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deep learning in gynecologic
malighancies

Yingfeng Zhang and Qin Qin*

Obstetrics and Gynecology, University-Town Hospital of Chongging Medical University,
Chongging, China

Artificial intelligence (Al) is revolutionizing oncology, with deep learning (DL)
emerging as a pivotal technology for addressing gynecologic malignancies
(GMs). DL-based models are now widely applied to assist in clinical diagnosis
and prognosis prediction, demonstrating excellent performance in tasks such as
tumor detection, segmentation, classification, and necrosis assessment for both
primary and metastatic GMs. By leveraging radiological (e.g., X-ray, CT, MRI, and
Single Photon Emission Computed Tomography (SPECT)) and pathological
images, these approaches show significant potential for enhancing diagnostic
accuracy and prognostic evaluation. This review provides a concise overview of
deep learning techniques for medical image analysis and their current
applications in GM diagnosis and outcome prediction. Furthermore, it
discusses key challenges and future directions in the field. Al-based radiomics
presents a non-invasive and cost-effective tool for gynecologic practice, and the
integration of multi-omics data is recommended to further advance precision
medicine in oncology.
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Highlights

 Synthesizes the integrated application of AI across multi-omics data (radiomics,
pathomics, and genomics) for gynecologic malignancies, moving beyond
siloed reviews.

* Details and contrasts a comprehensive array of both traditional machine learning
and advanced deep learning architectures tailored for medical image and
data analyses.

 Critically identifies the pervasive challenge of limited, heterogeneous data and the
“black box” nature of Al as the primary barriers to clinical translation in GM care.

* Proposes standardized benchmarking and the development of explainable AI (XAI)
frameworks as essential pathways for future clinical integration.

* Discusses the emerging role of graph neural networks (GNNs) in predicting drug
synergism and analyzing complex biological networks for personalized therapy.
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1 Introduction

Advances in computer science over the past decade have
propelled the growth of artificial intelligence (AI), leading to its
widespread adoption in various scientific domains, including
medicine. Al differs from regular computer programming in
several aspects. Traditional programming algorithms generate
outputs based on input data and predefined rules, while AI has
the ability to generate rules and patterns based on both input and
output data. As a result, Al can accurately predict outcomes for
fresh input.

Al and machine learning (ML) are increasingly making their
presence felt in everyday life and are expected to have a significant
impact on digital healthcare, particularly in the areas of disease
detection and treatment, in the near future. The progress in AI and
ML technologies has enabled the development of autonomous
disease diagnosis tools. These tools utilize large datasets to
address the future difficulties of the early identification of human
diseases, particularly cancer. ML is a specific branch of AI that
focuses on developing algorithms based on neural networks. These
algorithms enable machines to learn and solve problems in a
manner similar to the human brain (1). Deep learning (DL) is a
subset of ML that aims to replicate the data processing capabilities
of the human brain. It is used to detect images and objects, process
languages, enhance drug discovery, improve precision medications,
enhance diagnosis, and aid humans in decision-making. It is
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capable of functioning and generating outputs without human
intervention (2). DL uses artificial neural networks (ANNs) to
analyze data, such as medical images. It mimics the structure of
the human neural system and consists of input, output, and hidden
multi-layer networks. These networks improve the capabilities of
machine learning processing (Figure 1A) (5).

The progress in artificial intelligence has led to the successful
use of deep learning techniques, including segmentation, detection,
classification, and augmentation, in the field of medical imaging (6,
7) (Figure 2A). This has opened up new possibilities for developing
computer-aided systems for medical imaging diagnosis. Recent
studies have shown that deep learning-based AI models can
enhance the accuracy of diagnosing, predicting, and
prognosticating gynecologic malignancies (GMs). These models
also have the potential to improve the identification, classification,
segmentation, and visual interpretation of bone tumors. In addition,
radiomics is a sophisticated technology that is frequently used in
conjunction with artificial intelligence. It is specifically developed to
extract and analyze numerical radiological patterns using
quantitative image parameters such as geometry, size, texture, and
intensity. It is often compared to deep learning. Radiomics has been
widely recognized as a valuable tool for disease prediction,
prognosis, and monitoring (8).

When it comes to Al technology, gynecologic oncology falls
short of the level required for everyday clinical use, unlike other
medical specialties like endoscopy. The precise prediction of a
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(A) Hierarchy of artificial intelligence (Al), machine learning (ML), deep learning (DL), and their applications in digital healthcare and oncology (e.g.,
precision oncology, drug discovery, and digital pathology) (3). (B) Al in omics (radiomics, pathomics, genomics, etc.) and related clinical applications

(differential diagnosis, prognosis prediction, drug effect evaluation, etc.) (4).

Frontiers in Oncology

02

frontiersin.org


https://doi.org/10.3389/fonc.2025.1592078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang and Qin

10.3389/fonc.2025.1592078

Input Data Layer

Radiomics Pathomics

MRI/CT/US

Whole Slide Images

Genomics Proteomics

DNA Sequence Protein Expression

Deep Learning CNN
ResNet, U-Net, VGG

Traditional ML

SVM, RF, XGBoost

\ [1

Graph Neural Networks
GCN, GAT

.

Metastasis Prediction ‘ ‘ Classification & Staging

Tumor Detection & ‘
Diagnosis

Therapy Response
Prediction
e.g., Platinum Resistance

Prognostic Monitoring

[ Genotype Prediction
e.g., BRCA

Trained Al Model

Performance Metrics
AUC, Accuracy, Sensitivity

Rigorous Validation
Internal /External Testing

Clinical Deployment.
Diagnostic & Prognostic Aid

B
Traditional ML
_—""| Feature Engineering ™
Mes;‘wa:“::ﬂ:y""" Data Curation Model Development
P 4 '2 & Annotation Paradign
Genomics
S Deep Learning -
End-to-£nd Learning
FIGURE 2

(A) Workflow of artificial intelligence (Al) model development and validation in medical research. (B) A graphical overview of the application of

artificial intelligence in gynecologic malignancies.

definite diagnosis or prognosis significantly influences the therapy
of gynecologic malignancies. The objective of this study was to
elucidate the current status of Al research in relation to gynecologic
cancers. In addition, we examined the obstacles encountered in the
advancement of artificial intelligence in the field of gynecologic
oncology. We anticipate that this study will subsequently encourage
further research and accelerate the implementation of Al in the field
of gynecologic oncology.

This review makes several key contributions to the field. First, it
provides a comprehensive and up-to-date synthesis of the rapidly
evolving application of deep learning across various imaging and
omic modalities for gynecologic malignancies (Figure 2B). Second,
it offers a detailed technical explanation of fundamental AI/ML/DL
concepts and model architectures tailored for a clinical audience.
Third, it critically examines not only the promising results but also
the significant technical and clinical challenges hindering
widespread clinical adoption. Finally, it discusses future directions
to overcome these barriers and realize the potential of Al in
improving gynecologic oncology care.

The paper is structured as follows: Section 2 introduces
fundamental AI, ML, and DL concepts and architectures. Section
3 provides an overview of major gynecologic malignancies and
precision oncology. Section 4 details DL applications in radiological
image analysis (radiomics) for tasks like tumor detection,
classification, and prognosis prediction. Section 5 focuses on DL
for pathological image analysis, while Section 6 explores integration
with other omics data. A comparative analysis of DL versus
conventional imaging is presented in Section 7. Key technical and
clinical challenges are discussed in Section 8, followed by future
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directions in Section 9. The review concludes with a summary in
Section 10.

2 Artificial intelligence and deep
learning

Artificial intelligence (AI) is a branch of computer science
focused on replicating human intelligence to perform tasks that
typically require human expertise (9). ML, a subset of AI, employs
mathematical algorithms to enable autonomous decision-making
(10). DL, a modern ML technique, differs from traditional ML in its
data dependency, hardware requirements, feature engineering,
problem-solving approach, execution time, and interpretability
(11). DL excels in complex classification tasks using diverse
inputs such as images, text, or audio, often outperforming
classical ML methods (12). DL models consist of multiple layers
that form neural network architectures and require extensive
training on large labeled datasets.

2.1 Artificial intelligence

Al is an emerging discipline aimed at replicating, enhancing,
and extending human intelligence through theoretical and
technological innovations (13). The key components of Al
technical systems include natural language processing, image
recognition, human-computer interaction, and machine learning
(14). Natural language processing integrates linguistics, computer
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science, and mathematics to enable machines to understand,
interpret, and generate human language, supporting tasks such as
information retrieval, speech recognition, and translation (15).
Image processing involves acquisition, filtering, enhancement, and
feature extraction, which significantly improves computational
efficiency and reduces energy consumption compared to
traditional methods (15). Human-computer interaction
technologies, including computer graphics and augmented reality,
facilitate seamless communication between users and machines
(15). ML encompasses supervised, unsupervised, transfer,
reinforcement, and integrated learning, employing algorithms
such as deep learning, artificial neural networks, decision trees
(16), and boosting algorithms. Rule-based AI systems have
demonstrated clinical utility in lung cancer diagnosis (17),
treatment (18), and prognosis (Figure 1B) (19).

Al is increasingly applied in medical research, including
imaging, pathornics, genomics, transcriptomics, proteomics, and
metabolomics. Recent studies have highlighted its role in multi-
omics analysis for diagnosing GMs, distinguishing benign from
malignant tumors, and predicting pathological classification,
treatment response, and prognosis.

2.2 Machine learning

As a core component of AI, ML includes three primary
methodologies: supervised, unsupervised, and reinforcement learning.
In reinforcement learning, models receive rewards for correct decisions.
Unsupervised learning identifies patterns in unlabeled data, such as
through clustering algorithms. Supervised learning relies on human-
labeled data to train models, which are penalized for incorrect
predictions. Common supervised models include support vector
machines (SVMs), decision trees, and artificial neural networks.
These models vary in size, with neural networks containing
parameters ranging from hundreds to billions (20). DL, or deep
neural network, is particularly effective for image and text data due
to its robustness in handling complex structures. In precision oncology,
DL efficiently analyzes histopathologic and genomic data (Figure 3)
(22). Multimodal approaches integrating ML and DL on diverse data
types, such as histopathological images combined with genetic
information, further enhance model performance by leveraging
complementary information (Table 1) (42).

2.2.1 Support vector machine

SVM is a widely used ML method for classification and
regression. It identifies the optimal hyperplane that separates
classes in an n-dimensional space. The optimization objective for
a linear SVM is as follows:

minT (w,b) 1/2|w[,

sit. yi(w-x;4b) 21, forall

i=1,..,n,

where w is the weight vector defining the hyperplane, *b* is the
bias term, x; is the data points, and y; € {-1, +1} is their
corresponding class labels.
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SVMs use support vectors and kernel functions to handle non-
linear separations. In GM research, SVMs have been applied to
tumor detection using features from MR images (23).

2.2.2 Decision tree

Decision trees (DTs) are supervised learning models that
identify attributes and patterns in large datasets for predictive
modeling (26). They provide interpretable visual representations
of relationships between variables (27). While DTs are easy to
construct and explain, ensemble methods like random forests
improve predictive stability by combining multiple trees.

2.2.3 Artificial neural network

ANNSs are computational models inspired by biological neural
networks, capable of learning patterns from data (28). They adapt
through experience, making them suitable for classification and
prediction tasks. ANNs exhibit non-linearity, enabling them to
model complex data patterns. The output a of a neuron is
computed as follows:

a=fCL wx +b),

where x; is the input, w; is the corresponding weight, b is the bias
term, and f is the non-linear activation function (e.g., Sigmoid and
Rectified Linear Unit (ReLU)). ANNs are structured into input,
hidden, and output layers, with the configuration denoted as X-Y-
Z, indicating the number of neurons in each layer (29).

2.2.4 k-Nearest neighbor

k-Nearest neighbor (k-NN) is a non-parametric method used
for classification and regression (30). It identifies the k most similar
training examples to a new input and assigns the majority class
among them. The choice of k affects model complexity: small k may
lead to overfitting, while large k may include irrelevant data. Cross-
validation helps select an optimal k (31).

2.2.5 Bayesian network

Bayesian networks (BNs) represent probabilistic relationships
among variables using a directed acyclic graph (32). Nodes denote
variables, and arcs indicate dependencies. BNs estimate event
probabilities rather than provide deterministic predictions.

2.2.6 Random forest

Random forest (RF) is an ensemble learning method that
combines multiple decision trees to reduce variance and improve
accuracy (24). It trains trees on random data subsets and averages
their predictions, mitigating overfitting and providing variable
importance estimates (25).

2.2.7 Classification and regression trees

Classification and regression tree (CART) constructs binary
trees for classification or regression (33). Nodes represent decision
rules, and leaves represent outcomes. Split points are chosen to
minimize a cost function, emphasizing problem structure over
data distribution.
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2.2.8 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) models
relationships between continuous dependent and independent
variables using piecewise regression equations (34). It handles
categorical and continuous data, offering flexibility beyond
linear regression.

2.2.9 Gray-level co-occurrence matrix

Gray-level co-occurrence matrix (GLCM) is a texture analysis
method that computes spatial relationships between pixel pairs in
an image (35). It generates a co-occurrence matrix from which

Frontiers in Oncology

statistical features are extracted and applied in MRI-based feature
analysis (35).

2.2.10 Feature extraction

Feature extraction includes feature selection and transformation
(36). Selection identifies relevant variables (e.g., gene expression), while
transformation uses dimensionality reduction or neural networks to
derive latent features (37-39). Graph neural networks [graph
convolutional network (GCN), graph autoencoder (GAE), and graph
attention network (GAT)] learn low-dimensional representations from
network-structured data for predictive modeling.
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TABLE 1 Comparison of selected traditional machine learning and feature engineering methods.

Model/
method

Key principle

Advantages

Limitations

10.3389/fonc.2025.1592078

Typical use cases in
GMs

Support vector
machine (SVM)

Finds the optimal hyperplane that maximizes
the margin between classes.

Effective in high-dimensional
spaces; robust against
overfitting.

Sensitive to kernel/parameters;

poor scalability to large datasets.

Classification of tumors based
on radiomic features (23).

