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Objectives: Accurate preoperative staging of bladder cancer is essential for
therapeutic decision-making, particularly in distinguishing between organ-
confined (T2) and extravesical (T3) disease. This study aimed to develop a CT-
based radiomics model to differentiate T2 from T3 tumors and to evaluate the
impact of imaging timing relative to transurethral resection of the bladder (TURB)
on model performance. Additionally, we assessed the added diagnostic value of
integrating routine clinical biomarkers.

Methods: In this retrospective study, 97 patients with histologically confirmed
bladder cancer who underwent TURB followed by contrast-enhanced CT were
included. Tumor segmentation was performed using a semi-automated three-
dimensional approach, and radiomic features were extracted according to IBSI
standards. A random forest classifier was trained to distinguish between T2 and
T3 tumors. Patients were stratified according to the interval between TURB and
CT imaging (<14 days vs >14 days). Performance metrics were assessed for both
radiomics-only and combined clinical-radiomics models. Clinical variables
included preoperative creatinine, hemoglobin, arterial hypertension, diabetes
mellitus, smoking status, and tumor size.

Results: The radiomics-only model achieved an AUC of 0.68 in Cohort 1 (<14
days post-TURB). In Cohort 2 (>14 days post-TURB), model performance
improved with an AUC of 0.80. The combined clinical-radiomics model further
enhanced performance, yielding an AUC of 0.76 in Cohort 1 and 0.82 in Cohort 2.
Delayed imaging was associated with increased radiomic feature stability and
improved classification accuracy, suggesting a potential benefit of temporal
separation from post-surgical tissue changes.
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Conclusion: This study demonstrates the feasibility of CT-based radiomics using
full-volume 3D tumor segmentation to distinguish between T2 and T3 bladder
cancer. The integration of clinical biomarkers and consideration of imaging
timing significantly improved model performance. These findings support the
development of temporally optimized, multimodal prediction models for
individualized bladder cancer staging and treatment planning.

radiomics, machine learning, bladder cancer, tumor staging, computed tomography,
artificial intelligence, image-based biomarkers

Introduction

Urothelial carcinoma (UC), commonly known as bladder
cancer (BCa), is the 10th most common cancer worldwide, with
approximately 500,000 new cases and 200,000 deaths each year (1).

Tobacco smoking is the primary risk factor, accounting for
roughly 50% of cases, followed by occupational exposure to
aromatic amines and ionizing radiation (van 2, 3).

Painless hematuria is the most common initial symptom and
warrants thorough evaluation in all cases (4).

Approximately 75% of bladder cancer patients present with
non-muscle invasive bladder cancer (NMIBC), classified as stage
pTa, pT1, or carcinoma in situ (pTis). In contrast, the majority of
muscle-invasive bladder cancer (MIBC) cases—stages pT2a to pT4b
—are diagnosed as primary invasive disease, although up to 15% of
MIBC patients have a history of high-risk NMIBC. All cases of
MIBC are considered high grade (5).

Muscle-invasive bladder cancer (MIBC) is categorized into
stages T2, T3, and T4 based on the extent of tumor infiltration.
In T2, the tumor invades the detrusor muscle; in T3, it extends into
the perivesical fat; and in T4, it breaches into adjacent organs such
as the prostate, uterus, or pelvic wall. The depth of invasion serves
as a critical prognostic factor and is pivotal in guiding treatment
strategies for localized bladder cancer (5).

Abbreviations: AUC, Area under the curve; BCa, Bladder cancer; CI, Confidence
interval; CE, Contrast-enhanced; CT, Computed tomography; DCE-MRI,
Dynamic Contrast-Enhanced Magnetic Resonance Imaging; DWI, Diffusion-
Weighted Imaging; DICOM, Digital Imaging and Communications in Medicine;
GLCM, Grey-level co-occurrence matrix; IBSI, Image Biomarker Standardisation
Initiative; MIBC, Muscle-Invasive Bladder Cancer; MDR, Medical Device
Regulation; ML, Machine learning; MRI, Magnetic resonance imaging;
NMIBC, Non-Muscle-Invasive Bladder Cancer; PACS, Picture archiving and
communication system; RF, Random Forest; RC, Radical Cystectomy; RIS/HIS,
Radiology Information System/Hospital Information System; ROC, Receiver
operating characteristic; ROI, Region of interest; TURB, Transurethral
Resection of the Bladder; TURBT, Transurethral Resection of Bladder Tumor;
UC, Urothelial Carcinoma; VOI, Volume of interest; WHO, World Health

Organization; 3D, Three-dimensional.
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The clinical management of muscle-invasive bladder cancer
(MIBC) is primarily guided by the tumor’s T stage, as the risk of
lymph node metastasis increases with more advanced local tumor
progression. This stratification necessitates tailored treatment
approaches. For instance, patients with clinical T2 (cT2) disease
may be considered for partial cystectomy in combination with
neoadjuvant cisplatin-based chemotherapy (6). In contrast, patients
diagnosed with ¢T3 or cT4a disease are typically managed with more
aggressive treatments, which may include radical cystectomy,
radiation therapy, chemotherapy, immunotherapy, or a
combination of these modalities, depending on the specific stage
and clinical context (4).

Transurethral resection of bladder tumor (TURBT), followed by
pathological analysis, is essential for diagnosing, staging, and
managing bladder cancer (7). However, TURBT has notable
limitations in assessing muscle layer involvement; studies have
shown that up to 50% of patients initially staged as T1 are later
found to have muscle-invasive disease at the time of radical
cystectomy (8).

