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Objectives: Accurate preoperative staging of bladder cancer is essential for

therapeutic decision-making, particularly in distinguishing between organ-

confined (T2) and extravesical (T3) disease. This study aimed to develop a CT-

based radiomics model to differentiate T2 from T3 tumors and to evaluate the

impact of imaging timing relative to transurethral resection of the bladder (TURB)

on model performance. Additionally, we assessed the added diagnostic value of

integrating routine clinical biomarkers.

Methods: In this retrospective study, 97 patients with histologically confirmed

bladder cancer who underwent TURB followed by contrast-enhanced CT were

included. Tumor segmentation was performed using a semi-automated three-

dimensional approach, and radiomic features were extracted according to IBSI

standards. A random forest classifier was trained to distinguish between T2 and

T3 tumors. Patients were stratified according to the interval between TURB and

CT imaging (≤14 days vs >14 days). Performance metrics were assessed for both

radiomics-only and combined clinical-radiomics models. Clinical variables

included preoperative creatinine, hemoglobin, arterial hypertension, diabetes

mellitus, smoking status, and tumor size.

Results: The radiomics-only model achieved an AUC of 0.68 in Cohort 1 (≤14

days post-TURB). In Cohort 2 (>14 days post-TURB), model performance

improved with an AUC of 0.80. The combined clinical-radiomics model further

enhanced performance, yielding an AUC of 0.76 in Cohort 1 and 0.82 in Cohort 2.

Delayed imaging was associated with increased radiomic feature stability and

improved classification accuracy, suggesting a potential benefit of temporal

separation from post-surgical tissue changes.
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Conclusion: This study demonstrates the feasibility of CT-based radiomics using

full-volume 3D tumor segmentation to distinguish between T2 and T3 bladder

cancer. The integration of clinical biomarkers and consideration of imaging

timing significantly improved model performance. These findings support the

development of temporally optimized, multimodal prediction models for

individualized bladder cancer staging and treatment planning.
KEYWORDS

radiomics, machine learning, bladder cancer, tumor staging, computed tomography,
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Introduction

Urothelial carcinoma (UC), commonly known as bladder

cancer (BCa), is the 10th most common cancer worldwide, with

approximately 500,000 new cases and 200,000 deaths each year (1).

Tobacco smoking is the primary risk factor, accounting for

roughly 50% of cases, followed by occupational exposure to

aromatic amines and ionizing radiation (van 2, 3).

Painless hematuria is the most common initial symptom and

warrants thorough evaluation in all cases (4).

Approximately 75% of bladder cancer patients present with

non-muscle invasive bladder cancer (NMIBC), classified as stage

pTa, pT1, or carcinoma in situ (pTis). In contrast, the majority of

muscle-invasive bladder cancer (MIBC) cases—stages pT2a to pT4b

—are diagnosed as primary invasive disease, although up to 15% of

MIBC patients have a history of high-risk NMIBC. All cases of

MIBC are considered high grade (5).

Muscle-invasive bladder cancer (MIBC) is categorized into

stages T2, T3, and T4 based on the extent of tumor infiltration.

In T2, the tumor invades the detrusor muscle; in T3, it extends into

the perivesical fat; and in T4, it breaches into adjacent organs such

as the prostate, uterus, or pelvic wall. The depth of invasion serves

as a critical prognostic factor and is pivotal in guiding treatment

strategies for localized bladder cancer (5).
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The clinical management of muscle-invasive bladder cancer

(MIBC) is primarily guided by the tumor’s T stage, as the risk of

lymph node metastasis increases with more advanced local tumor

progression. This stratification necessitates tailored treatment

approaches. For instance, patients with clinical T2 (cT2) disease

may be considered for partial cystectomy in combination with

neoadjuvant cisplatin-based chemotherapy (6). In contrast, patients

diagnosed with cT3 or cT4a disease are typically managed with more

aggressive treatments, which may include radical cystectomy,

radiation therapy, chemotherapy, immunotherapy, or a

combination of these modalities, depending on the specific stage

and clinical context (4).

Transurethral resection of bladder tumor (TURBT), followed by

pathological analysis, is essential for diagnosing, staging, and

managing bladder cancer (7). However, TURBT has notable

limitations in assessing muscle layer involvement; studies have

shown that up to 50% of patients initially staged as T1 are later

found to have muscle-invasive disease at the time of radical

cystectomy (8).

Therefore, a comprehensive evaluation of the entire urothelium

is crucial for detecting synchronous secondary tumors (4).

Multiphasic contrast-enhanced computed tomography (CT),

including CT urography, is recommended for this purpose (9).

Magnetic resonance imaging (MRI) has become increasingly

important for the local staging of bladder cancer, especially when

differentiating early-stage tumors (10). Functional MRI techniques,

notably diffusion-weighted imaging (DWI) and dynamic contrast-

enhanced MRI (DCE-MRI), have demonstrated potential in

distinguishing non-muscle-invasive (T1) from deep muscle-

invasive (T2b) disease—a distinction that is critical for guiding

therapeutic decisions. However, accurately identifying muscle-

invasive (T2) and microscopic extravesical (T3a) disease remains

challenging. For more advanced stages, such as T3b and T4 disease,

both computed tomography (CT) and MRI play essential roles in

comprehensive assessment (10).

