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Background: Diffuse large B-cell lymphoma (DLBCL), an aggressive subtype of
non-Hodgkin lymphoma, exhibits heterogeneous clinical outcomes. While
rituximab, a CD20 inhibitor, combined with chemotherapy has improved
survival in some patients, resistance remains prevalent, particularly in hypoxic
tumor microenvironments. Understanding hypoxia-related genes (HRGs) and
their role in rituximab resistance is critical to addressing therapeutic challenges in
high-risk DLBCL.

Methods: Gene expression profiles from GEO datasets (GSE56315: DLBCL tumor
vs. normal; GSE104212: hypoxia-treated DLBCL cell lines) were analyzed to
identify overlapping genes between DLBCL-signature genes (DSGs) and HRGs.
protein interaction network topology analysis and Lasso regression modeling of
TCGA-DLBC dataset were employed to screen regulator and hub genes. Hub
genes linked to rituximab response and survival were validated in DLBCL patients
receiving rituximab therapy. Functional enrichment analysis was used to explore
associated pathways. The expression of the identified regulator and hub genes
was validated using reverse transcription quantitative polymerase chain reaction
(RT-gPCR).

Results: 58 overlapping genes were identified between DSGs and HRGs. PPI
network and Lasso regression revealed 5 MS4A1 regulator genes and 10 hub
genes. Among these, LGALS1 (HR = 0.588, p = 0.00085), TIMP1 (HR = 0.591,
p =0.00098), ANXAL (HR = 0.614, p=0.0024) and STAP1 (HR = 0.633, p=0.0035)
were significantly associated with overall survival and GPNMB (AUC = 0.869),
CDCA7 (AUC = 0.686), and STAP1 (AUC = 0.663) associated with treatment
response in rituximab-treated patients. Functional analysis implicated these
genes in B-cell receptor (BCR) and PI3K-AKT signaling pathways, suggesting
their mechanistic roles in therapeutic resistance.
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Conclusions: This study identifies hypoxia-associated genes critical to rituximab
resistance in DLBCL, highlighting potential therapeutic targets. Their involvement
in BCR and PI3K-AKT pathways underscores novel vulnerabilities for overcoming
refractory disease. Our findings provide a foundation for developing strategies to
improve outcomes in high-risk DLBCL patients with hypoxic microenvironments.

diffuse large B-cell lymphoma, hypoxia, rituximab, drug resistance, B cell receptor
signaling pathway, bioinformatics

1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent
type of non-Hodgkin lymphoma (NHL) accounting for 30-40%,
which has an extensive effect on patient survival and quality of life (1).
DLBCL are aggressive malignancies with relatively mature treatment
programs. Current treatments for DLBCL include chemotherapy,
immunotherapy, and in some cases, stem cell transplantation. The
first-line standard of care for patients is R-CHOP therapy (rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisone) (2-4).
While R-CHOP achieves durable remission in 60-70% of newly
diagnosed patients, many of them face poor prognosis, rapid
progress, with over 40% of patients developing refractory disease
(5). A significant number of patients develop resistance to the
therapy, leading to limited treatment options (6).

Rituximab, a monoclonal antibody targeting CD20 (encoded by
MS4A1) in B cells, has been a cornerstone of DLBCL treatment (7, 8).
The mechanism is that CD20 is highly expressed on microvilli in
conjunction with monoclonal antibodies, leading to antibody
concentration-dependent B-cell polarization and stabilization
of microvillus protrusions, and killing of tumor B-cells through
antibody-dependent cytotoxicity (ADCC) and complement-dependent
cytotoxicity (CDC) (9). Although the results for DLBCL patients have
greatly improved, the emergence of resistance remains a major clinical
challenge. Currently, the prevailing resistance mechanisms for
rituximab treatment of DLBCL are divided into endogenous and
exogenous mechanisms, with the endogenous pathway including
inhibition of intracellular drug transport, inhibition of drug activation,
and increased drug degradation and efflux. Exogenous pathways include
hypoxia, acidosis and extracellular matrix alterations (6).

Among the resistance drivers above, hypoxia emerges as a
critical microenvironmental stressor that may subvert rituximab’s
efficacy through multiple axes. Hypoxia is a hallmark of aggressive
DLBCL, which helps lymphoma cells adapt to long-term hypoxia
microenvironment by upregulating proteins involved in glucose
utilization, degrading mitochondrial proteins for potential
mitochondrial recycling, and becoming more reliant on BCL-2
and PI3K-AKT-mTOR signaling for survival (10).

