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Chongqing, China
Artificial intelligence (AI) is revolutionizing oncology, with deep learning (DL)

emerging as a pivotal technology for addressing gynecologic malignancies

(GMs). DL-based models are now widely applied to assist in clinical diagnosis

and prognosis prediction, demonstrating excellent performance in tasks such as

tumor detection, segmentation, classification, and necrosis assessment for both

primary and metastatic GMs. By leveraging radiological (e.g., X-ray, CT, MRI, and

Single Photon Emission Computed Tomography (SPECT)) and pathological

images, these approaches show significant potential for enhancing diagnostic

accuracy and prognostic evaluation. This review provides a concise overview of

deep learning techniques for medical image analysis and their current

applications in GM diagnosis and outcome prediction. Furthermore, it

discusses key challenges and future directions in the field. AI-based radiomics

presents a non-invasive and cost-effective tool for gynecologic practice, and the

integration of multi-omics data is recommended to further advance precision

medicine in oncology.
KEYWORDS
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Highlights
• Synthesizes the integrated application of AI across multi-omics data (radiomics,

pathomics, and genomics) for gynecologic malignancies, moving beyond

siloed reviews.

• Details and contrasts a comprehensive array of both traditional machine learning

and advanced deep learning architectures tailored for medical image and

data analyses.

• Critically identifies the pervasive challenge of limited, heterogeneous data and the

“black box” nature of AI as the primary barriers to clinical translation in GM care.

• Proposes standardized benchmarking and the development of explainable AI (XAI)

frameworks as essential pathways for future clinical integration.

• Discusses the emerging role of graph neural networks (GNNs) in predicting drug

synergism and analyzing complex biological networks for personalized therapy.
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1 Introduction

Advances in computer science over the past decade have

propelled the growth of artificial intelligence (AI), leading to its

widespread adoption in various scientific domains, including

medicine. AI differs from regular computer programming in

several aspects. Traditional programming algorithms generate

outputs based on input data and predefined rules, while AI has

the ability to generate rules and patterns based on both input and

output data. As a result, AI can accurately predict outcomes for

fresh input.

AI and machine learning (ML) are increasingly making their

presence felt in everyday life and are expected to have a significant

impact on digital healthcare, particularly in the areas of disease

detection and treatment, in the near future. The progress in AI and

ML technologies has enabled the development of autonomous

disease diagnosis tools. These tools utilize large datasets to

address the future difficulties of the early identification of human

diseases, particularly cancer. ML is a specific branch of AI that

focuses on developing algorithms based on neural networks. These

algorithms enable machines to learn and solve problems in a

manner similar to the human brain (1). Deep learning (DL) is a

subset of ML that aims to replicate the data processing capabilities

of the human brain. It is used to detect images and objects, process

languages, enhance drug discovery, improve precision medications,

enhance diagnosis, and aid humans in decision-making. It is
Frontiers in Oncology 02
capable of functioning and generating outputs without human

intervention (2). DL uses artificial neural networks (ANNs) to

analyze data, such as medical images. It mimics the structure of

the human neural system and consists of input, output, and hidden

multi-layer networks. These networks improve the capabilities of

machine learning processing (Figure 1A) (5).

The progress in artificial intelligence has led to the successful

use of deep learning techniques, including segmentation, detection,

classification, and augmentation, in the field of medical imaging (6,

7) (Figure 2A). This has opened up new possibilities for developing

computer-aided systems for medical imaging diagnosis. Recent

studies have shown that deep learning-based AI models can

enhance the accuracy of diagnosing, predict ing, and

prognosticating gynecologic malignancies (GMs). These models

also have the potential to improve the identification, classification,

segmentation, and visual interpretation of bone tumors. In addition,

radiomics is a sophisticated technology that is frequently used in

conjunction with artificial intelligence. It is specifically developed to

extract and analyze numerical radiological patterns using

quantitative image parameters such as geometry, size, texture, and

intensity. It is often compared to deep learning. Radiomics has been

widely recognized as a valuable tool for disease prediction,

prognosis, and monitoring (8).

When it comes to AI technology, gynecologic oncology falls

short of the level required for everyday clinical use, unlike other

medical specialties like endoscopy. The precise prediction of a
FIGURE 1

(A) Hierarchy of artificial intelligence (AI), machine learning (ML), deep learning (DL), and their applications in digital healthcare and oncology (e.g.,
precision oncology, drug discovery, and digital pathology) (3). (B) AI in omics (radiomics, pathomics, genomics, etc.) and related clinical applications
(differential diagnosis, prognosis prediction, drug effect evaluation, etc.) (4).
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definite diagnosis or prognosis significantly influences the therapy

of gynecologic malignancies. The objective of this study was to

elucidate the current status of AI research in relation to gynecologic

cancers. In addition, we examined the obstacles encountered in the

advancement of artificial intelligence in the field of gynecologic

oncology. We anticipate that this study will subsequently encourage

further research and accelerate the implementation of AI in the field

of gynecologic oncology.

This review makes several key contributions to the field. First, it

provides a comprehensive and up-to-date synthesis of the rapidly

evolving application of deep learning across various imaging and

omic modalities for gynecologic malignancies (Figure 2B). Second,

it offers a detailed technical explanation of fundamental AI/ML/DL

concepts and model architectures tailored for a clinical audience.

Third, it critically examines not only the promising results but also

the significant technical and clinical challenges hindering

widespread clinical adoption. Finally, it discusses future directions

to overcome these barriers and realize the potential of AI in

improving gynecologic oncology care.

The paper is structured as follows: Section 2 introduces

fundamental AI, ML, and DL concepts and architectures. Section

3 provides an overview of major gynecologic malignancies and

precision oncology. Section 4 details DL applications in radiological

image analysis (radiomics) for tasks like tumor detection,

classification, and prognosis prediction. Section 5 focuses on DL

for pathological image analysis, while Section 6 explores integration

with other omics data. A comparative analysis of DL versus

conventional imaging is presented in Section 7. Key technical and

clinical challenges are discussed in Section 8, followed by future
Frontiers in Oncology 03
directions in Section 9. The review concludes with a summary in

Section 10.
2 Artificial intelligence and deep
learning

Artificial intelligence (AI) is a branch of computer science

focused on replicating human intelligence to perform tasks that

typically require human expertise (9). ML, a subset of AI, employs

mathematical algorithms to enable autonomous decision-making

(10). DL, a modern ML technique, differs from traditional ML in its

data dependency, hardware requirements, feature engineering,

problem-solving approach, execution time, and interpretability

(11). DL excels in complex classification tasks using diverse

inputs such as images, text, or audio, often outperforming

classical ML methods (12). DL models consist of multiple layers

that form neural network architectures and require extensive

training on large labeled datasets.
2.1 Artificial intelligence

AI is an emerging discipline aimed at replicating, enhancing,

and extending human intelligence through theoretical and

technological innovations (13). The key components of AI

technical systems include natural language processing, image

recognition, human–computer interaction, and machine learning

(14). Natural language processing integrates linguistics, computer
FIGURE 2

(A) Workflow of artificial intelligence (AI) model development and validation in medical research. (B) A graphical overview of the application of
artificial intelligence in gynecologic malignancies.
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science, and mathematics to enable machines to understand,

interpret, and generate human language, supporting tasks such as

information retrieval, speech recognition, and translation (15).

Image processing involves acquisition, filtering, enhancement, and

feature extraction, which significantly improves computational

efficiency and reduces energy consumption compared to

traditional methods (15). Human–computer interaction

technologies, including computer graphics and augmented reality,

facilitate seamless communication between users and machines

(15). ML encompasses supervised, unsupervised, transfer,

reinforcement, and integrated learning, employing algorithms

such as deep learning, artificial neural networks, decision trees

(16), and boosting algorithms. Rule-based AI systems have

demonstrated clinical utility in lung cancer diagnosis (17),

treatment (18), and prognosis (Figure 1B) (19).

AI is increasingly applied in medical research, including

imaging, pathomics, genomics, transcriptomics, proteomics, and

metabolomics. Recent studies have highlighted its role in multi-

omics analysis for diagnosing GMs, distinguishing benign from

malignant tumors, and predicting pathological classification,

treatment response, and prognosis.
2.2 Machine learning

As a core component of AI, ML includes three primary

methodologies: supervised, unsupervised, and reinforcement learning.

In reinforcement learning, models receive rewards for correct decisions.

Unsupervised learning identifies patterns in unlabeled data, such as

through clustering algorithms. Supervised learning relies on human-

labeled data to train models, which are penalized for incorrect

predictions. Common supervised models include support vector

machines (SVMs), decision trees, and artificial neural networks.

These models vary in size, with neural networks containing

parameters ranging from hundreds to billions (20). DL, or deep

neural network, is particularly effective for image and text data due

to its robustness in handling complex structures. In precision oncology,

DL efficiently analyzes histopathologic and genomic data (Figure 3)

(22). Multimodal approaches integrating ML and DL on diverse data

types, such as histopathological images combined with genetic

information, further enhance model performance by leveraging

complementary information (Table 1) (42).

2.2.1 Support vector machine
SVM is a widely used ML method for classification and

regression. It identifies the optimal hyperplane that separates

classes in an n-dimensional space. The optimization objective for

a linear SVM is as follows:

min┬ (w, b) 1=2 wj j2,

s : t : yi (w · xi + b) ≥ 1, for all i = 1,  …, n,

where w is the weight vector defining the hyperplane, *b* is the

bias term, xi is the data points, and yi ∈ {−1, +1} is their

corresponding class labels.
Frontiers in Oncology 04
SVMs use support vectors and kernel functions to handle non-

linear separations. In GM research, SVMs have been applied to

tumor detection using features from MR images (23).

2.2.2 Decision tree
Decision trees (DTs) are supervised learning models that

identify attributes and patterns in large datasets for predictive

modeling (26). They provide interpretable visual representations

of relationships between variables (27). While DTs are easy to

construct and explain, ensemble methods like random forests

improve predictive stability by combining multiple trees.

2.2.3 Artificial neural network
ANNs are computational models inspired by biological neural

networks, capable of learning patterns from data (28). They adapt

through experience, making them suitable for classification and

prediction tasks. ANNs exhibit non-linearity, enabling them to

model complex data patterns. The output a of a neuron is

computed as follows:

a = f (on
i=1wixi + b),

where xi is the input, wi is the corresponding weight, b is the bias

term, and f is the non-linear activation function (e.g., Sigmoid and

Rectified Linear Unit (ReLU)). ANNs are structured into input,

hidden, and output layers, with the configuration denoted as X–Y–

Z, indicating the number of neurons in each layer (29).

2.2.4 k-Nearest neighbor
k-Nearest neighbor (k-NN) is a non-parametric method used

for classification and regression (30). It identifies the k most similar

training examples to a new input and assigns the majority class

among them. The choice of k affects model complexity: small kmay

lead to overfitting, while large k may include irrelevant data. Cross-

validation helps select an optimal k (31).
2.2.5 Bayesian network
Bayesian networks (BNs) represent probabilistic relationships

among variables using a directed acyclic graph (32). Nodes denote

variables, and arcs indicate dependencies. BNs estimate event

probabilities rather than provide deterministic predictions.

2.2.6 Random forest
Random forest (RF) is an ensemble learning method that

combines multiple decision trees to reduce variance and improve

accuracy (24). It trains trees on random data subsets and averages

their predictions, mitigating overfitting and providing variable

importance estimates (25).

2.2.7 Classification and regression trees
Classification and regression tree (CART) constructs binary

trees for classification or regression (33). Nodes represent decision

rules, and leaves represent outcomes. Split points are chosen to

minimize a cost function, emphasizing problem structure over

data distribution.
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2.2.8 Multivariate adaptive regression splines
Multivariate adaptive regression splines (MARS) models

relationships between continuous dependent and independent

variables using piecewise regression equations (34). It handles

categorical and continuous data, offering flexibility beyond

linear regression.

2.2.9 Gray-level co-occurrence matrix
Gray-level co-occurrence matrix (GLCM) is a texture analysis

method that computes spatial relationships between pixel pairs in

an image (35). It generates a co-occurrence matrix from which
Frontiers in Oncology 05
statistical features are extracted and applied in MRI-based feature

analysis (35).

2.2.10 Feature extraction
Feature extraction includes feature selection and transformation

(36). Selection identifies relevant variables (e.g., gene expression), while

transformation uses dimensionality reduction or neural networks to

derive latent features (37–39). Graph neural networks [graph

convolutional network (GCN), graph autoencoder (GAE), and graph

attention network (GAT)] learn low-dimensional representations from

network-structured data for predictive modeling.
FIGURE 3

Workflow of artificial intelligence (AI) in histopathology and clinical genomics (21). Solid tumors supply two data streams: 1) molecular data (DNA/
RNA sequencing, epigenomic profiles, and genetic mutations) and 2) histopathological data (H&E-stained tumor slices, with whole slide images split
into tiles for feature extraction). A model (e.g., neural network) analyzes these data to identify patterns, supporting applications including diagnosis,
grading, subtyping, mutation detection, treatment response prediction, and prognosis.
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2.2.11 Model building
The final step in radiomics integrates clinical data, risk factors,

biomarkers, and radiomic features into predictive models (e.g.,

nomograms) (40). Such models improve disease diagnosis,

classification, and prognosis, advancing personalized medicine (41).
2.3 Deep learning

DL is a powerful subset of machine learning that automatically

learns hierarchical features from large-scale datasets, such as

images, text, and audio. A typical DL model consists of an input

layer, multiple hidden layers (e.g., convolutional, pooling, recurrent,

and fully connected layers), and an output layer (43). The

convolutional layers extract local patterns through learnable
Frontiers in Oncology 06
filters, pooling layers reduce spatial dimensions and enhance

translational invariance, and fully connected layers integrate high-

level features for final prediction (44–46). DL encompasses various

advanced architectures, including deep neural networks (DNNs),

autoencoders (AEs), deep belief networks (DBNs), convolutional

neural networks (CNNs), recurrent neural networks (RNNs), and

generative adversarial networks (GANs). Among these, CNNs have

achieved remarkable success in visual recognition tasks and are

increasingly applied in medical image analysis (Figure 4) (48).

