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Background: Diffuse large B-cell lymphoma (DLBCL), an aggressive subtype of

non-Hodgkin lymphoma, exhibits heterogeneous clinical outcomes. While

rituximab, a CD20 inhibitor, combined with chemotherapy has improved

survival in some patients, resistance remains prevalent, particularly in hypoxic

tumor microenvironments. Understanding hypoxia-related genes (HRGs) and

their role in rituximab resistance is critical to addressing therapeutic challenges in

high-risk DLBCL.

Methods:Gene expression profiles from GEO datasets (GSE56315: DLBCL tumor

vs. normal; GSE104212: hypoxia-treated DLBCL cell lines) were analyzed to

identify overlapping genes between DLBCL-signature genes (DSGs) and HRGs.

protein interaction network topology analysis and Lasso regression modeling of

TCGA-DLBC dataset were employed to screen regulator and hub genes. Hub

genes linked to rituximab response and survival were validated in DLBCL patients

receiving rituximab therapy. Functional enrichment analysis was used to explore

associated pathways. The expression of the identified regulator and hub genes

was validated using reverse transcription quantitative polymerase chain reaction

(RT-qPCR).

Results: 58 overlapping genes were identified between DSGs and HRGs. PPI

network and Lasso regression revealed 5 MS4A1 regulator genes and 10 hub

genes. Among these, LGALS1 (HR = 0.588, p = 0.00085), TIMP1 (HR = 0.591,

p = 0.00098), ANXA1 (HR = 0.614, p=0.0024) and STAP1 (HR = 0.633, p=0.0035)

were significantly associated with overall survival and GPNMB (AUC = 0.869),

CDCA7 (AUC = 0.686), and STAP1 (AUC = 0.663) associated with treatment

response in rituximab-treated patients. Functional analysis implicated these

genes in B-cell receptor (BCR) and PI3K-AKT signaling pathways, suggesting

their mechanistic roles in therapeutic resistance.
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Conclusions: This study identifies hypoxia-associated genes critical to rituximab

resistance in DLBCL, highlighting potential therapeutic targets. Their involvement

in BCR and PI3K-AKT pathways underscores novel vulnerabilities for overcoming

refractory disease. Our findings provide a foundation for developing strategies to

improve outcomes in high-risk DLBCL patients with hypoxic microenvironments.
KEYWORDS
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent

type of non-Hodgkin lymphoma (NHL) accounting for 30–40%,

which has an extensive effect on patient survival and quality of life (1).

DLBCL are aggressive malignancies with relatively mature treatment

programs. Current treatments for DLBCL include chemotherapy,

immunotherapy, and in some cases, stem cell transplantation. The

first-line standard of care for patients is R-CHOP therapy (rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone) (2–4).

While R-CHOP achieves durable remission in 60-70% of newly

diagnosed patients, many of them face poor prognosis, rapid

progress, with over 40% of patients developing refractory disease

(5). A significant number of patients develop resistance to the

therapy, leading to limited treatment options (6).

Rituximab, a monoclonal antibody targeting CD20 (encoded by

MS4A1) in B cells, has been a cornerstone of DLBCL treatment (7, 8).

The mechanism is that CD20 is highly expressed on microvilli in

conjunction with monoclonal antibodies, leading to antibody

concentration-dependent B-cell polarization and stabilization

of microvillus protrusions, and killing of tumor B-cells through

antibody-dependent cytotoxicity (ADCC) and complement-dependent

cytotoxicity (CDC) (9). Although the results for DLBCL patients have

greatly improved, the emergence of resistance remains a major clinical

challenge. Currently, the prevailing resistance mechanisms for

rituximab treatment of DLBCL are divided into endogenous and

exogenous mechanisms, with the endogenous pathway including

inhibition of intracellular drug transport, inhibition of drug activation,

and increased drug degradation and efflux. Exogenous pathways include

hypoxia, acidosis and extracellular matrix alterations (6).

Among the resistance drivers above, hypoxia emerges as a

critical microenvironmental stressor that may subvert rituximab’s

efficacy through multiple axes. Hypoxia is a hallmark of aggressive

DLBCL, which helps lymphoma cells adapt to long-term hypoxia

microenvironment by upregulating proteins involved in glucose

utilization, degrading mitochondrial proteins for potential

mitochondrial recycling, and becoming more reliant on BCL-2

and PI3K-AKT-mTOR signaling for survival (10).

Hypoxic stress profoundly remodels molecular landscapes in

Non-Hodgkin B-cell malignancies, triggering adaptive
02
modifications in key mediators of tumor survival such as glucose

transporter 1 (GLUT-1/SLC2A1), carbonic anhydrase isoforms

(CAIX/CA9 and CAXII/CA12), and vascular endothelial growth

factor (VEGF) (11). Besides, it plays an essential role in

angiogenesis, regulate glucose metabolism, and control cancer cell

invasion and metastasis (12). These hypoxia-induced alterations

drive metabolic reprogramming and angiogenesis during

malignant progression.