Hypoxic stress profoundly remodels molecular landscapes in
Non-Hodgkin B-cell malignancies, triggering adaptive

Frontiers in Oncology

modifications in key mediators of tumor survival such as glucose
transporter 1 (GLUT-1/SLC2A1), carbonic anhydrase isoforms
(CAIX/CA9 and CAXII/CA12), and vascular endothelial growth
factor (VEGF) (11). Besides, it plays an essential role in
angiogenesis, regulate glucose metabolism, and control cancer cell
invasion and metastasis (12). These hypoxia-induced alterations
drive metabolic reprogramming and angiogenesis during
malignant progression.

Variable numbers of immune system cells, stromal cells, blood
vessels, and extracellular matrix components constitute the
microenvironment around B cell lymphomas (13). While
hypoxia-induced metabolic remodeling has been well
characterized in solid tumors, its functional consequences in
DLBCL microenvironments, particularly regarding therapeutic
resistance, remain largely unexplored (14).

Understanding the molecular mechanisms underlying hypoxia-
induced rituximab resistance in DLBCL is essential for developing
viable and efficient therapeutic strategies. In our research, we aim to
identify important genes and associated pathways involved in
hypoxia-induced rituximab resistance in DLBCL with
bioinformatics tools, providing new insights into the mechanisms
of resistance and potential therapeutic targets.

2 Materials and methods

To identify differential expression genes induced by hypoxia in
DLBCL, two datasets (GSE56315 (15) and GSE104212 (12)) were
retrieved from the GEO database and analyzed. Protein-protein
interaction (PPI) network construction and functional enrichment
analysis including Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene set enrichment analysis
(GSEA) was then performed to screen for hub genes among the
differential expression genes. Least absolute Shrinkage and Selection
Operator (LASSO) regression analysis models were developed
based on the expression of common differential expression genes
in the TCGA database to identify genes with a strong association
with MS4A1 expression (16).

In order to determine potential signaling pathways regulating
MS4A1 expression (which indicates the expression level of CD20) in
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FIGURE 1
Research flowchart.

the hypoxic DLBCL tumor microenvironment, we employed the
Kaplan-Meier survival analysis to assess the survival and response
rates of PPI hub genes after rituximab treatment. To validate the
expression of the regulator genes and the hub genes in DLBCL, we
lastly conducted the reverse transcription quantitative polymerase
chain reaction (RT-qPCR) analysis on the 6 genes with clinical
significance in patients’ survival and rituximab treatment response
in 4 cell lines (Figure 1).

2.1 Gene expression data collection and
processing

GSE10846 (17), GSE56315 and GSE104212 were all obtained
from the NCBI Gene Expression Omnibus (GEO) public database.
The first two datasets were annotated with the GPL570 platform,
while the latter was annotated with GPL10558. In the GSE10846
dataset, a total of 412 DLBCL patients with complete expression
profiles and corresponding survival data were included. In the
GSE56315 dataset, the gene expression levels of 55 tumor and 33
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[ RT-gPCR Validation ]

normal samples from DLBCL patients were profiled using a single-
channel array platform. In the GSE104212 dataset, SUDHL2 cell line
samples were subjected to hypoxic conditions (1% O,) and normoxic
controls (21% O,). The Illumina platform was used to profile the gene
expression levels of 6 related samples, with 3 biological replicates
conducted for each microenvironment condition.

An expression matrix including distinct gene annotations was
then created by averaging the expression levels of each gene that was
probed by respective probes on the microarray chip. The datasets
GSE10846, GSE56315 and GSE104212 have already undergone
Variance Stabilizing Normalization (VSN), hence there is no need
to apply a log2-transformation to them. All the matrices underwent
standardization to achieve normally distributed expression levels.

2.2 Identification of differential expression
genes

Transcriptome-wide differential expression analysis was
systematically conducted according to fold change (FC) and t-
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test. For the GSE56315 dataset, paired-samples t-test was
implemented to quantify the gene expression difference between
the tumor and normal samples. DLBCL-signature genes (DSGs)
were defined as differential expression genes exhibiting both
statistical significance (adjusted p-value < 0.05) and biological
effect sizes, specifically requiring FC > 8.101 for upregulated genes
and < 0.135 for downregulated genes in tumor samples relative to
matched controls. Hypoxia-related genes (HRGs) within the
GSE104212 dataset were identified using FC cutoffs > 2.186 for
upregulation and < 0.444 for downregulation, with analogous
statistical criteria (adjusted p-value < 0.05), reflecting dataset-
specific dynamic ranges. The FC thresholds were established
according to the number of upregulated and downregulated genes
requiring selection. Intersectional analysis of DSGs and HRGs was
performed using the “ggvenn” R package (v0.1.9), generating a
consensus gene set designated as DLBCL-hypoxia overlap (DHO)
genes, which underwent subsequent functional characterization.