2.3.1 Convolutional neural networks
A CNN is a type of feedforward neural network commonly

composed of convolutional layers, activation functions (e.g., ReLU),

pooling layers, and fully connected layers (49). The convolutional

filters operate on local receptive fields and share parameters across
TABLE 1 Comparison of selected traditional machine learning and feature engineering methods.

Model/
method

Key principle Advantages Limitations
Typical use cases in
GMs

Support vector
machine (SVM)

Finds the optimal hyperplane that maximizes
the margin between classes.

Effective in high-dimensional
spaces; robust against
overfitting.

Sensitive to kernel/parameters;
poor scalability to large datasets.

Classification of tumors based
on radiomic features (23).

Random forest
(RF)

An ensemble of decision trees, using bagging
and feature randomness.

High accuracy; handles non-
linear data; provides feature
importance.

Less interpretable;
computationally expensive with
many trees.

Variable importance analysis;
classification and regression
(24, 25).

Decision tree
(DT)

A tree-like model of decisions and their
possible consequences.

Highly interpretable and
visualizable; easy to
understand.

Prone to overfitting; unstable to
data variations.

Base learner for ensembles;
preliminary data exploration
(26, 27).

Artificial neural
network (ANN)

Network of interconnected nodes that mimic
neurons, learning complex non-linear
relationships.

Can model highly complex
patterns; universal function
approximator.

Can be a black box; requires
careful tuning; prone to
overfitting without
regularization.

Early ML models for
classification and prediction
tasks (28, 29).

k-Nearest
Neighbor (k-NN)

Classifies a data point based on how its k-
nearest neighbors are classified.

Simple to implement and
understand; no training
phase (lazy learner).

Computationally intensive
during prediction; sensitive to
irrelevant features and k-value.

Classification based on
similarity in feature space (30,
31).

Bayesian network
(BN)

A probabilistic graphical model representing
variables and their conditional dependencies
via a Directed Acyclic Graph (DAG).

Handles uncertainty well;
interpretable causal
relationships.

Learning network structure can
be complex; requires prior
knowledge or assumptions.

Probabilistic reasoning and
risk assessment (32).

Classification and
regression tree
(CART)

A predictive model that uses a tree structure
to go from observations to target value.

Can handle both
classification and regression;
handles non-linear
relationships.

Can create over-complex trees
that do not generalize well
(overfitting).

Similar to DTs, used for
building interpretable models
(33).

Multivariate
adaptive
regression splines
(MARS)

A non-parametric regression technique that
models complex relationships by splitting data
into regions.

Flexible in modeling non-
linearities; handles high-
dimensional data.

Can become overly complex
and lose interpretability.

Modeling complex, non-linear
relationships in medical data
(34).

Gray-level co-
occurrence
matrix (GLCM)

A statistical method that examines texture by
considering the spatial relationship of pixels.

Effective for capturing
texture features in images;
well-established.

Computationally heavy; features
can be sensitive to image
rotation and scale.

Texture analysis and feature
extraction from MR/CT
images (35).

Feature
extraction

The process of transforming raw data into a
reduced representation of informative features.

Reduces data dimensionality;
can improve model
performance and efficiency.

Hand-crafted features may not
capture the most discriminative
information.

Extracting radiomic features
from medical images for
downstream ML tasks (36–39).

Model building
The integrative process of combining features,
clinical data, and algorithms to create a
predictive model.

Creates robust and clinically
applicable tools; can
incorporate multi-modal
data.

Requires domain expertise for
variable selection and
interpretation.

Building nomograms or
integrated models for
diagnosis/prognosis (40, 41).
GMs, gynecologic malignancies; ML, machine learning; DTs, decision trees.
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spatial locations, enabling efficient feature learning without manual

design. This capability has proven highly effective in tasks such as

tumor segmentation and classification in medical imaging (50).

However, CNNs generally require large amounts of annotated data

for training and are susceptible to overfitting. Regularization

methods such as dropout, weight decay, and data augmentation

are widely used to improve generalization (51).

2.3.1.1 Basic structure

The fundamental building blocks of CNNs include

the following.

Convolutional layers: These layers apply a set of learnable filters

to the input. Each filter performs convolution operations across the

input volume to produce feature maps highlighting specific patterns

such as edges, textures, or complex shapes. The discrete convolution

operation between an input image I (height H and width W) and a

kernel K (size kh×kw) is defined as follows:

(I ∗K)(i, j =okh−1
m=0okw−1

n=0 I(i +m, j + n) · K(m, n) :

This operation is performed across the entire image to produce

a feature map, highlighting the locations where the kernel’s pattern

is detected. This process allows the network to detect locally

relevant patterns such as edges, textures, and shapes (52).

Pooling layers: Pooling (e.g., max pooling or average pooling)

downsamples the feature maps, reducing computational burden

and increasing receptive field size. It also contributes to model

robustness against input variations (53).

Fully connected layers: After feature extraction and

dimensionality reduction, the features are flattened and processed
Frontiers in Oncology 07
through one or more fully connected layers. These layers perform

global reasoning and generate final outputs, such as class labels or

regression values (54).

A representative CNN structure is illustrated in Figure 5,

showing the flow from input through convolutional and pooling

layers to the fully connected output layers.
2.3.1.2 Network structures

Convolutional, ReLU, pooling, and fully connected layers are

stacked to form CNNs, which can be designed as either deep or

shallow architectures. Classical deep CNNs such as LeNet (56),

AlexNet (57), and GoogLeNet (58) are summarized in Table 2.

Training deep CNNs requires large amounts of annotated data,

which are often limited in medical imaging applications. Therefore,

shallower CNN architectures are also widely considered in this

domain, offering a balance between performance and data efficiency

(Figure 6) (59).

It is essential to ensure that the test dataset follows the same

distribution as the training set to obtain a reliable evaluation of

model performance. Common metrics include accuracy, precision,

recall, sensitivity, specificity, AUC-ROC, and F1-score. While

accuracy is sometimes used for quick model comparison, a

comprehensive evaluation typically employs multiple metrics. In

practice, a trade-off between accuracy and computational efficiency

(e.g., inference time within 100 ms) is often necessary, where

accuracy is optimized under predefined runtime constraints (75).

AlexNet: This pioneering deep CNN helped popularize deep

learning in computer vision. It consists of five convolutional layers

and three fully connected layers, utilizing ReLU activations and
FIGURE 4

Schematic of deep learning frameworks for predicting platinum sensitivity using MRI (47). Two models use distinct volumes of interest (VOIs). 1)
Primary tumor model: manually segmented primary tumor in contrast-enhanced T1-weighted imaging (CE-T1WI)/T2-weighted imaging (T2WI). 2)
Whole abdomen model: entire abdomen volume (no manual segmentation). Workflow: (A) pre-processing (segmentation/registration/normalization
of CE-T1WI/T2WI VOIs), (B) feature extraction via pre-trained 3D ResNet (transferred backbone + global average pooling to extract 1,024 features
per patient), (C) principal component analysis (PCA) for feature decomposition, (D) support vector machine (SVM)-based platinum sensitivity
prediction, and (E) heatmap visualization of convolutional layer feature maps.
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dropout regularization. AlexNet significantly outperformed

traditional methods in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 2012 (59).

VGGNet: Known for its simplicity and depth, VGGNet uses

stacks of 3 × 3 convolutional layers followed by max pooling. This

design increases network depth while preserving receptive fields,

improving feature learning capacity (31).

GoogLeNet: It introduced the Inception module, which

performs parallel convolutions with different kernel sizes and

merges their outputs. This structure captures multi-scale features

efficiently while controlling computational cost (58).

ResNet: Residual Networks address the degradation problem in

very deep networks through skip connections. These identity

mappings allow gradients to flow directly through layers, enabling

stable training of networks with hundreds of layers (60).

U-Net: Originally designed for biomedical image segmentation,

U-Net employs a symmetric encoder–decoder architecture with

skip connections. This design combines high-resolution features

from the encoder with upsampled decoder features, enabling precise

localization (61).

GNNs and Extensions: Graph neural networks (GNNs),

including GCNs, GATs, GAEs, and GraphSAGE, extend

convolutional operations to graph-structured data. They learn
Frontiers in Oncology 08
node representations by aggregating information from

neighborhoods and have shown promise in modeling biological

networks (68–72).

GANs: Generative adversarial networks consist of a generator

and a discriminator trained adversarially. GANs are highly effective

in generating realistic synthetic data and have been used for data

augmentation, domain adaptation, and image reconstruction in

medical applications (63, 64).

CAEs: Convolutional autoencoders employ convolutional layers in

both encoder and decoder components. They are used for unsupervised

representation learning, denoising, and anomaly detection (65, 66).

ViT: Vision Transformer (ViT)adapts the transformer

architecture to images by dividing them into patches and

processing them as sequences. ViT captures global contextual

information and has achieved competitive performance in several

medical imaging benchmarks (67).
3 Gynecologic malignancies

Timely identification can reduce the risk of substantial illness

and death associated with neoplasms in women. Among all types of

cancer, breast cancer is the most frequently occurring, with
FIGURE 5

Basic architecture of (A) convolutional neural network and (B) long short-term memory (LSTM) (55). (A) Regular convolutional neural networks
(CNNs) have convolutional, fully connected (FC), and pooling layers. (B) The memory cell c is controlled through a group of gate networks, including
the following: f, forget gate network; i, input gate network; and o, output gate network.
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gynecologic malignancies of endometrial, ovarian, and cervical

origin being the next most common (76). Although gynecologic

cancers are less common than breast cancer, they have higher rates

of illness and death. The American Cancer Society predicts that
Frontiers in Oncology 09
there will be approximately 116,760 new cases and 34,080 deaths

caused by gynecologic cancers in 2021 (77).

The majority of existing studies using AI have concentrated on

breast imaging. An extensive literature search on the application of
TABLE 2 Comparison of selected deep learning model architectures.

Model Key architecture Advantages Limitations
Typical use cases in
medical imaging

AlexNet
A pioneering deep CNN with 5 convolutional
and 3 fully connected layers, using ReLU
activation.

Demonstrated the power of
deep CNNs on large-scale
datasets; revolutionized the field.

By modern standards,
architecture is less efficient,
and parameters are not
optimized.

Baseline architecture for image
classification tasks (57, 59).

VGGNet
A very deep CNN with a simple architecture
using stacks of 3 × 3 convolutional layers.

High representational power
due to depth; simple and
uniform architecture.

Very computationally
expensive and parameter-heavy
due to full connections.

Feature extractor for various
medical image analysis tasks.

GoogLeNet/
Inception

Introduced the Inception module to perform
multi-level feature extraction within a single
layer.

Improved computational
efficiency; reduced number of
parameters.

Complex network design can
be harder to modify and train
from scratch.

Efficient and accurate image
classification and detection
(58).

ResNet
Introduces skip connections (residual blocks) to
solve the vanishing gradient problem in very
deep networks.

Enables training of extremely
deep networks (100+ layers);
state-of-the-art performance.

Very deep networks can still be
computationally intensive.

Backbone for many state-of-
the-art models in
classification, segmentation,
etc. (60).

U-Net
Symmetric encoder–decoder architecture with
skip connections for precise localization.

Excellent for semantic
segmentation; effective with
limited data.

Primarily designed for
segmentation, not
classification.

Biomedical image
segmentation (e.g., tumor and
organ delineation) (61, 62).

Generative
adversarial
network
(GAN)

Two networks (generator and discriminator)
trained adversarially.

Can generate synthetic data;
useful for data augmentation.

Training can be unstable
(mode collapse).

Data augmentation for rare
cancer types; image synthesis
(63, 64).

Convolutional
autoencoder
(CAE)

An autoencoder using convolutional layers to
encode input into a latent space and decode it.

Learns compressed
representations; useful for
denoising and dimensionality
reduction.

The latent space may not be as
interpretable.

Image denoising, compression,
and unsupervised feature
learning (65, 66).

Vision
Transformer
(ViT)

Applies transformer architecture with self-
attention mechanisms to image patches.

Captures global contextual
information effectively.

Requires large datasets to
outperform CNNs;
computationally heavy.

Alternative to CNNs for
image classification and
analysis (67).

Graph neural
network
(GNN)

A general class of networks that operate on
graph-structured data.

Models complex relationships
and dependencies between
entities.

Not directly applicable to
standard image data without
graph construction.

Analyzing molecular
structures, protein
interactions, and relational
data (68).

Graph
convolutional
network
(GCN)

A type of GNN that performs convolution
operations on graphs.

Efficiently captures node
features and graph topology.

Requires a defined graph
structure as input.

Node classification, link
prediction in biological
networks (69).

Graph
attention
network
(GAT)

Incorporates attention mechanisms into graph
learning, weighting the importance of
neighbors.

Dynamic and adaptive
neighborhood importance; often
outperforms GCN.

Higher computational cost
than GCN.

Tasks where some
connections are more
important than others (70).

Graph
autoencoder
(GAE)

Uses GNNs as encoders to learn node/graph
embeddings for unsupervised reconstruction.

Learns meaningful latent
representations of graph data in
an unsupervised way.

Quality of embeddings is tied
to the reconstruction task.

Dimensionality reduction,
anomaly detection in network
data (71).

GraphSAGE
An inductive framework that generates node
embeddings by sampling and aggregating
features from a node’s local neighborhood.

Generalizes to unseen nodes/
graphs; not transductive like
GCN.

Sampling process can omit
important information.

Large-scale graph applications
where new nodes are common
(72).

Graph
regularization

A technique to incorporate graph/network
information as a constraint into an
optimization problem.

Improves model performance
by enforcing smoothness or
structure on the solution.

Not a standalone model; an
add-on technique to guide
other algorithms.