Variable numbers of immune system cells, stromal cells, blood

vessels, and extracellular matrix components constitute the

microenvironment around B cell lymphomas (13). While

hypoxia-induced metabolic remodeling has been well

characterized in solid tumors, its functional consequences in

DLBCL microenvironments, particularly regarding therapeutic

resistance, remain largely unexplored (14).

Understanding the molecular mechanisms underlying hypoxia-

induced rituximab resistance in DLBCL is essential for developing

viable and efficient therapeutic strategies. In our research, we aim to

identify important genes and associated pathways involved in

hypoxia-induced rituximab resistance in DLBCL with

bioinformatics tools, providing new insights into the mechanisms

of resistance and potential therapeutic targets.
2 Materials and methods

To identify differential expression genes induced by hypoxia in

DLBCL, two datasets (GSE56315 (15) and GSE104212 (12)) were

retrieved from the GEO database and analyzed. Protein–protein

interaction (PPI) network construction and functional enrichment

analysis including Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG) and gene set enrichment analysis

(GSEA) was then performed to screen for hub genes among the

differential expression genes. Least absolute Shrinkage and Selection

Operator (LASSO) regression analysis models were developed

based on the expression of common differential expression genes

in the TCGA database to identify genes with a strong association

with MS4A1 expression (16).

In order to determine potential signaling pathways regulating

MS4A1 expression (which indicates the expression level of CD20) in
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the hypoxic DLBCL tumor microenvironment, we employed the

Kaplan-Meier survival analysis to assess the survival and response

rates of PPI hub genes after rituximab treatment. To validate the

expression of the regulator genes and the hub genes in DLBCL, we

lastly conducted the reverse transcription quantitative polymerase

chain reaction (RT-qPCR) analysis on the 6 genes with clinical

significance in patients’ survival and rituximab treatment response

in 4 cell lines (Figure 1).
2.1 Gene expression data collection and
processing

GSE10846 (17), GSE56315 and GSE104212 were all obtained

from the NCBI Gene Expression Omnibus (GEO) public database.

The first two datasets were annotated with the GPL570 platform,

while the latter was annotated with GPL10558. In the GSE10846

dataset, a total of 412 DLBCL patients with complete expression

profiles and corresponding survival data were included. In the

GSE56315 dataset, the gene expression levels of 55 tumor and 33
Frontiers in Oncology 03
normal samples from DLBCL patients were profiled using a single-

channel array platform. In the GSE104212 dataset, SUDHL2 cell line

samples were subjected to hypoxic conditions (1% O2) and normoxic

controls (21%O2). The Illumina platformwas used to profile the gene

expression levels of 6 related samples, with 3 biological replicates

conducted for each microenvironment condition.

An expression matrix including distinct gene annotations was

then created by averaging the expression levels of each gene that was

probed by respective probes on the microarray chip. The datasets

GSE10846, GSE56315 and GSE104212 have already undergone

Variance Stabilizing Normalization (VSN), hence there is no need

to apply a log2-transformation to them. All the matrices underwent

standardization to achieve normally distributed expression levels.
2.2 Identification of differential expression
genes

Transcriptome-wide differential expression analysis was

systematically conducted according to fold change (FC) and t-
FIGURE 1

Research flowchart.
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test. For the GSE56315 dataset, paired-samples t-test was

implemented to quantify the gene expression difference between

the tumor and normal samples. DLBCL-signature genes (DSGs)

were defined as differential expression genes exhibiting both

statistical significance (adjusted p-value < 0.05) and biological

effect sizes, specifically requiring FC > 8.101 for upregulated genes

and < 0.135 for downregulated genes in tumor samples relative to

matched controls. Hypoxia-related genes (HRGs) within the

GSE104212 dataset were identified using FC cutoffs > 2.186 for

upregulation and < 0.444 for downregulation, with analogous

statistical criteria (adjusted p-value < 0.05), reflecting dataset-

specific dynamic ranges. The FC thresholds were established

according to the number of upregulated and downregulated genes

requiring selection. Intersectional analysis of DSGs and HRGs was

performed using the “ggvenn” R package (v0.1.9), generating a

consensus gene set designated as DLBCL-hypoxia overlap (DHO)

genes, which underwent subsequent functional characterization.
2.3 Functional profiling and pathway
enrichment analysis