Therefore, a comprehensive evaluation of the entire urothelium
is crucial for detecting synchronous secondary tumors (4).
Multiphasic contrast-enhanced computed tomography (CT),
including CT urography, is recommended for this purpose (9).

Magnetic resonance imaging (MRI) has become increasingly
important for the local staging of bladder cancer, especially when
differentiating early-stage tumors (10). Functional MRI techniques,
notably diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced MRI (DCE-MRI), have demonstrated potential in
distinguishing non-muscle-invasive (T1) from deep muscle-
invasive (T2b) disease—a distinction that is critical for guiding
therapeutic decisions. However, accurately identifying muscle-
invasive (T2) and microscopic extravesical (T3a) disease remains
challenging. For more advanced stages, such as T3b and T4 disease,
both computed tomography (CT) and MRI play essential roles in
comprehensive assessment (10).

In the present study, we chose contrast-enhanced CT as the
radiological basis for radiomic feature extraction. This decision was
driven by CT’s widespread clinical availability, its role as the
standard imaging modality in global bladder cancer staging
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protocols, and its routine preoperative use in many urologic centers.
MRI was not included due to limited institutional availability and
non-standardized protocols at the time of data collection.
Importantly, our aim was to establish radiomics feasibility in a
clinically realistic and widely generalizable setting. CT-based
radiomics thus provides a pragmatic foundation for subsequent
multimodal imaging studies.

Recent advances in machine learning, coupled with increasing
computational capacity, have accelerated the development of
radiomics as a quantitative imaging discipline (11, 12). Radiomics
enables the extraction of high-dimensional, quantifiable features
from medical images—particularly of tumors—to characterize
tissue heterogeneity, morphology, and signal intensity patterns
(13-15). These features are subsequently processed using machine
learning or deep learning algorithms to build predictive models that
can assist and refine clinical decision-making, especially in
oncologic contexts.

In the context of bladder cancer, several studies have demonstrated
the feasibility of radiomics and deep learning models to predict
clinically relevant parameters such as preoperative tumor grade,
lymph node metastases, or the presence of muscle-invasive disease
using CT or MRI-based features (16-19).

However, these investigations have primarily addressed the
general dichotomy between non-muscle-invasive (<T1) and
muscle-invasive (>T2) stages, without focusing on more granular
and clinically decisive stage distinctions.

To date, no study has systematically examined whether
radiomics can differentiate T2 (organ-confined, intravesical) from
T3 (extravesical, perivesical fat infiltration) bladder cancer based on
CT imaging, despite the high clinical relevance of this boundary for
surgical planning and prognostic assessment.

Moreover, another critical yet underexplored variable is the
timing of imaging relative to transurethral resection of the bladder
(TURB)—a factor that may substantially influence imaging
characteristics due to inflammatory changes, edema, or early
tissue remodeling, particularly in the perivesical region.

None of the existing radiomics studies have investigated how
such temporal variation might affect the accuracy or stability of AI-
driven staging models.

Our study addresses both of these previously unexplored
dimensions. Specifically, we present the first CT-based machine
learning model capable of distinguishing between T2 and T3
tumors, thereby providing staging information that directly
informs therapeutic decision-making.

In addition, by analyzing patient cohorts with defined intervals
between TURB and staging CT, we systematically evaluate the impact
of imaging timing on model performance. This approach not only
reflects common real-world diagnostic pathways but also provides
insight into the temporal robustness of radiomic signatures.

By integrating radiomics with clinical parameters in a hybrid
model, we further enhance staging accuracy, particularly in patients
with delayed post-TURB imaging. Collectively, these methodological
innovations represent a significant step toward personalized, image-
based treatment stratification in bladder cancer.
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Materials and methods
Patients

We retrospectively identified 133 patients with localized bladder
cancer, confirmed by pathological diagnosis after surgical resection,
from our hospital database between 2012 and 2020. Only patients
who had undergone a standard contrast-enhanced CT scan of the
abdomen and pelvis before surgery were included (n = 105).

To ensure a sufficient lesion area for drawing regions of interest
(ROI), we excluded patients with tumors smaller than 5 mm, those
with bladder wall thickening without a distinct mass, and those with
insufficient imaging quality due to artifacts from metal implants
or motion.

The final study cohort consisted of 97 patients, categorized into
intravesical (<T2) and extravesical (=T3) disease.

Clinical information, including patient age, sex, and
pathological stage, was retrospectively retrieved from electronic
health records. Histopathological classification was based on the
2016 WHO criteria (20).

Patients were included in the study if they met the following
criteria: (1) pathologically confirmed urothelial carcinoma, (2)
underwent radical cystectomy (RC), and (3) received a standard
contrast-enhanced CT scan of the abdomen and pelvis within 30
days before surgery.

Patients were excluded if they met one or more of the following
criteria: (1) prior neoadjuvant chemotherapy or preoperative
radiotherapy, (2) concurrent malignancies known at time of CE,
(3) imaging artifacts precluding reliable tumor segmentation, or (4)
incomplete or missing clinical and/or imaging data.

The study was approved by the institutional review board
(protocol number 378/24), and the requirement for written
informed consent was waived.

The patient recruitment process is illustrated in Figure 1.

Image acquisition

All patients underwent contrast-enhanced CT scans according
to standard clinical protocols for routine staging. Imaging was
performed before surgery as part of the routine staging procedure
to assess disease status. For image segmentation and analysis, all
reconstructed images were retrieved from the hospital’s picture
archiving and communication system (PACS).