Regularizing models in semi-
supervised learning (73).
CNNs, convolutional neural networks.
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AI in breast cancer imaging identified 767 studies spanning from

the 1990s to the present. However, a different search for AI in

gynecologic cancer imaging resulted in only 194 studies, with a

majority of these being published in the last 2 years.
3.1 Ovarian cancer

Ovarian cancer (OC) typically manifests with a subtle onset,

lacking any distinctive symptoms or indicators. Unfortunately, the

disease often remains undetected until its advanced stages, affecting

over 70% of patients. As a result, patients miss the window for effective

treatment. As a result, ovarian cancer has the greatest death rate among

tumors in the female reproductive system (78). The condition is

characterized by mild initial symptoms and a poor prognosis. OC is

the most prevalent and perilous form of gynecologic cancer. The four

subtypes of primary epithelial ovarian carcinoma include serous,

mucinous, endometrioid, and clear cell ovarian cancer. There is still

a shortage of effective screening techniques for ovarian cancer. Clinical

settings commonly employ the combination of transvaginal

sonography and serum carbohydrate antigen (CA) 125 to initially

identify ovarian cancer. However, this method has limited sensitivity

and specificity (79). Transvaginal sonography frequently leads to the

misidentification of benign pelvic masses as malignant ones (80), and

its accuracy is significantly affected by the doctor’s level of expertise.

However, peripheral blood testing offers the benefits of being painless,

minimally invasive, and rapid, with greater acceptance and compliance.

However, the use of CA125 is prone to false-positive results due to

interference from benign tumors, inflammation, and hormone levels.
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Prior research (81) has consistently demonstrated that the area under

the receiver operating characteristic curve (AUC) for the subject

operating characteristic curve is below 0.8, posing challenges in

meeting clinical requirements.

Debulking surgery and platinum-based chemotherapy are the

conventional methods used to treat epithelial ovarian cancer (EOC)

(82). Despite the possibility of achieving a high remission rate,

approximately 20% to 30% of patients undergo numerous cycles of

toxic medication before developing resistance to platinum-based

treatments. This delay in identifying resistance and initiating

therapy with effective drugs has proven to be a significant

obstacle in improving patient outcomes (83). At the same time,

platinum sensitivity is an easy way to find groups that respond to

poly(ADP-ribose) polymerase inhibitors (PARPi) (84). This

prediction can help prevent the unnecessary inclusion of patients

in different clinical studies. If platinum sensitivity could be

accurately anticipated, patients would derive greater advantages

from precision therapy. Nevertheless, traditional clinical markers

such as CA125 and tumor immunohistochemistry have a restricted

ability to predict outcomes (85). In modern times, biopsies followed

by mutation profiling or surgical resections have become a

customary and enlightening practice (86). Nevertheless, the high

expense, the invasive nature of the methods, the presence of genetic

variation inside the tumor, and the need for many tumor samples

greatly restrict the usefulness of molecular testing. This raises

significant concerns about the cost-effectiveness of such testing.

The difficulty lies in the absence of a reliable screening

technique, resulting in the diagnosis of ovarian cancer at an

advanced stage, typically Stage III or IV. Radiologists conduct a
FIGURE 6

The proposed ensemble network with a four-path convolutional neural network (CNN) of VGGNet, ResNet, Inception, and DenseNet (74). The
workflow involves 1) taking a CT scan image as input, 2) pre-processing the CT image to generate a segmented image of the region of interest, 3)
extracting features from the segmented image via four parallel CNN branches, and 4) fusing branch-specific features and feeding them into
subsequent networks to complete the final task (e.g., classification).
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manual analysis and interpretation of medical images from a

patient suspected of having cancer in order to determine the

specific type and stage of the cancer. As a result, the process

misclassifies cancer subtypes, introduces variances in observations

across different individuals, introduces subjectivity, and consumes a

significant amount of time. This led to the creation of a diverse

range of machine learning models aimed at forecasting and

identifying tumors. The lack of effective early screening methods

and the complexity of predicting platinum resistance represent

significant clinical challenges that artificial intelligence and deep

learning approaches are uniquely positioned to address.
3.2 Cervical cancer

The human cervix is lined by a delicate layer of tissue. The

condition known as cervical cancer occurs when a cell transforms

into a malignant one, exhibiting rapid growth and division, leading

to the formation of a tumor. Early detection of this malignancy is

crucial for successful treatment (87).

Cervical cancer is a prevalent type of cancer that affects the

female reproductive system and has a significant impact on health

and survival. It is widespread globally and particularly affects a large

number of patients in China (88). Established risk factors for

cervical cancer include human papillomavirus (HPV) infection,

chlamydia infection, smoking, overweight/obesity, an unhealthy

lifestyle, and the use of intrauterine devices (89). Prompt and

consistent screening, together with early detection, are crucial in

the prevention and management of cervical cancer. This is because

precancerous abnormalities can manifest before the onset of

cervical cancer and may progress into cancerous growths over a

span of many years (90).

Cervical cancer screening involves the identification of cervical

intraepithelial neoplasia (CIN), commonly referred to as cervical

dysplasia. CIN is categorized into three grades: CIN1 (mild), CIN2

(moderate), and CIN3 (severe) (91). The main objective of cervical

cancer screening in clinical practice is to assess the stage of CIN,

which includes normal, CIN1, and CIN2/3.

Cervical cancer screening primarily consists of three steps: a

Pap/HPV test, a colposcopy, and a pathological examination.

During a Pap test, trained medical staff retrieve a few cell samples

from the cervix and scrutinize them under a microscope to detect

squamous and intraglandular epithelial lesions (SILs). The HPV test

is a molecular test that pinpoints specific strains of the human

papillomavirus associated with cervical cancer. If the Pap/HPV test

yields abnormal results, it is recommended to undertake a

colposcopy to locate suspicious lesions and undergo pathological

investigations to determine the stage of CIN (92). Based on the

specific attributes of the lesions seen during the colposcopy, the

severity of CIN, and the patient’s medical background, a

personalized treatment plan can then be developed.

Ultrasound is a commonly employed imaging diagnostic

method for screening cervical cancer due to its simplicity and

affordability. Computed tomography (CT) offers a superior ability

to accurately display organs and soft tissue structures with subtle
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variations in density because of its high-density resolution.

However, its capacity to evaluate the infi ltration and

dissemination of cervical cancer in other regions is limited,

thereby constraining its therapeutic effectiveness. Because of the

benefits of multiparameter multisequence imaging and high tissue

resolution, MRI plain scan is highly suitable for diagnosing and

staging cervical cancer (93). However, it still has certain drawbacks.

Recently, researchers have developed several new multimodal MRI

sequences that significantly enhance the diagnostic precision of MR

images for various disorders.

Squamous cell carcinoma (SCC), adenocarcinoma (ADC), and

tumors with unclear histological subtypes are the most common

classifications for cervical cancer. SCC is the predominant form of

cervical cancer, accounting for approximately 80% of all

occurrences (94). SCC detection has greater clinical relevance for

detecting SCC than ADC. HPV testing is more sensitive than

cytology testing for cervical cancer screening, as discussed earlier

(95). HPV testing enhances the comprehension of cervical cancer

progression and identifies specific HPV genotypes, including HPV

16 and HPV 18. These two genotypes of high-risk HPV are the most

prevalent, and together, they contribute to approximately 70% of

cervical cancer cases. The Cancer Genome Atlas project has

documented that gene alterations exhibit variability across

different subtypes, indicating that distinct tumor subtypes may

require tailored therapeutic interventions (96). The classification

of cervical cancer subtypes is intriguing because it directly impacts

the development of personalized treatment approaches by

distinguishing between different types of cervical cells.

Although low-grade lesions often resolve on their own, high-

grade lesions have the capacity to advance to aggressive malignancy.

Hence, it is imperative to promptly detect high-grade lesions in

order to intervene and prevent cervical cancer. DL algorithms can

effectively and swiftly identify and categorize the extent of

abnormalities in acetic acid test images, assisting in the prompt

identification of severe abnormalities and enabling appropriate

intervention and treatment. Computer-assisted diagnosis of

cervical cancer is critical for efficiently preventing cancer

development, making it highly important in clinical practice (97).

However, the heavy reliance on cytological and colposcopic

expertise, coupled with the subjective interpretation of screenings,

creates a pressing need for automated, objective, and AI-powered

diagnostic tools to improve accessibility and consistency in

early detection.
3.3 Endometrial cancer

Endometrial carcinoma (EC) is a malignant tumor that

develops in the inner epithelial lining of the uterus. It is the sixth

most common cancer among women. Globally, 417,367 women

received EC diagnoses in 2020, leading to significant financial

burdens for both patients and caregivers (98). It is noteworthy

that Asian women are prone to developing endometrial cancer at a

younger age compared to other groups. Additionally, they tend to

have more advanced stages of the illness. Therefore, it is crucial to
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accurately diagnose patients at an early age in order to provide

appropriate management (99).

Endometrial cancer is associated with certain risk factors, such

as postmenopausal hemorrhage, diabetes mellitus, arterial

hypertension, smoking, nulliparity, and late menopause (100).

Endometrial thickness has been proposed as a screening approach

for women; however, its diagnostic effectiveness is severely limited

due to the high occurrence of false-positive results, which have been

reported to exceed 70% (101). Upon amalgamating several

characteristics, the predictive efficacy of these indices appears to

be enhanced, as indicated by recent studies reporting estimated

sensitivity and specificity rates ranging from 70% to 80% in

extensive cohorts (100).

The 2023 International Federation of Gynaecology and

Obstetrics (FIGO) staging system categorizes endometrial cancers

into two types: type I (low-grade endometrioid, grade 1 or 2) with a

generally favorable prognosis and type II (grade 3 endometrioid,

serous, clear cell, carcinosarcoma, undifferentiated/dedifferentiated)

with a poorer prognosis. These tumors originate from many

biological pathways with specific molecular changes (102). The

current guidelines for optimum care of endometrial cancer patients

include molecular categorization based on the standards published

by the World Health Organization (WHO) (103), the European

Society of Gynaecological Oncology (ESGO) (104), and the 2023

FIGO (105). WHO, the ESGO, and the 2023 FIGO guidelines all

support the molecular categorization of endometrial cancer. This

gives a more accurate prognosis and more personalized treatment

plans than traditional grading methods. Nevertheless, the adoption

of this technology is still limited, especially in underdeveloped

nations, because of resource constraints and the limited

availability of specialized diagnostic equipment. Molecular

classification, in contrast to the grading system, focuses on

examining precise genetic and molecular alterations (such as

POLEmut, MMRd, NSMP, and p53abn) in cancer cells to inform

treatment choices, rather than evaluating histological characteristics

such as cellular atypia and tumor architecture.

Currently, the diagnosis of EC primarily relies on clinical

symptoms, physical examinations, laboratory tests, transvaginal

ultrasound, pelvic ultrasonography, endometrial biopsy with

hysteroscopy, and various imaging techniques such as computed

tomography, positron emission tomography/computed

tomography, and magnetic resonance imaging. Diagnostic

purposes also utilize certain biomarkers such as CA125 and HE4

(99). The goal of these examinations is to analyze the endometrial

cells, assess the degree of disease, and identify the presence or

absence of metastases. While these approaches exhibit favorable

sensitivity in detecting EC, they also have drawbacks like limited

specificity (especially transvaginal ultrasonography), invasiveness,

discomfort, and high expense.

AI techniques in image processing are crucial for the timely

identification, tracking, diagnosis, and treatment of EC. These

methods aid the doctor in achieving a more precise disease

diagnosis and can attain a high level of accuracy that may even

surpass human recognition capabilities. Following the diagnosis of

EC, physicians will endeavor to determine the extent of its
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dissemination, a procedure referred to as staging. The cancer

stage refers to the extent to which cancer has spread across the

body. It aids in assessing the severity of the cancer, devising

appropriate treatment strategies, and predicting the potential

efficacy of the treatment. The EC is categorized into four stages

according to its extent of dissemination. The malignancy is localized

exclusively in the uterus at stage 1. Stage 2 of cancer involves cancer

cells in the uterus and cervix. In stage 3, the cancer has gone beyond

the uterus but has not reached the rectum or bladder. It may also be

found in the fallopian tubes, ovaries, vagina, and adjacent lymph

nodes. The stage 4 malignancy has metastasized beyond the pelvic

region. The presence of the condition may be observed in the

bladder, rectum, and/or other remote tissues and organs. MRI is the

most appropriate for detecting and assessing endometrial cavity EC,

tumor infiltration into the myometrium, endocervix, and extensive

spread into the parametria, as well as other cancer deposits in the

pelvic region. Quantitative assessments on MRI are more effective

than direct inspection by radiologists in identifying deep

myometrial invasion. However, there are instances where it is not

reliable to diagnose some invisible EC lesions on MRI. The rapid

advancement of DL techniques, ranging from the initial shallow

CNN model to the deep CNN model, along with the use of transfer

learning, data augmentation, and other novel techniques, has

provided motivation for their application in the automatic

identification of EC.

Surgery remains a critical component in the treatment of

endometrial cancer. The primary goals of this procedure are

twofold: first, to remove the original tumor, and second, to

accurately determine the extent of the disease and assess its

prognostic aspects. While achieving the first target may be

possible by a “simple” hysterectomy, the latter requires a more

thorough intervention. This includes a complete omentectomy,

pelvic lymphadenectomy, and lumbo-aortic lymphadenectomy

(106). However, the therapeutic value of these procedures is still a

subject of controversy. Performing invasive surgery on obese,

elderly, and fragile individuals with endometrial cancer may result

in serious consequences of significant concern. Therefore, it is

necessary to maximize the diagnostic performance before surgery.

Improving the patient selection process for surgery would lead to a

decrease in the risk of unnecessary treatment, complications, and

death by providing personalized care. The critical challenges of pre-

operative molecular classification and accurate staging for

personalized treatment planning are areas where deep learning

models applied to imaging and histopathological data show

immense potential.
3.4 Precision oncology

Precision tumor medicine entails utilizing a variety of advanced

detection technologies, such as proteomics, transcriptomics,

genomics, epigenomics, and metabonomics, to gather biological

information related to tumors. This information is then used to

guide the process of tumor screening, diagnosis, and treatment

(107). The discovery of many gene mutations has significant
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benefits for molecular subtype classification, risk prediction for

GMs, and accurate treatment strategy selection.