2.3 Functional profiling and pathway
enrichment analysis

To elucidate the biological properties of DSGs and HRGs, a tiered
functional annotation strategy was employed. Primary annotation
utilized the GO database (http://gencontology.org, on December 3™,
2024), systematically categorizing genes into three domains: biological
processes (BP, involves the biological activities the gene participates in),
cellular components (CC, refers to the specific location of a gene
product in the cell), and molecular functions (MF, specifies the gene
molecular level capabilities). Enrichment significance was computed
with FDR correction (p value < 0.05). Subsequently, pathway
enrichment results were achieved through KEGG database
(https://www.keggjp/, on January 28", 2025), identifying potential
signaling networks and retaining pathways with both statistical
significance (p value < 0.05) and > 10 constituent genes from the
target sets. To dissect hypoxia-associated pathway perturbations
beyond individual gene effects, GSEA was executed using a non-
parametric computational framework. The analysis incorporated
1,000 phenotype-based permutations to establish empirical null
distributions, thereby controlling for dataset-specific background
signals. MSigDB (v7.5.1) includes 9 datasets covering more than
16,000 gene sets, among which “C2: curated gene sets” was selected
for this study to discover the potential signaling pathways influenced by
hypoxia mechanisms of DLBCL. Enrichment scores were calculated via
the “fgsea” R package, with significance thresholds set at p value < 0.05.
This approach enabled detection of coordinated transcriptional shifts
across functionally related gene clusters, complementing single-gene
differential expression findings.

2.4 Protein interaction network topology
analysis

Protein-protein interaction (PPI) networks for DHO genes were
constructed using the search tool for the retrieval of interacting
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genes database (STRING, http://string-db.org/, on January 26,
2025), integrating experimental evidence, curated knowledge, and
computational predictions. Interactions with composite confidence
scores > 0.4 were retained to ensure high-confidence network
architecture (18). Topological analysis was performed using
cytoHubba (a Cytoscape plugin implementing graph-theoretical
algorithms, v0.1). The maximum clique centrality (MCC) metric
was prioritized for hub gene identification due to its stable
performance in detecting functionally critical nodes within scale-
free networks (19). MCC values were computed as:

MCC(V) = ZCES(V)(|C| - 1)'

In the formula above, S(v) represents all maximal cliques which
contain node v. The top 10 nodes by MCC score were classified as
network hubs, reflecting their roles as integrative
signaling coordinators.

2.5 Lasso regression analysis modeling

To delineate DHO genes influencing MS4A1 (CD20)
expression, RNA-seq expression data from 48 DLBCL specimens
of TCGA-DLBC were downloaded from The Cancer Genome Atlas
Program database (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga, on January 31%, 2025) and then standardized.
LASSO regression was implemented via the “glmnet” R package,
employing LIl-penalized least squares minimization. Compared
with other models, it produces more stable and reproducible
results while inherently performing feature selection by shrinking
irrelevant coefficients to zero and mitigating multicollinearity,
thereby enhancing model interpretability. In order to screen the
genes from DHOs that majorly affect the MS4A1 expression level,
significant regulatory associations were defined at p value < 0.05, the
relevant formula is shown below:

Y = wy + wix; + wyx, + .. .+ WX,

In the formula above, Y represents the expression level of
MS4AI. x,, and w,, respectively denotes the expression level of the
nth selected gene and its corresponding coefficient, which quantifies
its influence on MS4A1 expression. These genes are designated as
MS4A1 regulator genes. The term “regulator” is used in a statistical/
network sense that genes whose expression level is strongly and
reproducibly associated with MS4A1 expression—without implying
direct molecular control.

2.6 Survival analysis and drug response
prediction

Progression-free survival in rituximab-treated patients from
GSE10846 dataset was analyzed using the “survminer” R package.
Patients were dichotomized into high or low expression groups by
median gene expression pretreatment. Kaplan-Meier curves were
visualized and then compared via log-rank tests, with hazard ratios
(HR) and 95% confidence intervals computed through Cox
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TABLE 1 Primer sequences used for RT-qPCR analysis.