Random forest
(RF)

An ensemble of decision trees, using bagging
and feature randomness.

High accuracy; handles non-
linear data; provides feature
importance.

Less interpretable;
computationally expensive with
many trees.

Variable importance analysis;
classification and regression
(24, 25).

Decision tree
(DT)

Artificial neural
network (ANN)

k-Nearest
Neighbor (k-NN)

Bayesian network
(BN)

A tree-like model of decisions and their
possible consequences.

Network of interconnected nodes that mimic
neurons, learning complex non-linear
relationships.

Classifies a data point based on how its k-
nearest neighbors are classified.

A probabilistic graphical model representing
variables and their conditional dependencies
via a Directed Acyclic Graph (DAG).

Highly interpretable and
visualizable; easy to
understand.

Can model highly complex
patterns; universal function
approximator.

Simple to implement and
understand; no training
phase (lazy learner).

Handles uncertainty well;
interpretable causal
relationships.

Prone to overfitting; unstable to
data variations.

Can be a black box; requires
careful tuning; prone to
overfitting without
regularization.

Computationally intensive
during prediction; sensitive to
irrelevant features and k-value.

Learning network structure can
be complex; requires prior
knowledge or assumptions.

Base learner for ensembles;
preliminary data exploration
(26, 27).

Early ML models for
classification and prediction
tasks (28, 29).

Classification based on
similarity in feature space (30,
31).

Probabilistic reasoning and
risk assessment (32).

Classification and
regression tree

A predictive model that uses a tree structure
to go from observations to target value.

Can handle both
classification and regression;
handles non-linear

Can create over-complex trees
that do not generalize well

Similar to DTs, used for
building interpretable models

CART fitting). 33).
( ) relationships. (overfitting) 63
Multivariaty
‘f’a“a ¢ A non-parametric regression technique that Flexible in modeling non- Modeling complex, non-linear
adaptive Can become overly complex

regression splines
(MARS)

models complex relationships by splitting data
into regions.

linearities; handles high-
dimensional data.

and lose interpretability.

relationships in medical data
(34).

Gray-level co-
occurrence
matrix (GLCM)

Feature
extraction

Model building

A statistical method that examines texture by
considering the spatial relationship of pixels.

The process of transforming raw data into a
reduced representation of informative features.

The integrative process of combining features,
clinical data, and algorithms to create a
predictive model.

Effective for capturing
texture features in images;
well-established.

Reduces data dimensionality;
can improve model
performance and efficiency.

Creates robust and clinically
applicable tools; can
incorporate multi-modal
data.

Computationally heavy; features
can be sensitive to image
rotation and scale.

Hand-crafted features may not
capture the most discriminative
information.

Requires domain expertise for
variable selection and
interpretation.

Texture analysis and feature
extraction from MR/CT
images (35).

Extracting radiomic features
from medical images for
downstream ML tasks (36-39).

Building nomograms or
integrated models for
diagnosis/prognosis (40, 41).

GMs, gynecologic malignancies; ML, machine learning; DTs, decision trees.

2.2.11 Model building

The final step in radiomics integrates clinical data, risk factors,
biomarkers, and radiomic features into predictive models (e.g.,
nomograms) (40). Such models improve disease diagnosis,
classification, and prognosis, advancing personalized medicine (41).

2.3 Deep learning

DL is a powerful subset of machine learning that automatically
learns hierarchical features from large-scale datasets, such as
images, text, and audio. A typical DL model consists of an input
layer, multiple hidden layers (e.g., convolutional, pooling, recurrent,
and fully connected layers), and an output layer (43). The
convolutional layers extract local patterns through learnable
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filters, pooling layers reduce spatial dimensions and enhance
translational invariance, and fully connected layers integrate high-
level features for final prediction (44-46). DL encompasses various
advanced architectures, including deep neural networks (DNNs),
autoencoders (AEs), deep belief networks (DBNs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and
generative adversarial networks (GANs). Among these, CNNs have
achieved remarkable success in visual recognition tasks and are
increasingly applied in medical image analysis (Figure 4) (48).

2.3.1 Convolutional neural networks

A CNN is a type of feedforward neural network commonly
composed of convolutional layers, activation functions (e.g., ReLU),
pooling layers, and fully connected layers (49). The convolutional
filters operate on local receptive fields and share parameters across

frontiersin.org
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Primary tumor model: manually segmented primary tumor in contrast-enhanced T1-weighted imaging (CE-T1WI)/T2-weighted imaging (T2WI). 2)
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per patient), (C) principal component analysis (PCA) for feature decomposition, (D) support vector machine (SVM)-based platinum sensitivity
prediction, and (E) heatmap visualization of convolutional layer feature maps.

spatial locations, enabling efficient feature learning without manual
design. This capability has proven highly effective in tasks such as
tumor segmentation and classification in medical imaging (50).
However, CNNs generally require large amounts of annotated data
for training and are susceptible to overfitting. Regularization
methods such as dropout, weight decay, and data augmentation
are widely used to improve generalization (51).

2.3.1.1 Basic structure

The fundamental building blocks of CNNs include
the following.

Convolutional layers: These layers apply a set of learnable filters
to the input. Each filter performs convolution operations across the
input volume to produce feature maps highlighting specific patterns
such as edges, textures, or complex shapes. The discrete convolution
operation between an input image I (height H and width W) and a
kernel K (size khxkw) is defined as follows:

i’;’&[(i +m,j+n)-K(m,n).

(%K) Gj = Sh

This operation is performed across the entire image to produce
a feature map, highlighting the locations where the kernel’s pattern
is detected. This process allows the network to detect locally
relevant patterns such as edges, textures, and shapes (52).

Pooling layers: Pooling (e.g., max pooling or average pooling)
downsamples the feature maps, reducing computational burden
and increasing receptive field size. It also contributes to model
robustness against input variations (53).

Fully connected layers: After feature extraction and
dimensionality reduction, the features are flattened and processed
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through one or more fully connected layers. These layers perform
global reasoning and generate final outputs, such as class labels or
regression values (54).

A representative CNN structure is illustrated in Figure 5,
showing the flow from input through convolutional and pooling
layers to the fully connected output layers.

2.3.1.2 Network structures

Convolutional, ReLU, pooling, and fully connected layers are
stacked to form CNNs, which can be designed as either deep or
shallow architectures. Classical deep CNNs such as LeNet (56),
AlexNet (57
Training deep CNNs requires large amounts of annotated data,

), and GoogLeNet (58) are summarized in Table 2.

which are often limited in medical imaging applications. Therefore,
shallower CNN architectures are also widely considered in this
domain, offering a balance between performance and data efficiency
(Figure 6) (59).

It is essential to ensure that the test dataset follows the same
distribution as the training set to obtain a reliable evaluation of
model performance. Common metrics include accuracy, precision,
recall, sensitivity, specificity, AUC-ROC, and Fl-score. While
accuracy is sometimes used for quick model comparison, a
comprehensive evaluation typically employs multiple metrics. In
practice, a trade-off between accuracy and computational efficiency
(e.g., inference time within 100 ms) is often necessary, where
accuracy is optimized under predefined runtime constraints (75).

AlexNet: This pioneering deep CNN helped popularize deep
learning in computer vision. It consists of five convolutional layers
and three fully connected layers, utilizing ReLU activations and
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dropout regularization. AlexNet significantly outperformed
traditional methods in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012 (59).

VGGNet: Known for its simplicity and depth, VGGNet uses
stacks of 3 x 3 convolutional layers followed by max pooling. This
design increases network depth while preserving receptive fields,
improving feature learning capacity (31).

GoogLeNet: It introduced the Inception module, which
performs parallel convolutions with different kernel sizes and
merges their outputs. This structure captures multi-scale features
efficiently while controlling computational cost (58).

ResNet: Residual Networks address the degradation problem in
very deep networks through skip connections. These identity
mappings allow gradients to flow directly through layers, enabling
stable training of networks with hundreds of layers (60).

U-Net: Originally designed for biomedical image segmentation,
U-Net employs a symmetric encoder-decoder architecture with
skip connections. This design combines high-resolution features
from the encoder with upsampled decoder features, enabling precise
localization (61).

GNNs and Extensions: Graph neural networks (GNNs),
including GCNs, GATs, GAEs, and GraphSAGE, extend
convolutional operations to graph-structured data. They learn
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node representations by aggregating information from
neighborhoods and have shown promise in modeling biological
networks (68-72).

GANSs: Generative adversarial networks consist of a generator
and a discriminator trained adversarially. GANSs are highly effective
in generating realistic synthetic data and have been used for data
augmentation, domain adaptation, and image reconstruction in
medical applications (63, 64).

CAEs: Convolutional autoencoders employ convolutional layers in
both encoder and decoder components. They are used for unsupervised
representation learning, denoising, and anomaly detection (65, 66).

ViT: Vision Transformer (ViT)adapts the transformer
architecture to images by dividing them into patches and
processing them as sequences. ViT captures global contextual
information and has achieved competitive performance in several
medical imaging benchmarks (67).

3 Gynecologic malignancies

Timely identification can reduce the risk of substantial illness
and death associated with neoplasms in women. Among all types of
cancer, breast cancer is the most frequently occurring, with
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TABLE 2 Comparison of selected deep learning model architectures.

Key architecture

Advantages

Limitations

10.3389/fonc.2025.1592078

Typical use cases in

medical imaging

A pioneering deep CNN with 5 convolutional

Demonstrated the power of

By modern standards,
architecture is less efficient,

Baseline architecture for image

AlexNet and 3 fully connected layers, using ReLU deep CNNs on large-scale .
L. L C and parameters are not classification tasks (57, 59).
activation. datasets; revolutionized the field. .
optimized.
High representational power Very computationall
A very deep CNN with a simple architecture &1 rep . P 4 . P Y Feature extractor for various
VGGNet . . due to depth; simple and expensive and parameter-heavy L .
using stacks of 3 x 3 convolutional layers. . . . medical image analysis tasks.
uniform architecture. due to full connections.
Introduced the Inception module to perform Improved computational Complex network design can Efficient and accurate image
GoogLeNet/ . . . . . . . . . .
L " multi-level feature extraction within a single efficiency; reduced number of be harder to modify and train classification and detection
nception
P layer. parameters. from scratch. (58).
Backbone for many state-of-
Introduces skip connections (residual blocks) to | Enables training of extremely . . ¥
L . . Very deep networks can still be | the-art models in
ResNet solve the vanishing gradient problem in very deep networks (100+ layers); . . . . .
computationally intensive. classification, segmentation,
deep networks. state-of-the-art performance.
etc. (60).
Excellent for semantic Primarily designed for Biomedical image
Symmetric encoder-decoder architecture with . . . Y . 8 X 8
U-Net . . . L segmentation; effective with segmentation, not segmentation (e.g., tumor and
skip connections for precise localization. e - R
limited data. classification. organ delineation) (61, 62).
Generative Dat tation f
ata augmentation for rare
adversarial Two networks (generator and discriminator) Can generate synthetic data; Training can be unstable 8 R X
. - . cancer types; image synthesis
network trained adversarially. useful for data augmentation. (mode collapse). (63, 64)
(GAN) o
. Learns compressed . .
Convolutional . . . Image denoising, compression,
An autoencoder using convolutional layers to representations; useful for The latent space may not be as .
autoencoder R . . .. . L . and unsupervised feature
encode input into a latent space and decode it. denoising and dimensionality interpretable. .
(CAE) K learning (65, 66).
reduction.
Vision Requires large datasets to Alternative to CNNs for
Applies transformer architecture with self- Captures global contextual q 8 . .
Transformer . . . . . . outperform CNNs; image classification and
. attention mechanisms to image patches. information effectively. . .
(ViT) computationally heavy. analysis (67).

Graph neural

A general class of networks that operate on

Models complex relationships

Not directly applicable to

Analyzing molecular
structures, protein

network and dependencies between standard image data without X R X
graph-structured data. . . interactions, and relational
(GNN) entities. graph construction.
data (68).
Graph
Node classification, link
convolutional A type of GNN that performs convolution Efficiently captures node Requires a defined graph diction in biological
rediction in biological
network operations on graphs. features and graph topology. structure as input. P &
networks (69).
(GCN)
Graph . . . . .
. Incorporates attention mechanisms into graph Dynamic and adaptive . . Tasks where some
attention ; L i i K Higher computational cost X
work learning, weighting the importance of neighborhood importance; often than GCN connections are more
nel .
neighbors. outperforms GCN. important than others (70).
(GAT)
Graph Learns meaningful latent Dimensionality reduction,
P Uses GNNs as encoders to learn node/graph . & . Quality of embeddings is tied ty' .
autoencoder . X K representations of graph data in K anomaly detection in network
embeddings for unsupervised reconstruction. . to the reconstruction task.
(GAE) an unsupervised way. data (71).
An inductive framework that generates node Generalizes to unseen nodes/ . . Large-scale graph applications
. . . L Sampling process can omit
GraphSAGE embeddings by sampling and aggregating graphs; not transductive like . . . where new nodes are common
) A important information.
features from a node’s local neighborhood. GCN. (72).
A technique to incorporate graph/network Improves model performance Not a standalone model; an » X X
Graph . q P . g P P . P ) . Regularizing models in semi-
L information as a constraint into an by enforcing smoothness or add-on technique to guide K .
regularization supervised learning (73).

optimization problem.

CNNs, convolutional neural networks.

gynecologic malignancies of endometrial, ovarian, and cervical
origin being the next most common (76). Although gynecologic
cancers are less common than breast cancer, they have higher rates
of illness and death. The American Cancer Society predicts that

Frontiers in Oncology

structure on the solution.

09

other algorithms.

there will be approximately 116,760 new cases and 34,080 deaths
caused by gynecologic cancers in 2021 (77).

The majority of existing studies using AI have concentrated on
breast imaging. An extensive literature search on the application of
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FIGURE 6

The proposed ensemble network with a four-path convolutional neural network (CNN) of VGGNet, ResNet, Inception, and DenseNet (74). The
workflow involves 1) taking a CT scan image as input, 2) pre-processing the CT image to generate a segmented image of the region of interest, 3)
extracting features from the segmented image via four parallel CNN branches, and 4) fusing branch-specific features and feeding them into

subsequent networks to complete the final task (e.g., classification).