In the present study, we chose contrast-enhanced CT as the

radiological basis for radiomic feature extraction. This decision was

driven by CT’s widespread clinical availability, its role as the

standard imaging modality in global bladder cancer staging
frontiersin.org
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protocols, and its routine preoperative use in many urologic centers.

MRI was not included due to limited institutional availability and

non-standardized protocols at the time of data collection.

Importantly, our aim was to establish radiomics feasibility in a

clinically realistic and widely generalizable setting. CT-based

radiomics thus provides a pragmatic foundation for subsequent

multimodal imaging studies.

Recent advances in machine learning, coupled with increasing

computational capacity, have accelerated the development of

radiomics as a quantitative imaging discipline (11, 12). Radiomics

enables the extraction of high-dimensional, quantifiable features

from medical images—particularly of tumors—to characterize

tissue heterogeneity, morphology, and signal intensity patterns

(13–15). These features are subsequently processed using machine

learning or deep learning algorithms to build predictive models that

can assist and refine clinical decision-making, especially in

oncologic contexts.

In the context of bladder cancer, several studies have demonstrated

the feasibility of radiomics and deep learning models to predict

clinically relevant parameters such as preoperative tumor grade,

lymph node metastases, or the presence of muscle-invasive disease

using CT or MRI-based features (16–19).

However, these investigations have primarily addressed the

general dichotomy between non-muscle-invasive (≤T1) and

muscle-invasive (≥T2) stages, without focusing on more granular

and clinically decisive stage distinctions.

To date, no study has systematically examined whether

radiomics can differentiate T2 (organ-confined, intravesical) from

T3 (extravesical, perivesical fat infiltration) bladder cancer based on

CT imaging, despite the high clinical relevance of this boundary for

surgical planning and prognostic assessment.

Moreover, another critical yet underexplored variable is the

timing of imaging relative to transurethral resection of the bladder

(TURB)—a factor that may substantially influence imaging

characteristics due to inflammatory changes, edema, or early

tissue remodeling, particularly in the perivesical region.

None of the existing radiomics studies have investigated how

such temporal variation might affect the accuracy or stability of AI-

driven staging models.

Our study addresses both of these previously unexplored

dimensions. Specifically, we present the first CT-based machine

learning model capable of distinguishing between T2 and T3

tumors, thereby providing staging information that directly

informs therapeutic decision-making.

In addition, by analyzing patient cohorts with defined intervals

between TURB and staging CT, we systematically evaluate the impact

of imaging timing on model performance. This approach not only

reflects common real-world diagnostic pathways but also provides

insight into the temporal robustness of radiomic signatures.

By integrating radiomics with clinical parameters in a hybrid

model, we further enhance staging accuracy, particularly in patients

with delayed post-TURB imaging. Collectively, these methodological

innovations represent a significant step toward personalized, image-

based treatment stratification in bladder cancer.
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Materials and methods

Patients

We retrospectively identified 133 patients with localized bladder

cancer, confirmed by pathological diagnosis after surgical resection,

from our hospital database between 2012 and 2020. Only patients

who had undergone a standard contrast-enhanced CT scan of the

abdomen and pelvis before surgery were included (n = 105).

To ensure a sufficient lesion area for drawing regions of interest

(ROI), we excluded patients with tumors smaller than 5 mm, those

with bladder wall thickening without a distinct mass, and those with

insufficient imaging quality due to artifacts from metal implants

or motion.

The final study cohort consisted of 97 patients, categorized into

intravesical (≤T2) and extravesical (≥T3) disease.

Clinical information, including patient age, sex, and

pathological stage, was retrospectively retrieved from electronic

health records. Histopathological classification was based on the

2016 WHO criteria (20).

Patients were included in the study if they met the following

criteria: (1) pathologically confirmed urothelial carcinoma, (2)

underwent radical cystectomy (RC), and (3) received a standard

contrast-enhanced CT scan of the abdomen and pelvis within 30

days before surgery.

Patients were excluded if they met one or more of the following

criteria: (1) prior neoadjuvant chemotherapy or preoperative

radiotherapy, (2) concurrent malignancies known at time of CE,

(3) imaging artifacts precluding reliable tumor segmentation, or (4)

incomplete or missing clinical and/or imaging data.

The study was approved by the institutional review board

(protocol number 378/24), and the requirement for written

informed consent was waived.

The patient recruitment process is illustrated in Figure 1.
Image acquisition

All patients underwent contrast-enhanced CT scans according

to standard clinical protocols for routine staging. Imaging was

performed before surgery as part of the routine staging procedure

to assess disease status. For image segmentation and analysis, all

reconstructed images were retrieved from the hospital’s picture

archiving and communication system (PACS).
Statistics for clinical characteristics

To test for differences in the clinical characteristics between the

two groups ≤T2 (intravesical disease) and ≥T3 (extravesical

disease), Pearson’s chi-square test was applied for categorical

variables and the independent samples t-test for continuous

variables. In cases of unequal variances (tested with Levene’s test),
frontiersin.org
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the t-test results were adjusted accordingly. All analyses were

conducted using IBM SPSS Statistics for Windows, Version 29.0

(IBM Corp., Armonk, NY, USA).
ROI-segmentation and imaging feature
extraction

The evaluation of imaging features, such as histogram features

and those derived from co-occurrence matrices, was first

introduced by Haralick et al. in 1973 (21) and has since

demonstrated substantial potential across various cancer types

and clinical applications (22, 23). In this study, three-dimensional

region-of-interest (ROI) segmentation, texture analysis, and feature

extraction were conducted using Mint Lesion™ software (version

3.8.4, mint Medical GmbH, Heidelberg, Germany).

