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Objective: This study aimed to develop a robust, automated framework for
predicting HER2 expression in breast cancer by integrating multi-sequence
breast MRI with deep learning-based feature extraction and clinical data. The
goal was to improve prediction accuracy for HER2 status, which is crucial for
guiding targeted therapies.

Materials and Methods: A retrospective analysis was conducted on 6,438 breast
cancer patients (2006-2024), with 2,400 cases (1,286 HER2-positive, 1,114
HER2-negative) selected based on complete imaging and molecular data.
Patients underwent 3T MRI scans with T1, T2, and contrast-enhanced (DCE)
sequences. Imaging data from four medical centers were standardized through
preprocessing steps, including intensity normalization, registration, and motion
correction. Deep learning feature extraction utilized ResNet50, VGG16,
EfficientNet-B0O, and ViT-Small, followed by ICC filtering (>0.9) and LASSO
regression for feature selection. Nomogram construction, ROC analysis, and
DCA evaluation were performed to assess model performance. Statistical
analyses were conducted using Python and R, with significance set at p < 0.05.
Results: In this study, we developed an integrated predictive model for HER2
status in breast cancer by combining deep learning-based MRI features and
clinical data. The model achieved an AUC of 0.94, outperforming traditional
methods. Analysis revealed significant differences between HER2-positive and
HER2-negative groups in tumor size, lymph node involvement, and
microcalcifications. Imaging features, such as washout enhancement and
peritumoral edema, were indicative of HER2 positivity. After applying ICC
filtering and LASSO regression, the selected features were used to construct a
nomogram, which demonstrated strong predictive accuracy and calibration. The
DCA confirmed the model's clinical utility, offering enhanced decision-making
for personalized treatment.
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Conclusions: This study demonstrates that integrating deep learning with multi-
sequence breast MRI and clinical data provides a highly effective and reliable tool
for predicting HER2 expression in breast cancer. The model's performance,
validated through rigorous evaluation, offers significant potential for clinical
implementation in personalized oncology, improving decision-making and
treatment planning for breast cancer patients.

HER2 status, breast cancer, deep learning, MRI sequences, clinical data, imaging
biomarkers, nomogram, feature selection

1 Introduction

Breast cancer is a heterogeneous disease with multiple
molecular subtypes, among which the overexpression of human
epidermal growth factor receptor 2 (HER2) plays a crucial role in
prognosis and treatment strategies. HER2-positive breast cancer,
characterized by the amplification of the ERBB2 gene, accounts for
approximately 15-20% of all breast cancer cases and is associated
with aggressive tumor behavior and poor prognosis (1, 2). Accurate
determination of HER2 expression is essential for guiding targeted
therapies, such as trastuzumab and pertuzumab, which have
significantly improved patient outcomes. Traditional methods for
HER2 evaluation, including immunohistochemistry (IHC) and
fluorescence in situ hybridization (FISH), are labor-intensive and
prone to interobserver variability, necessitating more objective and
automated approaches for precise HER2 classification (3).

Deep learning has emerged as a powerful tool in medical
imaging, capable of extracting high-dimensional, discriminative
features from radiological data. Unlike conventional radiomics,
which relies on handcrafted features, deep learning models
autonomously learn hierarchical representations, improving
classification performance (4, 5). In this study, four deep learning
architectures—ResNet50, VGG16, EfficientNet-B0O, and Vision
Transformer (ViT-Small)—were employed for feature extraction
from multi-sequence breast MRI scans. Each model offers unique
advantages: ResNet50 effectively captures complex spatial features
through residual learning, VGG16 provides a structured feature
hierarchy, EfficientNet-B0 optimizes computational efficiency while
maintaining high accuracy, and Vision Transformer leverages self-
attention mechanisms for enhanced feature encoding. These
extracted deep features provide a robust basis for distinguishing
HER2 expression levels in breast cancer (6).

To enhance clinical interpretability and decision-making, a
nomogram was developed by integrating deep learning-derived
features with statistically significant clinical variables. Nomograms
offer a user-friendly graphical representation of predictive models,
facilitating individualized risk assessment. Additionally, decision
curve analysis (DCA) was performed to evaluate the net clinical
benefit of the developed models, ensuring their applicability across
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different probability thresholds. Furthermore, model performance
was rigorously validated using Receiver Operating Characteristic
(ROC) analysis, with the Area Under the Curve (AUC) serving as a
key metric for assessing discriminative ability. This comprehensive
approach bridges the gap between computational modeling and
practical clinical application, promoting precision oncology (5-10).

The robustness and generalizability of predictive models depend
on the diversity of the study population. This study leverages a
multicenter dataset spanning 6,438 patients from 2006 to 2024,
ensuring a heterogeneous representation of breast cancer cases.
Multicenter studies mitigate biases associated with single-
institution datasets, enhance model external validity, and improve
generalizability to broader clinical settings. By incorporating diverse
imaging protocols, genetic backgrounds, and clinical characteristics,
the findings of this study are more applicable to real-world scenarios,
strengthening the reliability of the proposed methodology.

This study presents a novel, large-scale, multicenter approach to
distinguishing HER2 expression levels in breast cancer using deep
learning and nomogram-based predictive modeling. The key
contributions of this research are:

1. First study to integrate deep learning-based feature
extraction from multi-sequence breast MRI with HER2
classification using four state-of-the-art models
(ResNet50, VGG16, EfficientNet-BO,
Vision Transformer).

and

2. Application of a comprehensive feature selection strategy,
including intraclass correlation coefficient (ICC) filtering
and LASSO dimensionality reduction, ensuring optimal
feature extraction.

3. Development of a nomogram incorporating deep learning
features and clinical biomarkers to facilitate practical
implementation in clinical settings.

4. Evaluation of model performance using DCA and ROC
analysis, ensuring clinical utility and reliability of the
predictive framework.

5. First large-scale multicenter study (n = 6,438) on HER2
classification using deep learning and radiomics, enhancing
the generalizability and robustness of results.
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By integrating deep learning with clinical decision-support
tools, this study advances the field of radiogenomics and
personalized breast cancer management, offering a novel,
automated framework for HER2 classification.