Precision oncology refers to the accurate identification and

analysis of individual tumor cells. It is widely recognized as a

crucial therapeutic approach in the battle against cancer and is

centered on the identification of precise molecular targets. Precision

oncology is associated with the use of personalized cancer genetic

data. Additionally, it can incorporate proteomics data by extracting

clinical signatures from electronic records stored in various

computational databases (108). AI-based, innovative molecular

techniques have been utilized in recent advancements in clinical

oncology. Next-generation sequencing (NGS) is the optimal platform

for producing large-scale datasets with high throughput. In addition,

the development of an algorithm for early-stage cancer detection

necessitates the involvement of oncology experts who possess a

background in ML. This algorithm aims to identify new

biomarkers and target sites, enable accurate diagnosis through

NGS, identify specific target sites, and enhance medical imaging

technology with high resolution (109). Precision oncology

medications are developed to selectively attack cancer cells by

exploiting their genetic heterogeneity. The system may use NGS

data to recommend personalized therapy by taking into account

individual genetic characteristics. AI is considered one of the leading

cutting-edge treatments for accurate cancer diagnosis, prognosis, and

treatment. This is achieved by analyzing large datasets from

pharmaceutical and clinical sources through systematic data

processing. The future of digital healthcare and clinical practices is

expected to shift toward the utilization of algorithm-based AI for

radiological image interpretation, e-health records, and data mining.

This transformation aims to provide more accurate solutions for

cancer treatment. The integration and interpretation of complex,

high-dimensional multi-omics data remain a major hurdle in

realizing the full promise of precision oncology, a challenge that

requires the sophisticated pattern recognition capabilities of advanced

AI and deep learning algorithms.
4 Deep radiomics-based learning in
gynecologic malignancies

Radiomics is a method that allows for the extraction of a large

number of imaging characteristics frommedical images obtained by

non-invasive procedures such as CT, MRI, and ultrasound. This

methodology was initially introduced by Lambin et al. in 2012

(110). Medical images store large amounts of digital data that

pertain to the pathophysiology of tumors (111). Furthermore,

radiomics can extract pertinent characteristics from images and

integrate and enhance the findings with clinical, pathophysiological,

and molecular biological information. This can lead to enhanced

clinical diagnosis, the prediction of tumor stage and genotype, and

the assessment of prognosis (112). The primary stages of radiomics

encompass medical image collecting, image segmentation, feature

extraction, feature screening, and model development. Radiomics

has been extensively employed in the investigation of many types of

tumors, such as thyroid, breast, liver, prostate cancer, and OC (4).
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The radiological evaluation could be enhanced by employing

radiomics to characterize tumors. These imaging features are both

reproducible and quantitative, and they enable the non-invasive

evaluation of the heterogeneity of the tumor (113). AI in radiology

is a newly developed field that involves the efficient extraction of

digital medical imaging data to gather predictive and/or prognostic

information about patients and their diseases. This is achieved by

analyzing tumor heterogeneity and indirectly assessing the

molecular and genetic features of the tumor. It has the potential

to enable the anticipation of diagnosis, treatment response, and

prognosis. The topic of research in oncology is rapidly growing in

popularity due to its broad and potential applications, particularly

in clinical decision-making and personalized treatment (114). A

robust association exists between radiomic data and clinical results.

The efficacy of this notion has already been demonstrated in

predicting several solid tumors prior to surgery (115).

The AI methodology diverges from the usual radiological

method by providing an automated, replicable, and quantitative

examination of images that surpasses human visual capabilities. AI

systems can be trained to analyze predefined criteria, such as tumor

size, tumor shape, and lymph nodes, using machine learning.

Alternatively, they can be educated without human supervision

using DL, which involves a flexible analytical process that may not

be easily understandable by humans. An instance of a free analysis

chain is the artificial neural network, which has interconnected

functions that process images as input and generate analysis as

output. The complexity of a neural network may vary depending on

the purpose and the type of input. A neural network is referred to as

“deep” when it consists of multiple layers, known as “hidden

layers”, through which information is transmitted. The greater the

number of hidden layers in a network, the deeper and more intricate

it becomes. An excessively complex model has the capability to fit

extremely well to a particular training dataset, but it runs the risk of

performing poorly when presented with fresh information. This

phenomenon is sometimes referred to as “overfitting”. Hence,

several methods of internal and external validation are employed

to mitigate this issue, which compromises the algorithm’s

applicability. The term “DL” pertains to the utilization of deep

neural networks.
4.1 Tumor lesion detection and diagnosis

Initial tumors exhibit no distinct symptoms. Various forms of

tumors may be accompanied by certain symptoms. Early detection

of symptoms allows for the possibility of early detection of

malignant tumor growth. When there is a suspicion of a tumor, a

thorough examination can be conducted to obtain a comprehensive

and unbiased diagnosis of the tumor’s state, facilitate early

treatment, and enhance the chances of a cure.

Computer-aided diagnosis in the medical profession enables

clinicians to convert subjective image data into objective image data,

facilitating clinical decision-making. Nevertheless, DL utilizing a

CNN possesses evident benefits in comparison to conventional

computer-aided diagnosis. Simplifying the extraction procedure
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allows for the automatic extraction of distinctive feature

information from datasets. Additionally, its performance is more

systematic and offers greater ease of adjustment. ML and deep data

mining techniques facilitate the identification of cancer by enabling

researchers to extract distinctive information from the data, which

may then be used for cancer prediction (31). The application of AI

extends beyond detection to nuanced prognostic prediction. Studies

have demonstrated that deep learning models can decode the

complex interplay within the tumor microenvironment, offering

insights into disease aggression and patient outcomes that surpass

traditional staging systems (116). This aligns with our findings on

the prognostic value of AI-derived features.

DL primarily utilizes X-ray, CT, and MR images for lesion

detection and classification. Plain radiographs, generated using X-

ray technology, provide image metrics that describe tumor features

such as tumor location, tumor size, and tumor margin. CT and MRI

offer enhanced radiological information and enhance the ability to

detect lesions, in comparison to simple radiographs. Several

advanced DL techniques have been documented for the

identification and categorization of GMs using CT and MRI scans

(117). CNNs, which are particularly adept at processing spatial

information in images by learning hierarchical features through

convolutional filters, have been widely employed for this task.

For instance, Chen et al. (118) developed a computation

method called “GPS-OCM” to accelerate the investigation of

metabolites associated with ovarian cancer. This method is based

on the assessment of the similarity between metabolites and

diseases. This method combines the techniques of GCN, principal

component analysis (PCA), and SVM. The GCN was employed to

extract network topology characteristics, while PCA was utilized to

decrease the dimensionality of illness and metabolite variables. The

SVM algorithm was utilized for the purpose of classification. The

studies demonstrated the exceptional precision of our approach, as

evidenced by the high values of AUC and Area Under the Precision-

Recall Curve (AUPR).

Schwartz et al. (119) developed an automated methodology that

aims to learn how to detect ovarian cancer in transgenic mice using

optical coherence tomography (OCT) recordings. The process of

classification is achieved by employing a neural network that is

capable of perceiving spatially arranged sequences of tomograms.

The authors introduced three neural network-based methodologies,

including a feed-forward network backed by VGG, a three-

dimensional (3D) convolutional neural network, and a

convolutional long short-term memory (LSTM) network. Their

experimental findings demonstrate that our models reach a

favorable level of performance without the need for manual

adjustment or the creation of specific features, despite the

presence of severe noise in OCT images. The convolutional

LSTM-based neural network, which is their most successful

model, obtains a mean AUC of 0.81 ± 0.037 (standard error).

Tanabe et al. (120) sought to create a method called complete

serum glycopeptide spectra analysis (CSGSA-AI) that uses AI and

CNN to identify abnormal glycans in blood samples from patients

with EOC. The researchers transformed the patterns of serum

glycopeptide expression into two-dimensional (2D) barcodes in
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order to enable a CNN to learn and differentiate between EOC and

non-EOC cases. The CNN model was trained using 60% of the

available samples and validated using the remaining 40%. The

researchers found that using principal component analysis-based

alignment of glycopeptides to create 2D barcodes greatly improved

the diagnostic accuracy of the approach, with a rate of 88%. By

training a CNN with 2D barcodes that were colored according to

the serum levels of CA125 and HE4, a diagnosis accuracy of 95%

was attained. They are of the opinion that this uncomplicated and

inexpensive approach will enhance the identification of EOC.

A comprehensive framework for detecting and classifying

cervical cancer was created utilizing an optimized SOD-GAN

(121). This advanced technique was designed to handle

multivariate data sources. The suggested classifier accurately

detects the cervix without the need for manual annotations or

interventions. Additionally, it categorizes cervical cells as benign,

precancerous, or cancerous lesions. The proposed approach has

been expanded to include the identification of both the kind and

stage of cervical cancer, in addition to its original purpose of

diagnosing cervical cancer. Experiments were conducted during

the training, validation, and testing phases of the proposed

optimized SOD-GAN. Throughout all stages, the proposed

approach demonstrated a high level of accuracy, reaching over

97% with a minimal loss of less than 1%. During the clinical analysis

of 852 samples, the average duration required to classify the cervical

lesion was 0.2 seconds. Therefore, the suggested method may

effectively train the network through incremental learning,

making it an ideal model for real-time cervical cancer diagnosis

and prognosis.

The study conducted by Fekri-Ershad et al. (122) introduced a

combination method that utilizes a machine learning approach.

This method is characterized by a distinct separation between the

feature extraction step and the classification stage. However, deep

networks are employed during the feature extraction stage. This

research introduces a neural network called a multi-layer

perceptron (MLP), which is trained using deep features. The

tuning of the number of hidden layer neurons is based on four

novel concepts. In addition, MLP has been fed with ResNet-34,

ResNet-50, and VGG-19 deep networks. In this technique, the

layers responsible for the classification phase are eliminated in

both CNN networks. The outputs then travel via a flattening layer

before being fed into the MLP. To enhance performance, both

CNNs are trained on correlated images utilizing the Adam

optimizer. The proposed method was assessed using the Herlev

benchmark database and achieved an accuracy of 99.23% for the

two-class scenario and 97.65% for the seven-class scenario. The

results indicate that the suggested method has achieved superior

accuracy compared to both the baseline networks and other

current methods.

Chandran et al. (123) presented two deep learning CNN

structures for the identification of cervical cancer using

colposcopy images. The first model is VGG19 (TL), while the

second model is CYENET. The VGG19 model is utilized as a

transfer learning technique in the CNN architecture for the

research. A novel model, called the Colposcopy Ensemble
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Network (CYENET), was created to automatically classify cervical

malignancies based on colposcopy images. The model’s accuracy,

specificity, and sensitivity were evaluated. The accuracy of VGG19’s

categorization was 73.3%. The findings obtained for VGG19 (TL)

were relatively satisfactory. Based on the kappa score of the VGG19

model, it may be inferred that it falls into the intermediate

classification group. The experimental results demonstrated that

the suggested CYENET displayed a high level of sensitivity,

specificity, and kappa scores, reaching 92.4%, 96.2%, and 88%,

respectively. The CYENET model demonstrates an enhanced

classification accuracy of 92.3%, surpassing the VGG19 (TL)

model by 19%.

Takahashi et al. (124) introduced an AI-powered method that

can automatically identify the areas impacted by endometrial cancer

in hysteroscopic images. A total of 177 patients with a previous

hysteroscopy were included in this study. Among them, 60 had a

normal endometrium, 21 had uterine myoma, 60 had endometrial

polyps, 15 had atypical endometrial hyperplasia, and 21 had

endometrial cancer. Three widely used deep neural network

models were utilized to implement machine learning techniques,

while a continuity analysis method was devised to improve the

precision of cancer detection. Ultimately, they examined whether

precision could be enhanced by amalgamating all the learned

models. The findings indicate that the diagnostic accuracy using

the usual technique was approximately 80% (78.91%–80.93%).

However, this accuracy improved to 89% (83.94%–89.13%) when

utilizing the proposed continuity analysis. Furthermore, when

integrating the three neural networks, the accuracy was above

90% (specifically, 90.29%). The sensitivity and specificity were

91.66% and 89.36%, respectively.
4.2 Tumor classification and typing

The process involves the detection and differentiation of non-

cancerous and cancerous growths. In order to thoroughly assess

GMs, whether they are benign or malignant, clinicians must first

make an initial determination based on symptoms as well as

laboratory and imaging tests. Currently, the most reliable method

for distinguishing between benign and malignant GMs is the use of

pathological analysis, through either a puncture biopsy or a

postoperative pathological evaluation. However, the techniques

used are invasive, and a puncture biopsy poses a specific risk of

needle route metastases (125). Consequently, several studies have

investigated the use of radiomics to detect both benign and

malignant tumors (Figure 7). Here, the ability of AI to learn

discriminative features directly from data is crucial. Deep

Convolutional Neural Networks (DCNNs), such as the AlexNet-

based architecture (57), which sparked the modern deep learning

revolution by winning the ImageNet challenge, have been adapted

for medical image analysis.

Wen et al. (127) utilized a novel 3D texture analysis technique

to assess the structural alterations in the extracellular matrix (ECM)

of various ovarian tissues, including normal ovarian stroma, high-

risk ovarian stroma, benign ovarian tumors, low-grade ovarian
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serous cancers, high-grade ovarian serous cancers, and

endometrioid tumors. The analysis was conducted using 3D

second-harmonic generation (SHG) image data. Through the

optimization of the number of textons, testing imaging weighting,

and nearest neighbor numbers, they were able to attain high

accuracy ranging from approximately 83% to 91% across different

classes. This performance significantly surpassed that of the

corresponding two-dimensional version. This application

showcases the effectiveness of using quantitative computer vision

evaluation of 3D SHG image features as a possible biomarker for

assessing cancer stage and kind. Crucially, it does not depend on

extracting basic fiber characteristics like size and alignment. This

classification algorithm is a versatile technique that relies on pre-

trained SHG images. It is particularly suitable for analyzing

dynamic fibrillar characteristics in many types of tissues.

The study conducted by Wu et al. (128) utilized a DCNN based

on AlexNet to autonomously categorize several forms of ovarian

tumors from cytological images. The DCNN is composed of five

convolutional layers, three max pooling layers, and two fully

connected layers. Next, they trained the model using two sets of

input data. The first set consisted of original image data, while the

second set consisted of augmented image data that included image

enhancement and image rotation. The testing findings are derived

from the application of the 10-fold cross-validation technique,

revealing that the accuracy of classification models has been

enhanced from 72.76% to 78.20% by utilizing augmented photos

as training data. The devised approach proved to be effective in

categorizing ovarian tumors based on cytological images.