Statistics for clinical characteristics

To test for differences in the clinical characteristics between the
two groups <T2 (intravesical disease) and >T3 (extravesical
disease), Pearson’s chi-square test was applied for categorical
variables and the independent samples t-test for continuous
variables. In cases of unequal variances (tested with Levene’s test),
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Patient Inclusion and Exclusion Flowchart
Treatment-naive patients with
localized bladder cancer with CECT imaging
at initial diagnosis, n =133
Exclusion criteria
No in-house Imaging available, n =22 1)  Prior neoadjuvant chem-/radiotherapy
Only native CT Images available, n = 4 2) Concyrrent jtumor diseases _
3) Imaging artifacts that complicate
Only MRI available,n =2 segmentation
4) Incomplete clinical data
Patients with fulfilled inclusion criteria, n =105
Inclusion criteria
1)  Pathologically confirmed bladder cancer Lesion not suited for ssgmentation, n =1
2) Radical cystectomy (RC) S i —
3) CT of the abdomen and pelvis with Sorimagelquality, s
intravenous contrast within 30 days before Incomplete data records, n = 6
surgery
Included Patients, n = 97
FIGURE 1

Recruitment pathway of the study.

the t-test results were adjusted accordingly. All analyses were
conducted using IBM SPSS Statistics for Windows, Version 29.0
(IBM Corp., Armonk, NY, USA).

ROI-segmentation and imaging feature
extraction

The evaluation of imaging features, such as histogram features
and those derived from co-occurrence matrices, was first
introduced by Haralick et al. in 1973 (21) and has since
demonstrated substantial potential across various cancer types
and clinical applications (22, 23). In this study, three-dimensional
region-of-interest (ROI) segmentation, texture analysis, and feature
extraction were conducted using Mint Lesion " software (version
3.8.4, mint Medical GmbH, Heidelberg, Germany).

Mint Lesion' " is a specialized medical software platform that
facilitates the analysis, 3D visualization, and comparison of
radiological images from modalities such as CT, MRI, and PET. It
supports radiologists in both clinical evaluations and research,
allowing for seamless image import from PACS and structured
report export to systems such as PACS, RIS/HIS, or study
management platforms. The software is classified as a Class IIb
medical device, certified under EU Regulation 2017/745 (Medical
Device Regulation, MDR). Its CE marking (CE 0123) confirms
compliance with the General Safety and Performance Requirements
of the MDR. Details of the feature extraction settings are provided
in Supplementary Table S1.

Frontiers in Oncology

Image analysis was performed by two board-certified
radiologists, each with over 10 years of experience in oncological
imaging and at least 8 years of expertise in texture analysis.
Radiomic features were quantified by analyzing distinct grey-level
patterns within the ROIs, with texture feature descriptors generated
in accordance with the Image Biomarker Standardisation Initiative
(IBST) guidelines (24).

A total of 77 imaging features were calculated for each ROI,
encompassing tumor size and shape in three dimensions.
Additionally, first-order statistics were used to describe the
distribution of voxel intensities within the ROL To capture voxel
intensity patterns, texture-based features were derived from the grey-
level co-occurrence matrix (GLCM). Additional details can be found
in Supplementary Tables SI and S2, available in the Supplementary
Materials. The extracted 3D volumetric radiomic features served as
input data for machine learning model development.

Feature selection

After preprocessing, feature selection was performed using the
Random Forest algorithm. As in other data-mining applications,
radiomics is affected by the curse of dimensionality (25), as it involves
extracting a vast number of quantitative features from regions of
interest (ROIs). Implementing an appropriate feature selection
strategy is crucial to reduce the dimensionality of radiomic data.

By selecting an optimal subset of features, overfitting is
minimized, resulting in models with improved generalizability,
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greater simplicity, faster computation, and enhanced predictive
performance (26).

Filter methods are widely used for feature selection and can be
categorized based on the criteria they employ, such as dependence,
similarity, and other statistical measures. These methods assess the
relevance of individual features independently of the learning
model, typically using metrics such as correlation coefficients,
mutual information, or statistical tests.

By preselecting informative features before model training, filter
methods help reduce dimensionality, improve computational
efficiency, and enhance model interpretability while mitigating the
risk of overfitting (27, 28).

Random Forest is an ensemble learning method that constructs
multiple decision trees using randomly selected subsets of data and
features, with predictions averaged across all trees. In feature
selection, Random Forest can function as a filter method by
assessing the importance of each feature using metrics such as
Gini impurity or information gain. This approach enables the
identification and removal of less relevant features before model
training, improving both model performance and interpretability
(29). In this study, feature selection was performed using the Weka
Toolkit (version 3.8), a widely used machine learning software that
provides various algorithms for data preprocessing, feature
selection, and model evaluation (30).

To ensure the stability and interpretability of our machine
learning model, we conducted a multicollinearity analysis by

10.3389/fonc.2025.1591742

calculating the Variance Inflation Factor (VIF) for all radiomic
and clinical features. Features with a VIF greater than 10 were
considered highly collinear and were excluded from further
analysis, in line with established statistical recommendations. This
filtering step improved the selection of independent, informative
features for model training and reduced the risk of redundancy-
driven overfitting (31-33).

Following VIF-based feature selection (threshold: VIF < 10), we
generated heatmaps to visualize pairwise Pearson correlation
coefficients among the retained features. In total, 61 radiomic
features exceeded the predefined VIF threshold and were
excluded from further analysis, while 23 features with acceptable
multicollinearity levels were retained for model development (see
Supplementary Tables S3 and S4).