To elucidate the biological properties of DSGs and HRGs, a tiered

functional annotation strategy was employed. Primary annotation

utilized the GO database (http://geneontology.org, on December 3rd,

2024), systematically categorizing genes into three domains: biological

processes (BP, involves the biological activities the gene participates in),

cellular components (CC, refers to the specific location of a gene

product in the cell), and molecular functions (MF, specifies the gene

molecular level capabilities). Enrichment significance was computed

with FDR correction (p value < 0.05). Subsequently, pathway

enrichment results were achieved through KEGG database

(https://www.kegg.jp/, on January 28th, 2025), identifying potential

signaling networks and retaining pathways with both statistical

significance (p value < 0.05) and ≥ 10 constituent genes from the

target sets. To dissect hypoxia-associated pathway perturbations

beyond individual gene effects, GSEA was executed using a non-

parametric computational framework. The analysis incorporated

1,000 phenotype-based permutations to establish empirical null

distributions, thereby controlling for dataset-specific background

signals. MSigDB (v7.5.1) includes 9 datasets covering more than

16,000 gene sets, among which “C2: curated gene sets” was selected

for this study to discover the potential signaling pathways influenced by

hypoxia mechanisms of DLBCL. Enrichment scores were calculated via

the “fgsea” R package, with significance thresholds set at p value < 0.05.

This approach enabled detection of coordinated transcriptional shifts

across functionally related gene clusters, complementing single-gene

differential expression findings.
2.4 Protein interaction network topology
analysis

Protein-protein interaction (PPI) networks for DHO genes were

constructed using the search tool for the retrieval of interacting
Frontiers in Oncology 04
genes database (STRING, http://string-db.org/, on January 26th,

2025), integrating experimental evidence, curated knowledge, and

computational predictions. Interactions with composite confidence

scores > 0.4 were retained to ensure high-confidence network

architecture (18). Topological analysis was performed using

cytoHubba (a Cytoscape plugin implementing graph-theoretical

algorithms, v0.1). The maximum clique centrality (MCC) metric

was prioritized for hub gene identification due to its stable

performance in detecting functionally critical nodes within scale-

free networks (19). MCC values were computed as:

MCC(v)   = SC∈S(v)( Cj j −   1) !

In the formula above, S(v) represents all maximal cliques which

contain node v. The top 10 nodes by MCC score were classified as

ne twork hubs , r eflec t ing the i r ro l e s a s in t eg ra t i ve

signaling coordinators.
2.5 Lasso regression analysis modeling

To delineate DHO genes influencing MS4A1 (CD20)

expression, RNA-seq expression data from 48 DLBCL specimens

of TCGA-DLBC were downloaded from The Cancer Genome Atlas

Program database (https://www.cancer.gov/ccg/research/genome-

sequencing/tcga, on January 31st, 2025) and then standardized.

LASSO regression was implemented via the “glmnet” R package,

employing L1-penalized least squares minimization. Compared

with other models, it produces more stable and reproducible

results while inherently performing feature selection by shrinking

irrelevant coefficients to zero and mitigating multicollinearity,

thereby enhancing model interpretability. In order to screen the

genes from DHOs that majorly affect the MS4A1 expression level,

significant regulatory associations were defined at p value < 0.05, the

relevant formula is shown below:

Y   =  w0   +  w1x1   +  w2x2   +   :   :   :   +  wnxn

In the formula above, Y represents the expression level of

MS4A1. xn and wn respectively denotes the expression level of the

nth selected gene and its corresponding coefficient, which quantifies

its influence on MS4A1 expression. These genes are designated as

MS4A1 regulator genes. The term “regulator” is used in a statistical/

network sense that genes whose expression level is strongly and

reproducibly associated with MS4A1 expression—without implying

direct molecular control.
2.6 Survival analysis and drug response
prediction

Progression-free survival in rituximab-treated patients from

GSE10846 dataset was analyzed using the “survminer” R package.

Patients were dichotomized into high or low expression groups by

median gene expression pretreatment. Kaplan-Meier curves were

visualized and then compared via log-rank tests, with hazard ratios

(HR) and 95% confidence intervals computed through Cox
frontiersin.org
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proportional hazards models (20). Afterwards, treatment response

predictability was assessed using receiver operating characteristic

(ROC) analysis based on 32 DLBCL patients in the TCGA-DLBC

datasets, with area under the curve (AUC) quantifying classification

accuracy. The “pROC” R package was utilized to assess the

capability of the expression levels of each of the PPI hub genes as

well as the MS4A1 regulator genes in the prediction of patients’