Al in breast cancer imaging identified 767 studies spanning from
the 1990s to the present. However, a different search for Al in
gynecologic cancer imaging resulted in only 194 studies, with a
majority of these being published in the last 2 years.

3.1 Ovarian cancer

Ovarian cancer (OC) typically manifests with a subtle onset,
lacking any distinctive symptoms or indicators. Unfortunately, the
disease often remains undetected until its advanced stages, affecting
over 70% of patients. As a result, patients miss the window for effective
treatment. As a result, ovarian cancer has the greatest death rate among
tumors in the female reproductive system (78). The condition is
characterized by mild initial symptoms and a poor prognosis. OC is
the most prevalent and perilous form of gynecologic cancer. The four
subtypes of primary epithelial ovarian carcinoma include serous,
mucinous, endometrioid, and clear cell ovarian cancer. There is still
a shortage of effective screening techniques for ovarian cancer. Clinical
settings commonly employ the combination of transvaginal
sonography and serum carbohydrate antigen (CA) 125 to initially
identify ovarian cancer. However, this method has limited sensitivity
and specificity (79). Transvaginal sonography frequently leads to the
misidentification of benign pelvic masses as malignant ones (80), and
its accuracy is significantly affected by the doctor’s level of expertise.
However, peripheral blood testing offers the benefits of being painless,
minimally invasive, and rapid, with greater acceptance and compliance.
However, the use of CA125 is prone to false-positive results due to

interference from benign tumors, inflammation, and hormone levels.
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Prior research (81) has consistently demonstrated that the area under
the receiver operating characteristic curve (AUC) for the subject
operating characteristic curve is below 0.8, posing challenges in
meeting clinical requirements.

Debulking surgery and platinum-based chemotherapy are the
conventional methods used to treat epithelial ovarian cancer (EOC)
(82). Despite the possibility of achieving a high remission rate,
approximately 20% to 30% of patients undergo numerous cycles of
toxic medication before developing resistance to platinum-based
treatments. This delay in identifying resistance and initiating
therapy with effective drugs has proven to be a significant
obstacle in improving patient outcomes (83). At the same time,
platinum sensitivity is an easy way to find groups that respond to
poly(ADP-ribose) polymerase inhibitors (PARPi) (84). This
prediction can help prevent the unnecessary inclusion of patients
in different clinical studies. If platinum sensitivity could be
accurately anticipated, patients would derive greater advantages
from precision therapy. Nevertheless, traditional clinical markers
such as CA125 and tumor immunohistochemistry have a restricted
ability to predict outcomes (85). In modern times, biopsies followed
by mutation profiling or surgical resections have become a
customary and enlightening practice (86). Nevertheless, the high
expense, the invasive nature of the methods, the presence of genetic
variation inside the tumor, and the need for many tumor samples
greatly restrict the usefulness of molecular testing. This raises
significant concerns about the cost-effectiveness of such testing.

The difficulty lies in the absence of a reliable screening
technique, resulting in the diagnosis of ovarian cancer at an
advanced stage, typically Stage IIT or IV. Radiologists conduct a
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manual analysis and interpretation of medical images from a
patient suspected of having cancer in order to determine the
specific type and stage of the cancer. As a result, the process
misclassifies cancer subtypes, introduces variances in observations
across different individuals, introduces subjectivity, and consumes a
significant amount of time. This led to the creation of a diverse
range of machine learning models aimed at forecasting and
identifying tumors. The lack of effective early screening methods
and the complexity of predicting platinum resistance represent
significant clinical challenges that artificial intelligence and deep
learning approaches are uniquely positioned to address.

3.2 Cervical cancer

The human cervix is lined by a delicate layer of tissue. The
condition known as cervical cancer occurs when a cell transforms
into a malignant one, exhibiting rapid growth and division, leading
to the formation of a tumor. Early detection of this malignancy is
crucial for successful treatment (87).

Cervical cancer is a prevalent type of cancer that affects the
female reproductive system and has a significant impact on health
and survival. It is widespread globally and particularly affects a large
number of patients in China (88). Established risk factors for
cervical cancer include human papillomavirus (HPV) infection,
chlamydia infection, smoking, overweight/obesity, an unhealthy
lifestyle, and the use of intrauterine devices (89). Prompt and
consistent screening, together with early detection, are crucial in
the prevention and management of cervical cancer. This is because
precancerous abnormalities can manifest before the onset of
cervical cancer and may progress into cancerous growths over a
span of many years (90).

Cervical cancer screening involves the identification of cervical
intraepithelial neoplasia (CIN), commonly referred to as cervical
dysplasia. CIN is categorized into three grades: CIN1 (mild), CIN2
(moderate), and CIN3 (severe) (91). The main objective of cervical
cancer screening in clinical practice is to assess the stage of CIN,
which includes normal, CIN1, and CIN2/3.

Cervical cancer screening primarily consists of three steps: a
Pap/HPV test, a colposcopy, and a pathological examination.
During a Pap test, trained medical staff retrieve a few cell samples
from the cervix and scrutinize them under a microscope to detect
squamous and intraglandular epithelial lesions (SILs). The HPV test
is a molecular test that pinpoints specific strains of the human
papillomavirus associated with cervical cancer. If the Pap/HPV test
yields abnormal results, it is recommended to undertake a
colposcopy to locate suspicious lesions and undergo pathological
investigations to determine the stage of CIN (92). Based on the
specific attributes of the lesions seen during the colposcopy, the
severity of CIN, and the patient’s medical background, a
personalized treatment plan can then be developed.

Ultrasound is a commonly employed imaging diagnostic
method for screening cervical cancer due to its simplicity and
affordability. Computed tomography (CT) offers a superior ability
to accurately display organs and soft tissue structures with subtle
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variations in density because of its high-density resolution.
However, its capacity to evaluate the infiltration and
dissemination of cervical cancer in other regions is limited,
thereby constraining its therapeutic effectiveness. Because of the
benefits of multiparameter multisequence imaging and high tissue
resolution, MRI plain scan is highly suitable for diagnosing and
staging cervical cancer (93). However, it still has certain drawbacks.
Recently, researchers have developed several new multimodal MRI
sequences that significantly enhance the diagnostic precision of MR
images for various disorders.

Squamous cell carcinoma (SCC), adenocarcinoma (ADC), and
tumors with unclear histological subtypes are the most common
classifications for cervical cancer. SCC is the predominant form of
cervical cancer, accounting for approximately 80% of all
occurrences (94). SCC detection has greater clinical relevance for
detecting SCC than ADC. HPV testing is more sensitive than
cytology testing for cervical cancer screening, as discussed earlier
(95). HPV testing enhances the comprehension of cervical cancer
progression and identifies specific HPV genotypes, including HPV
16 and HPV 18. These two genotypes of high-risk HPV are the most
prevalent, and together, they contribute to approximately 70% of
cervical cancer cases. The Cancer Genome Atlas project has
documented that gene alterations exhibit variability across
different subtypes, indicating that distinct tumor subtypes may
require tailored therapeutic interventions (96). The classification
of cervical cancer subtypes is intriguing because it directly impacts
the development of personalized treatment approaches by
distinguishing between different types of cervical cells.

Although low-grade lesions often resolve on their own, high-
grade lesions have the capacity to advance to aggressive malignancy.
Hence, it is imperative to promptly detect high-grade lesions in
order to intervene and prevent cervical cancer. DL algorithms can
effectively and swiftly identify and categorize the extent of
abnormalities in acetic acid test images, assisting in the prompt
identification of severe abnormalities and enabling appropriate
intervention and treatment. Computer-assisted diagnosis of
cervical cancer is critical for efficiently preventing cancer
development, making it highly important in clinical practice (97).
However, the heavy reliance on cytological and colposcopic
expertise, coupled with the subjective interpretation of screenings,
creates a pressing need for automated, objective, and Al-powered
diagnostic tools to improve accessibility and consistency in
early detection.

3.3 Endometrial cancer

Endometrial carcinoma (EC) is a malignant tumor that
develops in the inner epithelial lining of the uterus. It is the sixth
most common cancer among women. Globally, 417,367 women
received EC diagnoses in 2020, leading to significant financial
burdens for both patients and caregivers (98). It is noteworthy
that Asian women are prone to developing endometrial cancer at a
younger age compared to other groups. Additionally, they tend to
have more advanced stages of the illness. Therefore, it is crucial to
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accurately diagnose patients at an early age in order to provide
appropriate management (99).

Endometrial cancer is associated with certain risk factors, such
as postmenopausal hemorrhage, diabetes mellitus, arterial
hypertension, smoking, nulliparity, and late menopause (100).
Endometrial thickness has been proposed as a screening approach
for women; however, its diagnostic effectiveness is severely limited
due to the high occurrence of false-positive results, which have been
reported to exceed 70% (101). Upon amalgamating several
characteristics, the predictive efficacy of these indices appears to
be enhanced, as indicated by recent studies reporting estimated
sensitivity and specificity rates ranging from 70% to 80% in
extensive cohorts (100).

The 2023 International Federation of Gynaecology and
Obstetrics (FIGO) staging system categorizes endometrial cancers
into two types: type I (low-grade endometrioid, grade 1 or 2) with a
generally favorable prognosis and type II (grade 3 endometrioid,
serous, clear cell, carcinosarcoma, undifferentiated/dedifferentiated)
with a poorer prognosis. These tumors originate from many
biological pathways with specific molecular changes (102). The
current guidelines for optimum care of endometrial cancer patients
include molecular categorization based on the standards published
by the World Health Organization (WHO) (103), the European
Society of Gynaecological Oncology (ESGO) (104), and the 2023
FIGO (105). WHO, the ESGO, and the 2023 FIGO guidelines all
support the molecular categorization of endometrial cancer. This
gives a more accurate prognosis and more personalized treatment
plans than traditional grading methods. Nevertheless, the adoption
of this technology is still limited, especially in underdeveloped
nations, because of resource constraints and the limited
availability of specialized diagnostic equipment. Molecular
classification, in contrast to the grading system, focuses on
examining precise genetic and molecular alterations (such as
POLEmut, MMRd, NSMP, and p53abn) in cancer cells to inform
treatment choices, rather than evaluating histological characteristics
such as cellular atypia and tumor architecture.

Currently, the diagnosis of EC primarily relies on clinical
symptoms, physical examinations, laboratory tests, transvaginal
ultrasound, pelvic ultrasonography, endometrial biopsy with
hysteroscopy, and various imaging techniques such as computed
tomography, positron emission tomography/computed
tomography, and magnetic resonance imaging. Diagnostic
purposes also utilize certain biomarkers such as CA125 and HE4
(99). The goal of these examinations is to analyze the endometrial
cells, assess the degree of disease, and identify the presence or
absence of metastases. While these approaches exhibit favorable
sensitivity in detecting EC, they also have drawbacks like limited
specificity (especially transvaginal ultrasonography), invasiveness,
discomfort, and high expense.

Al techniques in image processing are crucial for the timely
identification, tracking, diagnosis, and treatment of EC. These
methods aid the doctor in achieving a more precise disease
diagnosis and can attain a high level of accuracy that may even
surpass human recognition capabilities. Following the diagnosis of
EC, physicians will endeavor to determine the extent of its
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dissemination, a procedure referred to as staging. The cancer
stage refers to the extent to which cancer has spread across the
body. It aids in assessing the severity of the cancer, devising
appropriate treatment strategies, and predicting the potential
efficacy of the treatment. The EC is categorized into four stages
according to its extent of dissemination. The malignancy is localized
exclusively in the uterus at stage 1. Stage 2 of cancer involves cancer
cells in the uterus and cervix. In stage 3, the cancer has gone beyond
the uterus but has not reached the rectum or bladder. It may also be
found in the fallopian tubes, ovaries, vagina, and adjacent lymph
nodes. The stage 4 malignancy has metastasized beyond the pelvic
region. The presence of the condition may be observed in the
bladder, rectum, and/or other remote tissues and organs. MRI is the
most appropriate for detecting and assessing endometrial cavity EC,
tumor infiltration into the myometrium, endocervix, and extensive
spread into the parametria, as well as other cancer deposits in the
pelvic region. Quantitative assessments on MRI are more effective
than direct inspection by radiologists in identifying deep
myometrial invasion. However, there are instances where it is not
reliable to diagnose some invisible EC lesions on MRI. The rapid
advancement of DL techniques, ranging from the initial shallow
CNN model to the deep CNN model, along with the use of transfer
learning, data augmentation, and other novel techniques, has
provided motivation for their application in the automatic
identification of EC.

Surgery remains a critical component in the treatment of
endometrial cancer. The primary goals of this procedure are
twofold: first, to remove the original tumor, and second, to
accurately determine the extent of the disease and assess its
prognostic aspects. While achieving the first target may be
possible by a “simple” hysterectomy, the latter requires a more
thorough intervention. This includes a complete omentectomy,
pelvic lymphadenectomy, and lumbo-aortic lymphadenectomy
(106). However, the therapeutic value of these procedures is still a
subject of controversy. Performing invasive surgery on obese,
elderly, and fragile individuals with endometrial cancer may result
in serious consequences of significant concern. Therefore, it is
necessary to maximize the diagnostic performance before surgery.
Improving the patient selection process for surgery would lead to a
decrease in the risk of unnecessary treatment, complications, and
death by providing personalized care. The critical challenges of pre-
operative molecular classification and accurate staging for
personalized treatment planning are areas where deep learning
models applied to imaging and histopathological data show
immense potential.

3.4 Precision oncology

Precision tumor medicine entails utilizing a variety of advanced
detection technologies, such as proteomics, transcriptomics,
genomics, epigenomics, and metabonomics, to gather biological
information related to tumors. This information is then used to
guide the process of tumor screening, diagnosis, and treatment
(107). The discovery of many gene mutations has significant
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benefits for molecular subtype classification, risk prediction for
GMs, and accurate treatment strategy selection.

