

performance with an AUC of 0.88, followed by ResNet50 and

VGG16, with AUCs of 0.86 and 0.84, respectively. EfficientNet-B0

had the lowest AUC of 0.80 for T1-weighted images. In the case of

T2-weighted images, VGG16 and ViT-Small showed similar high

performance with AUCs of 0.84 and 0.83, respectively, while
FIGURE 3

ICC filtering process for VGG16 model - proportion of retained features across T1-W, T2-W, and DCE sequences.
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ResNet50 performed slightly worse at 0.76. For DCE-enhanced

images, ViT-Small again outperformed other models with an AUC

of 0.84, closely followed by ResNet50 and VGG16, with AUCs of

0.83 and 0.82, respectively. EfficientNet-B0 had a notably lower

AUC of 0.67 in this sequence. When integrating all three MRI

sequences with clinical data, the models’ performance improved
Frontiers in Oncology 11
significantly, with VGG16 and ViT-Small achieving an AUC of

0.89, while ResNet50 scored 0.87. EfficientNet-B0 still performed

well, achieving an AUC of 0.85, but the Prediction Model,

combining all features from the deep learning models and clinical

data, achieved the highest AUC of 0.94, illustrating the significant

benefit of adding clinical data to improve predictive accuracy.
FIGURE 4

ICC filtering process for efficientNet-B0 model - proportion of retained features across T1-W, T2-W, and DCE sequences.
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3.2.3 Comparison of fine-tuned vs. non-fine-
tuned models

To evaluate the impact of fine-tuning, we performed a pilot

comparison of fine-tuned and frozen-weight feature extraction

strategies. Fine-tuning improved training accuracy but resulted in

reduced external validation performance, including a drop in cross-

center AUCs and poorer calibration. In contrast, frozen-weight

feature extraction consistently achieved higher generalization
Frontiers in Oncology 12
performance. A detailed breakdown of these results is provided in

Supplementary Table S1.

3.3 Nomogram construction and predictive
score distribution

A nomogram was constructed to provide an individualized risk

assessment for HER2-positive breast cancer classification by
FIGURE 5

ICC filtering process for ViT-small model - proportion of retained features across T1-W, T2-W, and DCE sequences.
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integrating the selected deep learning-based features from the MRI

sequences (T1-weighted, T2-weighted, and DCE) and clinically

relevant features (Figure 12). The nomogram utilized the

ResNet50, VGG16, and ViT-Small deep scores, along with clinical

variables such as Abnormal Axillary Lymph Nodes, Enhancement

Curve on MRI, Peritumoral Edema, and Presence of
Frontiers in Oncology 13
Microcalcifications, to generate a comprehensive prediction

model for HER2 status.

Each feature in the nomogram was assigned a point value, based

on its weight in the final prediction model. The total points were

calculated by summing the individual points from each feature, with a

higher total score correlating with a greater likelihood of HER2-
FIGURE 6

Feature selection using LASSO regression on deep features extracted from ResNet50 model across T1-W, T2-W, and DCE sequences.
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positive status. The predictive score distribution, as shown in the

nomogram, allows clinicians to easily assess an individual patient’s risk

of HER2 positivity based on the selected imaging and clinical factors.

3.3.1 Calibration curve analysis
The performance and reliability of the nomogram were assessed

using a calibration curve, which compares the predicted
Frontiers in Oncology 14
probabilities of HER2 positivity with the actual observed

outcomes. The calibration curve was generated by plotting the

predicted HER2 probability against the observed proportion of

HER2-positive cases across different thresholds of predicted

values. A perfectly calibrated model would produce a 1:1 diagonal

line, indicating that the predicted values match the actual

outcomes (Figure 13).
FIGURE 7

Feature selection using LASSO regression on deep features extracted from VGG16 model across T1-W, T2-W, and DCE sequences.
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In this study, the calibration curve demonstrated good

agreement between predicted and observed values, with the

model showing a strong correlation in predicting HER2 positivity.

The Hosmer-Lemeshow test further confirmed the model’s

goodness of fit, with no significant deviations from expected

values, indicating that the nomogram’s predictions were accurate
Frontiers in Oncology 15
across the range of risk scores. Overall, the nomogram, integrated

with deep learning features and clinical data, proved to be a

reliable and effective tool for predicting HER2 status, with good

predictive accuracy and strong calibration, making it a valuable

asset for personal ized treatment planning in breast

cancer management.
FIGURE 8

Feature selection using LASSO regression on deep features extracted from efficientNet-B0 model across T1-W, T2-W, and DCE sequences.
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3.4 Model performance evaluation

The DCA was performed to assess the clinical utility of the

predictive models developed in this study, including both imaging

features from deep learning models and clinical variables. The DCA

evaluates the net benefit of each model across different threshold

probabilities by comparing the true positive rate and the false
Frontiers in Oncology 16
positive rate, helping to identify the optimal threshold for clinical

decision-making.