Forward primer (5'-3')

10.3389/fonc.2025.1592441

Reverse primer (5'-3')

LGALS1

TIMP1

ANXA1

STAP1

GPNMB

CDCA7

ACTB

AGCAGCGGGAGGCTGTCTTTC

GGAGAGTGTCTGCGGATACTTC

GCGAAACAATGCACAGCGTCAAC

GGAGGATTGAGACAGAGCAGAG

GTGCTCAATGGAACCTTCAGCC

CCAGGCTCCGACTCACAATCAAG

CATGTACGTTGCTATCCAGGC

ATCCATCTGGCAGCTTGACGGT

GCAGGTAGTGATGTGCAAGAGTC

CAACCTCCTCAAGGTGACCTGT

CTTCTGGAGCATCTCAGTTGCC

AGGAATCCTACTCAGCTCCAGG

GTACTTATCCTCTTCCTCCTCCTCCTC

CTCCTTAATGTCACGCACGAT

proportional hazards models (20). Afterwards, treatment response
predictability was assessed using receiver operating characteristic
(ROC) analysis based on 32 DLBCL patients in the TCGA-DLBC
datasets, with area under the curve (AUC) quantifying classification
accuracy. The “pROC” R package was utilized to assess the
capability of the expression levels of each of the PPI hub genes as
well as the MS4AI regulator genes in the prediction of patients’
responses to rituximab treatment. All p-values were calculated by
Wilcoxon rank-sum test, and the 95% confidence interval was
calculated by Delong Test. Besides, KEGG pathway analysis of
MS4A1 regulators genes and hub genes were conducted via
ShinyGo 0.77 platform (http://bioinformatics.sdstate.edu/go77/,
February 3™, 2025), applying FDR correction < 0.05 to identify
potential therapeutic target pathways.

2.7 Cell culture

Human DLBCL cell lines SU-DHL-6 (SU6), SU-DHL-8 (SUS8),
RIVA (RI-1), and U-2932 were used in this study. These cell lines,
gathered from the Shanghai Institute of Hematology, located at
Ruijin Hospital, affiliated with the School of Medicine at Shanghai
Jiao Tong University in Shanghai, China, were cultured in RPMI-
1640 medium (Gibco, USA) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin. Cells were maintained
at 37°C in a humidified incubator with 5% CO,. For hypoxia
treatment, cells were exposed to 1% O,, 5% CO,, and balanced
N, for 24 hours in a hypoxia chamber. Normoxia controls were
maintained at 21% O,. Each cell line was subjected to both
normoxia and hypoxia conditions, with SU-DHL-6 normoxia
serving as the external calibration for relative expression analysis
(relative expression = 1.0).

2.8 RT-gPCR

Total RNA was extracted using TRIzol reagent (Invitrogen,
USA), followed by on-column DNase digestion to remove genomic
DNA contamination. RNA quality was assessed by measuring the
A260/280 ratio (target range: 1.8-2.1) and checking integrity via 1%
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agarose gel electrophoresis or Bioanalyzer. For cDNA synthesis, 1
ug of total RNA was reverse transcribed using a mix of random
primers and oligo(dT), following the manufacturer’s instructions
for PrimeScript RT Kit (Takara, Japan). The qPCR reaction was
performed on a Roche LightCycler® 480 system using ChamQ
Universal SYBR qPCR Master Mix (Vazyme, Q711-02) with a
primer final concentration of 0.2 uM and a 1:5 dilution of cDNA.
Relative gene expression was calculated using the 2°AACt method,
with ACTB as the housekeeping gene. The specific primer
sequences employed in this process are detailed in Table 1.

3 Results

3.1 Identification of DSGs and HRGs in
DLBCL

By establishing thresholds for fold change (FC) and p-value, a
set of 1000 DSGs were identified, consisting of 500 upregulated and
500 downregulated genes, which show differential expression in
GSE56315 between tumor and paired normal tissues (Figure 2A).
Applying the same analytical approach, another set of 1000
hypoxia-regulated genes (HRGs) were also determined, with 500
upregulated and 500 downregulated genes, reflecting the gene
expression differences between hypoxic and normal
microenvironment conditions in GSE104212 (Figure 2B). The
heatmaps of DSGs and HRGs are shown in Supplementary Figure
S1, Supplementary Figure S2. 58 overlapping genes, known as
DLBCL-Hypoxia Overlaps (DHOs), were obtained from the
intersection of DSGs and HRGs. Among these 58 genes, 21 were
upregulated and 37 were downregulated in the hypoxic samples in
comparison to the normal samples in GSE104212 (Figures 2C, D).

3.2 Gene set enrichment analysis of DSGs
and HRGs

We performed different types of enrichment analysis of both
DSGs and HRGs across multiple databases. Notably, three groups of
databases yielded highly significant enrichment results with close
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Identification of DLBCL-signature genes (DSGs) and hypoxia-related genes (HRGs): (A) Volcano plot for GSE56315; (B) Volcano plot for GSE104212;
(C) Venn plot showing overlaps between DSGs and HRGs; (D) Venn plot showing overlapping gene amounts in DSGs and HRGs by the status of

upregulated and downregulated.

associations to DLBCL, hypoxia, and rituximab, which deserve
particular attention.