These heatmaps served to verify that the selected radiomics and
clinical features exhibited minimal linear interdependencies. Strong
positive or negative correlations—depicted by dark red or blue hues
—were rare across the filtered feature sets. In particular, the clinical
variables (panels b and d) demonstrated consistently low
intercorrelation levels, as indicated by light, near-neutral tones in
the upper and left matrix sections.

To further assess the potential impact of imaging timing on
inter-feature correlations, separate heatmaps were constructed for
both patient subgroups: those undergoing immediate imaging
(delay 0) and those with delayed imaging (delay =14 days).
Within each subgroup, distinct heatmaps were generated for the

FIGURE 2

The heatmaps visualize the relationships between extracted features, highlighting clusters and correlations. This helps identify feature dependencies
and potential redundancies. (a) Heatmap at delay O for radiomics features; (b) Heatmap at delay O for clinical and radiomics features. The heatmaps
visualize the relationships between extracted features, highlighting clusters and correlations. This helps identify feature dependencies and potential
redundancies. (c) Heatmap at delay 14 for radiomics features; (d) Heatmap at delay 14 for clinical and radiomics features.
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radiomics-only features and the combined clinical-radiomics
feature sets. For details, see the heatmaps in Figures 2a—d.

This stratified visualization allowed for a more differentiated
analysis of temporal variability in correlation patterns and potential
redundancies across feature domains.

Taken together, the heatmaps complemented the VIF-based
multicollinearity analysis by enabling a qualitative inspection of
correlation structures. The overall low degree of linear correlation
among retained features confirms the effectiveness of our
collinearity filtering strategy and underscores the robustness of
the final feature set used for model development. This
methodological approach enhances the interpretability,
reproducibility, and potential clinical applicability of our
radiomics model. (34).

Development and validation of predictive
models for tumor infiltration assessment

In this study, we employed the Random Forest (RF) algorithm,
a well-established machine learning technique, to develop an
optimal model for distinguishing between muscle-invasive (T2)
and extravesical (T3) disease in bladder cancer.

RF-based methods provide a robust and efficient alternative to
deep learning models in medical imaging, offering comparable
performance without the need for extensive computational
resources (35). The effectiveness and applicability of RF in
medical imaging have been extensively documented in the
literature (36-40).

To optimize the model’s performance and maximize the area
under the receiver operating characteristic curve (AUC-ROC), we
fine-tuned hyperparameters using a grid search procedure (41). The
optimal settings identified were max_depth = 8 and criterion = ‘gini’.

Robustness was ensured through fivefold cross-validation.
Clinical parameters incorporated into the analysis included
smoking status, arterial hypertension, diabetes mellitus,
preoperative creatinine, preoperative hemoglobin and tumor size,
as these have been identified in the literature as potential risk factors
for bladder cancer (4, 42; van 43-48).

A total of 97 patients were included in the study. To investigate
the effect of imaging timing on model performance, we defined two
cohorts: Cohort 1 comprised the entire patient population
regardless of the interval between transurethral resection of the
bladder (TURB) and CT imaging, while Cohort 2 consisted of a
subset of 79 patients who underwent CT at least 14 days after
TURB. For both cohorts, the dataset was split into training and test
sets using a 70:30 ratio. In Cohort 1, 67 patients were assigned to the
training set and 30 to the test set. In Cohort 2, 55 patients were
included in the training set and 24 in the test set.

For each cohort, we constructed two types of models:

1. Radiomics-only model: utilizing solely radiomic features
extracted from imaging data.

2. Combined radiomics-clinical model: integrating radiomic
features with relevant clinical data.

Frontiers in Oncology
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The performance of both models was evaluated using receiver
operating characteristic (ROC) curve analysis, with standard
deviations and confidence intervals calculated.

To complement the overall assessment of classification
performance, we performed subgroup analyses stratified by
gender and age at initial diagnosis. For the age-based analysis,
patients were categorized into two groups: those older than 70 years
and those aged 70 years or younger. These stratifications aimed to
evaluate potential differences in model performance related to
gender and age.

In Cohort 1, which included all patients regardless of the timing
of their transurethral resection of the bladder (TURB), the gender-
specific distribution was as follows: 55 male patients (Gender = 1)
were assigned to the training set and 25 to the test set, while 12 female
patients (Gender = 2) were included in the training set and 5 in the
test set. In Cohort 2, which included only patients who underwent
TURB at least 14 days prior to imaging, the gender-specific subsets
consisted of 45 male patients in the training set and 19 in the test set,
and 10 female patients in the training set and 5 in the test set.

With respect to age, in Cohort 1, the subgroup of patients older
than 70 years comprised 52 individuals in the training set and 23 in
the test set, while the subgroup aged 70 years or younger included
15 individuals in the training set and 7 in the test set. In Cohort 2, 43
patients older than 70 years were assigned to the training set and 18
to the test set, whereas 12 patients aged 70 years or younger were
included in the training set and 6 in the test set.

These stratified analyses allowed for a more nuanced evaluation
of model robustness and generalizability across clinically relevant
subgroups and facilitated the identification of potential
performance disparities associated with gender or age.

To assess clinical utility, decision curve analysis (DCA) was
performed. This method evaluates the net benefit of predictive
models across different threshold probabilities in the training
population, enabling a direct comparison of model performance
in terms of clinical relevance and decision-making impact. Feature
selection and model construction were implemented using the
open-source Python machine learning library Scikit-learn (Python
version 3.10, Scikit-learn version 0.23.3, http://scikit-learn.org/) (49,
50) (see Supplementary Table 5 for details).