As shown in Figure 14, the Prediction Model that integrates

deep learning features from ResNet50, VGG16, and ViT-Small,

along with clinical variables such as Abnormal Axillary Lymph

Nodes, Enhancement Curve on MRI, Peritumoral Edema, and

Presence of Microcalcifications, consistently provides the highest
FIGURE 9

Feature selection using LASSO regression on deep features extracted from ViT-small model across T1-W, T2-W, and DCE sequences.
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net benefit across a range of threshold probabilities. This indicates

that the integrated model outperforms individual features in

guiding clinical decisions regarding HER2 classification in

breast cancer.

Notably, the Prediction Model shows a clear advantage over

treating all patients (labeled as Treat All) and treating none (Treat

None) across the threshold range, highlighting its potential for
Frontiers in Oncology 17
personalized treatment planning. The deep learning models,

particularly VGG16 and ViT-Small, also show strong net benefits,

though they do not surpass the Prediction Model. In contrast,

clinical features such as Abnormal Axillary Lymph Nodes and

Enhancement Curve on MRI provide a moderate net benefit,

while Peritumoral Edema and Presence of Microcalcifications

offer limited utility when considered in isolation.
FIGURE 10

Feature selection using LASSO regression on deep features extracted from ViT-small model across total features (for 3 MRI sequences).
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These findings underscore the importance of combining

advanced imaging data with clinical features to develop more

robust and clinically applicable models. The DCA curve

demonstrates that the Prediction Model, which integrates these

multiple sources of information, provides the best clinical utility for

HER2 classification, supporting its potential for improving

decision-making in breast cancer management. Although the

integrated model achieved an AUC of 0.94 with strong calibration

and DCA performance, these results are based on internal
Frontiers in Oncology 18
validation. External validation in independent cohorts is required

to fully confirm the generalizability of the framework.
4 Discussion

This study developed a comprehensive approach to predicting

HER2 expression in breast cancer by integrating deep learning-

based feature extraction from multi-sequence breast MRI scans
FIGURE 11

AUC comparison of deep learning models across T1, T2, and DCE MRI sequences with and without clinical data integration.
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with clinical data through a nomogram-based predictive model.

Our methodology is notable for its incorporation of four distinct

deep learning architectures—ResNet50, VGG16, EfficientNet-B0,

and Vision Transformer (ViT-Small)—which were leveraged to

extract high-dimensional features from breast MRI images. These

deep learning models, in combination with carefully selected

clinical variables, provide a powerful framework for HER2

classification, achieving a notable AUC of 0.94 in predicting

HER2 positivity. The robustness of our model is supported by

validation in a multicenter dataset of 6,438 patients, which adds

external validity to the results. This work represents a significant

step forward in automating and improving the accuracy of HER2

classification, which is critical for guiding personalized treatment

strategies in breast cancer.

An important strength of this study is that the reduced feature

set retained by ICC and LASSO included descriptors with

established biological and clinical relevance. Features such as
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washout enhancement, peritumoral edema, irregular margins, and

nodal involvement have all been linked to aggressive HER2-positive

disease in prior imaging and radiogenomic studies. The alignment

of our model-selected features with these known biomarkers

enhances interpretability, suggesting that the framework captures

meaningful mechanistic correlates of HER2 amplification rather

than relying solely on abstract computational representations.

When compared to other studies in the field, several similarities

and differences emerge in terms of methodology, machine learning

models used, and predictive performance. For instance, Qin et al.

(17) similarly aimed to predict HER2 positivity using a machine

learning model based on both imaging and clinical features.

However, unlike our study, which employed deep learning models

for feature extraction, Qin utilized Extreme Gradient Boosting

(XGBoost) combined with an Artificial Neural Network (ANN)

for feature selection and prediction. The ANN model in study of

Qin et al. demonstrated an AUC of 0.853, which is comparable to
FIGURE 13

Calibration curve for HER2 prediction model.
FIGURE 12

Nomogram for HER2 prediction based on MRI sequences and clinical features.
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the performance of our deep learning-based models on similar

tasks. However, our approach, using deep learning models for direct

feature extraction, offers a more automated and potentially more

accurate alternative, particularly when dealing with high-

dimensional MRI data (17).

In the study by Miglietta et al. (18), machine learning was

employed to predict the conversion of HER2–0 breast cancer to

HER2-low metastases using XGBoost and a support vector machine

ensemble. While their focus was on metastatic conversions, the

results underscore the utility of machine learning in HER2-related

classification tasks. They achieved a balanced accuracy of 64%, a

sensitivity of 75%, and a specificity of 53%, which, while promising,

lags behind the performance of our integrated model, which

demonstrated an AUC of 0.94. The comparative strength of our

model lies in the inclusion of a variety of deep learning models and a

large, diverse dataset, offering improved generalizability and higher

discriminatory power (18).