In the GO database, DSGs upregulated genes were found mainly
enriched in “leukocyte migration”, “collagen-containing
extracellular matrix”, and “extracellular matrix structural
constituent” gene sets, DSGs downregulated genes weren’t
significantly enriched in any pathway. While, HRGs upregulated
genes were found significantly enriched in “cell-substrate junction”,
“immune response cell surface receptor” and “actin binding”
pathways, and HRGs downregulated genes were mainly enriched
in “antigen processing and presentation”, “COPI-coated ER to
Golgi transport vesicle”, and “peptide binding” gene set
(Figures 3A-D). In the KEGG databases, upregulated DSGs were
enriched in “Complement and coagulation cascades”, “Cytokine-
cytokine receptor interaction”, and “ECM-receptor interaction”
pathways (Figure 3E). In the Molecular Signatures Database, we
found HRGs were potentially enriched in
“KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY” gene
set and “WP_B_CELL_RECEPTOR_SIGNALING_PATHWAY”
gene set (Figures 3F-G).
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3.3 Model establishment of the impact of
DHOs on MS4A1 expression in the TCGA-
DLBC dataset

In order to characterize the resistance to rituximab, we selected
the gene for its drug target CD20, MS4Al, as the dependent
variable. Through further LASSO regression analysis of the 58
DHOs, we pinpointed 5 genes (RNFI130, MTIE, TSPO, CDCA?7,
STAPI) as key risk factors influencing MS4AI expression, which
were utilized to establish the rituximab-resistance gene regulator
model. Among many values of A, we chose the minimal value to fit
the model to achieve the highest fitting accuracy (Figures 4A, B).
Lasso analysis was applied to assess how DHOs affect MS4A1
expression. The gene regulator model is expressed as a weighted
sum of the regression coefficients and the relative expression levels
of MS4A1 regulator genes, reflecting each gene’s impact on drug

resistance:

MS4A1 = 17.673 — 0.459 x RNF130 —0.120 x MT1E —

0.079 x TSPO + 0.119 x CDCA7 + 0.097 x STAP1
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Gene set enrichment analysis: (A) GO enrichment analysis of DSGs upregulated; (B) GO enrichment analysis of DSGs downregulated (not significant);
(C) GO enrichment analysis of HRGs upregulated; (D) GO enrichment analysis of HRGs downregulated; (E) KEGG enrichment analyses of DSGs;

(F) Scatter plot of GSEA enrichment results of HRGs; (G) GSEA plot for WP_B_CELL_RECEPTOR_SIGNALING_PATHWAY, showing gene distribution
and enrichment score.

All model-included MS4A1I regulator genes significantly affect
drug resistance of rituximab (p value < 0.05). Notably, RNF130,

MTIE, and CDCA7 have the largest coefficient magnitudes among

3.4 Protein—protein interaction network
and hub genes selection of DHOs

these regulator genes, which represent a stronger correlation with
MS4A1 expression.

The 58 DHOs were analyzed for PPI network construction by
using the STRING platform. In the PPI network, by setting the
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Lasso regression analysis: (A) Relationship between Mean-Squared Error (MSE) and the regularization parameter A on a logarithmic scale. The error
bars represent the variability of the MSE at each A value; (B) Paths of coefficients for each feature in Lasso regression as the regularization parameter

A varies on a logarithmic scale.

confidence score threshold > 0.4, 34 genes had potential
connections with at least one another gene in the network
(Figure 5A). These results were then imported into Cytoscape
(v3.10.3) to create a more quantified network. Among the 34
DHOs with medium confidence scores, 25 genes had been
involved in the major network, the remaining ones were
excluded from the representation (Figure 5B). Additionally, the
maximum clique centrality (MCC) score was calculated by applying
the plug-in called CytoHubba. Furthermore, 10 genes whose
MCC score > 6 were defined as the hub genes: TIMP1, LGALS3,
LGALS1, SPP1, GPNMB, ANXAI, S100A6, SCARB2, STATI,
CST3 (Figure 5C).