Results
Patient characteristics

The study included 97 consecutive patients with histologically
confirmed bladder cancer (mean age: 68.8 + 10.5 years, range: 39 —
89). Among these, 51 patients (52.6%) presented with extravesical
(>T3) disease in muscle-invasive bladder cancer (MIBC).

There were no statistically significant differences in the
following clinical characteristics between patients with muscle-
invasive (T2) and extravesical disease (T3) based on Pearson’s
chi-square test: average age, sex, weight, height, BMI, arterial
hypertension, cardiovascular disease, renal insufficiency, diabetes
mellitus, or smoking status (former/current).
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Statistically significant differences were observed in the clinical
characteristics preoperative creatinine and preoperative
hemoglobin between patients with muscle-invasive (T2) and
extravesical disease (T3) based on T-test (p < 0.05).

We investigated the ability of our model to differentiate <T2 vs.
>T3 across two cohorts:

- Cohort 1: Included all patients, irrespective of the timing of
their transurethral resection of the bladder (TURB) (mean
22.33 days delay, range 5.475 - 39.185)

- Cohort 2: Comprised patients who underwent TURB at least
14 days prior imaging (d > 14; mean 26.43 days delay, range
15.07 - 37.79).

The clinical characteristics of cohort 1 and 2 are summarized in
Tables 1 and 2.

Radiomics model development: feature
selection and performance evaluation

The dataset comprised 97 sample instances, each representing
bladder cancer as the volume of interest in an individual patient. Of
these, 51 instances belonged to the “>T3 extravesical disease”
category, while 46 instances were in the “<T2 intravesical disease”
category. A total of 77 radiomic features were extracted from
venous-phase CT images of the training cohort. Additional details

TABLE 1 The clinical characteristics of the patients in cohort 1.

10.3389/fonc.2025.1591742

can be found in Supplementary Tables S1 and S2, available in the
Supplementary Materials. Using the Random Forest algorithm for
feature screening, the 35 most important radiomic features were
selected as the best-performing predictors for bladder wall invasion
(for details, see the feature importance plots in Figure 3).

We evaluated the ability of our model to differentiate between <T2
and >T3 across two cohorts. Cohort 1 included all patients irrespective
of TURB timing relative to CT, regardless of the timing of their
transurethral resection of the bladder (TURB) (d = 0, mean 22.33 days
delay, range 5475 - 39.185). Cohort 2 comprised those with TURB at
least 14 days before imaging (d > 14; mean 26.43 days delay, range
15.07 - 37.79). These features were used as input for the machine
learning-based radiomics modeling for both cohorts. Standard
evaluation metrics for machine learning, including accuracy,
precision, Fl-score, and the area under the ROC curve (AUC), were
applied to assess the models' performance in predicting the extent of
tumor invasion. All statistical tests were two-sided, and a p-value < 0.05
was considered statistically significant.

In the ROC analysis of the radiomics models, classification metrics
obtained from fivefold cross-validation were as follows: an AUC of 0.68
(% 0.08), accuracy 0.63 + 0.09, precision 0.63 * 0.10, recall 0.63 + 0.09,
Fl-score 0.62 + 0.10, sensitivity 0.74 + 0.12 and specificity 0.58 + 0.17
for Cohort 1; and an AUC of 0.80 + 0.08, accuracy 0.73 + 0.09,
precision 0.75 + 0.10, recall 0.73 + 0.09, F1-score 0.72 + 0.09, sensitivity
0.80 + 0.08 and specificity 0.63 = 0.11 for Cohort 2.

In comparison, the combined model in Cohort 1 -which
integrated clinical risk factors with radiomic features —achieved

p-value (Pearson'’s chi-square test for categorical

<T2 >T3 L A .
o = . > . variables; independent samples t-test for continuous
Characteristic (intravesical (extravesical . W o
. : variables). The symbol ** indicates statistically
disease) disease) N
significant p-values.
Number of patients () 46 (47 %) 51 (53 %)
Average age (mean) 67.28 + 9.30 years 70.08 + 11.41 years 0.192
Sex 1.000
Male 38 (83 %) 42 (82 %)
Female 8 (17 %) 9 (18 %)
Weight (kg) (mean) 85.54 + 16.84 79.18 + 14.24 0.047%%
Hight [cm] (mean) 174.57 + 0.08 173.69 £ .08 0.587
BMI [kg/m?] (mean) 27.94 + 4.52 26.14 + 4.15 0.044**
pre-op Krea [pumol/ 90.35 £ 22.11 122.24 + 88.66 0.016**
1] (mean)
pre-op Hb [g/dl] (mean) 13.80 + 1.93 12.39 £ 241 0.002**
Arterial Hypertension 32 (70 %) 33 (65 %) 0.669
Cardiovascular Disease 11 (24 %) 15 (29 %) 0.648
Renal insufficiency 6 (13 %) 10 (20 %) 0.424
Diabetes mellitus 8 (17 %) 11 (22 %) 0.621
Smoker 17 (37 %) 20 (39 %) 0.082

Frontiers in Oncology

07

frontiersin.org


https://doi.org/10.3389/fonc.2025.1591742
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Lisson et al.

TABLE 2 The clinical characteristics of the patients in cohort 2.