The study conducted by Liu et al. (129) focused on the

development of a DL algorithm called the light scattering pattern-

specific convolutional network (LSPS-net). This algorithm is

integrated into a 2D light-scattering static cytometry system to

enable automatic and label-free analysis of individual cervical cells.

A classification accuracy of 95.46% was achieved for distinguishing

between normal cervical cells and malignant cells (specifically, a

mixture of C-33A and CaSki cells). When used to classify label-free

cervical cell lines, the LSPS-net cytometric approach achieves an

accuracy rate of 93.31%. Additionally, the three-way categorization

of the aforementioned cell types achieves an accuracy rate of

90.90%. Comparisons with alternative feature descriptors and

classification methods demonstrate the superior capability of deep

learning for automatically extracting features. The LSPS-net static

cytometry has the potential to be used for early screening of cervical

cancer. This method is characterized by its rapidity, automation,

and lack of labelling requirements.

The research by Ghoneim et al. (87) presented a system for

detecting and classifying cervical cancer cells using CNNs. The

cellular images were input into a CNN model in order to extract

features that have been learned at a deep level. Next, an extreme

learning machine (ELM)-based classifier was used to classify the

input photos. The CNNmodel was employed using the techniques of

transfer learning and fine-tuning. Additionally, the study explored

other classifiers, such as MLP- and AE-based classifiers, in addition to

the ELM. The Herlev database was used for conducting experiments.

The CNN-ELM-based system demonstrated a detection accuracy of
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99.5% for the two-class problem and a classification accuracy of

91.2% for the seven-class challenge.

The study conducted by Li et al. (130) aimed to develop an AI

system capable of automatically identifying and diagnosing

abnormal images of endometrial cell clumps (ECCs). The

researchers used the Li Brush to collect endometrial cells from the

patients. Slides were generated using the liquid-based cytology

technique. The slides were digitized and categorized into

malignant and benign groups. The authors put forward two

networks, namely, a U-Net segmentation network and a Dense

Convolutional Network (DenseNet) classification network, for the

purpose of image identification. Four more categorization networks

were utilized for comparative testing. We gathered a total of 113

endometrial samples, with 42 being malignant and 71 being benign.

From these samples, we created a dataset consisting of 15,913

images. The segmentation network obtained a total of 39,000
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patches of ECCs. Subsequently, a total of 26,880 patches were

utilized for training, whereas 11,520 patches were allocated for

testing. Assuming that the training set achieved a 100% success rate,

the testing set achieved an accuracy of 93.5%, a specificity of 92.2%,

and a sensitivity of 92.0%. The remaining 600 cancerous patches

were used for verification. A successful AI system was developed to

accurately categorize ECCs as either malignant or benign.

Retrospectively, clinical information and the most recent

preoperative pelvic MRI were gathered from patients who had

undergone surgery and were diagnosed with uterine endometrioid

adenocarcinoma based on pathological examination. The region of

interest (ROI) was subsequently delineated in T1-weighted imaging

(T1WI), T2-weighted imaging (T2WI), and diffusion-weighted

imaging (DWI) MR images. From these scans, both classical

radiomic features and deep learning image features were

recovered. A comprehensive radiomics nomogram model was
FIGURE 7

The workflow for cervical cancer classification using convolutional neural network (CNN) with transfer learning (126). Top: A CNN is pre-trained on
the ImageNet dataset (containing 1,000 classes, e.g., Dog, Horse, Truck, and Shark), utilizing convolutional/pooling layers, fully connected layers, and
an output layer to predict ImageNet classes. Bottom: Pre-trained weights are transferred to a new CNN for classifying seven classes of cervical cells
from the Herlev dataset. In this transfer process, convolutional/pooling layers and most fully connected layers are frozen (kept unchanged), while
only the output layer is modified to fit the seven cervical cell classes.
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developed by merging conventional radiomics features, DL image

features, and clinical information (131). The purpose of this model

is to accurately differentiate between patients at low risk and those

at high risk, as per the 2020 European Society for Medical Oncology

(ESMO)–ESGO–European Society for Radiotherapy &

Oncology (ESTRO) criteria. The effectiveness of the model was

assessed in both the training and validation sets. Utilizing

MRI-based radiomics models can be advantageous in categorizing

the preoperative risk of individuals diagnosed with uterine

endometrioid cancer.
4.3 Image segmentation and volume
computation

The most prevalent modalities for acquiring images are CT,

MRI, positron emission tomography (PET), and ultrasound (132).

Images acquired using identical machine equipment, scanning

technique, and scanning layer thickness do not require post-

processing during feature extraction. Nevertheless, images

received through various equipment and under diverse

acquisition conditions necessitate pre-processing prior to feature

extraction. The pre-processing procedure involves resampling,

standardization, and high-pass filtering in order to achieve a

consistent layer thickness and matrix size for feature extraction.

Once medical images are acquired, a specific ROI is usually

defined by a process that includes automatic segmentation, manual

segmentation, and semi-automatic segmentation. Automated

segmentation is efficient in defining lesions but lacks accuracy in

recognizing them. Furthermore, the boundaries of tumors in

medical images are often indistinct, and the presence of nearby

metastases and accompanying symptoms, such as inflammation,

can readily disrupt the contours produced by semi-automatic and

automatic segmentation. Conversely, manual segmentation is a

subjective and time-consuming process that relies on clinicians

identifying the lesions and drawing their outlines. Semi-automated

segmentation, derived from automatic segmentation, enables

doctors to manually review and correct the delineated edges,

hence enhancing the efficiency and accuracy of the delineation

process (132). Presently, the standard software for ROI mapping

comprises the MIM (www.mimsoftware.com), ITK-SNAP

(www.itksnap.com), 3D Slicer (www.slicer.org), and ImageJ

(National Institutes of Health) software.

Medical image processing has widely used CNNs, which have

shown remarkable success in tasks like image classification and

segmentation (30). Engineers specifically design CNNs (74) to

capture spatial correlations in tasks like image classification,

segmentation, and object detection. Transformers have recently

gained prominence in the field of medical image processing,

demonstrating promising outcomes in a variety of tasks. The

primary benefit of transformers compared to CNNs lies in their

capacity to effectively manage extensive dependencies and

correlations among pixels within an image. Several regions of a

medical image may exhibit interconnected characteristics that
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significantly impact the diagnosis or therapy process. Transformers,

equipped with their own self-attention mechanism, can efficiently

record these linkages and dependencies, resulting in enhanced

performance in tasks like lesion categorization or segmentation.

This self-attention mechanism allows for simultaneous processing,

making transformers more efficient than CNNs and U-Nets.

Transformers have the advantage of being trainable on large

datasets, allowing them to acquire more intricate representations of

medical images. Nevertheless, transformers exhibit suboptimal

performance when confronted with a restricted dataset size. In

medical imaging, the availability of large datasets is often limited,

making this particularly important.

DL algorithms were utilized as a diagnostic tool for analyzing CT

scan images of the ovarian area (133). The photos underwent a

sequence of pre-processing procedures, and subsequently, the tumor

was segmented using the U-Net model. The occurrences were

subsequently categorized into two groups: benign and malignant

tumors. The classification task was executed utilizing deep learning

architectures like CNN, ResNet, DenseNet, Inception-ResNet, VGG16,

and Xception, in addition to machine learning models such as Random

Forest, Gradient Boosting, AdaBoosting, and XGBoosting. The

DenseNet 121 model achieved the highest accuracy of 95.7% on this

dataset after optimizing the machine learning models.

A CNN (134) was constructed for the categorization of image

patches in cervical imaging, with the aim of detecting cervical

cancer. Manually extracted image patches of 15 × 15 pixels were

identified using a shallow-layer CNN. The CNN consisted of a

single convolutional layer, a ReLU activation function, a pooling

layer, and two fully connected layers. The patches belonged to both

VIA-positive and VIA-negative areas. The shallow CNN model has

a classification accuracy of 100%. Despite the intricate

computations involved in training a CNN, once trained, it is

capable of classifying a new image in nearly real time.

Zhang et al. (62) conducted a study where they utilized DL

techniques to achieve accurate and efficient automatic segmentation

and applicator reconstruction in planning CT for cervical cancer

brachytherapy (BT). The researchers introduced a new design for a

3D CNN called DSD-UNET. The dataset consisting of 91 patients

who had CT-based brachytherapy for cervical cancer was utilized to

train and evaluate the DSD-UNET model for the automatic

segmentation of the high-risk clinical target volume (HR-CTV) and

organs at risk (OARs). Applicator reconstruction was accomplished

through the use of DSD-UNET-based segmentation to identify the

different components of the applicator. This was followed by the

creation of a 3D skeleton and fitting a polynomial curve to it. An

assessment was conducted on the digitization of the channel routes

for the tandem and ovoid applicators during the planning of CT. This

evaluation utilized data from 32 patients. The accuracy was

statistically evaluated using the Dice similarity coefficient (DSC),

the Jaccard index (JI), and the Hausdorff distance (HD). The

segmentation performance of DSD-UNET was evaluated in

comparison to that of 3D U-Net. The results demonstrated that the

DSD-UNET method had superior performance compared to the 3D

U-Net method in segmenting all of the structures.
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The study conducted by Hodneland et al. (135) introduced a

completely automated method for segmenting the primary tumor in

endometrial cancer. This method utilizes three-dimensional

convolutional neural networks and is applied to preoperative

pelvic MR scans. Using this method, tumor volume estimates and

segmentation accuracy achieved by CNNs are equivalent to those

achieved through manual segmentation by radiologists. The use of

CNN for tumor segmentation allows for automated and accurate

identification of tumors. This technique opens up new possibilities

for quickly analyzing the entire volume of a tumor and extracting

radiomic features. These features can possibly be used to identify

prognostic markers, which in turn may lead to more personalized

treatment for patients with EC.
4.4 Gene mutation state and prediction

The human genome sequence can undergo alterations of

varying sizes, including insertions, deletions, or inversions. These

modifications can range from a single nucleotide base to an entire

chromosome (136). Genetic alterations with a length greater than

1,000 bases characterize structural variants (137). Copy number

variations (CNVs) and copy number alterations (CNAs) are big

differences in the structure of DNA that can be found in 12% of

human genomes (138). They are noteworthy due to their

association with many illnesses.

Different harmful types of EOCs have gene mutations in

different places. Approximately half of EOCs do not fix

homologous recombination properly. Homologous recombination

repair defects are primarily caused by mutations in the BRCA gene.

This gene, acknowledged as a significant tumor suppressor gene

(139), plays a crucial role in repairing DNA double-strand breaks

during homologous recombination repair. Patients with advanced

ovarian cancer who have BRCA1/2 mutations show enhanced

responsiveness to platinum-based chemotherapeutic treatments.

They also had better rates of objective remission and survival

after treatment with platinum-based medicines. Additionally,

giving poly(ADP-ribose) polymerase inhibitors to people who

have OC after platinum-based chemotherapy can greatly lower

their risk of recurrence and death (140). Importantly, by examining

the H&E-stained pathological images of tumors, a DL model can

detect genetic changes.

In the study conducted by Zhu et al. (141), they utilized the

findings from this effort to identify a cluster of putative new genes

associated with HPV infection in a protein–protein interaction

network. The random walk with restart (RWR) method was

utilized on the protein–protein interaction (PPI) network, with

known genes associated with HPV infection serving as seed nodes.

Following the application of the permutation test to filter out genes

occupying specific positions in the PPI network, genes with strong

interaction confidence and functional similarity to known HPV

infection-related genes were chosen using the association test. This

selection process involved consulting published databases such as

STRING, gene ontology (GO) terms, and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway.
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Bahado-Singh et al. (142) utilized AI to detect the most

influential epigenetic markers throughout the entire genome. Both

logistic regression and AI methods consistently achieved good

diagnostic accuracy in detecting less invasive ovarian cancer using

cytosine methylation alterations in circulating cell-free DNA.

Comparable findings were acquired for CpG markers limited to

the promoter region, which is believed to be implicated in the initial

stages of cancerous transformation. This work showcases the

potential significance of precision oncology, which involves the

integration of AI with epigenomic analysis. It proves that this

combination can be used to accurately diagnose and understand

the development of OC. The latter is crucial for the advancement

and implementation of innovative targeted therapies, such as

CRISPR-based DNA methylation.

The research by Guo et al. (143) introduced a model called

lncRNA-disease associations by combining (LDACE), which

utilizes a combination of Extreme Learning Machines (ELMs) and

Convolutional Neural Networks (CNNs) to predict potential

connections between lncRNAs and diseases using ML. More

precisely, the representation vectors are formed by combining

several types of biological information, such as functional

similarity and semantic similarity. Next, the CNN is utilized to

extract both local and global characteristics. Ultimately, ELM is

selected to conduct the prediction task in order to identify potential

correlations between lncRNAs and diseases. The proposed method

demonstrated a notable area under the receiver operating

characteristic curve of 0.9086 in leave-one-out cross-validation

and 0.8994 in fivefold cross-validation.
4.5 Metastasis

The main purpose of preoperative imaging evaluation is to

detect lymph node metastasis (LNM) by employing size criteria

(≥10 mm in the short axis). However, this approach frequently has

low sensitivity because it cannot distinguish normal-sized

metastatic lymph nodes (144). Regrettably, a majority of

metastatic lymph nodes in clinical practice measure smaller than

10 mm (145). This indicates that conventional imaging techniques

have significant challenges in detecting normal-sized lymph

node metastases.

Because of the rapid advancement of quantitative image

analytics, researchers have shifted their reliance from solely visual

indicators to concentrating on semantic features derived from

image data (146). DL is considered a highly promising technology

in the realm of medical imaging. DL has the ability to revolutionize

image analysis by automatically discovering important feature

representations for various tasks (17). DL has been utilized to

forecast LNM utilizing various medical images from diverse types

of tumors, including the prediction of LNM in normal-sized lymph

nodes (147).