2 Materials and methods
2.1 Study design and patient population

The dataset was collected from four anonymized tertiary
referral centers between 2006 and 2024. A total of 6,438 patients
with breast cancer were initially screened. Inclusion criteria were: (i)
confirmed invasive breast cancer with HER2 status determined by
IHC and/or FISH; (ii) availability of complete three-sequence breast
MRI (T1, T2, DCE); and (iii) presence of corresponding clinical and
molecular data. Exclusion criteria were: (i) incomplete imaging
data; (ii) prior neoadjuvant therapy before imaging; (iii) low-quality
MRI scans with artifacts affecting analysis; and (iv) missing or
indeterminate HER2 classification.

To enhance transparency while preserving site anonymity, we
provide a center-level breakdown of patient enrollment:

e Center A: screened 1,800 — included 671 (HER2+: 360;
HER2-: 311); excluded 1,129 (Incomplete MRI: 480;
Missing/indeterminate HER2: 370; Low-quality artifacts:
210; Neoadjuvant therapy: 69).

e Center B: screened 1,650 — included 615 (HER2+: 330;
HER2-: 285); excluded 1,035 (Incomplete MRI: 430;
Missing/indeterminate HER2: 320; Low-quality artifacts:
210; Neoadjuvant therapy: 65; Others 10).

e Center C: screened 1,520 — included 567 (HER2+: 304;
HER2-: 263); excluded 953 (Incomplete MRI: 385; Missing/
indeterminate HER2: 300; Low-quality artifacts: 200;
Neoadjuvant therapy: 68).

e Center D: screened 1,468 — included 547 (HER2+: 292;
HER2-: 255); excluded 921 (Incomplete MRI: 360; Missing/
indeterminate HER2: 290; Low-quality artifacts: 200;
Neoadjuvant therapy: 71).

In total, 2,400 patients were included in the final analysis
(HER2-positive: 1,286; HER2-negative: 1,114), while 4,038
patients were excluded. This center-level distribution ensures
proportional representation of HER2-positive and HER2-negative
cases across institutions, consistent with the study’s inclusion and
exclusion criteria (Supplementary Figure S1).

TABLE 1 MRI acquisition parameters across centers.

Center A Center B

Parameter

10.3389/fonc.2025.1593033

To assess potential selection bias, baseline characteristics of
excluded patients (n = 6,438) were compared with those of included
patients (n = 2,400). Results of this comparison are summarized in
Supplementary Table S3.

2.2 Imaging data acquisition and
preprocessing

2.2.1 MRI protocols and sequences

All breast MRI scans were obtained using 3T MRI scanners
across the four participating medical centers, following
standardized imaging protocols to maintain consistency across
institutions. Each patient underwent three essential MRI
sequences: T1-weighted (T1), T2-weighted (T2), and T2-weighted
with contrast enhancement (T2+contrast). For contrast-enhanced
imaging, a gadolinium-based contrast agent was administered at a
standardized dose of 0.1 mmol/kg, followed by a 20 mL saline flush
to ensure optimal vascular distribution. All imaging was performed
in the axial plane, providing high spatial resolution necessary for
accurate tumor characterization and feature extraction. Detailed
MRI acquisition parameters, including scanner models, voxel sizes,
and contrast agent types used at each center, are summarized
in Table 1.

2.2.2 Image preprocessing, standardization, and
image segmentation

To ensure consistency and comparability across imaging data, a
series of preprocessing steps were applied prior to feature
extraction. Intensity normalization was performed to standardize
voxel intensity values and mitigate scanner-related variations. To
correct for positional discrepancies between sequences, rigid-body
registration was applied, aligning images within each patient.
Motion-related distortions were addressed through automated
artifact detection and correction algorithms, enhancing image
quality. Additionally, all MRI scans were resampled to a uniform
voxel size of 0.5 x 0.5 x 3 mm’, ensuring consistency across datasets.
Finally, images were converted into the NIfTT format, facilitating
structured data input for deep learning analysis. These
preprocessing steps collectively ensured high-quality, standardized
imaging data, minimizing variations arising from differences in
acquisition protocols and scanner specifications (11-13).

Image Segmentation was conducted by two experienced
radiologists with 14 and 17 years of expertise in breast imaging.
Each radiologist independently delineated the tumor regions on MRI
scans, ensuring precise segmentation. Discrepancies between the two

Center C Center D

MRI Scanner Model Siemens Prisma

Voxel Size (mm?) 0.5 x0.5x 3 ‘ 0.6 x 0.6 x 3
Slice Thickness (mm) 3 ‘ 3
In-Plane Resolution 512 x 512 ‘ 512 x 512
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GE Discovery

Philips Ingenia Siemens Skyra

05x05x3 0.6 x 0.6 x3
3 3
512 x 512 512 x 512
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experts were resolved through consensus review, minimizing
interobserver variability. This manual segmentation approach
ensured accurate identification of tumor boundaries, providing
high-quality input for deep learning-based feature extraction and
subsequent analysis (14). To evaluate preprocessing effectiveness,
voxel intensity histograms and feature reproducibility metrics were
compared before and after harmonization. Intensity normalization
and resampling reduced inter-scanner variance, and subsequent ICC
filtering ensured retention of stable features (ICC > 0.9).

2.3 Deep learning-based feature extraction

2.3.1 Overview of deep learning models

Deep learning models were employed to extract high-
dimensional imaging features from breast MRI scans. Unlike
traditional radiomics, which relies on manually engineered
features, deep learning-based feature extraction enables automatic
learning of hierarchical representations, capturing complex spatial
and textural patterns. In this study, four state-of-the-art deep
learning architectures were utilized for feature extraction:
ResNet50, VGG16, EfficientNet-B0O, and Vision Transformer
(ViT-Small). These models were selected based on their
demonstrated effectiveness in medical image analysis and their
ability to capture both local and global image features.