Mint Lesion™ is a specialized medical software platform that

facilitates the analysis, 3D visualization, and comparison of

radiological images from modalities such as CT, MRI, and PET. It

supports radiologists in both clinical evaluations and research,

allowing for seamless image import from PACS and structured

report export to systems such as PACS, RIS/HIS, or study

management platforms. The software is classified as a Class IIb

medical device, certified under EU Regulation 2017/745 (Medical

Device Regulation, MDR). Its CE marking (CE 0123) confirms

compliance with the General Safety and Performance Requirements

of the MDR. Details of the feature extraction settings are provided

in Supplementary Table S1.
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Image analysis was performed by two board-certified

radiologists, each with over 10 years of experience in oncological

imaging and at least 8 years of expertise in texture analysis.

Radiomic features were quantified by analyzing distinct grey-level

patterns within the ROIs, with texture feature descriptors generated

in accordance with the Image Biomarker Standardisation Initiative

(IBSI) guidelines (24).

A total of 77 imaging features were calculated for each ROI,

encompassing tumor size and shape in three dimensions.

Additionally, first-order statistics were used to describe the

distribution of voxel intensities within the ROI. To capture voxel

intensity patterns, texture-based features were derived from the grey-

level co-occurrence matrix (GLCM). Additional details can be found

in Supplementary Tables S1 and S2, available in the Supplementary

Materials. The extracted 3D volumetric radiomic features served as

input data for machine learning model development.
Feature selection

After preprocessing, feature selection was performed using the

Random Forest algorithm. As in other data-mining applications,

radiomics is affected by the curse of dimensionality (25), as it involves

extracting a vast number of quantitative features from regions of

interest (ROIs). Implementing an appropriate feature selection

strategy is crucial to reduce the dimensionality of radiomic data.

By selecting an optimal subset of features, overfitting is

minimized, resulting in models with improved generalizability,
frontiersin.or
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greater simplicity, faster computation, and enhanced predictive

performance (26).

Filter methods are widely used for feature selection and can be

categorized based on the criteria they employ, such as dependence,

similarity, and other statistical measures. These methods assess the

relevance of individual features independently of the learning

model, typically using metrics such as correlation coefficients,

mutual information, or statistical tests.

By preselecting informative features before model training, filter

methods help reduce dimensionality, improve computational

efficiency, and enhance model interpretability while mitigating the

risk of overfitting (27, 28).

Random Forest is an ensemble learning method that constructs

multiple decision trees using randomly selected subsets of data and

features, with predictions averaged across all trees. In feature

selection, Random Forest can function as a filter method by

assessing the importance of each feature using metrics such as

Gini impurity or information gain. This approach enables the

identification and removal of less relevant features before model

training, improving both model performance and interpretability

(29). In this study, feature selection was performed using the Weka

Toolkit (version 3.8), a widely used machine learning software that

provides various algorithms for data preprocessing, feature

selection, and model evaluation (30).

To ensure the stability and interpretability of our machine

learning model, we conducted a multicollinearity analysis by
Frontiers in Oncology 05
calculating the Variance Inflation Factor (VIF) for all radiomic

and clinical features. Features with a VIF greater than 10 were

considered highly collinear and were excluded from further

analysis, in line with established statistical recommendations. This

filtering step improved the selection of independent, informative

features for model training and reduced the risk of redundancy-

driven overfitting (31–33).

Following VIF-based feature selection (threshold: VIF < 10), we

generated heatmaps to visualize pairwise Pearson correlation

coefficients among the retained features. In total, 61 radiomic

features exceeded the predefined VIF threshold and were

excluded from further analysis, while 23 features with acceptable

multicollinearity levels were retained for model development (see

Supplementary Tables S3 and S4).

These heatmaps served to verify that the selected radiomics and

clinical features exhibited minimal linear interdependencies. Strong

positive or negative correlations—depicted by dark red or blue hues

—were rare across the filtered feature sets. In particular, the clinical

variables (panels b and d) demonstrated consistently low

intercorrelation levels, as indicated by light, near-neutral tones in

the upper and left matrix sections.

To further assess the potential impact of imaging timing on

inter-feature correlations, separate heatmaps were constructed for

both patient subgroups: those undergoing immediate imaging

(delay 0) and those with delayed imaging (delay ≥14 days).

Within each subgroup, distinct heatmaps were generated for the
FIGURE 2

The heatmaps visualize the relationships between extracted features, highlighting clusters and correlations. This helps identify feature dependencies
and potential redundancies. (a) Heatmap at delay 0 for radiomics features; (b) Heatmap at delay 0 for clinical and radiomics features. The heatmaps
visualize the relationships between extracted features, highlighting clusters and correlations. This helps identify feature dependencies and potential
redundancies. (c) Heatmap at delay 14 for radiomics features; (d) Heatmap at delay 14 for clinical and radiomics features.
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radiomics-only features and the combined clinical-radiomics

feature sets. For details, see the heatmaps in Figures 2a–d.

This stratified visualization allowed for a more differentiated

analysis of temporal variability in correlation patterns and potential

redundancies across feature domains.