An evaluation was conducted to assess the efficacy of sparse-

sampling CT with DL-based reconstruction in detecting metastasis

of malignant ovarian tumors. Urase et al. (148) acquired contrast-

enhanced CT scans (n = 141) of ovarian tumors from a publicly
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available database. These images were then randomly split into 71

training cases, 20 validation cases, and 50 test cases. The software

simulation was used to calculate the CT images slice-by-slice using

sparse sampling. The evaluation involved two deep learning models,

namely, the Residual Encoder–Decoder Convolutional Neural

Network (RED-CNN) and the deeper U-Net, which were used for

deep learning-based reconstruction. They assessed the peak signal-

to-noise ratio (PSNR) and structural similarity index measure

(SSIM) as quantitative measurements for 50 test cases. Two

radiologists conducted a separate qualitative assessment for the

following criteria: overall quality of the CT image, clarity of the iliac

artery, and visibility of peritoneal spread, liver metastasis, and

lymph node metastases. The Wilcoxon signed-rank test was

employed to compare the image quality of the two models, while

the McNemar test was used to analyze the metastatic detectability.

The average PSNR and SSIM exhibited superior performance when

using a U-Net with greater depth compared to the RED-CNN

model. In terms of visual evaluation, the deeper U-Net model

outperformed the RED-CNN model in all aspects. The

detectability of metastasis using a deeper U-Net model exceeded

95%. The utilization of deep learning-based reconstruction in

sparse-sampling CT has demonstrated its efficacy in detecting

metastases of malignant ovarian tumors and has the potential to

decrease the overall radiation exposure associated with CT scans.

Qian et al. (149) conducted a study to construct a non-invasive

DL nomogram model that uses RESOLVE-DWI and clinical

information to predict the presence of normal-sized LNM in

cervical cancer patients before surgery. The integrated model that

incorporated RESOLVE-DWI and Analog-to-Digital Converter

(ADC) maps demonstrated superior performance compared to

the two models that relied solely on single-modality MR images.

The DL nomogram, which incorporates the combination model

along with age, tumor size, FIGO stage, ADC value, and Squamous

Cell Carcinoma antigen (SCCa) level, demonstrated the highest

level of performance. It achieved AUCs of 0.890 and 0.844 in the

development and test cohorts, respectively.

Feng et al. (150) claimed that by analyzing histological images,

AI can predict LNM in EC. The present study used a DL neural

network technique to complete a binary classification task and

forecast the existence or absence of lymph node metastasis in

esophageal cancer. The model was validated using an

independent cohort. EC encompasses a collection of diverse

tumors with variations in their physical and cellular

characteristics. Curettage specimens are insufficient for capturing

the complete range of tumor features. Therefore, in their

investigation, the researchers used pathological images of EC

derived from paraffin-embedded tissues following surgical

excision. This approach allowed for the optimal visualization of

the morphological features of cancerous tissue as well as the

acquisition of highly indicative information regarding lymph

node metastasis. The most prominent DL features for predicting

LNM are emphasized to provide pathologists with a clear

understanding and to ensure transparency in the creation of the

multiple instance learning (MIL) model.
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4.6 Efficacy against chemotherapy and
platinum resistance

Despite significant progress in precision medicine, properly and

proactively identifying platinum resistance in patients continues to

be a challenging task. If a patient is expected to have a high

likelihood of becoming resistant to platinum-based treatment, it is

feasible to provide a more efficacious treatment than the standard of

care, which often involves a combination of chemotherapy drugs,

including platinum. For instance, we can optimize the strategy and

timing of the surgical procedure for secondary cytoreductive

surgery, thereby reducing the growth potential of the drug-

resistant subclonal tumor population (Figure 8) (151).

Simultaneously, people who are resistant to drugs may undergo

more regular testing to quickly identify tumor recurrence. Also,

platinum resistance is an easy way to find out how sensitive patients

are to PARPi (152). As a result, making precise predictions of

platinum resistance in patients will reduce the need for wasteful and

burdensome clinical testing. Hence, precisely identifying platinum-

resistant patients will enable them to fully leverage the advantages of

precision medicine. Predicting treatment response requires models

that can capture subtle, prognostic patterns in complex data. Deep

learning models, particularly those leveraging PET/CT imaging, are

adept at this.

Lei et al. (47) conducted a study that developed a

comprehensive DL model to accurately predict the platinum

sensitivity of patients diagnosed with EOC. It was very accurate

and precise that the entire abdomen model, which used the whole

abdomen as the volume of interest (VOI) on the axial CE-T1WI and

T2WI sequences, predicted platinum sensitivity in people with

EOC. Strong calibration and decision curves confirmed the

validity of the model. Also, the algorithm did a good job of telling

the difference between people who had a high chance of recurrence

and those who did not, showing good accuracy in predicting

progression-free survival (PFS) for 1 year. Furthermore, the

heatmaps appeared to link the spatial arrangement of regions

with significant levels of reaction to the susceptibility of platinum.

Yu et al. (153) created convolutional neural network models to

analyze cellular patterns and morphology in a group of patients

diagnosed with serous ovarian cancer. Their models effectively

detected ovarian cancer cells, categorized histological grade and

transcriptome subgroups, and forecasted patients’ reactions to

platinum-based chemotherapy. They additionally performed

differential expression and enrichment analyses to establish

connect ions between the resul ts of our quanti tat ive

histopathology research and the underlying biological pathways.

Crucially, these methods rely solely on data and may easily adapt to

include new types of tumors or the effectiveness of innovative

treatment techniques. The advancement of these prediction

systems will provide essential data for precision cancer care.

Zhuang et al. (154) provided a DL method for predicting

platinum resistance in patients by analyzing their PET/CT

medical images. Their solution provides enhanced detection

efficiency in comparison to traditional methods, as it employs a
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comprehensive end-to-end workflow. The suggested deep model

improves the accuracy of classification by combining the Squeeze-

and-Excitation Block (SE Block) and the Spatial Pyramid Pooling

Layer (SPPLayer) to group important data and conduct multilevel

pooling. It was the most accurate at predicting platinum resistance

in patients when the SE-SPP-DenseNet model was used. This model

combines the DenseNet with the SE Block and SPPLayer.
4.7 Prognostic monitoring

DL algorithms have shown promise in forecasting the response

to treatment in patients with gynecologic tumors using MRI data.

Recent research has shown that CNNs may accurately forecast

results, such as tumor reduction, local control, and overall survival,

based on MR images taken before and after therapy for different

types of cancer (155). Experts have looked into how multi-

parametric MRI can be used to better predict how well different
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types of cancer will respond to treatment (156). This is performed

by combining different imaging sequences.

Using DL techniques along with radiomics, the process of

obtaining detailed information from medical images has made it

more accurate to predict treatment response and prognosis (157).

Treatment programs tailored to individual patients and improved

tracking of patient progress are potential outcomes of this

methodology. However, extensive, forward-looking studies have

yet to confirm the practical usefulness of these models.

Using the ESTIMATE algorithms and the tumor-infiltrating

immune cell (TIC) profile, Ma et al. (158) looked closely at the

tumor microenvironment (TME) and found gene expression

patterns in people who had EC. They found that TNFRSF4 is

closely linked to the prognosis of EC and serves as a significant

indicator of TME remodeling. Furthermore, they used clinical

specimens to confirm the expression of TNFRSF4 in EC and

nearby normal tissues, thereby supporting their findings. The

study looked at the links between TNFRSF4 and immune-related
FIGURE 8

Schematic view of relevant data and the generic pipeline of synergistic drug combination prediction using GNNs (69). The pipeline includes (a) drug
combination synergy data from in vitro screening and clinical trials, illustrating synergy assessment methods (e.g., Loewe and Bliss); (b) structuring
multimodal data (e.g., molecular graphs and protein–protein interactions) into network representations; (c) utilizing graph neural networks (GNNs) to
convert graph data into numerical feature representations; and (d) predicting drug synergy through classification or regression models and
evaluating their performance using standard metrics (e.g., AUC, ACC, and RMSE). AUC, area under the receiver operating characteristic curve; ACC,
accuracy; RMSE, root mean square error.
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markers like CD4, CD8, and FOXP3, as well as clinicopathologic

features. Overall, their results suggest that TNFRSF4 could be used

as a predictive biomarker because it plays a big role in the EC

tumor microenvironment.

During the early stages, endometrial cancer does not show any

symptoms. Additionally, there is a paucity of time-series correlation

patterns that can help understand the transfer of clinical pathways,

recurrence, and therapy for this illness. This study (159) evaluated the

effectiveness of the artificial immune system (AIS) in conjunction with

bootstrap sampling against a range of machine learning techniques,

including both supervised and unsupervised learning approaches. The

proposed method was compared with the backpropagation neural

network and SVM using a radial basis function kernel, fuzzy c-means,

and ant k-means to assess the sensitivity and specificity of the datasets.

Additionally, the proposed method was used to predict the important

factors of recurrent endometrial cancer.

Zhao et al. (160) conducted a retrospective study where they

gathered data from 536 EC patients treated at Hubei Cancer

Hospital between January 2017 and October 2022 and 487 EC

patients from Tongji Hospital between January 2017 and December

2020 to use as an external validation group. The random forest model,

the gradient elevator model, the support vector machine model, the

artificial neural network model (ANNM), and the decision tree model

were used to build the ovarian metastatic predictive model for EC

patients. The effectiveness of five ML models was assessed using

receiver operating characteristic curves and decision curve analysis.

In order to identify possible predictors of ovarian metastasis in EC

patients, factors such as tumor differentiation, lymph node metastasis,

CA125, HE4, Alb, and LH can be utilized to develop a predictive model

for ovarian metastasis in EC patients.
4.8 Drug synergism prediction

Combinations of cancer medicines can potentially provide

therapeutic advantages by increasing the effectiveness of treatment

and preventing resistance to single-drug therapy (161). Occasionally,

the combined treatments may supply the individual pharmaceuticals at

lower dosages compared to their use as single therapies. This approach

helps to decrease the likelihood of treatment toxicity and other adverse

effects. High-throughput screening (HTS) frequently assesses the

phenotypic effects of drug combinations in preclinical cancer models

to impartially investigate potential therapeutic combinations.

Nevertheless, despite the use of automated HTS gear, the systematic

screening of medication combinations has become difficult due to the

exponential increase in the number of viable combinations. This is

mostly due to the significant amount of time and patient specimens

necessary for combinatorial testing. Moreover, the mechanisms that

cause cancer to advance or develop resistance to treatment may vary

significantly among patients, even if they have the same type of cancer.

This variability presents additional experimental challenges,

necessitating the examination of treatment combinations in the cells

of each patient.

Recent studies have demonstrated that the DL model

outperforms traditional machine learning algorithms in several

biological applications (162). In order to achieve success in deep
Frontiers in Oncology 21
learning, high-quality datasets that contain experimental

medication combinations are required. Due to advancements in

high-throughput drug combination screening tests, the number of

samples is increasing rapidly, resulting in a significant reduction in

the data size limitation (163). DeepSynergy is an advanced

prediction algorithm that uses deep learning to accurately identify

synergistic medication combinations. The model has been trained

using the dataset provided by Merck (164). Aside from its

inadequate performance, this model is constrained in its

interpretation due to the chosen methods for representing

medications and cell lines, as well as the model’s architecture. It is

challenging to determine the contribution or importance of drug

descriptors, such as toxophores, physicochemical features, and

fingerprints, in relation to the mechanism of drug action in cells

using a feedforward neural network (165). The prediction of drug

synergism is a cornerstone of modern precision oncology. The

complexity of biological networks necessitates sophisticated AI

models, a notion strongly supported by recent literature. As

reviewed by Zheng et al. (166), graph-based deep learning

approaches are particularly promising for this task, as they can

effectively model the intricate relationships between drugs, targets,

and cellular pathways, thereby accelerating the discovery of effective

combination therapies for GMs.

GNNs are becoming increasingly popular in drug discovery due

to their ability to efficiently process and analyze complex data,

including molecular graphs and biological networks (167). There is

abundant good evidence that GNN-based models can help with

drug discovery. These models have performed well in virtual

screening, predicting molecular properties, predicting protein–

ligand binding, and repurposing drugs (168). GNNs have shown

promise in finding connections and interactions in many areas

(169), but it is still being studied how well they work in predicting

how drugs will work together. Given the increasing use of GNNs in

predicting drug synergy, their demonstrated effectiveness in

comparison to widely used high-performing methods such as

MatchMaker, DeepSynergy, and Deep Tensor Factorization

(DTF), along with the growing significance of discovering drug

combinations in both research and industry (170).

Computational techniques can improve the efficiency of drug

combination screening. Despite recent advances in applying

machine learning to synergistic drug combination prediction,

several challenges remain. First, the performance of existing

methods is suboptimal. There is stil l much room for

improvement. Second, the model does not fully integrate

biological knowledge. Finally, many models lack interpretability,

limiting their clinical applications (171).
5 Deep learning of gynecologic
malignancies based on pathological
images

Histopathology constitutes a cornerstone of precision oncology.

Histopathology or cytology must diagnose almost every type of

solid tumor. Essentially, all clinical choices regarding treatment and
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follow-up rely on histological findings. In the field of digital

pathology, high-resolution technology captures tissue slides in

their entirety as whole slide images (WSIs). This process produces

images with an extremely large number of pixels, commonly

referred to as “gigapixel images” (21).

Recent advancements in pathology are currently propelling

cancer diagnoses. Convolutional neural networks, which emerged

in 2012, have consistently shown their ability to achieve high

accuracy in classifying both medical and non-medical image

datasets (59). Subsequently, a digital revolution in pathology

commenced, involving the utilization of cutting-edge DL models

developed by the computer vision community for analyzing digital

histopathology slides. The H&E staining process is widely used in

cancer diagnoses. There are well-established retrospective cohorts

and clinical trial sets that are extensively characterized. These

datasets allow for the creation of large-scale histopathology

imaging datasets, which may be used to train advanced DL

models. Several proof-of-concept studies have demonstrated the

capacity of DL models to assist in the diagnosis and molecular

classification of malignancies (172) as well as forecast patient

prognosis (170) by identifying phenotypes on H&E-stained tumor

slide images. A significant advantage of DL in pathology is its ability

to process entire WSIs by breaking them down into smaller patches

for analysis and then aggregating the results.