Precision oncology refers to the accurate identification and
analysis of individual tumor cells. It is widely recognized as a
crucial therapeutic approach in the battle against cancer and is
centered on the identification of precise molecular targets. Precision
oncology is associated with the use of personalized cancer genetic
data. Additionally, it can incorporate proteomics data by extracting
clinical signatures from electronic records stored in various
computational databases (108). Al-based, innovative molecular
techniques have been utilized in recent advancements in clinical
oncology. Next-generation sequencing (NGS) is the optimal platform
for producing large-scale datasets with high throughput. In addition,
the development of an algorithm for early-stage cancer detection
necessitates the involvement of oncology experts who possess a
background in ML. This algorithm aims to identify new
biomarkers and target sites, enable accurate diagnosis through
NGS, identify specific target sites, and enhance medical imaging
technology with high resolution (109). Precision oncology
medications are developed to selectively attack cancer cells by
exploiting their genetic heterogeneity. The system may use NGS
data to recommend personalized therapy by taking into account
individual genetic characteristics. AI is considered one of the leading
cutting-edge treatments for accurate cancer diagnosis, prognosis, and
treatment. This is achieved by analyzing large datasets from
pharmaceutical and clinical sources through systematic data
processing. The future of digital healthcare and clinical practices is
expected to shift toward the utilization of algorithm-based Al for
radiological image interpretation, e-health records, and data mining.
This transformation aims to provide more accurate solutions for
cancer treatment. The integration and interpretation of complex,
high-dimensional multi-omics data remain a major hurdle in
realizing the full promise of precision oncology, a challenge that
requires the sophisticated pattern recognition capabilities of advanced
AT and deep learning algorithms.

4 Deep radiomics-based learning in
gynecologic malignancies

Radiomics is a method that allows for the extraction of a large
number of imaging characteristics from medical images obtained by
non-invasive procedures such as CT, MRI, and ultrasound. This
methodology was initially introduced by Lambin et al. in 2012
(110). Medical images store large amounts of digital data that
pertain to the pathophysiology of tumors (111). Furthermore,
radiomics can extract pertinent characteristics from images and
integrate and enhance the findings with clinical, pathophysiological,
and molecular biological information. This can lead to enhanced
clinical diagnosis, the prediction of tumor stage and genotype, and
the assessment of prognosis (112). The primary stages of radiomics
encompass medical image collecting, image segmentation, feature
extraction, feature screening, and model development. Radiomics
has been extensively employed in the investigation of many types of
tumors, such as thyroid, breast, liver, prostate cancer, and OC (4).
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The radiological evaluation could be enhanced by employing
radiomics to characterize tumors. These imaging features are both
reproducible and quantitative, and they enable the non-invasive
evaluation of the heterogeneity of the tumor (113). Al in radiology
is a newly developed field that involves the efficient extraction of
digital medical imaging data to gather predictive and/or prognostic
information about patients and their diseases. This is achieved by
analyzing tumor heterogeneity and indirectly assessing the
molecular and genetic features of the tumor. It has the potential
to enable the anticipation of diagnosis, treatment response, and
prognosis. The topic of research in oncology is rapidly growing in
popularity due to its broad and potential applications, particularly
in clinical decision-making and personalized treatment (114). A
robust association exists between radiomic data and clinical results.
The efficacy of this notion has already been demonstrated in
predicting several solid tumors prior to surgery (115).

The AI methodology diverges from the usual radiological
method by providing an automated, replicable, and quantitative
examination of images that surpasses human visual capabilities. Al
systems can be trained to analyze predefined criteria, such as tumor
size, tumor shape, and lymph nodes, using machine learning.
Alternatively, they can be educated without human supervision
using DL, which involves a flexible analytical process that may not
be easily understandable by humans. An instance of a free analysis
chain is the artificial neural network, which has interconnected
functions that process images as input and generate analysis as
output. The complexity of a neural network may vary depending on
the purpose and the type of input. A neural network is referred to as
“deep” when it consists of multiple layers, known as “hidden
layers”, through which information is transmitted. The greater the
number of hidden layers in a network, the deeper and more intricate
it becomes. An excessively complex model has the capability to fit
extremely well to a particular training dataset, but it runs the risk of
performing poorly when presented with fresh information. This
phenomenon is sometimes referred to as “overfitting”. Hence,
several methods of internal and external validation are employed
to mitigate this issue, which compromises the algorithm’s
applicability. The term “DL” pertains to the utilization of deep
neural networks.

4.1 Tumor lesion detection and diagnosis

Initial tumors exhibit no distinct symptoms. Various forms of
tumors may be accompanied by certain symptoms. Early detection
of symptoms allows for the possibility of early detection of
malignant tumor growth. When there is a suspicion of a tumor, a
thorough examination can be conducted to obtain a comprehensive
and unbiased diagnosis of the tumor’s state, facilitate early
treatment, and enhance the chances of a cure.

Computer-aided diagnosis in the medical profession enables
clinicians to convert subjective image data into objective image data,
facilitating clinical decision-making. Nevertheless, DL utilizing a
CNN possesses evident benefits in comparison to conventional
computer-aided diagnosis. Simplifying the extraction procedure
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allows for the automatic extraction of distinctive feature
information from datasets. Additionally, its performance is more
systematic and offers greater ease of adjustment. ML and deep data
mining techniques facilitate the identification of cancer by enabling
researchers to extract distinctive information from the data, which
may then be used for cancer prediction (31). The application of AI
extends beyond detection to nuanced prognostic prediction. Studies
have demonstrated that deep learning models can decode the
complex interplay within the tumor microenvironment, offering
insights into disease aggression and patient outcomes that surpass
traditional staging systems (116). This aligns with our findings on
the prognostic value of Al-derived features.

DL primarily utilizes X-ray, CT, and MR images for lesion
detection and classification. Plain radiographs, generated using X-
ray technology, provide image metrics that describe tumor features
such as tumor location, tumor size, and tumor margin. CT and MRI
offer enhanced radiological information and enhance the ability to
detect lesions, in comparison to simple radiographs. Several
advanced DL techniques have been documented for the
identification and categorization of GMs using CT and MRI scans
(117). CNNs, which are particularly adept at processing spatial
information in images by learning hierarchical features through
convolutional filters, have been widely employed for this task.

For instance, Chen et al. (118) developed a computation
method called “GPS-OCM” to accelerate the investigation of
metabolites associated with ovarian cancer. This method is based
on the assessment of the similarity between metabolites and
diseases. This method combines the techniques of GCN, principal
component analysis (PCA), and SVM. The GCN was employed to
extract network topology characteristics, while PCA was utilized to
decrease the dimensionality of illness and metabolite variables. The
SVM algorithm was utilized for the purpose of classification. The
studies demonstrated the exceptional precision of our approach, as
evidenced by the high values of AUC and Area Under the Precision-
Recall Curve (AUPR).

Schwartz et al. (119) developed an automated methodology that
aims to learn how to detect ovarian cancer in transgenic mice using
optical coherence tomography (OCT) recordings. The process of
classification is achieved by employing a neural network that is
capable of perceiving spatially arranged sequences of tomograms.
The authors introduced three neural network-based methodologies,
including a feed-forward network backed by VGG, a three-
dimensional (3D) convolutional neural network, and a
convolutional long short-term memory (LSTM) network. Their
experimental findings demonstrate that our models reach a
favorable level of performance without the need for manual
adjustment or the creation of specific features, despite the
presence of severe noise in OCT images. The convolutional
LSTM-based neural network, which is their most successful
model, obtains a mean AUC of 0.81 + 0.037 (standard error).

Tanabe et al. (120) sought to create a method called complete
serum glycopeptide spectra analysis (CSGSA-AI) that uses Al and
CNN to identify abnormal glycans in blood samples from patients
with EOC. The researchers transformed the patterns of serum
glycopeptide expression into two-dimensional (2D) barcodes in
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order to enable a CNN to learn and differentiate between EOC and
non-EOC cases. The CNN model was trained using 60% of the
available samples and validated using the remaining 40%. The
researchers found that using principal component analysis-based
alignment of glycopeptides to create 2D barcodes greatly improved
the diagnostic accuracy of the approach, with a rate of 88%. By
training a CNN with 2D barcodes that were colored according to
the serum levels of CA125 and HE4, a diagnosis accuracy of 95%
was attained. They are of the opinion that this uncomplicated and
inexpensive approach will enhance the identification of EOC.

A comprehensive framework for detecting and classifying
cervical cancer was created utilizing an optimized SOD-GAN
(121). This advanced technique was designed to handle
multivariate data sources. The suggested classifier accurately
detects the cervix without the need for manual annotations or
interventions. Additionally, it categorizes cervical cells as benign,
precancerous, or cancerous lesions. The proposed approach has
been expanded to include the identification of both the kind and
stage of cervical cancer, in addition to its original purpose of
diagnosing cervical cancer. Experiments were conducted during
the training, validation, and testing phases of the proposed
optimized SOD-GAN. Throughout all stages, the proposed
approach demonstrated a high level of accuracy, reaching over
97% with a minimal loss of less than 1%. During the clinical analysis
of 852 samples, the average duration required to classify the cervical
lesion was 0.2 seconds. Therefore, the suggested method may
effectively train the network through incremental learning,
making it an ideal model for real-time cervical cancer diagnosis
and prognosis.

The study conducted by Fekri-Ershad et al. (122) introduced a
combination method that utilizes a machine learning approach.
This method is characterized by a distinct separation between the
feature extraction step and the classification stage. However, deep
networks are employed during the feature extraction stage. This
research introduces a neural network called a multi-layer
perceptron (MLP), which is trained using deep features. The
tuning of the number of hidden layer neurons is based on four
novel concepts. In addition, MLP has been fed with ResNet-34,
ResNet-50, and VGG-19 deep networks. In this technique, the
layers responsible for the classification phase are eliminated in
both CNN networks. The outputs then travel via a flattening layer
before being fed into the MLP. To enhance performance, both
CNNs are trained on correlated images utilizing the Adam
optimizer. The proposed method was assessed using the Herlev
benchmark database and achieved an accuracy of 99.23% for the
two-class scenario and 97.65% for the seven-class scenario. The
results indicate that the suggested method has achieved superior
accuracy compared to both the baseline networks and other
current methods.

Chandran et al. (123) presented two deep learning CNN
structures for the identification of cervical cancer using
colposcopy images. The first model is VGG19 (TL), while the
second model is CYENET. The VGG19 model is utilized as a
transfer learning technique in the CNN architecture for the
research. A novel model, called the Colposcopy Ensemble
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Network (CYENET), was created to automatically classify cervical
malignancies based on colposcopy images. The model’s accuracy,
specificity, and sensitivity were evaluated. The accuracy of VGG19’s
categorization was 73.3%. The findings obtained for VGG19 (TL)
were relatively satisfactory. Based on the kappa score of the VGG19
model, it may be inferred that it falls into the intermediate
classification group. The experimental results demonstrated that
the suggested CYENET displayed a high level of sensitivity,
specificity, and kappa scores, reaching 92.4%, 96.2%, and 88%,
respectively. The CYENET model demonstrates an enhanced
classification accuracy of 92.3%, surpassing the VGG19 (TL)
model by 19%.

Takahashi et al. (124) introduced an AI-powered method that
can automatically identify the areas impacted by endometrial cancer
in hysteroscopic images. A total of 177 patients with a previous
hysteroscopy were included in this study. Among them, 60 had a
normal endometrium, 21 had uterine myoma, 60 had endometrial
polyps, 15 had atypical endometrial hyperplasia, and 21 had
endometrial cancer. Three widely used deep neural network
models were utilized to implement machine learning techniques,
while a continuity analysis method was devised to improve the
precision of cancer detection. Ultimately, they examined whether
precision could be enhanced by amalgamating all the learned
models. The findings indicate that the diagnostic accuracy using
the usual technique was approximately 80% (78.91%-80.93%).
However, this accuracy improved to 89% (83.94%-89.13%) when
utilizing the proposed continuity analysis. Furthermore, when
integrating the three neural networks, the accuracy was above
90% (specifically, 90.29%). The sensitivity and specificity were
91.66% and 89.36%, respectively.

4.2 Tumor classification and typing

The process involves the detection and differentiation of non-
cancerous and cancerous growths. In order to thoroughly assess
GMs, whether they are benign or malignant, clinicians must first
make an initial determination based on symptoms as well as
laboratory and imaging tests. Currently, the most reliable method
for distinguishing between benign and malignant GMs is the use of
pathological analysis, through either a puncture biopsy or a
postoperative pathological evaluation. However, the techniques
used are invasive, and a puncture biopsy poses a specific risk of
needle route metastases (125). Consequently, several studies have
investigated the use of radiomics to detect both benign and
malignant tumors (Figure 7). Here, the ability of AI to learn
discriminative features directly from data is crucial. Deep
Convolutional Neural Networks (DCNNs), such as the AlexNet-
based architecture (57), which sparked the modern deep learning
revolution by winning the ImageNet challenge, have been adapted
for medical image analysis.

Wen et al. (127) utilized a novel 3D texture analysis technique
to assess the structural alterations in the extracellular matrix (ECM)
of various ovarian tissues, including normal ovarian stroma, high-
risk ovarian stroma, benign ovarian tumors, low-grade ovarian
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serous cancers, high-grade ovarian serous cancers, and
endometrioid tumors. The analysis was conducted using 3D
second-harmonic generation (SHG) image data. Through the
optimization of the number of textons, testing imaging weighting,
and nearest neighbor numbers, they were able to attain high
accuracy ranging from approximately 83% to 91% across different
classes. This performance significantly surpassed that of the
corresponding two-dimensional version. This application
showcases the effectiveness of using quantitative computer vision
evaluation of 3D SHG image features as a possible biomarker for
assessing cancer stage and kind. Crucially, it does not depend on
extracting basic fiber characteristics like size and alignment. This
classification algorithm is a versatile technique that relies on pre-
trained SHG images. It is particularly suitable for analyzing
dynamic fibrillar characteristics in many types of tissues.