2.3.2 Feature extraction using ResNet50, VGG16,
EfficientNet-BO, and ViT-Small

Each MRI sequence (T1, T2, and T2+contrast) was processed
through the pre-trained deep learning models, which were modified
to extract deep features from the final fully connected layers.
Feature extraction was restricted to the radiologist-delineated
tumor regions of interest (ROIs) rather than entire breast
volumes, ensuring that the learned features corresponded to
tumor-specific morphology, enhancement kinetics, and
peritumoral characteristics. The models were pretrained on
ImageNet and then adapted for feature extraction without fine-
tuning, ensuring robust feature extraction without the need for
additional training on limited medical datasets. Pilot experiments
comparing fine-tuned versus frozen-weight strategies indicated that
fine-tuning led to overfitting, while frozen-weight feature extraction
provided more stable cross-center generalization. Detailed results of
this comparison are presented in Supplementary Table SI. The
extracted feature vectors were high-dimensional, capturing a
diverse range of spatial, textural, and structural characteristics
from the MRI images.

The feature dimensions extracted from each MRI sequence
varied across the deep learning models used in this study. ResNet50
generated a 2048-dimensional feature vector per sequence, while
VGG16 produced a higher-dimensional representation with 4096
features per sequence. EfficientNet-B0, known for its efficiency in
feature extraction, provided a 1280-dimensional feature set per
sequence. In contrast, the Vision Transformer (ViT-Small),
leveraging self-attention mechanisms, extracted a 384-
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dimensional feature vector per sequence. These varying feature
dimensions reflect the unique architectures and representation
capabilities of each model, influencing their ability to capture
spatial and textural characteristics from breast MRI scans.

2.3.3 Intraclass correlation coefficient selection

To ensure the reliability and reproducibility of the extracted
deep features, an Intraclass Correlation Coefficient (ICC) analysis
was performed. Features with an ICC above 0.9 were considered
highly reproducible and retained for further analysis, while those
with lower ICC values were excluded. This step was crucial in
eliminating non-robust features and enhancing the stability of the
predictive model.

2.3.4 LASSO dimensionality reduction

Given the high dimensionality of deep learning-derived features,
Least Absolute Shrinkage and Selection Operator (LASSO)
regression was applied for feature selection. LASSO is a sparsity-
inducing method that reduces collinearity and retains only the most
relevant features by enforcing L1 regularization. This step
significantly reduced the feature set while preserving the most
informative predictors, improving the interpretability and
efficiency of the model in distinguishing HER2 expression levels in
breast cancer. Beyond statistical relevance, several of the retained
features demonstrated strong biological and clinical interpretability.
Notably, features corresponding to washout enhancement kinetics,
peritumoral edema, irregular tumor margins, and microcalcifications
were among the final predictors. This convergence highlights that
the LASSO-selected feature set not only optimized predictive
performance but also aligned with known mechanistic correlates of
HER2-driven tumor biology.

2.4 Clinical feature selection and
integration

2.4.1 Statistical analysis of clinical features

To identify the most relevant clinical features for HER2
classification, a statistical analysis was performed on the available
clinical dataset. Each clinical feature was assessed for its association
with HER2 status using univariate analysis, where features with a p-
value < 0.05 were considered statistically significant. This threshold
ensured that only features with a meaningful relationship to HER2
expression were retained. As a result, three clinical features were
selected for integration into the predictive model.

2.4.2 Regression model development and feature
scoring

The selected clinical features were incorporated into a
regression model alongside the extracted deep learning-based
imaging features. A predictive equation was generated based on
patient labels, where each patient had a unique equation derived
from the model. This approach enabled the calculation of a Deep
Score for every individual, representing their likelihood of HER2

frontiersin.org


https://doi.org/10.3389/fonc.2025.1593033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Qiu et al.

positivity or negativity. By integrating both deep learning-based
imaging features and statistically significant clinical variables, the
model aimed to improve the accuracy and interpretability of HER2
classification in breast cancer.

2.5 Nomogram development and validation

2.5.1 Construction of the nomogram

A nomogram was developed to provide an individualized
prediction model for HER2 status by integrating deep learning-
based imaging features and selected clinical variables. The
nomogram was constructed using a multivariate logistic
regression model, where each predictive factor was assigned a
weighted score based on its contribution to HER2 classification.
The final model incorporated the most relevant deep features
extracted from MRI scans, along with the three statistically
significant clinical features identified in the previous step. The
nomogram visually represents the relationship between these
predictive variables and the probability of HER2 positivity,
allowing for intuitive clinical interpretation.

2.5.2 Calibration and internal validation

To assess the reliability and predictive accuracy of the nomogram,
calibration and internal validation were performed. Calibration was
evaluated using a calibration curve, comparing the predicted HER2
probabilities with actual HER2 status across different probability
thresholds. Model performance was further validated using
bootstrapping with 1,000 resamples to minimize overfitting and
estimate the model’s generalizability. The Hosmer-Lemeshow
goodness-of-fit test was conducted to measure how well the
predicted probabilities aligned with observed outcomes. These
validation techniques ensured the robustness of the nomogram,
enhancing its potential for clinical application in HER2 classification.

2.6 Model performance evaluation

The performance of the predictive models was assessed using
ROC analysis. The Area Under the Curve (AUC) was used as the
primary metric to evaluate the discriminative ability of the models
in distinguishing HER2-positive from HER2-negative cases. Higher
AUC values indicate better classification performance. ROC curves
were generated for each deep learning model (ResNet50, VGGI6,
EfficientNet-B0, and ViT-Small) as well as for the integrated
nomogram. Comparisons were made to determine the most
effective approach for HER2 classification (15-17).

To assess the clinical utility and net benefit of the developed
models, DCA was performed. DCA evaluates the model’s
effectiveness across a range of probability thresholds, providing
insight into its potential impact in clinical decision-making. The net
benefit was calculated by incorporating both true-positive and false-
positive classifications, ensuring that the models provide
meaningful risk stratification for HER2 classification. By
comparing the DCA curves of individual deep learning models
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and the final nomogram, the most clinically applicable model
was identified.

2.7 Statistical analysis

2.7.1 Software and tools used

All statistical analyses and model evaluations were conducted
using Python (version 3.9.12) and R (version 4.2.2). Deep learning-
based feature extraction was performed using TensorFlow (version
2.10.0) and PyTorch (version 1.13.0). The scikit-learn (version
1.1.1) library was utilized for machine learning and statistical
modeling, including LASSO regression and logistic regression
analysis. Nomogram construction and validation were carried out
using the rms (version 6.4-0) package in R. ROC curve analysis and
AUC calculations were performed using the pROC (version 1.18.0)
package, while DCA was conducted with the dcurves (version
0.3.1) package.