Deep neural networks have surpassed classical machine learning

models in terms of classification accuracy (173). Nevertheless, these

black boxes do not provide direct insight into the morphological

characteristics they are associated with, which is a major concern for

both mechanistic analysis and clinical decision-making (174). The

presence of image artifacts, such as blurring, noise, and lossy image

compression, may complicate the identification of morphological

characteristics with biological significance (175). Studies have shown

that tissue damage, image quality, and dataset-specific artefacts can

influence the feature representation and prediction accuracy of neural

networks (176). These artefacts significantly influence deep learning-

based predictions, making it crucial to break down CNNs into

biologically understandable features.

Sun et al. (177) devised a computer-aided diagnosis (CADx)

method for analyzing histopathology images of endometrial

disorders. Their methodology included a convolutional neural

network and attention processes. The CADx method, known as

HIENet, was proven to be successful in binary and multi-class

classification tasks using a limited dataset of 3,500 H&E images in

10-fold cross-validation and external validation. It exhibited higher

classification accuracies compared to three associate chief

physicians. HIENet utilizes attention processes and a class

activation map to effectively detect and emphasize morphological

aspects in H&E images. This enhances the interpretability of the

images, allowing pathologists to correlate pixel-level H&E image

features with histological information. Given the aforementioned

benefits, HIENet has the potential to be employed in a collaborative

human–machine model for grading diagnosis in endometrial

disorders, hence potentially enhancing the efficiency of pathologists.

Yiping Wang and colleagues (178) introduced a method that

combines transfer learning and ensemble learning to automatically
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classify epithelial ovarian cancer WSIs. The suggested method

outperformed both regular CNNs and pathologists without

specialized training in gynecologic pathology across multiple

performance criteria. These results indicate a potentially favorable

future path to confirm the findings on a wider group of patients and

investigate other deep learning structures that integrate

characteristics from various levels of magnification and patch

sizes. Moreover, as the majority of the improvement in

performance is seen in the slide-level classification outcomes, we

will evaluate the patch-level classification outcomes (such as five-

dimensional feature vectors obtained from patch-level results) from

different runs to gain a more comprehensive understanding of the

modifications in patch-level classification that led to enhanced

performance in slide-level classification.

A study by Song et al. (179) used WSIs of tissue slides to

examine whether DL could be used to sort the different types of

cervical and endometrial cancers into groups and find the exact

location where adenocarcinomas start. For categorization, the WSIs

were divided into image patches measuring 360 × 360 pixels at a

magnification of ×20. Subsequently, the mean of the patch

classification outcomes was employed for the ultimate

categorization. The Area Under the Receiver Operating

Characteristic Curve (AUROCs) for the cervical and endometrial

cancer classifiers were 0.977 and 0.944, respectively. The

adenocarcinoma origin classifier achieved an AUROC of 0.939.

The results unequivocally showed that DL-based classifiers can

effectively distinguish between cervical and uterine malignancies,

proving their practicality.

Riasatian et al. (180) introduced a novel network, KimiaNet, in

their study. This network utilizes the DenseNet topology, consisting

of four dense blocks, and is fine-tuned and trained using

histopathological images in various configurations. The

researchers employed over 240,000 image patches, each consisting

of 100 × 100 pixels, obtained at a magnification of ×20 using their

novel “high-cellularity mosaic” technique. These patches were

utilized to leverage weak labels for 7,126 whole slide images of

formalin-fixed paraffin-embedded human pathology samples,

which are publicly accessible through The Cancer Genome Atlas

(TCGA) repository. The efficacy of search and classification in

KimiaNet was evaluated by utilizing three public datasets: TCGA,

endometrial cancer images, and colorectal cancer images. This

evaluation involved testing the effectiveness of using different

networks’ features for image representation. In addition, they

developed and trained several convolutional batch-normalized

ReLU (CBR) networks. The results show that KimiaNet is a better

feature extractor for histopathological images than both the original

DenseNet and smaller CBR networks.
6 Deep learning of gynecologic
malignancies based on other omics

The genome of a tumor contains distinct molecular features that

are exclusive to that tumor (181). Clinical genomics research is

essential for achieving precision oncology because it investigates the
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human genome, specifically focusing on a disease’s genotype. As a

result, the genotypic characteristics of the tumor, such as genomic

instability or mutation status, add to the phenotypic and geographic

alterations examined in histopathology. Clinical genomics utilizes

various types of genomic data, including whole genome or exome

sequencing, RNA sequencing, methylation assays, and copy number

variation analysis, as sources of information. This technology

enables the precise classification of the patient’s specific cancer

type, potential origin, sensitivity to specific medications,

and prognosis.

In the past, the analysis of genomic data was only carried out by

conventional bioinformatics, which utilized algorithms to execute

tasks such as sequence alignment, variant calling, or differential

expression analysis. However, human specialists extensively craft

these algorithms by hand, prioritizing the identification of

predetermined patterns. AI’s potential benefit in clinical genomics

lies in its ability to enhance the existing toolbox by enabling more

comprehensive data analysis than was previously possible. Unlike

vision-based models, DL applications in genomics often utilize

different architectures, such as fully connected DNNs for tabular

omics data or specialized models for sequence data. ML (182) has

been essential in uncovering hidden or imperceptible patterns, such

as the intricate folding of proteins or the distinctive markers

resulting from mutagenesis events in our DNA. Traditional

bioinformatics methods cannot achieve the potential of AI to

uncover new ways of thinking that could lead to advancements in

clinical genomics. One notable difference between AI in clinical

genomics and histopathology is the wide range of model types

employed. Computer vision derived DL models for histopathology,

but computer science did not directly develop DL models for

genomics. This led to the exploration of a wider range of model

types in genomics.

The TME of ovarian cancer consists of many types of cells,

including tumor cells, stromal cells, and immune cells, which have

the ability to control the growth and advancement of the tumor

(183). The presence of immune cell types, such as tumor-associated

macrophages or Tumor-Infiltrating Lymphocytes (TILs), inside the

TME has been demonstrated to influence both cancer prognosis

and the response to neoadjuvant chemotherapy (NACT) (184).

Previous studies on high-grade serous ovarian cancer (HGSOC)

have primarily used tumor samples that consist of a mixture of

different cell types with varied proportions (185).

Teng et al. (186) evaluated the effectiveness of matched

transcriptome and proteome data obtained from a fabricated

admixture series of HGSOC tumors, stroma/fibroblasts, and

immune cells. Their study utilized existing deconvolution and

prognostic molecular subtype prediction techniques. They

conducted additional research to examine the influence of cell

type combinations on the association between protein and

transcript abundances. In various independent cohorts of patients

with HGSOC, the authors presented optimized protein signatures

for tumor, stroma, and immune cell mixes and evaluated their

effectiveness in categorizing proteome data from enriched and bulk

tissue collections.
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The integration of multi-modal data (e.g., imaging, genomics,

and clinical records) represents a frontier in predictive oncology, as

highlighted in recent comprehensive reviews. For instance, the work

by Tan et al. (187) underscored the potential of deep learning to

unravel complex patterns across disparate data types, which is

crucial for advancing personalized therapy in GMs.
7 Comparison of deep learning and
conventional imaging techniques in
imaging gynecologic malignancies

Although DL approaches have demonstrated potential in

several GM imaging tasks, it is important to carefully evaluate the

specific scenarios where traditional imaging techniques are still

useful and those where DL tools are more suitable.
7.1 Traditional methods

Prior to the advent of deep learning, the analysis of medical

images for gynecologic malignancies predominantly relied on

traditional machine learning and image processing techniques.

These methods typically involve a multi-stage pipeline: initial

image pre-processing (e.g., noise reduction and normalization),

followed by manual or semi-automated segmentation of ROIs.

Subsequently, hand-crafted features—quantitative descriptors of

shape, intensity, texture, and other statistical properties—are

extracted from these ROIs. Finally, these features are used to train

classical machine learning classifiers (e.g., support vector machines

and random forests) for tasks such as detection, classification, and

prognosis prediction. The following sections discuss the inherent

advantages and limitations of these established methodologies.

7.1.1 Advantages of traditional imaging
techniques

Interpretability: Conventional imaging approaches produce

easi ly understandable data by relying on establ ished

characteristics and manually designed statistical procedures (188).

The interpretability of the results enables physicians to gain a

deeper understanding of the reasoning behind the decision-

making process. Establishing trust in the results and taking

appropriate clinical actions require this understanding.

Reduced computational requirements: Conventional imaging

methods often have fewer computational needs in comparison to

deep learning approaches (189), rendering them more accessible

and simpler to execute on regular workstations without the

necessity for high-performance computer resources.

Robustness to changes: Traditional imaging methods are better

at handling changes in imaging protocols and acquisition

parameters (190) because they rely on well-known features that

do not change as easily when it comes to image quality

and appearance.
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7.1.2 Disadvantages of traditional methods
Monitoring systems or standard image processing techniques

often identify candidate lesion areas in conventional computer-

aided tumor diagnosis methods. The process of localizing a lesion

involves multiple stages and typically relies on a substantial number

of manually designed characteristics. The classifier is used to map

eigenvectors to potential candidates in order to determine the

probability of authentic lesions. Computer-aided diagnosis is a

field of medical image analysis that can be improved (191). The

classic approach uses the image’s pixel data to identify various

visual elements, such as corners, contours, and color gradients,

using a pre-defined formula. Various algorithms exhibit varying

levels of accuracy in detecting these features, and distinct

experimental methodologies also employ their own techniques for

feature extraction. When an image undergoes linear or non-linear

transformations, such as scaling, rotation, translation, affine

transformation, or deformation, it may result in interference

during feature extraction. Hence, contemporary and more

sophisticated convolutional neural network algorithms surpass

previous algorithms in specific features or total accuracy. Various

algorithms possess varying capacities to handle these

transformations, and the greater the problem-solving capability,

the higher the level of robustness.
7.2 Deep learning in medical image analysis

7.2.1 Performance improvements over traditional
methods

DL approaches used in medical image analysis have yielded

promising outcomes in different areas, resulting in notable progress

in illness identification and diagnosis, anatomical structure

segmentation, and treatment outcome prediction (189). DL

algorithms have the ability to acquire intricate patterns from

medical images, demonstrating strong adaptability to new data

and obtaining performance that is comparable to or surpasses

human capabilities in various tasks (192). This capability has the

potential to significantly enhance the precision, effectiveness, and

uniformity of medical image analysis, eventually boosting the

quality of patient treatment and results.

Comparisons between deep learning models and older pre-deep

learning imaging techniques have shown significant enhancements

in performance. DL models have been successful in diagnosing

diabetic retinopathy from retinal images, with a sensitivity of 96.8%

and a specificity of 87.0%. These results are much better than those

achieved by classical approaches, which had sensitivities ranging

from 49.3% to 85.5% and specificities ranging from 71.0% to 93.4%

(193). Deep learning-based detection of pulmonary nodules on CT

scans has demonstrated a greater accuracy rate of 94.2% compared

to conventional computer-aided detection approaches, which

achieved an accuracy rate of 79.1% (194). Deep learning models

have demonstrated superior performance in segmenting brain

tumors from MRI scans, achieving a Dice similarity coefficient of
Frontiers in Oncology 24
0.88. In comparison, standard approaches have yielded coefficients

ranging from 0.65 to 0.85 (195).

In addition, DL has facilitated the creation of models that can

combine several types of imaging data at different scales, along with

clinical and demographic information, in order to produce more

precise and comprehensive forecasts on patient outcomes and

responses to therapy (192). This capability has played a significant

role in the expanding field of radiomics, which seeks to extract and

analyze complex quantitative characteristics from medical images in

order to develop predictive models for personalized treatment (114).

DL is becoming more and more critical in the advancement of

precision medicine and the improvement of patient care for a variety

of diseases and medical conditions.

7.2.2 Controversies and disparities
A significant obstacle in the domain of DL for imaging GMs is the

absence of standardization and benchmarking. Various studies have

utilized a range of datasets, preprocessing methodologies, model

architectures, and training strategies, which complicates the

comparison of model performance and the evaluation of their

clinical usefulness (196). The lack of standard reporting of model

performance parameters, such as accuracy, sensitivity, and specificity,

makes it more difficult to compare results across different studies.

Future research should prioritize the establishment of standardized

datasets, evaluation measures, and reporting requirements to simplify

the process of benchmarking and comparing DL models. Also,

supporting open research methods like sharing data and code

could speed up the development and validation of deep learning

models for imaging GMs.

The majority of DL research in the field of GM imaging has

concentrated on analyzing data from single imaging modalities,

such as MRI, CT, or PET scans. By incorporating multimodal

information, such as merging functional and anatomical imaging

data, it is possible to enhance the effectiveness of DL models and

gain a more thorough understanding of tumor characteristics (197).

Furthermore, the inclusion of temporal data derived from

longitudinal imaging data has the potential to improve the

accuracy of predicting treatment response, tumor recurrence, and

patient outcomes (198). Integrating clinical information, including

patient demographics, tumor histology, and treatment details, can

enhance the effectiveness of DL models in managing GMs, in

addition to imaging data. Further investigation is needed to

examine the advancement of DL models that can efficiently

include multimodal, temporal, and clinical data for personalized

therapy planning and prognostication.

DL models, namely, CNNs, are commonly regarded as “black

boxes” because of their intricate structures and the absence of

transparency in the decision-making process (165). The absence

of transparency can impede the use of DL methods in clinical

practice, as physicians may be hesitant to rely on a model’s

predictions without comprehending the underlying rationale. The

development of DL models that are explainable and interpretable is

essential in order to close this gap and encourage their acceptance in
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the medical community (199). Methods such as attention processes,

layer-wise relevance propagation, and visualization of feature maps

can be used to clarify the reasoning behind a model’s predictions

and establish trust among doctors. Future research should prioritize

the integration of explainability and interpretability into the

development of DL models for imaging GMs. Additionally, efforts

should be made to create techniques for evaluating the reliability

and resilience of these models when dealing with noisy, incomplete,

or adversarial data.

In order to implement DL models in clinical practice, it is

necessary to thoroughly validate and quantify their effect on patient

outcomes (200). Conducting extensive and future-oriented

investigations would be valuable in determining the effectiveness,

applicability, and practicality of DL models for imaging head and

neck cancer (201). These studies should include varied patient

groups and imaging data from several centers to ensure the

strength and reliability of the models in real-world scenarios.