The study conducted by Wu et al. (128) utilized a DCNN based
on AlexNet to autonomously categorize several forms of ovarian
tumors from cytological images. The DCNN is composed of five
convolutional layers, three max pooling layers, and two fully
connected layers. Next, they trained the model using two sets of
input data. The first set consisted of original image data, while the
second set consisted of augmented image data that included image
enhancement and image rotation. The testing findings are derived
from the application of the 10-fold cross-validation technique,
revealing that the accuracy of classification models has been
enhanced from 72.76% to 78.20% by utilizing augmented photos
as training data. The devised approach proved to be effective in
categorizing ovarian tumors based on cytological images.

The study conducted by Liu et al. (129) focused on the
development of a DL algorithm called the light scattering pattern-
specific convolutional network (LSPS-net). This algorithm is
integrated into a 2D light-scattering static cytometry system to
enable automatic and label-free analysis of individual cervical cells.
A classification accuracy of 95.46% was achieved for distinguishing
between normal cervical cells and malignant cells (specifically, a
mixture of C-33A and CaSKki cells). When used to classify label-free
cervical cell lines, the LSPS-net cytometric approach achieves an
accuracy rate of 93.31%. Additionally, the three-way categorization
of the aforementioned cell types achieves an accuracy rate of
90.90%. Comparisons with alternative feature descriptors and
classification methods demonstrate the superior capability of deep
learning for automatically extracting features. The LSPS-net static
cytometry has the potential to be used for early screening of cervical
cancer. This method is characterized by its rapidity, automation,
and lack of labelling requirements.

The research by Ghoneim et al. (87) presented a system for
detecting and classifying cervical cancer cells using CNNs. The
cellular images were input into a CNN model in order to extract
features that have been learned at a deep level. Next, an extreme
learning machine (ELM)-based classifier was used to classify the
input photos. The CNN model was employed using the techniques of
transfer learning and fine-tuning. Additionally, the study explored
other classifiers, such as MLP- and AE-based classifiers, in addition to
the ELM. The Herlev database was used for conducting experiments.
The CNN-ELM-based system demonstrated a detection accuracy of
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only the output layer is modified to fit the seven cervical cell classes.

99.5% for the two-class problem and a classification accuracy of
91.2% for the seven-class challenge.

The study conducted by Li et al. (130) aimed to develop an Al
system capable of automatically identifying and diagnosing
abnormal images of endometrial cell clumps (ECCs). The
researchers used the Li Brush to collect endometrial cells from the
patients. Slides were generated using the liquid-based cytology
technique. The slides were digitized and categorized into
malignant and benign groups. The authors put forward two
networks, namely, a U-Net segmentation network and a Dense
Convolutional Network (DenseNet) classification network, for the
purpose of image identification. Four more categorization networks
were utilized for comparative testing. We gathered a total of 113
endometrial samples, with 42 being malignant and 71 being benign.
From these samples, we created a dataset consisting of 15913
images. The segmentation network obtained a total of 39,000
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The workflow for cervical cancer classification using convolutional neural network (CNN) with transfer learning (126). Top: A CNN is pre-trained on
the ImageNet dataset (containing 1,000 classes, e.g., Dog, Horse, Truck, and Shark), utilizing convolutional/pooling layers, fully connected layers, and
an output layer to predict ImageNet classes. Bottom: Pre-trained weights are transferred to a new CNN for classifying seven classes of cervical cells
from the Herlev dataset. In this transfer process, convolutional/pooling layers and most fully connected layers are frozen (kept unchanged), while
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patches of ECCs. Subsequently, a total of 26,880 patches were
utilized for training, whereas 11,520 patches were allocated for
testing. Assuming that the training set achieved a 100% success rate,
the testing set achieved an accuracy of 93.5%, a specificity of 92.2%,
and a sensitivity of 92.0%. The remaining 600 cancerous patches
were used for verification. A successful Al system was developed to
accurately categorize ECCs as either malignant or benign.
Retrospectively, clinical information and the most recent
preoperative pelvic MRI were gathered from patients who had
undergone surgery and were diagnosed with uterine endometrioid
adenocarcinoma based on pathological examination. The region of
interest (ROI) was subsequently delineated in T1-weighted imaging
(TIWI), T2-weighted imaging (T2WI), and diffusion-weighted
imaging (DWI) MR images. From these scans, both classical
radiomic features and deep learning image features were
recovered. A comprehensive radiomics nomogram model was
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developed by merging conventional radiomics features, DL image
features, and clinical information (131). The purpose of this model
is to accurately differentiate between patients at low risk and those
at high risk, as per the 2020 European Society for Medical Oncology
(ESMO)-ESGO-European Society for Radiotherapy &
Oncology (ESTRO) criteria. The effectiveness of the model was
assessed in both the training and validation sets. Utilizing
MRI-based radiomics models can be advantageous in categorizing
the preoperative risk of individuals diagnosed with uterine
endometrioid cancer.

4.3 Image segmentation and volume
computation

The most prevalent modalities for acquiring images are CT,
MRI, positron emission tomography (PET), and ultrasound (132).
Images acquired using identical machine equipment, scanning
technique, and scanning layer thickness do not require post-
processing during feature extraction. Nevertheless, images
received through various equipment and under diverse
acquisition conditions necessitate pre-processing prior to feature
extraction. The pre-processing procedure involves resampling,
standardization, and high-pass filtering in order to achieve a
consistent layer thickness and matrix size for feature extraction.

Once medical images are acquired, a specific ROI is usually
defined by a process that includes automatic segmentation, manual
segmentation, and semi-automatic segmentation. Automated
segmentation is efficient in defining lesions but lacks accuracy in
recognizing them. Furthermore, the boundaries of tumors in
medical images are often indistinct, and the presence of nearby
metastases and accompanying symptoms, such as inflammation,
can readily disrupt the contours produced by semi-automatic and
automatic segmentation. Conversely, manual segmentation is a
subjective and time-consuming process that relies on clinicians
identifying the lesions and drawing their outlines. Semi-automated
segmentation, derived from automatic segmentation, enables
doctors to manually review and correct the delineated edges,
hence enhancing the efficiency and accuracy of the delineation
process (132). Presently, the standard software for ROI mapping
comprises the MIM (www.mimsoftware.com), ITK-SNAP
(www.itksnap.com), 3D Slicer (www.slicer.org), and Image]
(National Institutes of Health) software.

Medical image processing has widely used CNNs, which have
shown remarkable success in tasks like image classification and
segmentation (30). Engineers specifically design CNNs (74) to
capture spatial correlations in tasks like image classification,
segmentation, and object detection. Transformers have recently
gained prominence in the field of medical image processing,
demonstrating promising outcomes in a variety of tasks. The
primary benefit of transformers compared to CNNs lies in their
capacity to effectively manage extensive dependencies and
correlations among pixels within an image. Several regions of a
medical image may exhibit interconnected characteristics that
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significantly impact the diagnosis or therapy process. Transformers,
equipped with their own self-attention mechanism, can efficiently
record these linkages and dependencies, resulting in enhanced
performance in tasks like lesion categorization or segmentation.
This self-attention mechanism allows for simultaneous processing,
making transformers more efficient than CNNs and U-Nets.
Transformers have the advantage of being trainable on large
datasets, allowing them to acquire more intricate representations of
medical images. Nevertheless, transformers exhibit suboptimal
performance when confronted with a restricted dataset size. In
medical imaging, the availability of large datasets is often limited,
making this particularly important.

DL algorithms were utilized as a diagnostic tool for analyzing CT
scan images of the ovarian area (133). The photos underwent a
sequence of pre-processing procedures, and subsequently, the tumor
was segmented using the U-Net model. The occurrences were
subsequently categorized into two groups: benign and malignant
tumors. The classification task was executed utilizing deep learning
architectures like CNN, ResNet, DenseNet, Inception-ResNet, VGG16,
and Xception, in addition to machine learning models such as Random
Forest, Gradient Boosting, AdaBoosting, and XGBoosting. The
DenseNet 121 model achieved the highest accuracy of 95.7% on this
dataset after optimizing the machine learning models.

A CNN (134) was constructed for the categorization of image
patches in cervical imaging, with the aim of detecting cervical
cancer. Manually extracted image patches of 15 x 15 pixels were
identified using a shallow-layer CNN. The CNN consisted of a
single convolutional layer, a ReLU activation function, a pooling
layer, and two fully connected layers. The patches belonged to both
VIA-positive and VIA-negative areas. The shallow CNN model has
a classification accuracy of 100%. Despite the intricate
computations involved in training a CNN, once trained, it is
capable of classifying a new image in nearly real time.

Zhang et al. (62) conducted a study where they utilized DL
techniques to achieve accurate and efficient automatic segmentation
and applicator reconstruction in planning CT for cervical cancer
brachytherapy (BT). The researchers introduced a new design for a
3D CNN called DSD-UNET. The dataset consisting of 91 patients
who had CT-based brachytherapy for cervical cancer was utilized to
train and evaluate the DSD-UNET model for the automatic
segmentation of the high-risk clinical target volume (HR-CTV) and
organs at risk (OARs). Applicator reconstruction was accomplished
through the use of DSD-UNET-based segmentation to identify the
different components of the applicator. This was followed by the
creation of a 3D skeleton and fitting a polynomial curve to it. An
assessment was conducted on the digitization of the channel routes
for the tandem and ovoid applicators during the planning of CT. This
evaluation utilized data from 32 patients. The accuracy was
statistically evaluated using the Dice similarity coefficient (DSC),
the Jaccard index (JI), and the Hausdorff distance (HD). The
segmentation performance of DSD-UNET was evaluated in
comparison to that of 3D U-Net. The results demonstrated that the
DSD-UNET method had superior performance compared to the 3D
U-Net method in segmenting all of the structures.
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The study conducted by Hodneland et al. (135) introduced a
completely automated method for segmenting the primary tumor in
endometrial cancer. This method utilizes three-dimensional
convolutional neural networks and is applied to preoperative
pelvic MR scans. Using this method, tumor volume estimates and
segmentation accuracy achieved by CNNs are equivalent to those
achieved through manual segmentation by radiologists. The use of
CNN for tumor segmentation allows for automated and accurate
identification of tumors. This technique opens up new possibilities
for quickly analyzing the entire volume of a tumor and extracting
radiomic features. These features can possibly be used to identify
prognostic markers, which in turn may lead to more personalized
treatment for patients with EC.

4.4 Gene mutation state and prediction

The human genome sequence can undergo alterations of
varying sizes, including insertions, deletions, or inversions. These
modifications can range from a single nucleotide base to an entire
chromosome (136). Genetic alterations with a length greater than
1,000 bases characterize structural variants (137). Copy number
variations (CNVs) and copy number alterations (CNAs) are big
differences in the structure of DNA that can be found in 12% of
human genomes (138). They are noteworthy due to their
association with many illnesses.

Different harmful types of EOCs have gene mutations in
different places. Approximately half of EOCs do not fix
homologous recombination properly. Homologous recombination
repair defects are primarily caused by mutations in the BRCA gene.
This gene, acknowledged as a significant tumor suppressor gene
(139), plays a crucial role in repairing DNA double-strand breaks
during homologous recombination repair. Patients with advanced
ovarian cancer who have BRCA1/2 mutations show enhanced
responsiveness to platinum-based chemotherapeutic treatments.
They also had better rates of objective remission and survival
after treatment with platinum-based medicines. Additionally,
giving poly(ADP-ribose) polymerase inhibitors to people who
have OC after platinum-based chemotherapy can greatly lower
their risk of recurrence and death (140). Importantly, by examining
the H&E-stained pathological images of tumors, a DL model can
detect genetic changes.

In the study conducted by Zhu et al. (141), they utilized the
findings from this effort to identify a cluster of putative new genes
associated with HPV infection in a protein-protein interaction
network. The random walk with restart (RWR) method was
utilized on the protein-protein interaction (PPI) network, with
known genes associated with HPV infection serving as seed nodes.
Following the application of the permutation test to filter out genes
occupying specific positions in the PPI network, genes with strong
interaction confidence and functional similarity to known HPV
infection-related genes were chosen using the association test. This
selection process involved consulting published databases such as
STRING, gene ontology (GO) terms, and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway.
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Bahado-Singh et al. (142) utilized AI to detect the most
influential epigenetic markers throughout the entire genome. Both
logistic regression and AI methods consistently achieved good
diagnostic accuracy in detecting less invasive ovarian cancer using
cytosine methylation alterations in circulating cell-free DNA.
Comparable findings were acquired for CpG markers limited to
the promoter region, which is believed to be implicated in the initial
stages of cancerous transformation. This work showcases the
potential significance of precision oncology, which involves the
integration of AI with epigenomic analysis. It proves that this
combination can be used to accurately diagnose and understand
the development of OC. The latter is crucial for the advancement
and implementation of innovative targeted therapies, such as
CRISPR-based DNA methylation.

The research by Guo et al. (143) introduced a model called
IncRNA-disease associations by combining (LDACE), which
utilizes a combination of Extreme Learning Machines (ELMs) and
Convolutional Neural Networks (CNNs) to predict potential
connections between IncRNAs and diseases using ML. More
precisely, the representation vectors are formed by combining
several types of biological information, such as functional
similarity and semantic similarity. Next, the CNN is utilized to
extract both local and global characteristics. Ultimately, ELM is
selected to conduct the prediction task in order to identify potential
correlations between IncRNAs and diseases. The proposed method
demonstrated a notable area under the receiver operating
characteristic curve of 0.9086 in leave-one-out cross-validation
and 0.8994 in fivefold cross-validation.

4.5 Metastasis

The main purpose of preoperative imaging evaluation is to
detect lymph node metastasis (LNM) by employing size criteria
(=210 mm in the short axis). However, this approach frequently has
low sensitivity because it cannot distinguish normal-sized
metastatic lymph nodes (144). Regrettably, a majority of
metastatic lymph nodes in clinical practice measure smaller than
10 mm (145). This indicates that conventional imaging techniques
have significant challenges in detecting normal-sized lymph
node metastases.

Because of the rapid advancement of quantitative image
analytics, researchers have shifted their reliance from solely visual
indicators to concentrating on semantic features derived from
image data (146). DL is considered a highly promising technology
in the realm of medical imaging. DL has the ability to revolutionize
image analysis by automatically discovering important feature
representations for various tasks (17). DL has been utilized to
forecast LNM utilizing various medical images from diverse types
of tumors, including the prediction of LNM in normal-sized lymph
nodes (147).