10.3389/fonc.2025.1591742

p-value (Pearson’s chi-square test for categorical

<T2 >T3 A e )
Characteristic Tt et variables; independent samples t-test for continuous
Fecr) e variables). The symbol ** indicates statistically
significant p-values.
Number of patients (1) 39 (49 %) 40 (51 %)
Average age (mean) 67.44 £ 9.51 years 71.60 + 10.67 years 0.071
Sex 1.000
Male 31 (79 %) 33 (83 %)
Female 8 (21 %) 7 (18 %)
Weight (kg) (mean) 85.54 + 16.84 79.18 + 14.24 0.081
Hight [cm] (mean) 174.10 £ .082 173.83 £ .081 0.879
BMI [kg/mA2] (mean) 28.15 +4.70 26.14 + 4.59 0.057
pre-op Krea [umol/l](mean) | 88.56 + 18.59 123.50 + 97.78 0.032%%
pre-op Hb [g/dl] (mean) 14.033 + 1.66 12.29 +2.36 <0.001**
Arterial Hypertension 26 (67 %) 26 (65 %) 1.000
Cardiovascular Disease 9 (23 %) 12 (30 %) 0.612
Renal insufficiency 6 (15 %) 9 (23 %) 0.568
Diabetes mellitus 7 (18 %) 9 (23 %) 0.781
Smoker (former/current) 12 (31 %) 16 (40 %) 0.141
A (&3
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FIGURE 3

The Feature Importance Plots (extraction setting: resample kein_filter) visually represent the contribution of individual radiomics and clinical features
to the predictive performance of the Random Forest (RF) model for tumor invasion extent. (a) Feature Importance Plot at delay O for radiomics
features; (b) Feature Importance Plot at delay O for radiomics and clinical features. The Feature Importance Plots (extraction setting: resample
kein_filter) visually represent the contribution of individual radiomics and clinical features to the predictive performance of the Random Forest (RF)
model for tumor invasion extent. (c) Feature Importance Plot at delay 14 for radiomics features; (d) Feature Importance Plot at delay 14 for radiomics

and clinical features.
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improved performance with an AUC of 0.76 + 0.09, accuracy 0.69 +
0.07, precision 0.70 * 0.08, recall 0.68 + 0.07, F1-score 0.68 + 0.07,
sensitivity 0.74 + 0.14 and specificity 0.62 + 0.16.

These results indicate that the inclusion of clinical variables can
enhance the predictive performance of radiomics-based models in
preoperative bladder cancer staging.

A similar pattern was observed in Cohort 2. While the
radiomics-only model yielded strong metrics, the combined
clinical-radiomics model demonstrated further gains, achieving an
AUC of 0.82 £ 0.07, accuracy 0.78 + 0.05, precision 0.79 + 0.05,
recall 0.78 + 0.05, F1-score 0.77 + 0.05, sensitivity 0.80 + 0.08 and
specificity 0.63 * 0.11. These results underscore the benefit of
integrating clinical variables into radiomic models, especially in
temporally optimized imaging settings.

The predictive performances of the radiomics-only and
combined clinical-radiomics models in both cohorts are
summarized in Tables 3 and 4.

The ROC curves highlight the predictive performance of the
radiomics-only and combined clinical-radiomics models. Cohort 1
included all patients, irrespective of TURB timing relative to CT,
whereas Cohort 2 comprised those with TURB at least 14 days
before imaging. The combined model consistently outperforms the
radiomics-only approach, achieving higher AUC values and
improving discrimination between <T2 and >T3 stages. For
details, see the ROC curves in Figures 4 and 5.

To further investigate the model’s performance across different
patient subgroups, we conducted gender-specific analyses by
calculating sensitivity and specificity separately for male and
female patients.

Among male patients, the radiomics-only model in Cohort 1
yielded a sensitivity of 0.72 (+ 0.13) and a specificity of 0.58 (& 0.14).
The combined clinical-radiomics model showed a modest
improvement, achieving a sensitivity of 0.73 (+ 0.14) and a
specificity of 0.61 (+ 0.15). In Cohort 2, the radiomics-only model

10.3389/fonc.2025.1591742

produced a sensitivity of 0.72 (+ 0.15) and a specificity of 0.70 (+
0.13), while the addition of clinical parameters further enhanced
performance, reaching a sensitivity of 0.78 (+ 0.14) and a specificity
of 0.72 (+ 0.12).

Among female patients, the radiomics-only model in Cohort 1
yielded a sensitivity of 0.67 (% 0.22) and a specificity of 0.65 (& 0.24).
The combined model improved both metrics, with a sensitivity of
0.77 (£ 0.27) and a specificity of 0.70 (£ 0.35). In Cohort 2, the
radiomics-only model achieved a balanced performance with a
sensitivity and specificity of 0.70 (+ 0.26) and 0.70 (%
0.11), respectively.

Notably, the combined model in this subgroup demonstrated
reduced performance, with a sensitivity of 0.53 (£ 0.23) and
specificity of 0.60 (+ 0.39). This observation may reflect
underlying sex-specific differences in tumor biology or image-
derived patterns and underscores the need for further research
into gender-informed modeling strategies.

In addition, a subgroup analysis was performed based on age at
initial diagnosis, stratifying patients into two groups: >70 years and
<70 years. Among patients older than 70 years, the radiomics-only
model in Cohort 1 yielded a sensitivity of 0.55 (+ 0.16) and a
specificity of 0.72 (+ 0.12), whereas the combined clinical-radiomics
model improved sensitivity to 0.64 (+ 0.15) and specificity to 0.74 (+
0.17). In Cohort 2, sensitivity and specificity increased from 0.58 (+
0.14) and 0.84 (£ 0.12) with the radiomics-only model to 0.63 (+
0.17) and 0.79 (+ 0.10), respectively, with the combined model.