responses to rituximab treatment. All p-values were calculated by

Wilcoxon rank-sum test, and the 95% confidence interval was

calculated by Delong Test. Besides, KEGG pathway analysis of

MS4A1 regulators genes and hub genes were conducted via

ShinyGo 0.77 platform (http://bioinformatics.sdstate.edu/go77/,

February 3rd, 2025), applying FDR correction < 0.05 to identify

potential therapeutic target pathways.
2.7 Cell culture

Human DLBCL cell lines SU-DHL-6 (SU6), SU-DHL-8 (SU8),

RIVA (RI-1), and U-2932 were used in this study. These cell lines,

gathered from the Shanghai Institute of Hematology, located at

Ruijin Hospital, affiliated with the School of Medicine at Shanghai

Jiao Tong University in Shanghai, China, were cultured in RPMI-

1640 medium (Gibco, USA) supplemented with 10% fetal bovine

serum (FBS) and 1% penicillin-streptomycin. Cells were maintained

at 37°C in a humidified incubator with 5% CO2. For hypoxia

treatment, cells were exposed to 1% O2, 5% CO2, and balanced

N2 for 24 hours in a hypoxia chamber. Normoxia controls were

maintained at 21% O2. Each cell line was subjected to both

normoxia and hypoxia conditions, with SU-DHL-6 normoxia

serving as the external calibration for relative expression analysis

(relative expression = 1.0).
2.8 RT-qPCR

Total RNA was extracted using TRIzol reagent (Invitrogen,

USA), followed by on-column DNase digestion to remove genomic

DNA contamination. RNA quality was assessed by measuring the

A260/280 ratio (target range: 1.8-2.1) and checking integrity via 1%
Frontiers in Oncology 05
agarose gel electrophoresis or Bioanalyzer. For cDNA synthesis, 1

mg of total RNA was reverse transcribed using a mix of random

primers and oligo(dT), following the manufacturer’s instructions

for PrimeScript RT Kit (Takara, Japan). The qPCR reaction was

performed on a Roche LightCycler® 480 system using ChamQ

Universal SYBR qPCR Master Mix (Vazyme, Q711-02) with a

primer final concentration of 0.2 mM and a 1:5 dilution of cDNA.

Relative gene expression was calculated using the 2-DDCt method,

with ACTB as the housekeeping gene. The specific primer

sequences employed in this process are detailed in Table 1.
3 Results

3.1 Identification of DSGs and HRGs in
DLBCL

By establishing thresholds for fold change (FC) and p-value, a

set of 1000 DSGs were identified, consisting of 500 upregulated and

500 downregulated genes, which show differential expression in

GSE56315 between tumor and paired normal tissues (Figure 2A).

Applying the same analytical approach, another set of 1000

hypoxia-regulated genes (HRGs) were also determined, with 500

upregulated and 500 downregulated genes, reflecting the gene

express ion differences between hypoxic and normal

microenvironment conditions in GSE104212 (Figure 2B). The

heatmaps of DSGs and HRGs are shown in Supplementary Figure

S1, Supplementary Figure S2. 58 overlapping genes, known as

DLBCL-Hypoxia Overlaps (DHOs), were obtained from the

intersection of DSGs and HRGs. Among these 58 genes, 21 were

upregulated and 37 were downregulated in the hypoxic samples in

comparison to the normal samples in GSE104212 (Figures 2C, D).
3.2 Gene set enrichment analysis of DSGs
and HRGs

We performed different types of enrichment analysis of both

DSGs and HRGs across multiple databases. Notably, three groups of

databases yielded highly significant enrichment results with close
TABLE 1 Primer sequences used for RT-qPCR analysis.

Gene Forward primer (5'-3') Reverse primer (5'-3')

LGALS1 AGCAGCGGGAGGCTGTCTTTC ATCCATCTGGCAGCTTGACGGT

TIMP1 GGAGAGTGTCTGCGGATACTTC GCAGGTAGTGATGTGCAAGAGTC

ANXA1 GCGAAACAATGCACAGCGTCAAC CAACCTCCTCAAGGTGACCTGT

STAP1 GGAGGATTGAGACAGAGCAGAG CTTCTGGAGCATCTCAGTTGCC

GPNMB GTGCTCAATGGAACCTTCAGCC AGGAATCCTACTCAGCTCCAGG

CDCA7 CCAGGCTCCGACTCACAATCAAG GTACTTATCCTCTTCCTCCTCCTCCTC

ACTB CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
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associations to DLBCL, hypoxia, and rituximab, which deserve

particular attention.

In the GO database, DSGs upregulated genes were found mainly

enriched in “leukocyte migration” , “collagen-containing

extracellular matrix”, and “extracellular matrix structural

constituent” gene sets, DSGs downregulated genes weren’t

significantly enriched in any pathway. While, HRGs upregulated

genes were found significantly enriched in “cell-substrate junction”,

“immune response cell surface receptor” and “actin binding”

pathways, and HRGs downregulated genes were mainly enriched

in “antigen processing and presentation”, “COPI-coated ER to

Golgi transport vesicle”, and “peptide binding” gene set

(Figures 3A-D). In the KEGG databases, upregulated DSGs were

enriched in “Complement and coagulation cascades”, “Cytokine-

cytokine receptor interaction”, and “ECM-receptor interaction”

pathways (Figure 3E). In the Molecular Signatures Database, we

f o u n d H R G s w e r e p o t e n t i a l l y e n r i c h e d i n

“KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY” gene

set and “WP_B_CELL_RECEPTOR_SIGNALING_PATHWAY”

gene set (Figures 3F-G).
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3.3 Model establishment of the impact of
DHOs on MS4A1 expression in the TCGA-
DLBC dataset