An evaluation was conducted to assess the efficacy of sparse-
sampling CT with DL-based reconstruction in detecting metastasis
of malignant ovarian tumors. Urase et al. (148) acquired contrast-
enhanced CT scans (n = 141) of ovarian tumors from a publicly
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available database. These images were then randomly split into 71
training cases, 20 validation cases, and 50 test cases. The software
simulation was used to calculate the CT images slice-by-slice using
sparse sampling. The evaluation involved two deep learning models,
namely, the Residual Encoder-Decoder Convolutional Neural
Network (RED-CNN) and the deeper U-Net, which were used for
deep learning-based reconstruction. They assessed the peak signal-
to-noise ratio (PSNR) and structural similarity index measure
(SSIM) as quantitative measurements for 50 test cases. Two
radiologists conducted a separate qualitative assessment for the
following criteria: overall quality of the CT image, clarity of the iliac
artery, and visibility of peritoneal spread, liver metastasis, and
lymph node metastases. The Wilcoxon signed-rank test was
employed to compare the image quality of the two models, while
the McNemar test was used to analyze the metastatic detectability.
The average PSNR and SSIM exhibited superior performance when
using a U-Net with greater depth compared to the RED-CNN
model. In terms of visual evaluation, the deeper U-Net model
outperformed the RED-CNN model in all aspects. The
detectability of metastasis using a deeper U-Net model exceeded
95%. The utilization of deep learning-based reconstruction in
sparse-sampling CT has demonstrated its efficacy in detecting
metastases of malignant ovarian tumors and has the potential to
decrease the overall radiation exposure associated with CT scans.

Qian et al. (149) conducted a study to construct a non-invasive
DL nomogram model that uses RESOLVE-DWI and clinical
information to predict the presence of normal-sized LNM in
cervical cancer patients before surgery. The integrated model that
incorporated RESOLVE-DWI and Analog-to-Digital Converter
(ADC) maps demonstrated superior performance compared to
the two models that relied solely on single-modality MR images.
The DL nomogram, which incorporates the combination model
along with age, tumor size, FIGO stage, ADC value, and Squamous
Cell Carcinoma antigen (SCCa) level, demonstrated the highest
level of performance. It achieved AUCs of 0.890 and 0.844 in the
development and test cohorts, respectively.

Feng et al. (150) claimed that by analyzing histological images,
AT can predict LNM in EC. The present study used a DL neural
network technique to complete a binary classification task and
forecast the existence or absence of lymph node metastasis in
esophageal cancer. The model was validated using an
independent cohort. EC encompasses a collection of diverse
tumors with variations in their physical and cellular
characteristics. Curettage specimens are insufficient for capturing
the complete range of tumor features. Therefore, in their
investigation, the researchers used pathological images of EC
derived from paraffin-embedded tissues following surgical
excision. This approach allowed for the optimal visualization of
the morphological features of cancerous tissue as well as the
acquisition of highly indicative information regarding lymph
node metastasis. The most prominent DL features for predicting
LNM are emphasized to provide pathologists with a clear
understanding and to ensure transparency in the creation of the
multiple instance learning (MIL) model.
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4.6 Efficacy against chemotherapy and
platinum resistance

Despite significant progress in precision medicine, properly and
proactively identifying platinum resistance in patients continues to
be a challenging task. If a patient is expected to have a high
likelihood of becoming resistant to platinum-based treatment, it is
feasible to provide a more efficacious treatment than the standard of
care, which often involves a combination of chemotherapy drugs,
including platinum. For instance, we can optimize the strategy and
timing of the surgical procedure for secondary cytoreductive
surgery, thereby reducing the growth potential of the drug-
resistant subclonal tumor population (Figure 8) (151).
Simultaneously, people who are resistant to drugs may undergo
more regular testing to quickly identify tumor recurrence. Also,
platinum resistance is an easy way to find out how sensitive patients
are to PARPi (152). As a result, making precise predictions of
platinum resistance in patients will reduce the need for wasteful and
burdensome clinical testing. Hence, precisely identifying platinum-
resistant patients will enable them to fully leverage the advantages of
precision medicine. Predicting treatment response requires models
that can capture subtle, prognostic patterns in complex data. Deep
learning models, particularly those leveraging PET/CT imaging, are
adept at this.

Lei et al. (47) conducted a study that developed a
comprehensive DL model to accurately predict the platinum
sensitivity of patients diagnosed with EOC. It was very accurate
and precise that the entire abdomen model, which used the whole
abdomen as the volume of interest (VOI) on the axial CE-T1WI and
T2WI sequences, predicted platinum sensitivity in people with
EOC. Strong calibration and decision curves confirmed the
validity of the model. Also, the algorithm did a good job of telling
the difference between people who had a high chance of recurrence
and those who did not, showing good accuracy in predicting
progression-free survival (PFS) for 1 year. Furthermore, the
heatmaps appeared to link the spatial arrangement of regions
with significant levels of reaction to the susceptibility of platinum.

Yu et al. (153) created convolutional neural network models to
analyze cellular patterns and morphology in a group of patients
diagnosed with serous ovarian cancer. Their models effectively
detected ovarian cancer cells, categorized histological grade and
transcriptome subgroups, and forecasted patients’ reactions to
platinum-based chemotherapy. They additionally performed
differential expression and enrichment analyses to establish
connections between the results of our quantitative
histopathology research and the underlying biological pathways.
Crucially, these methods rely solely on data and may easily adapt to
include new types of tumors or the effectiveness of innovative
treatment techniques. The advancement of these prediction
systems will provide essential data for precision cancer care.

Zhuang et al. (154) provided a DL method for predicting
platinum resistance in patients by analyzing their PET/CT
medical images. Their solution provides enhanced detection
efficiency in comparison to traditional methods, as it employs a
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comprehensive end-to-end workflow. The suggested deep model
improves the accuracy of classification by combining the Squeeze-
and-Excitation Block (SE Block) and the Spatial Pyramid Pooling
Layer (SPPLayer) to group important data and conduct multilevel
pooling. It was the most accurate at predicting platinum resistance
in patients when the SE-SPP-DenseNet model was used. This model
combines the DenseNet with the SE Block and SPPLayer.

4.7 Prognostic monitoring

DL algorithms have shown promise in forecasting the response
to treatment in patients with gynecologic tumors using MRI data.
Recent research has shown that CNNs may accurately forecast
results, such as tumor reduction, local control, and overall survival,
based on MR images taken before and after therapy for different
types of cancer (155). Experts have looked into how multi-
parametric MRI can be used to better predict how well different
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types of cancer will respond to treatment (156). This is performed
by combining different imaging sequences.

Using DL techniques along with radiomics, the process of
obtaining detailed information from medical images has made it
more accurate to predict treatment response and prognosis (157).
Treatment programs tailored to individual patients and improved
tracking of patient progress are potential outcomes of this
methodology. However, extensive, forward-looking studies have
yet to confirm the practical usefulness of these models.

Using the ESTIMATE algorithms and the tumor-infiltrating
immune cell (TIC) profile, Ma et al. (158) looked closely at the
tumor microenvironment (TME) and found gene expression
patterns in people who had EC. They found that TNFRSF4 is
closely linked to the prognosis of EC and serves as a significant
indicator of TME remodeling. Furthermore, they used clinical
specimens to confirm the expression of TNFRSF4 in EC and
nearby normal tissues, thereby supporting their findings. The
study looked at the links between TNFRSF4 and immune-related
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markers like CD4, CD8, and FOXP3, as well as clinicopathologic
features. Overall, their results suggest that TNFRSF4 could be used
as a predictive biomarker because it plays a big role in the EC
tumor microenvironment.

During the early stages, endometrial cancer does not show any
symptoms. Additionally, there is a paucity of time-series correlation
patterns that can help understand the transfer of clinical pathways,
recurrence, and therapy for this illness. This study (159) evaluated the
effectiveness of the artificial immune system (AIS) in conjunction with
bootstrap sampling against a range of machine learning techniques,
including both supervised and unsupervised learning approaches. The
proposed method was compared with the backpropagation neural
network and SVM using a radial basis function kernel, fuzzy c-means,
and ant k-means to assess the sensitivity and specificity of the datasets.
Additionally, the proposed method was used to predict the important
factors of recurrent endometrial cancer.

Zhao et al. (160) conducted a retrospective study where they
gathered data from 536 EC patients treated at Hubei Cancer
Hospital between January 2017 and October 2022 and 487 EC
patients from Tongji Hospital between January 2017 and December
2020 to use as an external validation group. The random forest model,
the gradient elevator model, the support vector machine model, the
artificial neural network model (ANNM), and the decision tree model
were used to build the ovarian metastatic predictive model for EC
patients. The effectiveness of five ML models was assessed using
receiver operating characteristic curves and decision curve analysis.
In order to identify possible predictors of ovarian metastasis in EC
patients, factors such as tumor differentiation, lymph node metastasis,
CA125, HE4, Alb, and LH can be utilized to develop a predictive model
for ovarian metastasis in EC patients.

4.8 Drug synergism prediction

Combinations of cancer medicines can potentially provide
therapeutic advantages by increasing the effectiveness of treatment
and preventing resistance to single-drug therapy (161). Occasionally,
the combined treatments may supply the individual pharmaceuticals at
lower dosages compared to their use as single therapies. This approach
helps to decrease the likelihood of treatment toxicity and other adverse
effects. High-throughput screening (HTS) frequently assesses the
phenotypic effects of drug combinations in preclinical cancer models
to impartially investigate potential therapeutic combinations.
Nevertheless, despite the use of automated HTS gear, the systematic
screening of medication combinations has become difficult due to the
exponential increase in the number of viable combinations. This is
mostly due to the significant amount of time and patient specimens
necessary for combinatorial testing. Moreover, the mechanisms that
cause cancer to advance or develop resistance to treatment may vary
significantly among patients, even if they have the same type of cancer.
This variability presents additional experimental challenges,
necessitating the examination of treatment combinations in the cells
of each patient.

Recent studies have demonstrated that the DL model
outperforms traditional machine learning algorithms in several
biological applications (162). In order to achieve success in deep
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learning, high-quality datasets that contain experimental
medication combinations are required. Due to advancements in
high-throughput drug combination screening tests, the number of
samples is increasing rapidly, resulting in a significant reduction in
the data size limitation (163). DeepSynergy is an advanced
prediction algorithm that uses deep learning to accurately identify
synergistic medication combinations. The model has been trained
using the dataset provided by Merck (164). Aside from its
inadequate performance, this model is constrained in its
interpretation due to the chosen methods for representing
medications and cell lines, as well as the model’s architecture. It is
challenging to determine the contribution or importance of drug
descriptors, such as toxophores, physicochemical features, and
fingerprints, in relation to the mechanism of drug action in cells
using a feedforward neural network (165). The prediction of drug
synergism is a cornerstone of modern precision oncology. The
complexity of biological networks necessitates sophisticated Al
models, a notion strongly supported by recent literature. As
reviewed by Zheng et al. (166), graph-based deep learning
approaches are particularly promising for this task, as they can
effectively model the intricate relationships between drugs, targets,
and cellular pathways, thereby accelerating the discovery of effective
combination therapies for GMs.

GNNss are becoming increasingly popular in drug discovery due
to their ability to efficiently process and analyze complex data,
including molecular graphs and biological networks (167). There is
abundant good evidence that GNN-based models can help with
drug discovery. These models have performed well in virtual
screening, predicting molecular properties, predicting protein-
ligand binding, and repurposing drugs (168). GNNs have shown
promise in finding connections and interactions in many areas
(169), but it is still being studied how well they work in predicting
how drugs will work together. Given the increasing use of GNNs in
predicting drug synergy, their demonstrated effectiveness in
comparison to widely used high-performing methods such as
MatchMaker, DeepSynergy, and Deep Tensor Factorization
(DTE), along with the growing significance of discovering drug
combinations in both research and industry (170).

Computational techniques can improve the efficiency of drug
combination screening. Despite recent advances in applying
machine learning to synergistic drug combination prediction,
several challenges remain. First, the performance of existing
methods is suboptimal. There is still much room for
improvement. Second, the model does not fully integrate
biological knowledge. Finally, many models lack interpretability,
limiting their clinical applications (171).

5 Deep learning of gynecologic
malignancies based on pathological
images

Histopathology constitutes a cornerstone of precision oncology.
Histopathology or cytology must diagnose almost every type of
solid tumor. Essentially, all clinical choices regarding treatment and
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follow-up rely on histological findings. In the field of digital
pathology, high-resolution technology captures tissue slides in
their entirety as whole slide images (WSIs). This process produces
images with an extremely large number of pixels, commonly
referred to as “gigapixel images” (21).

Recent advancements in pathology are currently propelling
cancer diagnoses. Convolutional neural networks, which emerged
in 2012, have consistently shown their ability to achieve high
accuracy in classifying both medical and non-medical image
datasets (59). Subsequently, a digital revolution in pathology
commenced, involving the utilization of cutting-edge DL models
developed by the computer vision community for analyzing digital
histopathology slides. The H&E staining process is widely used in
cancer diagnoses. There are well-established retrospective cohorts
and clinical trial sets that are extensively characterized. These
datasets allow for the creation of large-scale histopathology
imaging datasets, which may be used to train advanced DL
models. Several proof-of-concept studies have demonstrated the
capacity of DL models to assist in the diagnosis and molecular
classification of malignancies (172) as well as forecast patient
prognosis (170) by identifying phenotypes on H&E-stained tumor
slide images. A significant advantage of DL in pathology is its ability
to process entire WSIs by breaking them down into smaller patches
for analysis and then aggregating the results.

Deep neural networks have surpassed classical machine learning
models in terms of classification accuracy (173). Nevertheless, these
black boxes do not provide direct insight into the morphological
characteristics they are associated with, which is a major concern for
both mechanistic analysis and clinical decision-making (174). The
presence of image artifacts, such as blurring, noise, and lossy image
compression, may complicate the identification of morphological
characteristics with biological significance (175). Studies have shown
that tissue damage, image quality, and dataset-specific artefacts can
influence the feature representation and prediction accuracy of neural
networks (176). These artefacts significantly influence deep learning-
based predictions, making it crucial to break down CNNs into
biologically understandable features.