For patients aged <70 years, the radiomics-only model in
Cohort 1 demonstrated a sensitivity of 0.67 (+ 0.35) and a
specificity of 0.60 (+ 0.34). The addition of clinical parameters
improved performance, yielding a sensitivity of 0.70 (+ 0.25) and a
specificity of 0.70 (+ 0.20). In Cohort 2, the radiomics-only model
achieved a sensitivity of 0.73 (+ 0.26) and a specificity of 0.67 (+
0.22), while the combined model further improved sensitivity to
0.87 (+ 0.17) and maintained a specificity of 0.67 (+ 0.31).

TABLE 3 The predictive performances of the radiomics-only and combined clinical-radiomics models in cohort 1 including all patients, irrespective of

the timing of their transurethral resection of the bladder (TURB).

AUC
(mean + SD)

Accuracy

(mean + SD)

Precision
(mean + SD)

F1 Score
(mean + SD)

Recall
(mean + SD)

Sensitivity
(mean + SD)

Specificity
(mean + SD)

Radiomics-only 0.68 + 0.08 0.63 + 0.09 0.63 + 0.10

0.63 + 0.09 0.62 +0.10 0.74 £ 0.12 0.58 +0.17

Combined

0.76 = 0.09
Clinical-Radiomics

0.69 + 0.07 0.70 + 0.08

0.68 + 0.07 0.68 + 0.07 0.74 £ 0.14 0.62 + 0.16

TABLE 4 Predictive performance of the radiomics-only and combined clinical-radiomics models in cohort 2, which includes patients who underwent
TURB at least 14 days before imaging.

Accuracy Precision
(mean + SD) (mean + SD)
Radiomics-only 0.80 + 0.08 0.73 £ 0.09 0.75 + 0.10
Combined
Clinical- 0.82 + 0.07 0.78 + 0.05 0.79 £+ 0.05
Radiomics

(Fﬁﬁg:: F1-Score Sensitivity Specificity
(mean + SD) (mean + SD) (mean + SD)
+ SD)
0.73 £ 0.09 0.72 £ 0.09 0.69 + 0.10 0.71 £ 0.12
0.78 = 0.05 0.77 £ 0.05 0.80 = 0.08 0.63 +0.11
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FIGURE 4

Receiver operating characteristic (ROC) curves for the radiomics-only and combined clinical-radiomics models in cohort 1, showing that the
combined model slightly outperforms the radiomics-only approach in predicting bladder wall invasion.

Taken together, these findings suggest that integrating clinical
features consistently enhances model performance across both age
groups, with particularly pronounced gains in sensitivity in younger
patients and improvements in specificity among older individuals.

To evaluate the potential clinical utility of the developed
prediction models for assessing bladder wall invasion, we
performed decision curve analyses (DCA) for both the radiomics-

only and the combined clinical-radiomics models in Cohorts 1 and
2. As shown in Figures 6 and 7, the DCA curves indicate that the
combined models consistently yield a higher net benefit across a
broad range of clinically relevant threshold probabilities, compared
to default strategies such as treating all patients (“Always Act”) or
none (“Never Act”). This pattern was observed in both validation
cohorts, suggesting that the integration of clinical parameters into

Delay 14: ROC-curves
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FIGURE 5

ROC curves for cohort 2, demonstrating improved performance of the combined clinical-radiomics model compared to the radiomics-only model

in predicting bladder wall invasion.
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presents the results of the decision curve analysis (DCA) for the combined clinical-radiomics model in Cohort 1. The x-axis indicates the threshold
probability, representing the level of risk at which a clinician would initiate treatment, while the y-axis depicts the corresponding net clinical benefit.
The blue curve shows the combined model, the purple curve represents the radiomics-only model, the pink curve corresponds to the Treat None’
strategy (assuming no patient has bladder wall invasion), and the grey curve reflects the Treat All' approach (assuming all patients are affected). The
DCA demonstrates that the combined model provides a higher net benefit than the radiomics-only model across a clinically relevant range of
threshold probabilities, particularly between 0.39 and 0.65, supporting its potential role in guiding treatment decisions.

the radiomics framework enhances the model’s practical
applicability. These findings support the potential of the

Discussion

combined model to inform individualized therapeutic decision-
making by better aligning diagnostic predictions with clinical
risk thresholds.

Accurate preoperative staging of bladder cancer (BCa) is essential
for individualized treatment planning and prognostication. According
to the European Association of Urology (EAU), tumor stage and grade

1.0 1
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o
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FIGURE 7

shows the decision curve analysis for the combined and radiomics-only models in Cohort 2. Compared to Cohort 1, the combined model
demonstrates an even greater net benefit across a broad threshold range (0.19-0.81), consistent with its superior ROC performance and highlighting

its value for individualized treatment decisions.
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are key prognostic factors that critically influence therapeutic strategies
and the risk of recurrence (51). In particular, differentiating between
intravesical (€T2) and extravesical (>T3) disease is vital, as extravesical
extension is associated with an increased risk of lymphatic spread,
distant metastasis, and poor survival. Understaging may lead to
undertreatment, while overstaging may expose patients to
unnecessary morbidity (51).

Current standard staging relies on transurethral resection of the
bladder tumor (TURB), followed by histopathological assessment
(52). However, this approach has notable limitations. Tumor
heterogeneity and sampling errors can result in underestimation
of the true invasion depth. Indeed, up to 50% of patients initially
diagnosed with non-muscle-invasive disease (T1) are found to have
muscle-invasive cancer (=T2) at cystectomy (8).