3.5 Survival analysis and rituximab
response prediction

We employed the log-rank test based on clinical data of
GSE10846 to compare the survival curvilinear direction for union
genes, consisting of MS4AI regulator genes and PPI hub
genes, created using the Kaplan-Meier approach. The survival
analysis findings demonstrated a substantial correlation between
the expression levels of 8 genes and poor prognosis of
DLBCL patients. In particular, patients with higher expression
levels of LGALSI (HR = 0.588, p = 0.00085), TIMPI (HR = 0.591,
p = 0.00098), ANXAI (HR = 0.614, p=0.0024) and STAPI (HR =
0.633, p=0.0035) had significantly higher survival rates
after rituximab treatment than those with the lower expression
levels (Figure 6A). We further validated the gene expression of
both MS4A1 regulator genes and PPI hub genes responding
to rituximab therapy. In the TCGA-DLBC cohort, the
three genes with the best performance were GPNMB (AUC =
0.869), CDCA7 (AUC = 0.686), and STAPI (AUC = 0.663)
(Figures 6B, C).
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3.6 KEGG pathway enrichment of union
genes

We then performed the KEGG pathway enrichment analysis of
MS4A1 regulator genes and PPT hub genes with help of the ShinyGo
platform. Over 15 significantly enriched pathways (FDRs < 0.019)
were identified in different databases, most of which are associated
with tissue inhibitors of metalloproteinases, immune cell surface
antigens and galectins (Figure 7), which may affect the efficacy of
rituximab by modulating immune cell function.

3.7 RT-qPCR validation of selected DHOs

To examine the expression of the DHOs with clinical
significance in patients’ survival and rituximab treatment
response and verify their hypoxia correlation, we assessed the
expression of 6 DHOs in 4 cell lines subjected to hypoxic and
normoxic conditions via RT-qPCR. The results showed that
GPNMB showed hypoxic response in all four cell lines, as
evidenced by a higher relative expression under hypoxic
environment. While LGALSI, CDCA7 and TIMP1 showed
hypoxic response in part of DLBCL cell lines. ANXAI and
STAPI, on the other hand, did not exhibit the hypoxic response
in any of the four cell lines (Figure 8A-F).

4 Discussion

There is growing evidence that hypoxia significantly influences
DLBCL, as it is a defining feature of malignant tumors. Hypoxia not
only drives carcinogenesis but also presents a major hurdle for the
proliferation of immunotherapy such as CD20 and PD-1/PD-L1
inhibitors. Thus, it is imperative to identify DLBCL biomarkers
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FIGURE 5

Protein—protein interaction (PPI) networks: (A) PPl network of DHOs; (B) Connections among 25 genes with confidence score > 0.4; Node size
reflects the degree of connectivity, while color intensity corresponds to the combined score value; (C) 10 hub genes with maximum clique centrality
(MCC) score > 6; Genes with a confidence score < 0.4 are excluded; Darker node colors indicate higher MCC values.

linked to and resistance to rituximab induced by hypoxia, and to
clarify the relationship between them. In this study, we have
identified 58 Overlapping genes (DHOs) in the GEO dataset,
which represent the intersection of DSGs and HRGs. These genes
may provide crucial insights into the mechanisms underlying
hypoxia-driven DLBCL progression and rituximab resistance. In
GSEA results, we found that the characterized genes screened were
correlated with the drug target of rituximab. In particular, some of
the HRGs were significantly enriched in the B-cell receptor
pathway, which set the stage for subsequent analysis.

In addition, we screened 5 MS4A1 regulator genes from DHOs
by LASSO regression analysis based on TCGA-DLBC dataset.
Subsequently, we identified 10 hub genes within the PPI network
of DHOs. In future studies, we plan to conduct validated
experiments on these genes and CD20. Based on clinical data, we

Frontiers in Oncology

conducted a profound analysis of the survival outcomes and
therapy responses of MS4AI regulator genes and PPI hub genes
following rituximab treatment, in order to confirm our analytical
results. Our analysis revealed that LGALSI, TIMPI1, ANXAI, and
STAPI1 were significantly associated with treatment outcomes.
These statistics highlight the critical role of LGALSI and STAPI
in regulating MS4AI expression, thereby influencing the
effectiveness of rituximab treatment.

In previous studies, rituximab is thought to inhibit B-cell
survival and proliferation through negative regulation of
canonical signaling pathways involving PI3K-AKT-mTOR, ERK,
and mammalian target of rapamycin (21-23). And it’s also
associated with down regulation of BCR immunoglobulin
expression (24). As an essential drug target of rituximab, surface
protein CD20 acts as a key medium of immunotherapy in various
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Survival analysis and response prediction: (A) Kaplan-Meier curves showing the survival differences between high and low expression levels of

interested genes: LGALSI (HR = 0.588, p = 0.00085), TIMP1 (HR = 0.590, p = 0.00098), ANXAL (HR = 0.614, p = 0.0024), STAP1 (HR = 0.633,

p = 0.0035); (B) Boxplots of top three genes in predicting rituximab response: GPNMB (p = 0.002), CDCA7 (p = 0.015), and STAP1 (p = 0.021);
(C) Receiver operating characteristic (ROC) curves in predicting rituximab response: GPNMB (AUC = 0.869), CDCA7 (AUC = 0.686), and STAP1
(AUC = 0.663). Statistical significance is determined by Wilcoxon rank-sum test.