Bitencourt et al. (1) also employed machine learning in

conjunction with radiomics to predict HER2 status in HER2-

overexpressing breast cancer patients receiving neoadjuvant

chemotherapy (NAC). This study highlighted the importance of

combining clinical and radiomic features from MRI scans, achieving
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a high AUC of 0.97 in predicting HER2 heterogeneity and a diagnostic

accuracy of 83.9% for predicting pathologic complete response (pCR).

Our study builds on this by incorporating multi-sequence MRI data

and applying deep learning to automatically extract hierarchical

features from the images, while their approach manually selects

radiomic features based on correlation analysis. Our results,

particularly the AUC of 0.94, are in line with their findings but are

made more efficient and less prone to human bias due to the use of

deep learning for feature extraction (1).

The work by Wu et al. (19) focused on deep learning for

predicting HER2 status and treatment efficacy in gastric

adenocarcinoma (GAC). Their study used convolutional neural

networks (CNN) to predict HER2 amplification with an AUC of

0.847 and a higher AUC of 0.903 for predicting HER2 2+ status.

This approach demonstrates the broader applicability of deep

learning in predicting HER2 status across cancer types, providing

a useful comparison to our breast cancer-focused study. While their

CNN model had strong performance, it did not incorporate multi-

sequence imaging or clinical variables as comprehensively as our

study, limiting its interpretability and external applicability (19). In

another study by Luo et al. (4), radiomics features extracted from

multi-sequence breast MRI were utilized to predict HER2
FIGURE 14

DCA for assessing the clinical utility of predictive models.
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expression in invasive ductal carcinoma (IDC), achieving AUC

values of 0.777 for classifying HER2-positive from HER2-negative

cases. While their study employed traditional radiomics techniques,

our study benefited from a deeper feature extraction approach using

deep learning, which automatically captures complex image

patterns without relying on manual feature selection. As a result,

our model outperformed traditional radiomics approaches,

highlighting the advantage of using deep learning over

handcrafted features in complex imaging datasets.

Moreover, the study by Yan et al. (3) used ultrasound radiomics

and clinical features to predict HER2 status in breast cancer patients

with indeterminate HER2-2+ immunohistochemical results,

achieving an AUC of 0.860 with logistic regression. This study

shares similarities with ours in utilizing non-invasive imaging

modalities (ultrasound vs. MRI). However, our study outperforms

theirs by leveraging more advanced deep learning models and

integrating multi-sequence MRI data, providing a richer, more

detailed set of features for accurate HER2 classification.

In comparison, our study’s use of deep learning for feature

extraction stands out for its automated, high-dimensional

approach, which reduces the potential for human bias and error

compared to the more manual radiomics methods used in other

studies. Furthermore, while other studies, such as Boulmaiz et al.

(20), employed machine learning techniques (including random

forest and LightGBM) for predicting HER2 status in breast cancer,

our model achieved superior performance by combining multi-

sequence imaging and clinical data with deep learning, resulting in a

higher AUC and more reliable predictions.

Lastly, Mastrantoni et al. (21) and Xu et al. (22) both used

machine learning models to predict HER2 status in different cancer

types (early breast cancer and gastric adenocarcinoma, respectively).

Their use of different types of imaging (CT and ultrasound) and

various machine learning models provides insights into the flexibility

of AI tools across different cancers. However, their models did not

demonstrate the same level of performance as our deep learning-

based approach using MRI, where higher-dimensional data provided

richer feature sets for prediction.

A key limitation of this study is the absence of external

validation. While internal validation with 1,000 bootstrap

resamples demonstrated robust performance, the lack of testing

on independent cohorts limits the immediate generalizability of the

results. Future work will focus on validating the model in external

multicenter datasets and prospective studies to confirm its clinical

applicability. It should be noted that the prevalence of HER2-

positive cases in our final cohort (53.6%) was higher than the 15–

20% typically observed in the general breast cancer population. This

enrichment reflects the strict inclusion criteria requiring complete

multi-sequence MRI and confirmed HER2 status, which are more

frequently fulfilled in HER2-positive patients who undergo

comprehensive imaging and biomarker testing in clinical practice.

Although measures such as multicenter recruitment, reproducibility

filtering (ICC ≥ 0.9), LASSO regression, and bootstrap validation

were implemented to mitigate bias, future external validation in

population-based and prospective cohorts will be essential to

further confirm generalizability.
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Although a substantial number of patients were excluded due to

missing or poor-quality data, comparison with the included cohort

showed no systematic demographic or clinical differences

(Supplementary Table S3), reducing concern for major

selection bias.
5 Conclusion

This study’s results support the growing body of evidence that

deep learning-based models, when combined with multi-sequence

imaging and clinical data, offer superior performance for HER2

classification in breast cancer. In comparison with other studies, our

approach achieved higher AUCs and demonstrated more robust

performance across diverse datasets, suggesting that deep learning

holds significant promise for improving the accuracy and efficiency of

HER2 expression status prediction, with potential clinical applications

in personalized oncology. Further studies and validation across

different clinical settings and imaging protocols will be crucial for

translating these findings into routine clinical practice.
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