While repeat TURBs may reduce misclassification, they are
invasive, associated with increased morbidity, and can delay
definitive therapy (53). To address these limitations, clinical
guidelines from ESMO and NCCN advocate the use of cross-
sectional imaging techniques—primarily CT and MRI—for local
staging (4, 6).

These modalities are widely applied to evaluate tumor extent
and detect extravesical invasion. However, conventional imaging
lacks sufficient accuracy in distinguishing T2 from T3 disease. A
meta-analysis reported moderate diagnostic performance, with a
pooled sensitivity of 0.71 and specificity of 0.77 for differentiating
muscle-invasive from extravesical tumors (54).

Given these challenges, radiomics has emerged as a promising,
non-invasive tool to improve staging accuracy. By extracting high-
dimensional, quantitative features from standard imaging data,
radiomics enables a detailed characterization of tumor morphology,
texture, and signal intensity (16-18, 55, 56).

When combined with machine learning, these features can be
used to construct predictive models for tumor classification and risk
stratification. Previous studies have shown that radiomics-based
models can outperform conventional imaging in predicting muscle-
invasive disease (57).

However, one clinically relevant factor has remained largely
unexplored: the timing of imaging after transurethral resection of
the bladder tumor (TURB). Postoperative alterations such as
edema, inflammation, or transient bladder wall thickening can
affect radiomic feature stability and confound model predictions.
To date, no studies have systematically examined how the interval
between TURB and imaging influences the performance of CT-
based radiomics models for bladder cancer staging.

Our study addresses this gap by evaluating machine learning
models based on CT imaging for distinguishing between
intravesical (<T2) and extravesical (>T3) disease, with particular
emphasis on the impact of imaging timing. We developed and
validated combined clinical-radiomics models that integrate
routinely available laboratory parameters—preoperative creatinine
and hemoglobin levels—with radiomic features. These biomarkers
have been previously associated with oncologic outcomes in other
malignancies (58-60).

To enhance model transparency and mitigate overfitting, we
assessed multicollinearity using the Variance Inflation Factor (VIF).
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Following established guidelines (VIF > 10), we excluded 61
radiomic features, retaining 23 independent variables for model
training (32). This filtering strategy ensured a more robust and
interpretable feature set.

To further confirm the independence of selected features, we
generated heatmaps depicting pairwise Pearson correlations for
both radiomics-only and combined models across cohorts. The
observed low inter-feature correlations validated the effectiveness of
the filtering approach. Together, VIF analysis and correlation
heatmaps provided a methodologically sound basis for
dimensionality reduction—an essential prerequisite for the clinical
translation of radiomics models.

A central focus of our analysis was the comparison between
early (<14 days) and delayed (=14 days) post-TURB imaging
cohorts. Our results demonstrate that delayed imaging improves
the reproducibility of radiomic features and leads to significantly
enhanced staging accuracy. In the delayed cohort, the combined
clinical-radiomics model achieved an AUC of 0.82, clearly
outperforming radiomics-only models and underscoring the
diagnostic value of integrating simple clinical parameters.

These findings suggest that post-surgical changes can adversely
affect radiomic data quality, and that imaging timing should be
carefully considered in radiomics workflows. In addition to
highlighting the benefit of delayed imaging, our study
demonstrates that the inclusion of clinical markers substantially
improves model performance—an approach that is both cost-
effective and readily implementable in clinical practice.

Subgroup analyses by gender and age further elucidated the
generalizability of our approach. In male patients, the combined
model consistently outperformed the radiomics-only model across
both cohorts, with higher sensitivity and specificity. This suggests
that routinely available clinical data provide relevant additive
prognostic value and that multimodal integration enhances
performance in this subgroup.

In contrast, predictive accuracy among female patients was
more variable. While the combined model improved results in
Cohort 1, it performed less favorably in Cohort 2. This
inconsistency may reflect underlying sex-specific differences in
tumor biology, inflammatory status, or imaging patterns. Rather
than indicating a methodological shortcoming, this variability
underscores the potential benefit of sex-specific modeling strategies.

Age-stratified analyses confirmed the added value of clinical
integration. The combined model improved performance across
both age groups, with notable gains in sensitivity among younger
patients (<70 years) and improved specificity in older individuals
(>70 years). These patterns suggest that clinical data provide
complementary information across distinct biological and
clinical constellations.

Taken together, our results underscore the importance of
carefully considering imaging timing, the integration of clinical
parameters, and subgroup-specific validation in the design of
radiomics-based tools. These strategies may help ensure the
development of robust, equitable, and clinically applicable models.

Nonetheless, several limitations must be acknowledged. Our
findings are based on a retrospective, single-center cohort, which
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may limit generalizability. Multicenter prospective validation is
required to substantiate these observations. While we focused on
CT-based radiomics—given its widespread clinical use—future
research should explore MRI-based models and integrate
molecular biomarkers to further enhance predictive accuracy.
Standardization of imaging protocols and harmonization of
radiomic workflows remain crucial for broader clinical adoption.

We also recognize the value of longitudinal analyses,
particularly regarding the temporal dynamics of radiomic features
in the post-TURB setting. Although our sample size precluded
detailed evaluation of individual feature trajectories, future studies
should systematically examine such dynamics, potentially using
delta-radiomics approaches.

In conclusion, our study demonstrates that a combined clinical-
radiomics model—particularly when applied to delayed post-TURB
imaging—can significantly enhance the preoperative staging of
bladder cancer. The integration of routine laboratory parameters
and optimized imaging timing improves model accuracy and
supports the development of robust tools for precision diagnostics
and individualized treatment planning in uro-oncology. Prospective
validation is warranted to confirm these findings and enable
clinical translation.
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