In order to characterize the resistance to rituximab, we selected

the gene for its drug target CD20, MS4A1, as the dependent

variable. Through further LASSO regression analysis of the 58

DHOs, we pinpointed 5 genes (RNF130, MT1E, TSPO, CDCA7,

STAP1) as key risk factors influencing MS4A1 expression, which

were utilized to establish the rituximab-resistance gene regulator

model. Among many values of l, we chose the minimal value to fit

the model to achieve the highest fitting accuracy (Figures 4A, B).

Lasso analysis was applied to assess how DHOs affect MS4A1

expression. The gene regulator model is expressed as a weighted

sum of the regression coefficients and the relative expression levels

of MS4A1 regulator genes, reflecting each gene’s impact on drug

resistance:

MS4A1 = 17:673 − 0:459� RNF130 − 0:120�MT1E −

0:079� TSPO + 0:119� CDCA7 + 0:097� STAP1
FIGURE 2

Identification of DLBCL-signature genes (DSGs) and hypoxia-related genes (HRGs): (A) Volcano plot for GSE56315; (B) Volcano plot for GSE104212;
(C) Venn plot showing overlaps between DSGs and HRGs; (D) Venn plot showing overlapping gene amounts in DSGs and HRGs by the status of
upregulated and downregulated.
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All model-included MS4A1 regulator genes significantly affect

drug resistance of rituximab (p value < 0.05). Notably, RNF130,

MT1E, and CDCA7 have the largest coefficient magnitudes among

these regulator genes, which represent a stronger correlation with

MS4A1 expression.
Frontiers in Oncology 07
3.4 Protein–protein interaction network
and hub genes selection of DHOs

The 58 DHOs were analyzed for PPI network construction by

using the STRING platform. In the PPI network, by setting the
FIGURE 3

Gene set enrichment analysis: (A) GO enrichment analysis of DSGs upregulated; (B) GO enrichment analysis of DSGs downregulated (not significant);
(C) GO enrichment analysis of HRGs upregulated; (D) GO enrichment analysis of HRGs downregulated; (E) KEGG enrichment analyses of DSGs;
(F) Scatter plot of GSEA enrichment results of HRGs; (G) GSEA plot for WP_B_CELL_RECEPTOR_SIGNALING_PATHWAY, showing gene distribution
and enrichment score.
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confidence score threshold > 0.4, 34 genes had potential

connections with at least one another gene in the network

(Figure 5A). These results were then imported into Cytoscape

(v3.10.3) to create a more quantified network. Among the 34

DHOs with medium confidence scores, 25 genes had been

involved in the major network, the remaining ones were

excluded from the representation (Figure 5B). Additionally, the

maximum clique centrality (MCC) score was calculated by applying

the plug-in called CytoHubba. Furthermore, 10 genes whose

MCC score > 6 were defined as the hub genes: TIMP1, LGALS3,

LGALS1, SPP1, GPNMB, ANXA1, S100A6, SCARB2, STAT1,

CST3 (Figure 5C).
3.5 Survival analysis and rituximab
response prediction

We employed the log-rank test based on clinical data of

GSE10846 to compare the survival curvilinear direction for union

genes, consisting of MS4A1 regulator genes and PPI hub

genes, created using the Kaplan-Meier approach. The survival

analysis findings demonstrated a substantial correlation between

the expression levels of 8 genes and poor prognosis of

DLBCL patients. In particular, patients with higher expression

levels of LGALS1 (HR = 0.588, p = 0.00085), TIMP1 (HR = 0.591,

p = 0.00098), ANXA1 (HR = 0.614, p=0.0024) and STAP1 (HR =

0.633, p=0.0035) had significantly higher survival rates

after rituximab treatment than those with the lower expression

levels (Figure 6A). We further validated the gene expression of

both MS4A1 regulator genes and PPI hub genes responding

to rituximab therapy. In the TCGA-DLBC cohort, the

three genes with the best performance were GPNMB (AUC =

0.869), CDCA7 (AUC = 0.686), and STAP1 (AUC = 0.663)

(Figures 6B, C).
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3.6 KEGG pathway enrichment of union
genes

We then performed the KEGG pathway enrichment analysis of

MS4A1 regulator genes and PPI hub genes with help of the ShinyGo

platform. Over 15 significantly enriched pathways (FDRs < 0.019)

were identified in different databases, most of which are associated

with tissue inhibitors of metalloproteinases, immune cell surface

antigens and galectins (Figure 7), which may affect the efficacy of

rituximab by modulating immune cell function.
3.7 RT-qPCR validation of selected DHOs