2.7.2 Statistical tests and significance criteria

Descriptive statistics were used to summarize patient
characteristics. Chi-square tests and Fisher’s exact tests were
applied to compare categorical variables, while independent t-
tests and Mann-Whitney U tests were used for continuous
variables. The ICC was calculated to assess feature reproducibility,
with an ICC threshold of 0.9 for feature selection. LASSO regression
was employed for dimensionality reduction, and multivariate
logistic regression was used to construct the predictive model.
Calibration of the nomogram was assessed using the Hosmer-
Lemeshow goodness-of-fit test, and statistical significance was
defined as p < 0.05 for all analyses.

3 Results

3.1 Patient characteristics and clinical
feature analysis

Based on a retrospective study, which provides a detailed
comparison of demographic, clinicopathological, molecular,
transcriptomic, and proteomic characteristics between HER2-
positive (n = 1,286) and HER2-negative (n = 1,114) breast cancer
patients (Figure 1). Baseline characteristics across the four centers
were compared and found to be well-balanced (Supplementary
Table S2). No significant inter-center differences were observed for
age, menopausal status, tumor size, histological type, or molecular
subtype (all p > 0.05). In addition, supplementary analysis
confirmed that preprocessing (intensity normalization,
resampling, registration) effectively reduced inter-scanner
variability, as demonstrated by improved consistency in voxel
intensity distributions and feature reproducibility metrics.

Baseline characteristics of excluded patients were similar to
those of the final cohort, with no significant differences in age,
menopausal status, or histological subtype. Tumor size was slightly
smaller among excluded patients (2.4 cm vs. 2.6 cm, p = 0.08), but
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FIGURE 1
Overview of the proposed framework.

this was not clinically significant. These findings suggest minimal
risk of selection bias (Supplementary Table S3).

3.1.1 Demographic and clinical data distribution
The mean age of patients with HER2-positive tumors was 54.7 +
10.9 years, while HER2-negative patients had a mean age of 55.1 +
11.2 years, showing no statistically significant difference (p = 0.719).
Similarly, the menopausal status distribution was comparable
between both groups (p = 0.165). Tumor laterality (left vs. right
breast) was evenly distributed, with no significant association with
HER?2 status (p = 0.372). The mean tumor size was slightly larger in
HER2-positive cases (2.7 + 1.1 cm) compared to HER2-negative
tumors (2.5 £ 1.0 cm), but the difference was not statistically
significant (p = 0.642). The predominant histological subtype in
both groups was invasive ductal carcinoma (92.5% in HER2-
positive vs. 90.7% in HER2-negative, p = 0.142), and lymph node
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involvement rates were comparable (p = 0.294). HER2-positive
tumors were more frequently classified as Grade 3 (poorly
differentiated) (33.1% vs. 20.1%), although this difference was not
statistically significant (p = 0.362) (Table 2).

3.1.2 Comparison of selected clinical features
between HER2-positive and HER2-negative
groups

In terms of hormone receptor status, estrogen receptor (ER)-
negative tumors were more common among HER2-positive cases
(30.0% vs. 20.1%), whereas progesterone receptor (PR) expression
showed no significant variation between the groups. Regarding
molecular subtypes, HER2-positive tumors were classified into
Luminal B (HER2+) (35.8%) and HER2-Enriched (64.2%), while
HER2-negative cases included Luminal A (57.4%), Luminal B
(HER2-) (30.0%), and Triple-Negative (12.6%) subtypes.
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TABLE 2 Demographic characteristics of patients.

HER2- HER2-
Feature positive negative P value

(n = 1286) (n = 1114)
Age (years, mean + SD) 54.7 £ 10.9 55.1 +11.2 0.719
Menopausal Status 0.165
- Postmenopausal 820 (63.8%) 720 (64.6%)
- Premenopausal 466 (36.2%) 394 (35.4%)
Tumor Location 0.372
- Left Breast 670 (52.1%) 590 (53.0%)
- Right Breast 616 (47.9%) 524 (47.0%)
I"Srg‘;r Size (em, mean 2 41y 2510 0.642
Histological Type 0.142
- Invasive Ductal
Carcinoma 1190 (92.5%) 1010 (90.7%)
- Other Types 96 (7.5%) 104 (9.3%)
Hormone Receptor
Status 0891
- ER-Positive 900 (70.0%) 890 (79.9%)
- ER-Negative 386 (30.0%) 224 (20.1%)
- PR-Positive 860 (66.9%) 780 (70.0%) 0.538
- PR-Negative 426 (33.1%) 334 (30.0%)
e
- Positive 640 (49.8%) 520 (46.7%)
- Negative 646 (50.2%) 594 (53.3%)
Molecular Subtype 0.189
- Luminal B (HER2+) 460 (35.8%) -
- HER2-Enriched 826 (64.2%) -
- Luminal A - 640 (57.4%)
- Luminal B (HER2-) - 334 (30.0%)
- Triple-Negative - 140 (12.6%)
Tumor Grade 0.362
i);’:r‘ztliairgu 310 (24.1%) 480 (43.1%)
i);zci;éaieMd‘;derately 550 (42.8%) 410 (36.8%)
;Difr:i;zaig; rly 426 (33.1%) 224 (20.1%)
Genomic Alterations 0.003
- PIK3CA Mutation 700 (54.4%) 340 (30.5%)
- TP53 Mutation 460 (35.8%) 270 (24.2%)
- ERBB2 Amplification 1180 (91.8%) 64 (5.7%)

(Continued)
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TABLE 2 Continued

HER2- HER2-
Feature positive negative P value
(n = 1286) (n = 1114)
- BRCA1/BRCA2
. / 280 (21.8%) 210 (18.9%)
Mutation
Transcriptomic Features 0.006
- ESRI (Estrogen High in 860 High in 890
Receptor) (66.9%) (79.9%)
- HER2 (ERBB2) mRNA | High in 1286 Low in 1114
Level (100%) (100%)
Proteomic Features 0.015
- HER2 Protein High in 1286 Low in 1114
Expression (100%) (100%)
) ) High in 460 High in 270
- P53 Protein Expression
(35.8%) (24.2%)

Genomic alterations were significantly different between HER2-
positive and HER2-negative groups. PIK3CA mutations were more
frequent in HER2-positive tumors (54.4% vs. 30.5%, p = 0.003), as
were TP53 mutations (35.8% vs. 24.2%). The hallmark feature of
HER2-positive cases was ERBB2 amplification, detected in 91.8% of
HER2-positive tumors compared to only 5.7% of HER2-negative
cases. BRCA1/BRCA2 mutation rates were slightly higher in HER2-
positive cases, but this difference was not statistically significant. At
the transcriptomic and proteomic levels, HER2 (ERBB2) mRNA
expression was elevated in 100% of HER2-positive tumors, while it
was low in 100% of HER2-negative cases (p = 0.006). Similarly,
HER?2 protein expression was consistently higher in HER2-positive
tumors but low in HER2-negative tumors (p = 0.015). Additionally,
P53 protein expression was observed more frequently in HER2-
positive cases (35.8% vs. 24.2%), further distinguishing the
two groups.