Taken together, the heatmaps complemented the VIF-based

multicollinearity analysis by enabling a qualitative inspection of

correlation structures. The overall low degree of linear correlation

among retained features confirms the effectiveness of our

collinearity filtering strategy and underscores the robustness of

the final feature set used for model development. This

methodological approach enhances the interpretability,

reproducibility, and potential clinical applicability of our

radiomics model. (34).
Development and validation of predictive
models for tumor infiltration assessment

In this study, we employed the Random Forest (RF) algorithm,

a well-established machine learning technique, to develop an

optimal model for distinguishing between muscle-invasive (T2)

and extravesical (T3) disease in bladder cancer.

RF-based methods provide a robust and efficient alternative to

deep learning models in medical imaging, offering comparable

performance without the need for extensive computational

resources (35). The effectiveness and applicability of RF in

medical imaging have been extensively documented in the

literature (36–40).

To optimize the model’s performance and maximize the area

under the receiver operating characteristic curve (AUC-ROC), we

fine-tuned hyperparameters using a grid search procedure (41). The

optimal settings identified were max_depth = 8 and criterion = ‘gini’.

Robustness was ensured through fivefold cross-validation.

Clinical parameters incorporated into the analysis included

smoking status, arterial hypertension, diabetes mellitus,

preoperative creatinine, preoperative hemoglobin and tumor size,

as these have been identified in the literature as potential risk factors

for bladder cancer (4, 42; van 43–48).

A total of 97 patients were included in the study. To investigate

the effect of imaging timing on model performance, we defined two

cohorts: Cohort 1 comprised the entire patient population

regardless of the interval between transurethral resection of the

bladder (TURB) and CT imaging, while Cohort 2 consisted of a

subset of 79 patients who underwent CT at least 14 days after

TURB. For both cohorts, the dataset was split into training and test

sets using a 70:30 ratio. In Cohort 1, 67 patients were assigned to the

training set and 30 to the test set. In Cohort 2, 55 patients were

included in the training set and 24 in the test set.

For each cohort, we constructed two types of models:
Fron
1. Radiomics-only model: utilizing solely radiomic features

extracted from imaging data.

2. Combined radiomics-clinical model: integrating radiomic

features with relevant clinical data.
tiers in Oncology 06
The performance of both models was evaluated using receiver

operating characteristic (ROC) curve analysis, with standard

deviations and confidence intervals calculated.

To complement the overall assessment of classification

performance, we performed subgroup analyses stratified by

gender and age at initial diagnosis. For the age-based analysis,

patients were categorized into two groups: those older than 70 years

and those aged 70 years or younger. These stratifications aimed to

evaluate potential differences in model performance related to

gender and age.

In Cohort 1, which included all patients regardless of the timing

of their transurethral resection of the bladder (TURB), the gender-

specific distribution was as follows: 55 male patients (Gender = 1)

were assigned to the training set and 25 to the test set, while 12 female

patients (Gender = 2) were included in the training set and 5 in the

test set. In Cohort 2, which included only patients who underwent

TURB at least 14 days prior to imaging, the gender-specific subsets

consisted of 45 male patients in the training set and 19 in the test set,

and 10 female patients in the training set and 5 in the test set.

With respect to age, in Cohort 1, the subgroup of patients older

than 70 years comprised 52 individuals in the training set and 23 in

the test set, while the subgroup aged 70 years or younger included

15 individuals in the training set and 7 in the test set. In Cohort 2, 43

patients older than 70 years were assigned to the training set and 18

to the test set, whereas 12 patients aged 70 years or younger were

included in the training set and 6 in the test set.

These stratified analyses allowed for a more nuanced evaluation

of model robustness and generalizability across clinically relevant

subgroups and facilitated the identification of potential

performance disparities associated with gender or age.

To assess clinical utility, decision curve analysis (DCA) was

performed. This method evaluates the net benefit of predictive

models across different threshold probabilities in the training

population, enabling a direct comparison of model performance

in terms of clinical relevance and decision-making impact. Feature

selection and model construction were implemented using the

open-source Python machine learning library Scikit-learn (Python

version 3.10, Scikit-learn version 0.23.3, http://scikit-learn.org/) (49,

50) (see Supplementary Table 5 for details).
Results

Patient characteristics

The study included 97 consecutive patients with histologically

confirmed bladder cancer (mean age: 68.8 ± 10.5 years, range: 39 –

89). Among these, 51 patients (52.6%) presented with extravesical

(≥T3) disease in muscle-invasive bladder cancer (MIBC).

There were no statistically significant differences in the

following clinical characteristics between patients with muscle-

invasive (T2) and extravesical disease (T3) based on Pearson’s

chi-square test: average age, sex, weight, height, BMI, arterial

hypertension, cardiovascular disease, renal insufficiency, diabetes

mellitus, or smoking status (former/current).
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Statistically significant differences were observed in the clinical

characteristics preoperative creatinine and preoperative

hemoglobin between patients with muscle-invasive (T2) and

extravesical disease (T3) based on T-test (p < 0.05).

We investigated the ability of our model to differentiate ≤T2 vs.