To examine the expression of the DHOs with clinical

significance in patients’ survival and rituximab treatment

response and verify their hypoxia correlation, we assessed the

expression of 6 DHOs in 4 cell lines subjected to hypoxic and

normoxic conditions via RT-qPCR. The results showed that

GPNMB showed hypoxic response in all four cell lines, as

evidenced by a higher relative expression under hypoxic

environment. While LGALS1, CDCA7 and TIMP1 showed

hypoxic response in part of DLBCL cell lines. ANXA1 and

STAP1, on the other hand, did not exhibit the hypoxic response

in any of the four cell lines (Figure 8A-F).
4 Discussion

There is growing evidence that hypoxia significantly influences

DLBCL, as it is a defining feature of malignant tumors. Hypoxia not

only drives carcinogenesis but also presents a major hurdle for the

proliferation of immunotherapy such as CD20 and PD-1/PD-L1

inhibitors. Thus, it is imperative to identify DLBCL biomarkers
frontiersin.or
FIGURE 4

Lasso regression analysis: (A) Relationship between Mean-Squared Error (MSE) and the regularization parameter l on a logarithmic scale. The error
bars represent the variability of the MSE at each l value; (B) Paths of coefficients for each feature in Lasso regression as the regularization parameter
l varies on a logarithmic scale.
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linked to and resistance to rituximab induced by hypoxia, and to

clarify the relationship between them. In this study, we have

identified 58 Overlapping genes (DHOs) in the GEO dataset,

which represent the intersection of DSGs and HRGs. These genes

may provide crucial insights into the mechanisms underlying

hypoxia-driven DLBCL progression and rituximab resistance. In

GSEA results, we found that the characterized genes screened were

correlated with the drug target of rituximab. In particular, some of

the HRGs were significantly enriched in the B-cell receptor

pathway, which set the stage for subsequent analysis.

In addition, we screened 5 MS4A1 regulator genes from DHOs

by LASSO regression analysis based on TCGA-DLBC dataset.

Subsequently, we identified 10 hub genes within the PPI network

of DHOs. In future studies, we plan to conduct validated

experiments on these genes and CD20. Based on clinical data, we
Frontiers in Oncology 09
conducted a profound analysis of the survival outcomes and

therapy responses of MS4A1 regulator genes and PPI hub genes

following rituximab treatment, in order to confirm our analytical

results. Our analysis revealed that LGALS1, TIMP1, ANXA1, and

STAP1 were significantly associated with treatment outcomes.

These statistics highlight the critical role of LGALS1 and STAP1

in regulating MS4A1 expression, thereby influencing the

effectiveness of rituximab treatment.

In previous studies, rituximab is thought to inhibit B-cell

survival and proliferation through negative regulation of

canonical signaling pathways involving PI3K-AKT-mTOR, ERK,

and mammalian target of rapamycin (21–23). And it’s also

associated with down regulation of BCR immunoglobulin

expression (24). As an essential drug target of rituximab, surface

protein CD20 acts as a key medium of immunotherapy in various
FIGURE 5

Protein–protein interaction (PPI) networks: (A) PPI network of DHOs; (B) Connections among 25 genes with confidence score > 0.4; Node size
reflects the degree of connectivity, while color intensity corresponds to the combined score value; (C) 10 hub genes with maximum clique centrality
(MCC) score > 6; Genes with a confidence score ≤ 0.4 are excluded; Darker node colors indicate higher MCC values.
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B-cell malignancies in B cell receptor signaling pathway, which

turned out to be a limiting factor for inhibiting BCR activation. The

genes selected in this study have numerous roles related to the key

pathways mentioned above.

Galectin-1 (the product encoded by LGALS1) is a key ligand of

the pre-B cell receptor in stromal cells, mediating the synapse
Frontiers in Oncology 10
formation between pre-B cells and stromal cells, as well as the

triggering of pre-BCR signaling, thereby participating in the

regulation of the B cell development microenvironment (25, 26).