Sun et al. (177) devised a computer-aided diagnosis (CADx)
method for analyzing histopathology images of endometrial
disorders. Their methodology included a convolutional neural
network and attention processes. The CADx method, known as
HIENet, was proven to be successful in binary and multi-class
classification tasks using a limited dataset of 3,500 H&E images in
10-fold cross-validation and external validation. It exhibited higher
classification accuracies compared to three associate chief
physicians. HIENet utilizes attention processes and a class
activation map to effectively detect and emphasize morphological
aspects in H&E images. This enhances the interpretability of the
images, allowing pathologists to correlate pixel-level H&E image
features with histological information. Given the aforementioned
benefits, HIENet has the potential to be employed in a collaborative
human-machine model for grading diagnosis in endometrial
disorders, hence potentially enhancing the efficiency of pathologists.

Yiping Wang and colleagues (178) introduced a method that
combines transfer learning and ensemble learning to automatically
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classify epithelial ovarian cancer WSIs. The suggested method
outperformed both regular CNNs and pathologists without
specialized training in gynecologic pathology across multiple
performance criteria. These results indicate a potentially favorable
future path to confirm the findings on a wider group of patients and
investigate other deep learning structures that integrate
characteristics from various levels of magnification and patch
sizes. Moreover, as the majority of the improvement in
performance is seen in the slide-level classification outcomes, we
will evaluate the patch-level classification outcomes (such as five-
dimensional feature vectors obtained from patch-level results) from
different runs to gain a more comprehensive understanding of the
modifications in patch-level classification that led to enhanced
performance in slide-level classification.

A study by Song et al. (179) used WSIs of tissue slides to
examine whether DL could be used to sort the different types of
cervical and endometrial cancers into groups and find the exact
location where adenocarcinomas start. For categorization, the WSIs
were divided into image patches measuring 360 x 360 pixels at a
magnification of x20. Subsequently, the mean of the patch
classification outcomes was employed for the ultimate
categorization. The Area Under the Receiver Operating
Characteristic Curve (AUROC:s) for the cervical and endometrial
cancer classifiers were 0.977 and 0.944, respectively. The
adenocarcinoma origin classifier achieved an AUROC of 0.939.
The results unequivocally showed that DL-based classifiers can
effectively distinguish between cervical and uterine malignancies,
proving their practicality.

Riasatian et al. (180) introduced a novel network, KimiaNet, in
their study. This network utilizes the DenseNet topology, consisting
of four dense blocks, and is fine-tuned and trained using
histopathological images in various configurations. The
researchers employed over 240,000 image patches, each consisting
of 100 x 100 pixels, obtained at a magnification of x20 using their
novel “high-cellularity mosaic” technique. These patches were
utilized to leverage weak labels for 7,126 whole slide images of
formalin-fixed paraffin-embedded human pathology samples,
which are publicly accessible through The Cancer Genome Atlas
(TCGA) repository. The efficacy of search and classification in
KimiaNet was evaluated by utilizing three public datasets: TCGA,
endometrial cancer images, and colorectal cancer images. This
evaluation involved testing the effectiveness of using different
networks’ features for image representation. In addition, they
developed and trained several convolutional batch-normalized
ReLU (CBR) networks. The results show that KimiaNet is a better
feature extractor for histopathological images than both the original
DenseNet and smaller CBR networks.

6 Deep learning of gynecologic
malignancies based on other omics

The genome of a tumor contains distinct molecular features that
are exclusive to that tumor (181). Clinical genomics research is
essential for achieving precision oncology because it investigates the

frontiersin.org


https://doi.org/10.3389/fonc.2025.1592078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang and Qin

human genome, specifically focusing on a disease’s genotype. As a
result, the genotypic characteristics of the tumor, such as genomic
instability or mutation status, add to the phenotypic and geographic
alterations examined in histopathology. Clinical genomics utilizes
various types of genomic data, including whole genome or exome
sequencing, RNA sequencing, methylation assays, and copy number
variation analysis, as sources of information. This technology
enables the precise classification of the patient’s specific cancer
type, potential origin, sensitivity to specific medications,
and prognosis.

In the past, the analysis of genomic data was only carried out by
conventional bioinformatics, which utilized algorithms to execute
tasks such as sequence alignment, variant calling, or differential
expression analysis. However, human specialists extensively craft
these algorithms by hand, prioritizing the identification of
predetermined patterns. AT’s potential benefit in clinical genomics
lies in its ability to enhance the existing toolbox by enabling more
comprehensive data analysis than was previously possible. Unlike
vision-based models, DL applications in genomics often utilize
different architectures, such as fully connected DNNs for tabular
omics data or specialized models for sequence data. ML (182) has
been essential in uncovering hidden or imperceptible patterns, such
as the intricate folding of proteins or the distinctive markers
resulting from mutagenesis events in our DNA. Traditional
bioinformatics methods cannot achieve the potential of AI to
uncover new ways of thinking that could lead to advancements in
clinical genomics. One notable difference between AI in clinical
genomics and histopathology is the wide range of model types
employed. Computer vision derived DL models for histopathology,
but computer science did not directly develop DL models for
genomics. This led to the exploration of a wider range of model
types in genomics.

The TME of ovarian cancer consists of many types of cells,
including tumor cells, stromal cells, and immune cells, which have
the ability to control the growth and advancement of the tumor
(183). The presence of immune cell types, such as tumor-associated
macrophages or Tumor-Infiltrating Lymphocytes (TILs), inside the
TME has been demonstrated to influence both cancer prognosis
and the response to neoadjuvant chemotherapy (NACT) (184).
Previous studies on high-grade serous ovarian cancer (HGSOC)
have primarily used tumor samples that consist of a mixture of
different cell types with varied proportions (185).

Teng et al. (186) evaluated the effectiveness of matched
transcriptome and proteome data obtained from a fabricated
admixture series of HGSOC tumors, stroma/fibroblasts, and
immune cells. Their study utilized existing deconvolution and
prognostic molecular subtype prediction techniques. They
conducted additional research to examine the influence of cell
type combinations on the association between protein and
transcript abundances. In various independent cohorts of patients
with HGSOGC, the authors presented optimized protein signatures
for tumor, stroma, and immune cell mixes and evaluated their
effectiveness in categorizing proteome data from enriched and bulk
tissue collections.
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The integration of multi-modal data (e.g., imaging, genomics,
and clinical records) represents a frontier in predictive oncology, as
highlighted in recent comprehensive reviews. For instance, the work
by Tan et al. (187) underscored the potential of deep learning to
unravel complex patterns across disparate data types, which is
crucial for advancing personalized therapy in GMs.

7 Comparison of deep learning and
conventional imaging techniques in
imaging gynecologic malignancies

Although DL approaches have demonstrated potential in
several GM imaging tasks, it is important to carefully evaluate the
specific scenarios where traditional imaging techniques are still
useful and those where DL tools are more suitable.

7.1 Traditional methods

Prior to the advent of deep learning, the analysis of medical
images for gynecologic malignancies predominantly relied on
traditional machine learning and image processing techniques.
These methods typically involve a multi-stage pipeline: initial
image pre-processing (e.g., noise reduction and normalization),
followed by manual or semi-automated segmentation of ROIs.
Subsequently, hand-crafted features—quantitative descriptors of
shape, intensity, texture, and other statistical properties—are
extracted from these ROIs. Finally, these features are used to train
classical machine learning classifiers (e.g., support vector machines
and random forests) for tasks such as detection, classification, and
prognosis prediction. The following sections discuss the inherent
advantages and limitations of these established methodologies.

7.1.1 Advantages of traditional imaging
techniques

Interpretability: Conventional imaging approaches produce
easily understandable data by relying on established
characteristics and manually designed statistical procedures (188).
The interpretability of the results enables physicians to gain a
deeper understanding of the reasoning behind the decision-
making process. Establishing trust in the results and taking
appropriate clinical actions require this understanding.

Reduced computational requirements: Conventional imaging
methods often have fewer computational needs in comparison to
deep learning approaches (189), rendering them more accessible
and simpler to execute on regular workstations without the
necessity for high-performance computer resources.

Robustness to changes: Traditional imaging methods are better
at handling changes in imaging protocols and acquisition
parameters (190) because they rely on well-known features that
do not change as easily when it comes to image quality
and appearance.
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7.1.2 Disadvantages of traditional methods

Monitoring systems or standard image processing techniques
often identify candidate lesion areas in conventional computer-
aided tumor diagnosis methods. The process of localizing a lesion
involves multiple stages and typically relies on a substantial number
of manually designed characteristics. The classifier is used to map
eigenvectors to potential candidates in order to determine the
probability of authentic lesions. Computer-aided diagnosis is a
field of medical image analysis that can be improved (191). The
classic approach uses the image’s pixel data to identify various
visual elements, such as corners, contours, and color gradients,
using a pre-defined formula. Various algorithms exhibit varying
levels of accuracy in detecting these features, and distinct
experimental methodologies also employ their own techniques for
feature extraction. When an image undergoes linear or non-linear
transformations, such as scaling, rotation, translation, affine
transformation, or deformation, it may result in interference
during feature extraction. Hence, contemporary and more
sophisticated convolutional neural network algorithms surpass
previous algorithms in specific features or total accuracy. Various
algorithms possess varying capacities to handle these
transformations, and the greater the problem-solving capability,
the higher the level of robustness.

7.2 Deep learning in medical image analysis

7.2.1 Performance improvements over traditional
methods

DL approaches used in medical image analysis have yielded
promising outcomes in different areas, resulting in notable progress
in illness identification and diagnosis, anatomical structure
segmentation, and treatment outcome prediction (189). DL
algorithms have the ability to acquire intricate patterns from
medical images, demonstrating strong adaptability to new data
and obtaining performance that is comparable to or surpasses
human capabilities in various tasks (192). This capability has the
potential to significantly enhance the precision, effectiveness, and
uniformity of medical image analysis, eventually boosting the
quality of patient treatment and results.

Comparisons between deep learning models and older pre-deep
learning imaging techniques have shown significant enhancements
in performance. DL models have been successful in diagnosing
diabetic retinopathy from retinal images, with a sensitivity of 96.8%
and a specificity of 87.0%. These results are much better than those
achieved by classical approaches, which had sensitivities ranging
from 49.3% to 85.5% and specificities ranging from 71.0% to 93.4%
(193). Deep learning-based detection of pulmonary nodules on CT
scans has demonstrated a greater accuracy rate of 94.2% compared
to conventional computer-aided detection approaches, which
achieved an accuracy rate of 79.1% (194). Deep learning models
have demonstrated superior performance in segmenting brain
tumors from MRI scans, achieving a Dice similarity coefficient of
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0.88. In comparison, standard approaches have yielded coefficients
ranging from 0.65 to 0.85 (195).

In addition, DL has facilitated the creation of models that can
combine several types of imaging data at different scales, along with
clinical and demographic information, in order to produce more
precise and comprehensive forecasts on patient outcomes and
responses to therapy (192). This capability has played a significant
role in the expanding field of radiomics, which seeks to extract and
analyze complex quantitative characteristics from medical images in
order to develop predictive models for personalized treatment (114).
DL is becoming more and more critical in the advancement of
precision medicine and the improvement of patient care for a variety
of diseases and medical conditions.

7.2.2 Controversies and disparities

A significant obstacle in the domain of DL for imaging GMs is the
absence of standardization and benchmarking. Various studies have
utilized a range of datasets, preprocessing methodologies, model
architectures, and training strategies, which complicates the
comparison of model performance and the evaluation of their
clinical usefulness (196). The lack of standard reporting of model
performance parameters, such as accuracy, sensitivity, and specificity,
makes it more difficult to compare results across different studies.
Future research should prioritize the establishment of standardized
datasets, evaluation measures, and reporting requirements to simplify
the process of benchmarking and comparing DL models. Also,
supporting open research methods like sharing data and code
could speed up the development and validation of deep learning
models for imaging GMs.

The majority of DL research in the field of GM imaging has
concentrated on analyzing data from single imaging modalities,
such as MRI, CT, or PET scans. By incorporating multimodal
information, such as merging functional and anatomical imaging
data, it is possible to enhance the effectiveness of DL models and
gain a more thorough understanding of tumor characteristics (197).
Furthermore, the inclusion of temporal data derived from
longitudinal imaging data has the potential to improve the
accuracy of predicting treatment response, tumor recurrence, and
patient outcomes (198). Integrating clinical information, including
patient demographics, tumor histology, and treatment details, can
enhance the effectiveness of DL models in managing GMs, in
addition to imaging data. Further investigation is needed to
examine the advancement of DL models that can efficiently
include multimodal, temporal, and clinical data for personalized
therapy planning and prognostication.

DL models, namely, CNNs, are commonly regarded as “black
boxes” because of their intricate structures and the absence of
transparency in the decision-making process (165). The absence
of transparency can impede the use of DL methods in clinical
practice, as physicians may be hesitant to rely on a model’s
predictions without comprehending the underlying rationale. The
development of DL models that are explainable and interpretable is
essential in order to close this gap and encourage their acceptance in
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the medical community (199). Methods such as attention processes,
layer-wise relevance propagation, and visualization of feature maps
can be used to clarify the reasoning behind a model’s predictions
and establish trust among doctors. Future research should prioritize
the integration of explainability and interpretability into the
development of DL models for imaging GMs. Additionally, efforts
should be made to create techniques for evaluating the reliability
and resilience of these models when dealing with noisy, incomplete,
or adversarial data.

In order to implement DL models in clinical practice, it is
necessary to thoroughly validate and quantify their effect on patient
outcomes (200). Conducting extensive and future-oriented
investigations would be valuable in determining the effectiveness,
applicability, and practicality of DL models for imaging head and
neck cancer (201). These studies should include varied patient
groups and imaging data from several centers to ensure the
strength and reliability of the models in real-world scenarios.
Furthermore, it is crucial to incorporate these models into current
clinical workflows, analyze their cost-effectiveness, and assess their
impact on patient care. This includes reducing diagnostic errors,
optimizing treatment planning, and enhancing patient outcomes.
These steps are necessary for the successful implementation of these
models (202). Further investigation should also focus on creating
user-friendly, scalable, and secure software tools and platforms that
can assist in the implementation of DL models in clinical settings
and promote their broad usage in the therapy of GMs.