≥T3 across two cohorts:
Fron
- Cohort 1: Included all patients, irrespective of the timing of

their transurethral resection of the bladder (TURB) (mean

22.33 days delay, range 5.475 – 39.185)

- Cohort 2: Comprised patients who underwent TURB at least

14 days prior imaging (d > 14; mean 26.43 days delay, range

15.07 – 37.79).
The clinical characteristics of cohort 1 and 2 are summarized in

Tables 1 and 2.
Radiomics model development: feature
selection and performance evaluation

The dataset comprised 97 sample instances, each representing

bladder cancer as the volume of interest in an individual patient. Of

these, 51 instances belonged to the “≥T3 extravesical disease”

category, while 46 instances were in the “≤T2 intravesical disease”

category. A total of 77 radiomic features were extracted from

venous-phase CT images of the training cohort. Additional details
tiers in Oncology 07
can be found in Supplementary Tables S1 and S2, available in the

Supplementary Materials. Using the Random Forest algorithm for

feature screening, the 35 most important radiomic features were

selected as the best-performing predictors for bladder wall invasion

(for details, see the feature importance plots in Figure 3).

We evaluated the ability of our model to differentiate between ≤T2

and ≥T3 across two cohorts. Cohort 1 included all patients irrespective

of TURB timing relative to CT, regardless of the timing of their

transurethral resection of the bladder (TURB) (d = 0, mean 22.33 days

delay, range 5.475 - 39.185). Cohort 2 comprised those with TURB at

least 14 days before imaging (d > 14; mean 26.43 days delay, range

15.07 - 37.79). These features were used as input for the machine

learning-based radiomics modeling for both cohorts. Standard

evaluation metrics for machine learning, including accuracy,

precision, F1-score, and the area under the ROC curve (AUC), were

applied to assess the models' performance in predicting the extent of

tumor invasion. All statistical tests were two-sided, and a p-value < 0.05

was considered statistically significant.

In the ROC analysis of the radiomics models, classification metrics

obtained from fivefold cross-validation were as follows: an AUC of 0.68

(± 0.08), accuracy 0.63 ± 0.09, precision 0.63 ± 0.10, recall 0.63 ± 0.09,

F1-score 0.62 ± 0.10, sensitivity 0.74 ± 0.12 and specificity 0.58 ± 0.17

for Cohort 1; and an AUC of 0.80 ± 0.08, accuracy 0.73 ± 0.09,

precision 0.75 ± 0.10, recall 0.73 ± 0.09, F1-score 0.72 ± 0.09, sensitivity

0.80 ± 0.08 and specificity 0.63 ± 0.11 for Cohort 2.

In comparison, the combined model in Cohort 1 –which

integrated clinical risk factors with radiomic features –achieved
TABLE 1 The clinical characteristics of the patients in cohort 1.

Characteristic
≤T2
(intravesical
disease)

≥T3
(extravesical
disease)

p-value (Pearson’s chi-square test for categorical
variables; independent samples t-test for continuous
variables). The symbol ** indicates statistically
significant p-values.

Number of patients (n) 46 (47 %) 51 (53 %)

Average age (mean) 67.28 ± 9.30 years 70.08 ± 11.41 years 0.192

Sex 1.000

Male 38 (83 %) 42 (82 %)

Female 8 (17 %) 9 (18 %)

Weight (kg) (mean) 85.54 ± 16.84 79.18 ± 14.24 0.047**

Hight [cm] (mean) 174.57 ± 0.08 173.69 ± .08 0.587

BMI [kg/m²] (mean) 27.94 ± 4.52 26.14 ± 4.15 0.044**

pre-op Krea [μmol/
l] (mean)

90.35 ± 22.11 122.24 ± 88.66 0.016**

pre-op Hb [g/dl] (mean) 13.80 ± 1.93 12.39 ± 2.41 0.002**

Arterial Hypertension 32 (70 %) 33 (65 %) 0.669

Cardiovascular Disease 11 (24 %) 15 (29 %) 0.648

Renal insufficiency 6 (13 %) 10 (20 %) 0.424

Diabetes mellitus 8 (17 %) 11 (22 %) 0.621

Smoker 17 (37 %) 20 (39 %) 0.082
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TABLE 2 The clinical characteristics of the patients in cohort 2.

Characteristic
≤T2
(intravesical
disease)

≥T3
(extravesical
disease)

p-value (Pearson’s chi-square test for categorical
variables; independent samples t-test for continuous
variables). The symbol ** indicates statistically
significant p-values.

Number of patients (n) 39 (49 %) 40 (51 %)

Average age (mean) 67.44 ± 9.51 years 71.60 ± 10.67 years 0.071

Sex 1.000

Male 31 (79 %) 33 (83 %)

Female 8 (21 %) 7 (18 %)

Weight (kg) (mean) 85.54 ± 16.84 79.18 ± 14.24 0.081

Hight [cm] (mean) 174.10 ± .082 173.83 ± .081 0.879

BMI [kg/m^2] (mean) 28.15 ± 4.70 26.14 ± 4.59 0.057

pre-op Krea [μmol/l](mean) 88.56 ± 18.59 123.50 ± 97.78 0.032**

pre-op Hb [g/dl] (mean) 14.033 ± 1.66 12.29 ± 2.36 <0.001**

Arterial Hypertension 26 (67 %) 26 (65 %) 1.000

Cardiovascular Disease 9 (23 %) 12 (30 %) 0.612

Renal insufficiency 6 (15 %) 9 (23 %) 0.568

Diabetes mellitus 7 (18 %) 9 (23 %) 0.781

Smoker (former/current) 12 (31 %) 16 (40 %) 0.141
F
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FIGURE 3