3.1.3 Imaging and tumor characteristics in HER2-
positive vs. HER2-negative breast cancer

The imaging characteristics of HER2-positive and HER2-
negative breast cancers exhibited distinct patterns across various
modalities, as summarized in Table 3. HER2-positive tumors were
significantly larger than HER2-negative tumors, with a mean size of
2.7 £ 1.1 cmvs. 2.5 £ 1.0 cm, respectively (p = 0.03). Although single
tumors were more frequently observed in HER2-negative cases
(63.7% vs. 52.1% in HER2-positive cases), this difference was not
statistically significant (p = 0.07). Axillary lymph node involvement
was notably higher in HER2-positive tumors (63.0% vs. 44.0%, p <
0.001), and these tumors more frequently exhibited cortical
thickness >3 mm (48.2% vs. 35.0%, p = 0.06), suggesting a greater
likelihood of nodal metastasis.

Microcalcifications were significantly more common in HER2-
positive tumors (60.7% vs. 42.2%, p = 0.002), highlighting their
potential role as an imaging biomarker for HER2 classification. On
ultrasound imaging, HER2-positive tumors more frequently
displayed irregular margins (82.5% vs. 76.3%, p = 0.04), indicative
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TABLE 3 Imaging characteristics of patients.

Feature

HER2-
positive
(n = 1286)

HER2-
negative
(n = 1114)

P value

Tumor Size (cm) Mean 2.7 + 1.1 Mean 2.5 + 1.0 0.03
i in 670 i in 710
Number of Tumors Single in Single in 0.07
(52.1%) (63.7%)
Abnormal Axillary Present in 810 Present in 490 <0.001
Lymph Nodes (63.0%) (44.0%) '
Cortical Thickness of >3mm in 620 >3mm in 390 0.06
Axillary Lymph Nodes (48.2%) (35.0%) :
Presence of Present in 780 Present in 470
. . . 0.002
Microcalcifications (60.7%) (42.2%)
Posterior Acoustic Shadowing in Shadowing in 0.10
Features on Ultrasound 730 (56.8%) 600 (53.9%) :
Tumor Margin on Irregular in 1060 Irregular in 850 0.04
Ultrasound (82.5%) (76.3%) :
I lar in 1080 I lar in 900
Tumor Shape on MRI rreguiarin rreguiarin 0.09
(84.0%) (80.8%)
MRI Enhancement Heterogeneous in =~ Heterogeneous in 0.06
Pattern 950 (73.9%) 910 (81.7%) ’
Enhancement Curve on Washout in 520 Washout in 310 0.003
MRI (40.4%) (27.8%) ’
Present in 410 Present in 320
Nonmass Enhancement 0.08
(31.9%) (28.7%)
Distribution of Nonmass = Segmental in 330 | Segmental in 290 0.95

Enhancement

(25.7%)

(26.0%)

of a more aggressive growth pattern, while posterior acoustic
shadowing was observed at similar rates in both groups (p =
0.10). MRI characteristics also revealed key differences between
HER2 subtypes. HER2-positive tumors demonstrated a slightly
higher prevalence of irregular shapes (84.0% vs. 80.8%, p = 0.09)
and a washout enhancement curve, which was significantly more
frequent (40.4% vs. 27.8%, p = 0.003), suggesting more aggressive
contrast uptake and rapid contrast clearance. Heterogeneous
enhancement was present in 73.9% of HER2-positive cases
compared to 81.7% of HER2-negative cases (p = 0.06), while
nonmass enhancement (NME) frequency was comparable
between groups (31.9% vs. 28.7%, p = 0.08). Moreover,
peritumoral edema, a marker associated with increased tumor
invasiveness, was significantly more common in HER2-positive
tumors (77.0% vs. 65.5%, p = 0.001).

These findings suggest that tumor size, axillary lymph node
involvement, microcalcifications, and specific MRI enhancement
patterns may serve as key imaging biomarkers for HER2
classification. The higher prevalence of washout enhancement,
peritumoral edema, and irregular tumor margins in HER2-
positive tumors aligns with their more aggressive biological
behavior. The integration of these imaging features with
molecular, transcriptomic, and proteomic profiles may enhance
precision oncology strategies, aiding in targeted therapy selection
and prognostic assessment.
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3.2 Deep learning feature analysis

3.2.1 ICC-based feature selection results

To ensure the reliability of extracted imaging features, Intraclass
Correlation Coefficient (ICC) analysis was performed for each deep
learning model across the three MRI sequences (T1-weighted, T2-
weighted, and contrast-enhanced (DCE) MRI). Features with ICC >
0.9 were retained, ensuring high reproducibility. The number of
selected features varied across models, reflecting differences in their
representational capacity and sensitivity to imaging sequences.
VGG16 preserved the highest number of features, with 819, 1228,
and 1024 features retained from T1-W, T2-W, and DCE,
respectively. In contrast, ViT-Small, which uses an attention-
based approach, retained the lowest number of features, with 96,
116, and 134 features extracted from the respective sequences.
ResNet50 demonstrated a balanced extraction pattern, preserving
308, 204, and 246 features, while EfficientNet-B0 exhibited a more
selective feature extraction process, particularly in T2-W imaging,
where it retained 384 features, significantly more than in T1-W (64
features). These results highlight VGG16’s capacity for high-
dimensional feature extraction, while ViT-Small’s selective
attention mechanism leads to a more compact representation.
Figure 2, 3, 4, 5 illustrates the ICC filtering process, showing the
proportion of retained features for each model and MRI sequence.