B-cell malignancies in B cell receptor signaling pathway, which
turned out to be a limiting factor for inhibiting BCR activation. The
genes selected in this study have numerous roles related to the key
pathways mentioned above.

Galectin-1 (the product encoded by LGALSI) is a key ligand of
the pre-B cell receptor in stromal cells, mediating the synapse
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the
triggering of pre-BCR signaling, thereby participating in the

formation between pre-B cells and stromal cells, as well as

regulation of the B cell development microenvironment (25, 26).
Studies have shown that LGALSI is significantly overexpressed in
the tumor microenvironment of DLBCL, and its high expression is
closely related to resistance to CD20 monoclonal antibody therapy
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(26). Mechanistically, LGALSI may enhance the activity of the BCR
downstream PI3K/AKT pathway, thereby inhibiting tumor cell
apoptosis and promoting immune evasion. Notably, in a hypoxic
microenvironment, Galectin-1 secreted by cancer-associated
fibroblasts (CAFs) is further upregulated, which may drive the
drug-resistant phenotype by activating the VEGF (27), suggesting
its potential as a target for reversing rituximab resistance.

Tissue inhibitor of metalloproteinases-1 (TIMPI) is a
multifunctional matrix metalloproteinase inhibitor that promotes
tumor cell survival and angiogenesis by binding to the STAT3
pathway (28). In anaplastic large cell lymphoma (ALCL) positive
for anaplastic lymphoma kinase (ALK+), the aberrant
overexpression of TIMPI is directly associated with persistent
STAT3 phosphorylation, thereby accelerating tumor progression
(29). Interestingly, in patients with DLBCL, circulating TIMPI
levels have been identified as an independent prognostic
biomarker, with high serum TIMPI levels indicating shorter
progression-free survival (30). However, under hypoxic
conditions, the expression dynamics of TIMPI exhibit a dual
nature: it restricts tumor invasion by inhibiting MMP-9 and
reducing extracellular matrix degradation, but simultaneously
promotes chemoresistance by activating the integrin B1/FAK
signaling pathway. This paradoxical effect may explain the
complexity of its role in hypoxia-related prognostic evaluations.
However, due to the inability of this study to distinguish subtype-
specific effects, the paradoxical effect could not be validated.
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Annexin Al (ANXAI) is a calcium-dependent phospholipid-
binding protein that participates in tumorigenesis by regulating
inflammatory responses and apoptosis (31). In DLBCL, siRNA-
mediated knockdown of ANXAI significantly downregulates pro-
apoptotic proteins such as Bcl-2-associated X protein (Bax) and
cleaved caspase-3, while upregulating anti-apoptotic protein Bcl-2
and pro-inflammatory cytokines (e.g., TNF-o, IL-6), indicating
that ANXAI has dual functions in promoting apoptosis and
suppressing inflammation (32). Additionally, under hypoxic
stress, ANXAI inhibits glycolytic reprogramming mediated by
HIF-10, thereby reducing the sensitivity of tumor cells to
rituximab. Clinical data further support the association between
low ANXAI expression and poor prognosis in DLBCL patients,
suggesting its potential as a sensitizing target for combination
immunotherapy (33).

Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) is
a transmembrane receptor that drives tumor progression by
activating dual signaling pathways, namely Wnt/B-catenin and
PI3K-AKT-mTOR (34). In DLBCL, overexpression of GPNMB
promotes nuclear translocation of P-catenin by targeting YAPI,
thereby enhancing the transcription of cyclin D1 and c-Myc, which
in turn accelerates tumor proliferation (35). Notably, under hypoxic
conditions, GPNMB inhibits autophagy via an mTORCI-
dependent pathway, leading to increased efflux of
chemotherapeutic drugs and resistance to rituximab. Pan-cancer
studies have also shown that the ability of GPNMB to activate the
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RT-gPCR confirmed the expression of DHOs in real world under hypoxia and normoxia treatment: (A) RT-qPCR validation of LGALS1 in vitro DLBCL
cell lines; (B) RT-gPCR validation of TIMP1 in vitro DLBCL cell lines; (C) RT-gPCR validation of ANXAL in vitro DLBCL cell lines; (D) RT-gqPCR

validation of STAP1 in vitro DLBCL cell lines; (E) RT-gPCR validation of GPNMB in vitro DLBCL cell lines; (F) RT-gPCR validation of CDCA7 in vitro
DLBCL cell lines. ns, not significant; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

PI3K-AKT pathway is positively correlated with the metastatic
potential of tumors, and inhibition of its expression significantly
reduces the invasiveness of DLBCL cells (36, 37).