The Feature Importance Plots (extraction setting: resample kein_filter) visually represent the contribution of individual radiomics and clinical features
to the predictive performance of the Random Forest (RF) model for tumor invasion extent. (a) Feature Importance Plot at delay 0 for radiomics
features; (b) Feature Importance Plot at delay 0 for radiomics and clinical features. The Feature Importance Plots (extraction setting: resample
kein_filter) visually represent the contribution of individual radiomics and clinical features to the predictive performance of the Random Forest (RF)
model for tumor invasion extent. (c) Feature Importance Plot at delay 14 for radiomics features; (d) Feature Importance Plot at delay 14 for radiomics
and clinical features.
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improved performance with an AUC of 0.76 ± 0.09, accuracy 0.69 ±

0.07, precision 0.70 ± 0.08, recall 0.68 ± 0.07, F1-score 0.68 ± 0.07,

sensitivity 0.74 ± 0.14 and specificity 0.62 ± 0.16.

These results indicate that the inclusion of clinical variables can

enhance the predictive performance of radiomics-based models in

preoperative bladder cancer staging.

A similar pattern was observed in Cohort 2. While the

radiomics-only model yielded strong metrics, the combined

clinical-radiomics model demonstrated further gains, achieving an

AUC of 0.82 ± 0.07, accuracy 0.78 ± 0.05, precision 0.79 ± 0.05,

recall 0.78 ± 0.05, F1-score 0.77 ± 0.05, sensitivity 0.80 ± 0.08 and

specificity 0.63 ± 0.11. These results underscore the benefit of

integrating clinical variables into radiomic models, especially in

temporally optimized imaging settings.

The predictive performances of the radiomics-only and

combined clinical-radiomics models in both cohorts are

summarized in Tables 3 and 4.

The ROC curves highlight the predictive performance of the

radiomics-only and combined clinical-radiomics models. Cohort 1

included all patients, irrespective of TURB timing relative to CT,

whereas Cohort 2 comprised those with TURB at least 14 days

before imaging. The combined model consistently outperforms the

radiomics-only approach, achieving higher AUC values and

improving discrimination between ≤T2 and ≥T3 stages. For

details, see the ROC curves in Figures 4 and 5.

To further investigate the model’s performance across different

patient subgroups, we conducted gender-specific analyses by

calculating sensitivity and specificity separately for male and

female patients.

Among male patients, the radiomics-only model in Cohort 1

yielded a sensitivity of 0.72 (± 0.13) and a specificity of 0.58 (± 0.14).

The combined clinical-radiomics model showed a modest

improvement, achieving a sensitivity of 0.73 (± 0.14) and a

specificity of 0.61 (± 0.15). In Cohort 2, the radiomics-only model
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produced a sensitivity of 0.72 (± 0.15) and a specificity of 0.70 (±

0.13), while the addition of clinical parameters further enhanced

performance, reaching a sensitivity of 0.78 (± 0.14) and a specificity

of 0.72 (± 0.12).

Among female patients, the radiomics-only model in Cohort 1

yielded a sensitivity of 0.67 (± 0.22) and a specificity of 0.65 (± 0.24).

The combined model improved both metrics, with a sensitivity of

0.77 (± 0.27) and a specificity of 0.70 (± 0.35). In Cohort 2, the

radiomics-only model achieved a balanced performance with a

sensitivity and specificity of 0.70 (± 0.26) and 0.70 (±

0.11), respectively.

Notably, the combined model in this subgroup demonstrated

reduced performance, with a sensitivity of 0.53 (± 0.23) and

specificity of 0.60 (± 0.39). This observation may reflect

underlying sex-specific differences in tumor biology or image-

derived patterns and underscores the need for further research

into gender-informed modeling strategies.

In addition, a subgroup analysis was performed based on age at

initial diagnosis, stratifying patients into two groups: >70 years and

≤70 years. Among patients older than 70 years, the radiomics-only

model in Cohort 1 yielded a sensitivity of 0.55 (± 0.16) and a

specificity of 0.72 (± 0.12), whereas the combined clinical-radiomics

model improved sensitivity to 0.64 (± 0.15) and specificity to 0.74 (±

0.17). In Cohort 2, sensitivity and specificity increased from 0.58 (±

0.14) and 0.84 (± 0.12) with the radiomics-only model to 0.63 (±

0.17) and 0.79 (± 0.10), respectively, with the combined model.

For patients aged ≤70 years, the radiomics-only model in

Cohort 1 demonstrated a sensitivity of 0.67 (± 0.35) and a

specificity of 0.60 (± 0.34). The addition of clinical parameters

improved performance, yielding a sensitivity of 0.70 (± 0.25) and a

specificity of 0.70 (± 0.20). In Cohort 2, the radiomics-only model

achieved a sensitivity of 0.73 (± 0.26) and a specificity of 0.67 (±

0.22), while the combined model further improved sensitivity to

0.87 (± 0.17) and maintained a specificity of 0.67 (± 0.31).
TABLE 4 Predictive performance of the radiomics-only and combined clinical-radiomics models in cohort 2, which includes patients who underwent
TURB at least 14 days before imaging.