Furthermore, it is crucial to incorporate these models into current

clinical workflows, analyze their cost-effectiveness, and assess their

impact on patient care. This includes reducing diagnostic errors,

optimizing treatment planning, and enhancing patient outcomes.

These steps are necessary for the successful implementation of these

models (202). Further investigation should also focus on creating

user-friendly, scalable, and secure software tools and platforms that

can assist in the implementation of DL models in clinical settings

and promote their broad usage in the therapy of GMs.
8 Challenges of deep learning models
in the diagnosis and management of
gynecologic malignancies

AI can play multiple important roles in gynecologic imaging,

beyond just screening and detection. These roles include helping

radiologists make accurate diagnoses, assisting clinicians in

developing effective treatment plans, and incorporating various

clinical–pathological–immunohistochemical factors to predict the

likelihood of recurrence or metastasis. Therefore, it is anticipated

that AI in gynecologic imaging will play a significant role in

advancing precision medicine and tailored treatment. Nevertheless,

there are several complex technical and clinical obstacles that hinder

the sustainable progress of AI in gynecologic imaging.
8.1 Technical challenges

ML algorithms typically necessitate extensive datasets to achieve

adequate performance. However, the clinical data available for

diagnosing cervical cancer are frequently constrained in terms of

both size and quality. In order to overcome these restrictions,

researchers have employed many techniques for data pre-

processing, including data augmentation, image enhancement,

and the development of image-generating tools. These methods

have been used to tackle issues such as uneven class distribution and
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short datasets. Nevertheless, a comprehensive approach is still

necessary to tackle this problem.

A major issue in the development and implementation of DL

systems in healthcare is the presence of intrinsic biases in many

datasets. This bias can be based on factors such as ethnicity, sex,

socio-economic circumstances of participants, or the institution

where the studies were conducted (203). Therefore, it is necessary to

implement more equitable and varied methods of collecting data for

future investigations. This, in turn, will improve the overall

applicability of deep learning models once again. Furthermore, it

is necessary to develop national and international standards for data

curation, especially when dealing with homogenous data, in order

to ensure the comparability of data across different institutions. In

addition, as changes may occur within the populations to which AI

is applied, there is a need for model updates and reconfigurations.

This aspect is often overlooked in the current model design (204).

This will ultimately enable the acquisition of deep learning models

that can learn dynamically during deployment rather than being

fixed after a single static training iteration.

In ML, models need a substantial amount of data in order to

achieve proficiency in their designated activity. One reason for this

necessity is due to technical constraints, as multiple repeats of

patterns are necessary to manipulate the internal model parameters

into their intended state. Furthermore, the presence of variability in

every biological system is another factor that necessitates data

requirements. Tumors exhibit significant diversity in terms of

their genetics, phenotype, and clinical behavior, which may vary

between people. The training data collection must be of a minimum

size that is sufficient to accurately represent the biological diversity.

Consequently, studies with a small number of participants are

unlikely to offer a wide range of data that can be applied to other

datasets, especially in a clinical setting (205). Therefore, in order to

ensure that DL models can be used in various clinical environments,

it is necessary to obtain and distribute increasingly larger datasets.

The primary limitation in training deep learning solutions for

cancer research and oncology lies in the collection of data rather

than the flexibility of the models. Histopathology, being the

foundation of diagnosis, is more easily accessible compared to

genetic data, which are usually expensive and not regularly

obtained for all patients. As a result, it is more challenging to

create genomic cohorts, especially for multi-omic methods. Well-

funded research centers or large healthcare facilities are typically the

only places where extensive clinical setups and infrastructure are

available. An effective approach to tackling these difficulties is by

employing distributed learning methods such as federated or swarm

learning. These methods allow peers who are restricted from

sharing public data to collaboratively train models (206).

Moreover, technical concepts have the potential to enhance the

process of gathering data. Techniques such as class balancing or

boosting datasets with simulated samples can be beneficial for

studies that have a limited number of patients (207). Conversely,

enhanced ML models have the potential to be more efficient in their

use of data and capable of learning effectively from smaller datasets.

This could address the issue of limited data availability by

employing a different approach (208).
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DL models have a tendency to overfit, particularly when trained

on small datasets, resulting in limited ability to generalize to new

data (157). Overfitting can lead to the development of models that

exhibit high performance on the training data but are unable to

reliably forecast outcomes for new patients, hence restricting their

therapeutic usefulness. When creating DLmodels for head and neck

cancer imaging, it is important to consider regularization

approaches and model architectures that can help prevent

overfitting. Some examples of these strategies include dropout,

batch normalization, and transfer learning. Furthermore, the use

of cross-validation and external validation cohorts can aid in

assessing and enhancing the generalizability of the model.

The training and deployment of DL models often require

substantial computational resources, such as graphics processing

units (GPUs) and specialized hardware (157). This need may pose a

challenge for small clinical centers and researchers with limited

access to high-performance computing facilities. Developing

efficient model architectures, exploring strategies for model

compression and acceleration, and utilizing cloud-based platforms

for training and deployment can help to overcome these challenges

and make DL models more accessible to a broader range of

institutions and researchers.
8.2 Clinical challenges

Additional crucial factors must be stated, such as the clarity of

the systems, which is linked to the data used, while the

dependability, operation, and limitations of a single model must

be evaluated. Additionally, it is important to consider additional

variables such as ethical and medico-legal concerns, as well as the

necessity for comprehensive validation and integration of AI

systems into the current framework for clinical decision

management, which has not yet been fully addressed. One

important point to consider is whether AI can replace physicians

in the activities of seeing, characterizing, and quantifying, which

they currently perform using their cognitive abilities. The answer to

this issue is likely to be negative. It is important to emphasize that

the ultimate choice in patient diagnosis still lies with the physicians,

not AI systems, and they bear the responsibility for it. One

significant obstacle to the use of AI in clinical practice is the

automation bias (209), which refers to the inclination to favor a

diagnosis provided by a machine over the evidence based on

scientific knowledge and the physician’s skill.

Physicians should possess a comprehensive understanding of

how to effectively utilize and interpret AI algorithms in their

practice. This includes discerning the appropriate scenarios in

which a medical AI should be employed and determining the

level of trust that should be attributed to the algorithmic

conclusions. While AI presents new opportunities, the

fundamental principles of clinical reality remain unchanged. To

achieve significant influence on patient care, AI-based research in

medical activities must adhere to the fundamental principles of

medical science. Research hypotheses, whether based on AI or not,

must adhere to clinical standards and be able to be justified in the
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clinical field (210). Medical AI must be trained in suitable contexts,

utilizing optimized approaches and complete datasets, due to the

ongoing development of evaluation tools in this challenging field

(211). Furthermore, the integration of AI systems into large-scale

data networks gives rise to legal and ethical issues relating to

obtaining patient-specific consent, safeguarding privacy, sharing

data, and ensuring multi-layered access to health information that is

either fully or partially anonymized (212).

Currently, AI techniques lack transparency in their elaboration

processes, meaning that their users may not have clear

representations of how AIs have arrived at a specific conclusion.

This lack of transparency can lead to “trust issues”, particularly

when important decisions need to be made based on these

conclusions. Furthermore, future research on the ethical

integration of AI in medical assessment should take into account

patients’ perceptions of these tools and determine the circumstances

under which patients may feel neglected by their doctor due to the

use of autonomous technologies for health recommendations and

treatment (213). Ultimately, substantial volumes of data pertaining

to GMs have been amassed and are rapidly expanding. Utilizing ML

and DL techniques can enhance our understanding of the

mechanisms behind GMs and improve the care of patients with

these conditions. In the foreseeable future, the involvement of AI in

decision-making processes is anticipated to increase. This is because

AI systems possess desirable attributes such as the capacity to carry

out uncomplicated but repetitive and time-consuming tasks, as well

as the ability to optimize workflow management. By doing so, AI

systems free up more time for clinical patient supervision (214).
9 Future directions of deep learning in
gynecologic malignancies

In the future, neural networks can be applied in the medical

field in two main ways: automatic diagnosis and assistance for

doctors. Presently, less than one doctor per 1,000 people is available

in 45% of WHO member nations. There is a high need for

automatic diagnostic systems that utilize neural networks to

evaluate patients without any risks. These systems help prevent

clinicians from becoming overwhelmed and provide a clear

schedule for patient visits. Automatic diagnosis is feasible in

various imaging specialties such as X-rays, fluoroscopes,

ultrasonography, CT, and MRI. These specialties focus on

prevalent and debilitating diseases that affect the elderly

population, including cardiovascular disease, cerebellomedullary

diseases, and oncological diseases. These diseases are significant

public health concerns. They will spearhead the advancement of less

invasive techniques such as interventional radiology, interventional

cardiology, and interventional neuroimaging (215).

Another prospective avenue is forecasting a medical occurrence,

which allows a physician to discern the specific area that requires

immediate attention. If the doctor predicts that a patient may need

to visit again, they may schedule an early hospital appointment to

prevent the symptoms from worsening. One illustration is the use of

electronic medical data to assess occurrences such as symptoms,
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drug details, and appointment timetables. The neural network was

trained using electronic medical records from 260,000 patients and

2,128 physicians over an 8-year span to determine the specific data

and purpose for future medical evaluations. The recall function was

employed in the approach, with a proportion of 79.58%. The

training phase utilized 85% of the data, while the testing phase

used 15% (216). Evaluating the prognosis is crucial for designing

suitable therapy and follow-up approaches, which can either lead to

patient recovery or extend their lifespan. Neural networks have

demonstrated superior predictive ability in determining the survival

rates of patients with several types of cancer, including breast,

colorectal, lung, and prostate cancer, compared to other methods

used in the area.

Future work will incorporate DL approaches for the diagnosis of

all diseases, considering noise removal from any given dataset. The

additional aspects and properties of DL models for medical images

can be explored. To increase the accuracy, an enormous amount of

data is required; therefore, the potential of the model should be

improved to deal with large datasets. Also, different data

augmentation techniques along with the required features of the

dataset can be explored to attain better accuracy.

To enhance the validity of any models, it is imperative to

include significantly larger cohorts from multiple centers and

countries in future studies. The utilization of AI models in

clinical settings is primarily focused on thyroid disorders, breast

diseases, and liver diseases. Research on applying AI models to

other systems is still largely in the theoretical phase. These clinical

models should be utilized in future clinical prospective research to

aid doctors in diagnostic and prognostic evaluations. It is necessary

to summarize the difficulties and impacts that clinicians face while

using artificial intelligence models and to continuously optimize

these models. The progress in AI-based methodologies will enhance

the precision of diagnoses, expedite the diagnostic procedure, and

have a crucial function in aiding clinicians in decision-making and

intelligent monitoring in the future (4).

Future endeavors will entail employing innovative approaches

to tackle the scarcity of medical data. Techniques such as transfer

learning and GANs can enhance smaller datasets, making them

more comprehensive and resilient (49). These projects will

increasingly rely on multidisciplinary teamwork. The UK’s Topol

Fellowship provides healthcare professionals with an opportunity to

acquire practical expertise in data science and AI, successfully

closing the gap between two essential fields.
10 Conclusion

This review synthesized the application of AI across multi-omics

data for gynecologic malignancies, providing an integrated

examination of both technical methodologies and their clinical

utility in diagnosis, prognosis, and therapy. Compared to existing

literature, this work offers a more cohesive framework linking diverse

AI models to specific clinical endpoints in GMs. Nevertheless, it also

underscores critical shortcomings pervasive in the field. Most studies

remain constrained by retrospective, single-center data; a pervasive
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lack of standardization in data processing, model development, and

performance reporting hinders reproducibility and clinical

translation—a challenge not always comprehensively addressed in

previous reviews. Moving forward, overcoming these limitations

necessitates a focused shift toward prospective, multi-institutional

validation and the development of explainable AI (XAI) frameworks

to bridge the gap between technical accuracy and clinical trust. The

ultimate integration of AI into GMmanagement depends on creating

robust, interpretable, and clinically actionable tools that can be

seamlessly adopted into real-world practice. The challenges and

future perspectives discussed herein, such as data standardization

and the need for XAI, are not unique to GMs but resonate with the

broader field of AI in oncology, as highlighted in recent pan-cancer

reviews (217).

In summary, AI has emerged as a powerful tool for handling

large-scale datasets and is widely used to develop various omics

models for GMs. Multi-omics analysis, which encompasses many

techniques such as imaging, pathomics, genomics, metabolomics, and

proteomics, has shown promise in improving the precision of

diagnosing GMs. It can also aid in distinguishing between benign

and malignant cases, as well as predicting the specific disease types

and prognosis. Integrating multi-omics data has the potential to

enhance patient survival and enable precision treatment in the future.

DL methods have made remarkable progress in the area of

imaging for GMs. They have shown outstanding performance in

important tasks like identifying tumors, segmenting them, and

predicting outcomes. These techniques utilize different imaging

modalities, such as MRI, CT, and PET scans. Integrating

radiogenomics into DL models shows promise for advancing our

understanding of tumor biology and heterogeneity, as well as

directing personalized therapy regimens in the management

of GMs.

Although the results are encouraging, there are several

problems that need to be overcome in order to effectively employ

DL models in the diagnosis and treatment of GMs. A significant

challenge is the absence of uniformity in datasets, preprocessing

methodologies, and model architectures, making it challenging to

compare the performances of different models and evaluate their

clinical usefulness. Obtaining extensive, varied, and thoroughly

annotated datasets for imaging GMs is difficult because of privacy

concerns, limitations on data sharing, and the time-consuming

process of manually annotating by experts. Given the drawbacks of

conventional imaging methods, such as the subjective and variable

nature of human interpretation, combining DL with standard

imaging techniques has the potential to enhance the reliability

and precision of diagnosis and treatment planning. It is crucial to

acknowledge the interdependent functions of these methods in

order to make progress in the imaging and treatment of GMs.

Ultimately, it is crucial to carry out thorough clinical validations

using extensive, forward-looking investigations in order to establish

the effectiveness, applicability, and practicality of DL models for

imaging GMs. To achieve better patient outcomes and implement

personalized treatment strategies for managing GMs, it is crucial to

overcome these obstacles and effectively combine advanced DL

techniques with traditional imaging approaches.
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