Studies have shown that LGALS1 is significantly overexpressed in

the tumor microenvironment of DLBCL, and its high expression is

closely related to resistance to CD20 monoclonal antibody therapy
FIGURE 6

Survival analysis and response prediction: (A) Kaplan-Meier curves showing the survival differences between high and low expression levels of
interested genes: LGALS1 (HR = 0.588, p = 0.00085), TIMP1 (HR = 0.590, p = 0.00098), ANXA1 (HR = 0.614, p = 0.0024), STAP1 (HR = 0.633,
p = 0.0035); (B) Boxplots of top three genes in predicting rituximab response: GPNMB (p = 0.002), CDCA7 (p = 0.015), and STAP1 (p = 0.021);
(C) Receiver operating characteristic (ROC) curves in predicting rituximab response: GPNMB (AUC = 0.869), CDCA7 (AUC = 0.686), and STAP1
(AUC = 0.663). Statistical significance is determined by Wilcoxon rank-sum test.
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(26). Mechanistically, LGALS1may enhance the activity of the BCR

downstream PI3K/AKT pathway, thereby inhibiting tumor cell

apoptosis and promoting immune evasion. Notably, in a hypoxic

microenvironment, Galectin-1 secreted by cancer-associated

fibroblasts (CAFs) is further upregulated, which may drive the

drug-resistant phenotype by activating the VEGF (27), suggesting

its potential as a target for reversing rituximab resistance.

Tissue inhibitor of metalloproteinases-1 (TIMP1) is a

multifunctional matrix metalloproteinase inhibitor that promotes

tumor cell survival and angiogenesis by binding to the STAT3

pathway (28). In anaplastic large cell lymphoma (ALCL) positive

for anaplastic lymphoma kinase (ALK+), the aberrant

overexpression of TIMP1 is directly associated with persistent

STAT3 phosphorylation, thereby accelerating tumor progression

(29). Interestingly, in patients with DLBCL, circulating TIMP1

levels have been identified as an independent prognostic

biomarker, with high serum TIMP1 levels indicating shorter

progression-free survival (30). However, under hypoxic

conditions, the expression dynamics of TIMP1 exhibit a dual

nature: it restricts tumor invasion by inhibiting MMP-9 and

reducing extracellular matrix degradation, but simultaneously

promotes chemoresistance by activating the integrin b1/FAK
signaling pathway. This paradoxical effect may explain the

complexity of its role in hypoxia-related prognostic evaluations.

However, due to the inability of this study to distinguish subtype-

specific effects, the paradoxical effect could not be validated.
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Annexin A1 (ANXA1) is a calcium-dependent phospholipid-

binding protein that participates in tumorigenesis by regulating

inflammatory responses and apoptosis (31). In DLBCL, siRNA-

mediated knockdown of ANXA1 significantly downregulates pro-

apoptotic proteins such as Bcl-2-associated X protein (Bax) and

cleaved caspase-3, while upregulating anti-apoptotic protein Bcl-2

and pro-inflammatory cytokines (e.g., TNF-a, IL-6), indicating
that ANXA1 has dual functions in promoting apoptosis and

suppressing inflammation (32). Additionally, under hypoxic

stress, ANXA1 inhibits glycolytic reprogramming mediated by

HIF-1a, thereby reducing the sensitivity of tumor cells to

rituximab. Clinical data further support the association between

low ANXA1 expression and poor prognosis in DLBCL patients,

suggesting its potential as a sensitizing target for combination

immunotherapy (33).

Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) is

a transmembrane receptor that drives tumor progression by

activating dual signaling pathways, namely Wnt/b-catenin and

PI3K-AKT-mTOR (34). In DLBCL, overexpression of GPNMB

promotes nuclear translocation of b-catenin by targeting YAP1,

thereby enhancing the transcription of cyclin D1 and c-Myc, which

in turn accelerates tumor proliferation (35). Notably, under hypoxic

conditions, GPNMB inhibits autophagy via an mTORC1-

dependent pa thway , l e ad ing to inc reased e fflux o f

chemotherapeutic drugs and resistance to rituximab. Pan-cancer

studies have also shown that the ability of GPNMB to activate the
FIGURE 7

19 significantly KEGG enriched pathways of the union of MS4A1 regulator genes and PPI hub genes.
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PI3K-AKT pathway is positively correlated with the metastatic

potential of tumors, and inhibition of its expression significantly

reduces the invasiveness of DLBCL cells (36, 37).

Cell division cycle-associated protein 7 (CDCA7) is a core target

of MYC-dependent transcriptional regulation and is aberrantly

overexpressed in MYC-rearranged diffuse large B cell lymphoma

(DLBCL) (38, 39). CDCA7 stabilizes MYC protein through AKT-
Frontiers in Oncology 12
mediated phosphorylation, thereby inhibiting the expression of

pro-apoptotic factors such as Bim and promoting lymphoma cell

transformation (40). Mechanistic studies have shown that

hypoxia enhances the transcriptional activity of CDCA7 by

enabling direct binding of HIF-1a to its promoter region,

forming a positive feedback loop of MYC-HIF-CDCA7 that

exacerbates genomic instability. Clinical cohort analysis revealed
FIGURE 8

RT-qPCR confirmed the expression of DHOs in real world under hypoxia and normoxia treatment: (A) RT-qPCR validation of LGALS1 in vitro DLBCL
cell lines; (B) RT-qPCR validation of TIMP1 in vitro DLBCL cell lines; (C) RT-qPCR validation of ANXA1 in vitro DLBCL cell lines; (D) RT-qPCR
validation of STAP1 in vitro DLBCL cell lines; (E) RT-qPCR validation of GPNMB in vitro DLBCL cell lines; (F) RT-qPCR validation of CDCA7 in vitro
DLBCL cell lines. ns, not significant; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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that high expression of CDCA7 is significantly linked to shortened

overall survival in DLBCL patients, and its co-occurrence with

MYC rearrangement indicates a poorer response to

rituximab therapy.