Model
AUC
(mean
± SD)

Accuracy
(mean ± SD)

Precision
(mean ± SD)

Recall
(mean
± SD)

F1-Score
(mean ± SD)

Sensitivity
(mean ± SD)

Specificity
(mean ± SD)

Radiomics-only 0.80 ± 0.08 0.73 ± 0.09 0.75 ± 0.10 0.73 ± 0.09 0.72 ± 0.09 0.69 ± 0.10 0.71 ± 0.12

Combined
Clinical-
Radiomics

0.82 ± 0.07 0.78 ± 0.05 0.79 ± 0.05 0.78 ± 0.05 0.77 ± 0.05 0.80 ± 0.08 0.63 ± 0.11
TABLE 3 The predictive performances of the radiomics-only and combined clinical-radiomics models in cohort 1 including all patients, irrespective of
the timing of their transurethral resection of the bladder (TURB).

Model
AUC

(mean ± SD)
Accuracy

(mean ± SD)
Precision

(mean ± SD)
Recall

(mean ± SD)
F1 Score

(mean ± SD)
Sensitivity

(mean ± SD)
Specificity
(mean ± SD)

Radiomics-only 0.68 ± 0.08 0.63 ± 0.09 0.63 ± 0.10 0.63 ± 0.09 0.62 ± 0.10 0.74 ± 0.12 0.58 ± 0.17

Combined
Clinical-Radiomics

0.76 ± 0.09 0.69 ± 0.07 0.70 ± 0.08 0.68 ± 0.07 0.68 ± 0.07 0.74 ± 0.14 0.62 ± 0.16
frontiersin.org

https://doi.org/10.3389/fonc.2025.1591742
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lisson et al. 10.3389/fonc.2025.1591742
Taken together, these findings suggest that integrating clinical

features consistently enhances model performance across both age

groups, with particularly pronounced gains in sensitivity in younger

patients and improvements in specificity among older individuals.

To evaluate the potential clinical utility of the developed

prediction models for assessing bladder wall invasion, we

performed decision curve analyses (DCA) for both the radiomics-
Frontiers in Oncology 10
only and the combined clinical-radiomics models in Cohorts 1 and

2. As shown in Figures 6 and 7, the DCA curves indicate that the

combined models consistently yield a higher net benefit across a

broad range of clinically relevant threshold probabilities, compared

to default strategies such as treating all patients (“Always Act”) or

none (“Never Act”). This pattern was observed in both validation

cohorts, suggesting that the integration of clinical parameters into
FIGURE 5

ROC curves for cohort 2, demonstrating improved performance of the combined clinical-radiomics model compared to the radiomics-only model
in predicting bladder wall invasion.
FIGURE 4

Receiver operating characteristic (ROC) curves for the radiomics-only and combined clinical-radiomics models in cohort 1, showing that the
combined model slightly outperforms the radiomics-only approach in predicting bladder wall invasion.
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the radiomics framework enhances the model’s practical

applicability. These findings support the potential of the

combined model to inform individualized therapeutic decision-

making by better aligning diagnostic predictions with clinical

risk thresholds.
Frontiers in Oncology 11
Discussion

Accurate preoperative staging of bladder cancer (BCa) is essential

for individualized treatment planning and prognostication. According

to the European Association of Urology (EAU), tumor stage and grade
FIGURE 6

presents the results of the decision curve analysis (DCA) for the combined clinical-radiomics model in Cohort 1. The x-axis indicates the threshold
probability, representing the level of risk at which a clinician would initiate treatment, while the y-axis depicts the corresponding net clinical benefit.
The blue curve shows the combined model, the purple curve represents the radiomics-only model, the pink curve corresponds to the ‘Treat None’
strategy (assuming no patient has bladder wall invasion), and the grey curve reflects the ‘Treat All’ approach (assuming all patients are affected). The
DCA demonstrates that the combined model provides a higher net benefit than the radiomics-only model across a clinically relevant range of
threshold probabilities, particularly between 0.39 and 0.65, supporting its potential role in guiding treatment decisions.
FIGURE 7

shows the decision curve analysis for the combined and radiomics-only models in Cohort 2. Compared to Cohort 1, the combined model
demonstrates an even greater net benefit across a broad threshold range (0.19–0.81), consistent with its superior ROC performance and highlighting
its value for individualized treatment decisions.
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are key prognostic factors that critically influence therapeutic strategies

and the risk of recurrence (51). In particular, differentiating between

intravesical (≤T2) and extravesical (≥T3) disease is vital, as extravesical

extension is associated with an increased risk of lymphatic spread,

distant metastasis, and poor survival. Understaging may lead to

undertreatment, while overstaging may expose patients to

unnecessary morbidity (51).

Current standard staging relies on transurethral resection of the

bladder tumor (TURB), followed by histopathological assessment

(52). However, this approach has notable limitations. Tumor

heterogeneity and sampling errors can result in underestimation

of the true invasion depth. Indeed, up to 50% of patients initially

diagnosed with non-muscle-invasive disease (T1) are found to have

muscle-invasive cancer (≥T2) at cystectomy (8).

While repeat TURBs may reduce misclassification, they are

invasive, associated with increased morbidity, and can delay

definitive therapy (53). To address these limitations, clinical

guidelines from ESMO and NCCN advocate the use of cross-

sectional imaging techniques—primarily CT and MRI—for local

staging (4, 6).