8 Challenges of deep learning models
in the diagnosis and management of
gynecologic malignancies

Al can play multiple important roles in gynecologic imaging,
beyond just screening and detection. These roles include helping
radiologists make accurate diagnoses, assisting clinicians in
developing effective treatment plans, and incorporating various
clinical-pathological-immunohistochemical factors to predict the
likelihood of recurrence or metastasis. Therefore, it is anticipated
that AI in gynecologic imaging will play a significant role in
advancing precision medicine and tailored treatment. Nevertheless,
there are several complex technical and clinical obstacles that hinder
the sustainable progress of Al in gynecologic imaging.

8.1 Technical challenges

ML algorithms typically necessitate extensive datasets to achieve
adequate performance. However, the clinical data available for
diagnosing cervical cancer are frequently constrained in terms of
both size and quality. In order to overcome these restrictions,
researchers have employed many techniques for data pre-
processing, including data augmentation, image enhancement,
and the development of image-generating tools. These methods
have been used to tackle issues such as uneven class distribution and
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short datasets. Nevertheless, a comprehensive approach is still
necessary to tackle this problem.

A major issue in the development and implementation of DL
systems in healthcare is the presence of intrinsic biases in many
datasets. This bias can be based on factors such as ethnicity, sex,
socio-economic circumstances of participants, or the institution
where the studies were conducted (203). Therefore, it is necessary to
implement more equitable and varied methods of collecting data for
future investigations. This, in turn, will improve the overall
applicability of deep learning models once again. Furthermore, it
is necessary to develop national and international standards for data
curation, especially when dealing with homogenous data, in order
to ensure the comparability of data across different institutions. In
addition, as changes may occur within the populations to which AI
is applied, there is a need for model updates and reconfigurations.
This aspect is often overlooked in the current model design (204).
This will ultimately enable the acquisition of deep learning models
that can learn dynamically during deployment rather than being
fixed after a single static training iteration.

In ML, models need a substantial amount of data in order to
achieve proficiency in their designated activity. One reason for this
necessity is due to technical constraints, as multiple repeats of
patterns are necessary to manipulate the internal model parameters
into their intended state. Furthermore, the presence of variability in
every biological system is another factor that necessitates data
requirements. Tumors exhibit significant diversity in terms of
their genetics, phenotype, and clinical behavior, which may vary
between people. The training data collection must be of a minimum
size that is sufficient to accurately represent the biological diversity.
Consequently, studies with a small number of participants are
unlikely to offer a wide range of data that can be applied to other
datasets, especially in a clinical setting (205). Therefore, in order to
ensure that DL models can be used in various clinical environments,
it is necessary to obtain and distribute increasingly larger datasets.
The primary limitation in training deep learning solutions for
cancer research and oncology lies in the collection of data rather
than the flexibility of the models. Histopathology, being the
foundation of diagnosis, is more easily accessible compared to
genetic data, which are usually expensive and not regularly
obtained for all patients. As a result, it is more challenging to
create genomic cohorts, especially for multi-omic methods. Well-
funded research centers or large healthcare facilities are typically the
only places where extensive clinical setups and infrastructure are
available. An effective approach to tackling these difficulties is by
employing distributed learning methods such as federated or swarm
learning. These methods allow peers who are restricted from
sharing public data to collaboratively train models (206).
Moreover, technical concepts have the potential to enhance the
process of gathering data. Techniques such as class balancing or
boosting datasets with simulated samples can be beneficial for
studies that have a limited number of patients (207). Conversely,
enhanced ML models have the potential to be more efficient in their
use of data and capable of learning effectively from smaller datasets.
This could address the issue of limited data availability by
employing a different approach (208).
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DL models have a tendency to overfit, particularly when trained
on small datasets, resulting in limited ability to generalize to new
data (157). Overfitting can lead to the development of models that
exhibit high performance on the training data but are unable to
reliably forecast outcomes for new patients, hence restricting their
therapeutic usefulness. When creating DL models for head and neck
cancer imaging, it is important to consider regularization
approaches and model architectures that can help prevent
overfitting. Some examples of these strategies include dropout,
batch normalization, and transfer learning. Furthermore, the use
of cross-validation and external validation cohorts can aid in
assessing and enhancing the generalizability of the model.

The training and deployment of DL models often require
substantial computational resources, such as graphics processing
units (GPUs) and specialized hardware (157). This need may pose a
challenge for small clinical centers and researchers with limited
access to high-performance computing facilities. Developing
efficient model architectures, exploring strategies for model
compression and acceleration, and utilizing cloud-based platforms
for training and deployment can help to overcome these challenges
and make DL models more accessible to a broader range of
institutions and researchers.

8.2 Clinical challenges

Additional crucial factors must be stated, such as the clarity of
the systems, which is linked to the data used, while the
dependability, operation, and limitations of a single model must
be evaluated. Additionally, it is important to consider additional
variables such as ethical and medico-legal concerns, as well as the
necessity for comprehensive validation and integration of AI
systems into the current framework for clinical decision
management, which has not yet been fully addressed. One
important point to consider is whether AI can replace physicians
in the activities of seeing, characterizing, and quantifying, which
they currently perform using their cognitive abilities. The answer to
this issue is likely to be negative. It is important to emphasize that
the ultimate choice in patient diagnosis still lies with the physicians,
not Al systems, and they bear the responsibility for it. One
significant obstacle to the use of AI in clinical practice is the
automation bias (209), which refers to the inclination to favor a
diagnosis provided by a machine over the evidence based on
scientific knowledge and the physician’s skill.

Physicians should possess a comprehensive understanding of
how to effectively utilize and interpret Al algorithms in their
practice. This includes discerning the appropriate scenarios in
which a medical AI should be employed and determining the
level of trust that should be attributed to the algorithmic
conclusions. While AI presents new opportunities, the
fundamental principles of clinical reality remain unchanged. To
achieve significant influence on patient care, Al-based research in
medical activities must adhere to the fundamental principles of
medical science. Research hypotheses, whether based on AI or not,
must adhere to clinical standards and be able to be justified in the
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clinical field (210). Medical AI must be trained in suitable contexts,
utilizing optimized approaches and complete datasets, due to the
ongoing development of evaluation tools in this challenging field
(211). Furthermore, the integration of Al systems into large-scale
data networks gives rise to legal and ethical issues relating to
obtaining patient-specific consent, safeguarding privacy, sharing
data, and ensuring multi-layered access to health information that is
either fully or partially anonymized (212).

Currently, AT techniques lack transparency in their elaboration
processes, meaning that their users may not have clear
representations of how Als have arrived at a specific conclusion.
This lack of transparency can lead to “trust issues”, particularly
when important decisions need to be made based on these
conclusions. Furthermore, future research on the ethical
integration of AI in medical assessment should take into account
patients’ perceptions of these tools and determine the circumstances
under which patients may feel neglected by their doctor due to the
use of autonomous technologies for health recommendations and
treatment (213). Ultimately, substantial volumes of data pertaining
to GMs have been amassed and are rapidly expanding. Utilizing ML
and DL techniques can enhance our understanding of the
mechanisms behind GMs and improve the care of patients with
these conditions. In the foreseeable future, the involvement of Al in
decision-making processes is anticipated to increase. This is because
Al systems possess desirable attributes such as the capacity to carry
out uncomplicated but repetitive and time-consuming tasks, as well
as the ability to optimize workflow management. By doing so, Al
systems free up more time for clinical patient supervision (214).

9 Future directions of deep learning in
gynecologic malignancies

In the future, neural networks can be applied in the medical
field in two main ways: automatic diagnosis and assistance for
doctors. Presently, less than one doctor per 1,000 people is available
in 45% of WHO member nations. There is a high need for
automatic diagnostic systems that utilize neural networks to
evaluate patients without any risks. These systems help prevent
clinicians from becoming overwhelmed and provide a clear
schedule for patient visits. Automatic diagnosis is feasible in
various imaging specialties such as X-rays, fluoroscopes,
ultrasonography, CT, and MRI. These specialties focus on
prevalent and debilitating diseases that affect the elderly
population, including cardiovascular disease, cerebellomedullary
diseases, and oncological diseases. These diseases are significant
public health concerns. They will spearhead the advancement of less
invasive techniques such as interventional radiology, interventional
cardiology, and interventional neuroimaging (215).

Another prospective avenue is forecasting a medical occurrence,
which allows a physician to discern the specific area that requires
immediate attention. If the doctor predicts that a patient may need
to visit again, they may schedule an early hospital appointment to
prevent the symptoms from worsening. One illustration is the use of
electronic medical data to assess occurrences such as symptoms,
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drug details, and appointment timetables. The neural network was
trained using electronic medical records from 260,000 patients and
2,128 physicians over an 8-year span to determine the specific data
and purpose for future medical evaluations. The recall function was
employed in the approach, with a proportion of 79.58%. The
training phase utilized 85% of the data, while the testing phase
used 15% (216). Evaluating the prognosis is crucial for designing
suitable therapy and follow-up approaches, which can either lead to
patient recovery or extend their lifespan. Neural networks have
demonstrated superior predictive ability in determining the survival
rates of patients with several types of cancer, including breast,
colorectal, lung, and prostate cancer, compared to other methods
used in the area.

Future work will incorporate DL approaches for the diagnosis of
all diseases, considering noise removal from any given dataset. The
additional aspects and properties of DL models for medical images
can be explored. To increase the accuracy, an enormous amount of
data is required; therefore, the potential of the model should be
improved to deal with large datasets. Also, different data
augmentation techniques along with the required features of the
dataset can be explored to attain better accuracy.

To enhance the validity of any models, it is imperative to
include significantly larger cohorts from multiple centers and
countries in future studies. The utilization of AI models in
clinical settings is primarily focused on thyroid disorders, breast
diseases, and liver diseases. Research on applying Al models to
other systems is still largely in the theoretical phase. These clinical
models should be utilized in future clinical prospective research to
aid doctors in diagnostic and prognostic evaluations. It is necessary
to summarize the difficulties and impacts that clinicians face while
using artificial intelligence models and to continuously optimize
these models. The progress in Al-based methodologies will enhance
the precision of diagnoses, expedite the diagnostic procedure, and
have a crucial function in aiding clinicians in decision-making and
intelligent monitoring in the future (4).

Future endeavors will entail employing innovative approaches
to tackle the scarcity of medical data. Techniques such as transfer
learning and GANs can enhance smaller datasets, making them
more comprehensive and resilient (49). These projects will
increasingly rely on multidisciplinary teamwork. The UK’s Topol
Fellowship provides healthcare professionals with an opportunity to
acquire practical expertise in data science and Al successfully
closing the gap between two essential fields.

10 Conclusion

This review synthesized the application of Al across multi-omics
data for gynecologic malignancies, providing an integrated
examination of both technical methodologies and their clinical
utility in diagnosis, prognosis, and therapy. Compared to existing
literature, this work offers a more cohesive framework linking diverse
AT models to specific clinical endpoints in GMs. Nevertheless, it also
underscores critical shortcomings pervasive in the field. Most studies
remain constrained by retrospective, single-center data; a pervasive
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lack of standardization in data processing, model development, and
performance reporting hinders reproducibility and clinical
translation—a challenge not always comprehensively addressed in
previous reviews. Moving forward, overcoming these limitations
necessitates a focused shift toward prospective, multi-institutional
validation and the development of explainable AT (XAI) frameworks
to bridge the gap between technical accuracy and clinical trust. The
ultimate integration of Al into GM management depends on creating
robust, interpretable, and clinically actionable tools that can be
seamlessly adopted into real-world practice. The challenges and
future perspectives discussed herein, such as data standardization
and the need for XAlI, are not unique to GMs but resonate with the
broader field of AI in oncology, as highlighted in recent pan-cancer
reviews (217).

In summary, Al has emerged as a powerful tool for handling
large-scale datasets and is widely used to develop various omics
models for GMs. Multi-omics analysis, which encompasses many
techniques such as imaging, pathomics, genomics, metabolomics, and
proteomics, has shown promise in improving the precision of
diagnosing GMs. It can also aid in distinguishing between benign
and malignant cases, as well as predicting the specific disease types
and prognosis. Integrating multi-omics data has the potential to
enhance patient survival and enable precision treatment in the future.

DL methods have made remarkable progress in the area of
imaging for GMs. They have shown outstanding performance in
important tasks like identifying tumors, segmenting them, and
predicting outcomes. These techniques utilize different imaging
modalities, such as MRI, CT, and PET scans. Integrating
radiogenomics into DL models shows promise for advancing our
understanding of tumor biology and heterogeneity, as well as
directing personalized therapy regimens in the management
of GMs.

Although the results are encouraging, there are several
problems that need to be overcome in order to effectively employ
DL models in the diagnosis and treatment of GMs. A significant
challenge is the absence of uniformity in datasets, preprocessing
methodologies, and model architectures, making it challenging to
compare the performances of different models and evaluate their
clinical usefulness. Obtaining extensive, varied, and thoroughly
annotated datasets for imaging GMs is difficult because of privacy
concerns, limitations on data sharing, and the time-consuming
process of manually annotating by experts. Given the drawbacks of
conventional imaging methods, such as the subjective and variable
nature of human interpretation, combining DL with standard
imaging techniques has the potential to enhance the reliability
and precision of diagnosis and treatment planning. It is crucial to
acknowledge the interdependent functions of these methods in
order to make progress in the imaging and treatment of GMs.

Ultimately, it is crucial to carry out thorough clinical validations
using extensive, forward-looking investigations in order to establish
the effectiveness, applicability, and practicality of DL models for
imaging GMs. To achieve better patient outcomes and implement
personalized treatment strategies for managing GMs, it is crucial to
overcome these obstacles and effectively combine advanced DL
techniques with traditional imaging approaches.
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