Cell division cycle-associated protein 7 (CDCA?) is a core target
of MYC-dependent transcriptional regulation and is aberrantly
overexpressed in MYC-rearranged diffuse large B cell lymphoma
(DLBCL) (38, 39). CDCA?7 stabilizes MYC protein through AKT-
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mediated phosphorylation, thereby inhibiting the expression of
pro-apoptotic factors such as Bim and promoting lymphoma cell
transformation (40). Mechanistic studies have shown that
hypoxia enhances the transcriptional activity of CDCA7 by
enabling direct binding of HIF-la. to its promoter region,
forming a positive feedback loop of MYC-HIF-CDCA7 that
exacerbates genomic instability. Clinical cohort analysis revealed
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that high expression of CDCA?7 is significantly linked to shortened
overall survival in DLBCL patients, and its co-occurrence with
MYC rearrangement indicates a poorer response to
rituximab therapy.

Signal transduction adaptor protein 1 (STAPI) is a key adaptor
molecule downstream of the BCR signaling pathway, regulating
STATS5 phosphorylation by recruiting SYK kinase (41). In chronic
myeloid leukemia (CML), STAPI deficiency leads to impaired
STATS5 activity, thereby downregulating the expression of anti-
apoptotic genes such as Bcl-2 and Bcl-xL (42). In the context of
DLBCL, overexpression of STAPI enhances the sustained activation
of the BCR-PI3K/AKT pathway, promoting tumor cell survival and
inducing resistance to rituximab. Hypoxic microenvironments may
further amplify the pro-survival effects of STAPI: hypoxia increases
AKT phosphorylation by downregulating PTEN expression, which
synergizes with STAPI to maintain STAT5 signaling, ultimately
driving the expansion of drug-resistant clones.

Our RT-qPCR validation experiments revealed that some of the
identified genes like LGALSI, TIMPI, GPNMB and CDCA7 may be
involved in hypoxia-related responses, others may not be as
strongly associated with hypoxia in the context of DLBCL. These
findings refine our understanding of the potential regulatory
mechanisms underlying drug tolerance in hypoxic DLBCL tissues.
Although our LASSO-based model identifies LGALSI and STAP]I as
top-ranking MS4A1 regulators, the correlative nature of
transcriptomic data and the validation at transcriptional level
cannot directly establish causality. To determine whether these
genes exert post-transcriptional control over MS4Al, we will
conduct CRISPR-interference knock-down of LGALSI and STAPI
followed by flow-cytometric quantification of MS4AI, and
chromatin immunoprecipitation assays to test physical occupancy
of LGALSI/STAPI at the MS4AI promoter. Results from these
experiments will clarify whether the observed statistical association
reflects a mechanistic regulatory axis or an indirect co-
regulation phenomenon.

Taken together, the 15 genes that make up the MS4A 1 regulator
genes and PPI hub genes show differential expression in hypoxic
DLBCL tissues and are thought to regulate cancer cells via the BCR
and PI3K/AKT signaling pathways. These genes may serve as
potential therapeutic targets and prognostic indicators for
improving rituximab sensitivity and reversing drug tolerance in
cancer cells, given their significant role in regulating MS4Al
expression in hypoxic DLBCL tumors.

We predict that the regulatory mechanisms of these potential
genes will provide novel perspectives on the mechanisms of drug
tolerance in hypoxic DLBCL tissues. Future studies should focus on
further elucidating the specific regulatory mechanisms of these
genes, particularly those that exhibited hypoxic responses, and
exploring their co-expression patterns and network associations.
This will help validate our findings and explore their clinical
implications more comprehensively.
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5 Conclusions

In summary, an integrated bioinformatics analysis was
conducted to explore hypoxia-induced rituximab resistance in
DLBCL. The findings suggest that genes such as LGALSI, TIMP]I,
GPNMB and CDCA7 possibly implicated in the BCR and PI3K-
AKT signaling pathways. These genes play a crucial role in the
pathophysiological mechanisms driving hypoxia-induced rituximab
resistance. Our findings could provide opportunities for developing
new therapeutic strategies and enhance comprehensive
understanding of the mechanisms involved.
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