3.2.2 Analysis of feature selection using LASSO

The feature selection process using LASSO regression is a
critical step to ensure that only the most relevant and
reproducible features are retained for further analysis. In this
study, LASSO was applied to the features extracted from four
deep learning models (ResNet50, VGGI16, EfficientNet-B0, and
ViT-Small) across three MRI sequences (T1-weighted, T2-
weighted, and DCE) to identify the most significant features for
predicting HER?2 status in breast cancer.

After the initial ICC filtering, 758 features were retained. The
application of LASSO regression resulted in 56 final features. These
selected features indicate that, while ResNet50 initially captured a
large number of features (6,144), LASSO successfully reduced the
feature set, focusing on the most predictive features (Figure 6). This
indicates that the ResNet50 model has a broad range of features but
requires further refinement through LASSO to improve specificity
and avoid overfitting. VGG16 extracted the highest number of
features (12,288), and after ICC filtering, 3,071 features remained.
However, after LASSO optimization, only 124 features were retained.
This suggests that VGG16, although capable of extracting a large
feature space, still benefits from LASSO’s ability to select a subset of
the most relevant features. Despite the large initial feature set, LASSO
significantly reduced the complexity, highlighting the power of
VGG16 in capturing complex patterns that can be distilled down
to a smaller, more manageable set for predictive modeling (Figure 7).

EfficientNet-B0 extracted 3,840 features, and after ICC filtering,
768 features remained. Post-LASSO selection, 80 features were
retained. While EfficientNet-BO captured fewer features overall,
the final feature set after LASSO was still significant, indicating
that the model focuses on a relatively smaller subset of highly
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FIGURE 2

ICC filtering process for ResNet50 model - proportion of retained features across T1-W, T2-W, and DCE sequences.

predictive features. The ability to reduce feature dimensionality
efficiently with LASSO underscores EfficientNet-B0’s effectiveness
in feature selection, even with a lower feature count compared to
other models (Figure 8).

ViT-Small, with the lowest total feature count (1,152), had 346
features after ICC filtering, and only 42 features were selected after
LASSO optimization. The low number of features retained in ViT-
Small further demonstrates its more focused and sparse feature
representation compared to the other models. This may indicate
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that ViT-Small, while less comprehensive in its feature extraction, is
highly efficient in identifying the most relevant features for the task at
hand, ensuring minimal redundancy and overfitting. The LASSO
regression step is crucial for refining the model’s feature space,
ensuring that the final feature sets consist only of the most
informative features for the classification task. The process not only
reduces dimensionality but also enhances model interpretability,
focusing on the most relevant features while eliminating noise. The
differences in feature selection results across the models (with VGG16
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ICC Threshold

ICC filtering process for VGG16 model - proportion of retained features across T1-W, T2-W, and DCE sequences.

retaining the most features and ViT-Small retaining the least)
highlight the varying capabilities and sensitivities of each model to
the imaging data (Figure 9). Overall, the LASSO-selected features
provide a more robust foundation for the subsequent model
development, reducing complexity and increasing the focus on
features that are most likely to contribute to accurate predictions of
HER2 status in breast cancer on Deep Features Extracted from ViT-
Small Model Across Total Features (Figure 10).
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The AUC analysis reveals that the deep learning models
performed differently across various MRI sequences (Figure 11).
For T1-weighted images, ViT-Small demonstrated the best
performance with an AUC of 0.88, followed by ResNet50 and
VGG16, with AUCs of 0.86 and 0.84, respectively. EfficientNet-B0
had the lowest AUC of 0.80 for T1-weighted images. In the case of
T2-weighted images, VGG16 and ViT-Small showed similar high
performance with AUCs of 0.84 and 0.83, respectively, while
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ICC filtering process for efficientNet-BO model - proportion of retained features across T1-W, T2-W, and DCE sequences.

ResNet50 performed slightly worse at 0.76. For DCE-enhanced
images, ViT-Small again outperformed other models with an AUC
of 0.84, closely followed by ResNet50 and VGG16, with AUCs of
0.83 and 0.82, respectively. EfficientNet-BO had a notably lower
AUC of 0.67 in this sequence. When integrating all three MRI
sequences with clinical data, the models’ performance improved
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significantly, with VGG16 and ViT-Small achieving an AUC of
0.89, while ResNet50 scored 0.87. EfficientNet-B0 still performed
well, achieving an AUC of 0.85, but the Prediction Model,
combining all features from the deep learning models and clinical
data, achieved the highest AUC of 0.94, illustrating the significant
benefit of adding clinical data to improve predictive accuracy.
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FIGURE 5

ICC filtering process for ViT-small model - proportion of retained features across T1-W, T2-W, and DCE sequences.

3.2.3 Comparison of fine-tuned vs. non-fine-
tuned models

To evaluate the impact of fine-tuning, we performed a pilot
comparison of fine-tuned and frozen-weight feature extraction
strategies. Fine-tuning improved training accuracy but resulted in
reduced external validation performance, including a drop in cross-
center AUCs and poorer calibration. In contrast, frozen-weight
feature extraction consistently achieved higher generalization
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performance. A detailed breakdown of these results is provided in
Supplementary Table SI.

3.3 Nomogram construction and predictive
score distribution

A nomogram was constructed to provide an individualized risk
assessment for HER2-positive breast cancer classification by
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FIGURE 6

Feature selection using LASSO regression on deep features extracted from ResNet50 model across T1-W, T2-W, and DCE sequences.

integrating the selected deep learning-based features from the MRI
sequences (T1-weighted, T2-weighted, and DCE) and clinically
relevant features (Figure 12). The nomogram utilized the
ResNet50, VGG16, and ViT-Small deep scores, along with clinical
variables such as Abnormal Axillary Lymph Nodes, Enhancement
Curve on MRI, Peritumoral Edema, and Presence of
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Microcalcifications, to generate a comprehensive prediction
model for HER2 status.