These modalities are widely applied to evaluate tumor extent

and detect extravesical invasion. However, conventional imaging

lacks sufficient accuracy in distinguishing T2 from T3 disease. A

meta-analysis reported moderate diagnostic performance, with a

pooled sensitivity of 0.71 and specificity of 0.77 for differentiating

muscle-invasive from extravesical tumors (54).

Given these challenges, radiomics has emerged as a promising,

non-invasive tool to improve staging accuracy. By extracting high-

dimensional, quantitative features from standard imaging data,

radiomics enables a detailed characterization of tumor morphology,

texture, and signal intensity (16–18, 55, 56).

When combined with machine learning, these features can be

used to construct predictive models for tumor classification and risk

stratification. Previous studies have shown that radiomics-based

models can outperform conventional imaging in predicting muscle-

invasive disease (57).

However, one clinically relevant factor has remained largely

unexplored: the timing of imaging after transurethral resection of

the bladder tumor (TURB). Postoperative alterations such as

edema, inflammation, or transient bladder wall thickening can

affect radiomic feature stability and confound model predictions.

To date, no studies have systematically examined how the interval

between TURB and imaging influences the performance of CT-

based radiomics models for bladder cancer staging.

Our study addresses this gap by evaluating machine learning

models based on CT imaging for distinguishing between

intravesical (≤T2) and extravesical (≥T3) disease, with particular

emphasis on the impact of imaging timing. We developed and

validated combined clinical-radiomics models that integrate

routinely available laboratory parameters—preoperative creatinine

and hemoglobin levels—with radiomic features. These biomarkers

have been previously associated with oncologic outcomes in other

malignancies (58–60).

To enhance model transparency and mitigate overfitting, we

assessed multicollinearity using the Variance Inflation Factor (VIF).
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Following established guidelines (VIF > 10), we excluded 61

radiomic features, retaining 23 independent variables for model

training (32). This filtering strategy ensured a more robust and

interpretable feature set.

To further confirm the independence of selected features, we

generated heatmaps depicting pairwise Pearson correlations for

both radiomics-only and combined models across cohorts. The

observed low inter-feature correlations validated the effectiveness of

the filtering approach. Together, VIF analysis and correlation

heatmaps provided a methodologically sound basis for

dimensionality reduction—an essential prerequisite for the clinical

translation of radiomics models.

A central focus of our analysis was the comparison between

early (<14 days) and delayed (≥14 days) post-TURB imaging

cohorts. Our results demonstrate that delayed imaging improves

the reproducibility of radiomic features and leads to significantly

enhanced staging accuracy. In the delayed cohort, the combined

clinical-radiomics model achieved an AUC of 0.82, clearly

outperforming radiomics-only models and underscoring the

diagnostic value of integrating simple clinical parameters.

These findings suggest that post-surgical changes can adversely

affect radiomic data quality, and that imaging timing should be

carefully considered in radiomics workflows. In addition to

highlighting the benefit of delayed imaging, our study

demonstrates that the inclusion of clinical markers substantially

improves model performance—an approach that is both cost-

effective and readily implementable in clinical practice.

Subgroup analyses by gender and age further elucidated the

generalizability of our approach. In male patients, the combined

model consistently outperformed the radiomics-only model across

both cohorts, with higher sensitivity and specificity. This suggests

that routinely available clinical data provide relevant additive

prognostic value and that multimodal integration enhances

performance in this subgroup.

In contrast, predictive accuracy among female patients was

more variable. While the combined model improved results in

Cohort 1, it performed less favorably in Cohort 2. This

inconsistency may reflect underlying sex-specific differences in

tumor biology, inflammatory status, or imaging patterns. Rather

than indicating a methodological shortcoming, this variability

underscores the potential benefit of sex-specific modeling strategies.

Age-stratified analyses confirmed the added value of clinical

integration. The combined model improved performance across

both age groups, with notable gains in sensitivity among younger

patients (≤70 years) and improved specificity in older individuals

(>70 years). These patterns suggest that clinical data provide

complementary information across distinct biological and

clinical constellations.

Taken together, our results underscore the importance of

carefully considering imaging timing, the integration of clinical

parameters, and subgroup-specific validation in the design of

radiomics-based tools. These strategies may help ensure the

development of robust, equitable, and clinically applicable models.

Nonetheless, several limitations must be acknowledged. Our

findings are based on a retrospective, single-center cohort, which
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may limit generalizability. Multicenter prospective validation is

required to substantiate these observations. While we focused on

CT-based radiomics—given its widespread clinical use—future

research should explore MRI-based models and integrate

molecular biomarkers to further enhance predictive accuracy.

Standardization of imaging protocols and harmonization of

radiomic workflows remain crucial for broader clinical adoption.

We also recognize the value of longitudinal analyses,

particularly regarding the temporal dynamics of radiomic features

in the post-TURB setting. Although our sample size precluded

detailed evaluation of individual feature trajectories, future studies

should systematically examine such dynamics, potentially using

delta-radiomics approaches.

In conclusion, our study demonstrates that a combined clinical-

radiomics model—particularly when applied to delayed post-TURB

imaging—can significantly enhance the preoperative staging of

bladder cancer. The integration of routine laboratory parameters

and optimized imaging timing improves model accuracy and

supports the development of robust tools for precision diagnostics

and individualized treatment planning in uro-oncology. Prospective

validation is warranted to confirm these findings and enable

clinical translation.
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