Signal transduction adaptor protein 1 (STAP1) is a key adaptor

molecule downstream of the BCR signaling pathway, regulating

STAT5 phosphorylation by recruiting SYK kinase (41). In chronic

myeloid leukemia (CML), STAP1 deficiency leads to impaired

STAT5 activity, thereby downregulating the expression of anti-

apoptotic genes such as Bcl-2 and Bcl-xL (42). In the context of

DLBCL, overexpression of STAP1 enhances the sustained activation

of the BCR-PI3K/AKT pathway, promoting tumor cell survival and

inducing resistance to rituximab. Hypoxic microenvironments may

further amplify the pro-survival effects of STAP1: hypoxia increases

AKT phosphorylation by downregulating PTEN expression, which

synergizes with STAP1 to maintain STAT5 signaling, ultimately

driving the expansion of drug-resistant clones.

Our RT-qPCR validation experiments revealed that some of the

identified genes like LGALS1, TIMP1, GPNMB and CDCA7 may be

involved in hypoxia-related responses, others may not be as

strongly associated with hypoxia in the context of DLBCL. These

findings refine our understanding of the potential regulatory

mechanisms underlying drug tolerance in hypoxic DLBCL tissues.

Although our LASSO-based model identifies LGALS1 and STAP1 as

top-ranking MS4A1 regulators, the correlative nature of

transcriptomic data and the validation at transcriptional level

cannot directly establish causality. To determine whether these

genes exert post-transcriptional control over MS4A1, we will

conduct CRISPR-interference knock-down of LGALS1 and STAP1

followed by flow-cytometric quantification of MS4A1, and

chromatin immunoprecipitation assays to test physical occupancy

of LGALS1/STAP1 at the MS4A1 promoter. Results from these

experiments will clarify whether the observed statistical association

reflects a mechanistic regulatory axis or an indirect co-

regulation phenomenon.

Taken together, the 15 genes that make up theMS4A1 regulator

genes and PPI hub genes show differential expression in hypoxic

DLBCL tissues and are thought to regulate cancer cells via the BCR

and PI3K/AKT signaling pathways. These genes may serve as

potential therapeutic targets and prognostic indicators for

improving rituximab sensitivity and reversing drug tolerance in

cancer cells, given their significant role in regulating MS4A1

expression in hypoxic DLBCL tumors.

We predict that the regulatory mechanisms of these potential

genes will provide novel perspectives on the mechanisms of drug

tolerance in hypoxic DLBCL tissues. Future studies should focus on

further elucidating the specific regulatory mechanisms of these

genes, particularly those that exhibited hypoxic responses, and

exploring their co-expression patterns and network associations.

This will help validate our findings and explore their clinical

implications more comprehensively.
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5 Conclusions

In summary, an integrated bioinformatics analysis was

conducted to explore hypoxia-induced rituximab resistance in

DLBCL. The findings suggest that genes such as LGALS1, TIMP1,

GPNMB and CDCA7 possibly implicated in the BCR and PI3K-

AKT signaling pathways. These genes play a crucial role in the

pathophysiological mechanisms driving hypoxia-induced rituximab

resistance. Our findings could provide opportunities for developing

new therapeutic strategies and enhance comprehensive

understanding of the mechanisms involved.
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7. Rougé L, Chiang N, Steffek M, Kugel C, Croll TI, Tam C, et al. Structure of CD20
in complex with the therapeutic monoclonal antibody rituximab. Science. (2020)
367:1224–30. doi: 10.1126/science.aaz9356

8. Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell
biology and targeted therapy. Haematologica. (2020) 105:1494–506. doi: 10.3324/
haematol.2019.243543

9. Ghosh A, Meub M, Helmerich DA, Weingart J, Eiring P, Nerreter T, et al.
Decoding the molecular interplay of CD20 and therapeutic antibodies with fast
volumetric nanoscopy. Science. (2025) 387:eadq4510. doi: 10.1126/science.adq4510

10. Daumova L, Manakov D, Petrak J, Sovilj D, Behounek M, Andera L, et al. Long-
term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular
mechanisms that are targeta ble with specific inhibitors. Cell Death Discov. (2025) 11:1–
11. doi: 10.1038/s41420-025-02341-y
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