Each feature in the nomogram was assigned a point value, based

on its weight in the final prediction model. The total points were

calculated by summing the individual points from each feature, with a
higher total score correlating with a greater likelihood of HER2-
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FIGURE 7

Feature selection using LASSO regression on deep features extracted from VGG16 model across T1-W, T2-W, and DCE sequences.

positive status. The predictive score distribution, as shown in the
nomogram, allows clinicians to easily assess an individual patient’s risk
of HER?2 positivity based on the selected imaging and clinical factors.

3.3.1 Calibration curve analysis
The performance and reliability of the nomogram were assessed
using a calibration curve, which compares the predicted
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probabilities of HER2 positivity with the actual observed
outcomes. The calibration curve was generated by plotting the
predicted HER2 probability against the observed proportion of
HER2-positive cases across different thresholds of predicted
values. A perfectly calibrated model would produce a 1:1 diagonal
line, indicating that the predicted values match the actual
outcomes (Figure 13).
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Feature selection using LASSO regression on deep features extracted from efficientNet-BO model across T1-W, T2-W, and DCE sequences.

In this study, the calibration curve demonstrated good
agreement between predicted and observed values, with the
model showing a strong correlation in predicting HER2 positivity.
The Hosmer-Lemeshow test further confirmed the model’s
goodness of fit, with no significant deviations from expected
values, indicating that the nomogram’s predictions were accurate

Frontiers in Oncology

15

across the range of risk scores. Overall, the nomogram, integrated
with deep learning features and clinical data, proved to be a
reliable and effective tool for predicting HER2 status, with good
predictive accuracy and strong calibration, making it a valuable
asset for personalized treatment planning in breast
cancer management.
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Feature selection using LASSO regression on deep features extracted from ViT-small model across T1-W, T2-W, and DCE sequences.

3.4 Model performance evaluation

The DCA was performed to assess the clinical utility of the
predictive models developed in this study, including both imaging
features from deep learning models and clinical variables. The DCA
evaluates the net benefit of each model across different threshold
probabilities by comparing the true positive rate and the false
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positive rate, helping to identify the optimal threshold for clinical
decision-making.

As shown in Figure 14, the Prediction Model that integrates
deep learning features from ResNet50, VGGI16, and ViT-Small,
along with clinical variables such as Abnormal Axillary Lymph
Nodes, Enhancement Curve on MRI, Peritumoral Edema, and
Presence of Microcalcifications, consistently provides the highest
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FIGURE 10
Feature selection using LASSO regression on deep features extracted from ViT-small model across total features (for 3 MRI sequences).

net benefit across a range of threshold probabilities. This indicates
that the integrated model outperforms individual features in
guiding clinical decisions regarding HER2 classification in
breast cancer.

Notably, the Prediction Model shows a clear advantage over
treating all patients (labeled as Treat All) and treating none (Treat
None) across the threshold range, highlighting its potential for
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personalized treatment planning. The deep learning models,
particularly VGG16 and ViT-Small, also show strong net benefits,
though they do not surpass the Prediction Model. In contrast,
clinical features such as Abnormal Axillary Lymph Nodes and
Enhancement Curve on MRI provide a moderate net benefit,
while Peritumoral Edema and Presence of Microcalcifications
offer limited utility when considered in isolation.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1593033
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Qiu et al. 10.3389/fonc.2025.1593033
T1 Images
ROC Curve ROC Curve
o | =)
- S 4
o | )
o o 7
o | ©
o o
g 2z
. =
- k]
< <
& &
< | <
o o
« EfficientNet_BO: 0.8 « EfficientNet_B0: 0.79
o ResNetS0: 0.86 o ResNet50: 0.76
/GG16: 0.84 , .
o | o
o S
T T T T T T T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0
Specificity Specificity
DCE Images Total Features (for 3 MRI Sequences)
& with Clinical Data
ROC Curve ROC Curve
o | o
- -
o | ©
o o 7
© 4 ©
o o 7]
2
g g
2 £
< 2
) &
< | <
o o |
« EfficientNet_B0: 0.67 EfficientNet_BO: 0.85
S ResNet50: 0.83 S ResNet50: 0.87
VGG1 VGG1 )
Prediction Model: 0.94
o | o
(=] o 7
T T T T T T T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 04 0.2 0.0
Specificity Specificity
FIGURE 11

AUC comparison of deep learning models across T1, T2, and DCE MRI sequences with and without clinical data integration.

These findings underscore the importance of combining
advanced imaging data with clinical features to develop more
robust and clinically applicable models. The DCA curve
demonstrates that the Prediction Model, which integrates these
multiple sources of information, provides the best clinical utility for
HER?2 classification, supporting its potential for improving
decision-making in breast cancer management. Although the
integrated model achieved an AUC of 0.94 with strong calibration
and DCA performance, these results are based on internal
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validation. External validation in independent cohorts is required
to fully confirm the generalizability of the framework.

4 Discussion

This study developed a comprehensive approach to predicting
HER2 expression in breast cancer by integrating deep learning-
based feature extraction from multi-sequence breast MRI scans
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Nomogram for HER2 prediction based on MRI sequences and clinical features.

with clinical data through a nomogram-based predictive model.
Our methodology is notable for its incorporation of four distinct
deep learning architectures—ResNet50, VGG16, EfficientNet-B0,
and Vision Transformer (ViT-Small)—which were leveraged to
extract high-dimensional features from breast MRI images. These
deep learning models, in combination with carefully selected
clinical variables, provide a powerful framework for HER2
classification, achieving a notable AUC of 0.94 in predicting
HER2 positivity. The robustness of our model is supported by
validation in a multicenter dataset of 6,438 patients, which adds
external validity to the results. This work represents a significant
step forward in automating and improving the accuracy of HER2
classification, which is critical for guiding personalized treatment
strategies in breast cancer.

An important strength of this study is that the reduced feature
set retained by ICC and LASSO included descriptors with
established biological and clinical relevance. Features such as

washout enhancement, peritumoral edema, irregular margins, and
nodal involvement have all been linked to aggressive HER2-positive
disease in prior imaging and radiogenomic studies. The alignment
of our model-selected features with these known biomarkers
enhances interpretability, suggesting that the framework captures
meaningful mechanistic correlates of HER2 amplification rather
than relying solely on abstract computational representations.
When compared to other studies in the field, several similarities
and differences emerge in terms of methodology, machine learning
models used, and predictive performance. For instance, Qin et al.
(17) similarly aimed to predict HER2 positivity using a machine
learning model based on both imaging and clinical features.
However, unlike our study, which employed deep learning models
for feature extraction, Qin utilized Extreme Gradient Boosting
(XGBoost) combined with an Artificial Neural Network (ANN)
for feature selection and prediction. The ANN model in study of
Qin et al. demonstrated an AUC of 0.853, which is comparable to
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the performance of our deep learning-based models on similar
tasks. However, our approach, using deep learning models for direct
feature extraction, offers a more automated and potentially more
accurate alternative, particularly when dealing with high-
dimensional MRI data (17).

In the study by Miglietta et al. (18), machine learning was
employed to predict the conversion of HER2-0 breast cancer to
HER2-low metastases using XGBoost and a support vector machine
ensemble. While their focus was on metastatic conversions, the
results underscore the utility of machine learning in HER2-related
classification tasks. They achieved a balanced accuracy of 64%, a
sensitivity of 75%, and a specificity of 53%, which, while promising,
lags behind the performance of our integrated model, which
demonstrated an AUC of 0.94. The comparative strength of our
model lies in the inclusion of a variety of deep learning models and a
large, diverse dataset, offering improved generalizability and higher
discriminatory power (18).

Bitencourt et al. (1) also employed machine learning in
conjunction with radiomics to predict HER2 status in HER2-
overexpressing breast cancer patients receiving neoadjuvant
chemotherapy (NAC). This study highlighted the importance of
combining clinical and radiomic features from MRI scans, achieving
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a high AUC of 0.97 in predicting HER2 heterogeneity and a diagnostic
accuracy of 83.9% for predicting pathologic complete response (pCR).
Our study builds on this by incorporating multi-sequence MRI data
and applying deep learning to automatically extract hierarchical
features from the images, while their approach manually selects
radiomic features based on correlation analysis. Our results,
particularly the AUC of 0.94, are in line with their findings but are
made more efficient and less prone to human bias due to the use of
deep learning for feature extraction (1).

The work by Wu et al. (19) focused on deep learning for
predicting HER2 status and treatment efficacy in gastric
adenocarcinoma (GAC). Their study used convolutional neural
networks (CNN) to predict HER2 amplification with an AUC of
0.847 and a higher AUC of 0.903 for predicting HER2 2+ status.
This approach demonstrates the broader applicability of deep
learning in predicting HER2 status across cancer types, providing
a useful comparison to our breast cancer-focused study. While their
CNN model had strong performance, it did not incorporate multi-
sequence imaging or clinical variables as comprehensively as our
study, limiting its interpretability and external applicability (19). In
another study by Luo et al. (4), radiomics features extracted from
multi-sequence breast MRI were utilized to predict HER2
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expression in invasive ductal carcinoma (IDC), achieving AUC
values of 0.777 for classifying HER2-positive from HER2-negative
cases. While their study employed traditional radiomics techniques,
our study benefited from a deeper feature extraction approach using
deep learning, which automatically captures complex image
patterns without relying on manual feature selection. As a result,
our model outperformed traditional radiomics approaches,
highlighting the advantage of using deep learning over
handcrafted features in complex imaging datasets.

Moreover, the study by Yan et al. (3) used ultrasound radiomics
and clinical features to predict HER2 status in breast cancer patients
with indeterminate HER2-2+ immunohistochemical results,
achieving an AUC of 0.860 with logistic regression. This study
shares similarities with ours in utilizing non-invasive imaging
modalities (ultrasound vs. MRI). However, our study outperforms
theirs by leveraging more advanced deep learning models and
integrating multi-sequence MRI data, providing a richer, more
detailed set of features for accurate HER2 classification.

In comparison, our study’s use of deep learning for feature
extraction stands out for its automated, high-dimensional
approach, which reduces the potential for human bias and error
compared to the more manual radiomics methods used in other
studies. Furthermore, while other studies, such as Boulmaiz et al.
(20), employed machine learning techniques (including random
forest and LightGBM) for predicting HER?2 status in breast cancer,
our model achieved superior performance by combining multi-
sequence imaging and clinical data with deep learning, resulting in a
higher AUC and more reliable predictions.

Lastly, Mastrantoni et al. (21) and Xu et al. (22) both used
machine learning models to predict HER2 status in different cancer
types (early breast cancer and gastric adenocarcinoma, respectively).
Their use of different types of imaging (CT and ultrasound) and
various machine learning models provides insights into the flexibility
of Al tools across different cancers. However, their models did not
demonstrate the same level of performance as our deep learning-
based approach using MRI, where higher-dimensional data provided
richer feature sets for prediction.

A key limitation of this study is the absence of external
validation. While internal validation with 1,000 bootstrap
resamples demonstrated robust performance, the lack of testing
on independent cohorts limits the immediate generalizability of the
results. Future work will focus on validating the model in external
multicenter datasets and prospective studies to confirm its clinical
applicability. It should be noted that the prevalence of HER2-
positive cases in our final cohort (53.6%) was higher than the 15-
20% typically observed in the general breast cancer population. This
enrichment reflects the strict inclusion criteria requiring complete
multi-sequence MRI and confirmed HER2 status, which are more
frequently fulfilled in HER2-positive patients who undergo
comprehensive imaging and biomarker testing in clinical practice.
Although measures such as multicenter recruitment, reproducibility
filtering (ICC = 0.9), LASSO regression, and bootstrap validation
were implemented to mitigate bias, future external validation in
population-based and prospective cohorts will be essential to
further confirm generalizability.
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Although a substantial number of patients were excluded due to
missing or poor-quality data, comparison with the included cohort
showed no systematic demographic or clinical differences
(Supplementary Table S3), reducing concern for major
selection bias.

5 Conclusion

This study’s results support the growing body of evidence that
deep learning-based models, when combined with multi-sequence
imaging and clinical data, offer superior performance for HER2
classification in breast cancer. In comparison with other studies, our
approach achieved higher AUCs and demonstrated more robust
performance across diverse datasets, suggesting that deep learning
holds significant promise for improving the accuracy and efficiency of
HER2 expression status prediction, with potential clinical applications
in personalized oncology. Further studies and validation across
different clinical settings and imaging protocols will be crucial for
translating these findings into routine clinical practice.
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