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Introduction: Early and accurate diagnosis of lung cancer is crucial for improving

treatment outcomes and patient survival. This study investigates the combined

use of computed tomography (CT) radiomics and autoantibody biomarkers as a

novel approach to enhance lung cancer diagnosis.

Methods: We analyzed 258 patients from two centers, dividing into training,

internal validation, and external validation cohorts. CT scans were standardized,

and 1106 radiomic features were extracted. The recursive feature elimination

method was applied to iteratively eliminate the redundant features. Autoantibody

levels were assessed using a multiplex immunoassay targeting seven specific

biomarkers. After resampling the training dataset by using synthetic minority

over-sampling technique, the support vector machine classifier was employed to

train classification models. We developed separate predictive models for CT

radiomics and autoantibody testing and then fused the two models to

evaluate performance.

Results: The fusion model demonstrated significantly improved diagnostic

accuracy, with area under the receiver operating characteristic curve (AUC)

values of 0.90 ± 0.02, 0.83 ± 0.08, and 0.78 ± 0.09 in three cohorts,

outperforming both the CT radiomics-only (AUC: 0.87 ± 0.03, 0.76 ± 0.10,

0.74 ± 0.10) and autoantibody-only models (AUC: 0.67 ± 0.06, 0.55 ± 0.15, 0.57

± 0.10). Decision curve analysis indicated a higher net benefit of the integrated

model across various threshold probabilities.

Conclusion: The fusion of CT radiomics and autoantibody biomarkers

significantly enhances the diagnostic performance for lung cancer. This
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integrated approach enhances early detection and reduces unnecessary

interventions, paving the way for personalized treatment strategies. Future

research should focus on clinical validation and optimization of this model to

facilitate its implementation in routine clinical practice.
KEYWORDS

lung cancer, CT radiomics, autoantibody biomarkers, early diagnosis, predictive
modeling, multimodal integration
Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide, accounting for nearly 1.8 million deaths

annually (1). One of the primary reasons for its high mortality

rate is the frequent diagnosis at advanced stages when curative

treatment options are limited. Despite advancements in treatment,

the prognosis for lung cancer patients remains poor, primarily due

to the late-stage diagnosis of the disease. Early detection of lung

cancer is crucial for improving survival rates, as it allows for timely

intervention when the disease is still localized and more amenable

to treatment. However, current diagnostic methods, including

imaging techniques like low-dose computed tomography (CT)

and sputum cytology, have limitations in sensitivity and

specificity, often leading to false positives or missed early-stage

tumors (2). Consequently, there is an urgent need for more accurate

and reliable diagnostic tools that can detect lung cancer at an earlier

stage and differentiate malignant from benign lesions (3).

Recent advancements in medical imaging and molecular

diagnostics have opened new avenues for improving the accuracy of

lung cancer detection. Among these, CT radiomics—the extraction and

analysis of high-dimensional data from CT images—has gained

significant attention. Radiomics enables the quantitative assessment

of tumor characteristics, such as shape, texture, and intensity, which

can provide insights into tumor heterogeneity and biology that are not

discernible through traditional visual inspection (4–6). Studies have

shown that radiomic features can differentiate between benign and

malignant lung nodules, predict tumor aggressiveness, and even

forecast treatment response and patient outcomes (7).

Complementing the radiomic approach, autoantibody testing

represents a promising blood-based diagnostic method (8–10).

Autoantibodies are produced by the immune system in response

to tumor-associated antigens (TAAs), which are proteins expressed

by cancer cells. The presence of specific autoantibodies in the blood
computed tomography;

upport vector machine;

; ACC, accuracy; SEN,

; NPV, predictive value;

ic; AUC, curve; DCA,

NSCLC, non-small cell
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can serve as early indicators of malignancy, potentially before the

tumor is detectable by imaging (11–14). In lung cancer, several

specific autoantibody biomarkers have been identified that are

associated with the presence of the disease. These biomarkers

provide a blood-based, minimally invasive diagnostic tool that

can complement imaging findings and offer additional

information about the underlying tumor biology.

While CT radiomics and autoantibody testing have each

demonstrated potential in lung cancer diagnosis, their combined

application has not been extensively explored. The fusion of

radiomic features and autoantibody biomarkers offers a multi-

dimensional approach, leveraging both the anatomical and

functional information provided by imaging and the molecular

insights from blood tests (15–18). This integrative strategy has the

potential to improve early detection, reduce false positives, and

provide a more comprehensive understanding of the disease,

ultimately leading to better patient outcomes (19, 20).

This study aims to explore the potential of integrating CT

radiomics with seven specific autoantibody biomarkers to develop a

robust predictive model for lung cancer diagnosis. We hypothesize

that this multimodal approach will outperform traditional diagnostic

methods and individual modalities, offering a significant

advancement in the early detection of lung cancer. In this study,

we discuss the principles of CT radiomics and autoantibody testing,

outline the methodology for their integration, and explore the clinical

implications and challenges of this approach. By examining the

synergistic effects of combining these modalities, we aim to

contribute to the development of a more effective diagnostic

strategy for lung cancer, ultimately improving patient outcomes.
Materials and methods

Patient cohort

We retrospectively collected 206 patients from Zhejiang cancer

(ZJC) hospital and 52 patients from Taizhou municipal (TZM)

hospital. The patients in ZJC hospital were randomly divided into a

training cohort (N = 166) and a validation cohort 1 (N = 40) with a

ratio of 80%:20%. The patients involved in TZM hospital were used

as a validation cohort 2. Inclusion criteria are as follows: 1) patients
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with a confirmed diagnosis of lung cancer based on surgery

histopathological examination. 2) patients with benign pulmonary

conditions confirmed through surgery or biopsy histopathological

examination. 3) availability of pre-treatment CT scans and serum

samples. Exclusion criteria include: 1) incomplete imaging or

biomarker data. 2) recent surgical or therapeutic interventions

that may alter biomarker levels. This study was approved by the

institutional review board of Taizhou Municipal Hospital

(LWSL202400230) and Zhejiang Cancer Hospital (IRB-2022-625),

and it complies with the Declaration of Helsinki. Informed consent

was obtained from all participants.

This study employs a retrospective cohort design to evaluate the

effectiveness of integrating CT radiomics with autoantibody

biomarkers for lung cancer diagnosis. The study involves the

analysis of CT imaging data and corresponding serum samples

from patients diagnosed with lung cancer and those with benign

pulmonary conditions. The primary objective is to assess the

diagnostic performance of the combined approach compared to

traditional methods. Figure 1 shown the flowchart of this study.
CT imaging and radiomic feature
extraction

Imaging protocol
CT scans were performed using scanners with manufacturers

from Siemens, GE, Philips or United Imaging Healthcare at two

centers. All patients underwent contrast, high-resolution chest CT

imaging before any treatment or intervention. The imaging

parameters used were standardized across all patients to ensure

consistency in data acquisition and radiomic feature extraction. The

tube voltage was 120 kVp and tube current was in 200–300 mAs

using automated exposure control. The slice thickness was 1.0-5.0

mm. The field of view was adjusted to cover the entire thorax, from

the lung apices to the costophrenic angles. Each CT slice was

reconstructed with a matrix of 512×512 pixels.

Radiomic feature extraction
Tumor segmentation was performed manually by experienced

radiologists (X. M.) with 6 years of experience. The process involved

outlining the tumor boundaries on each CT slice where the lesion was

visible, ensuring accurate delineation of the entire tumor volume.

Manual segmentation was chosen to ensure high precision in

capturing tumor heterogeneity and shape, critical for radiomic

analysis. This segmentation procedure was carried out using ITK-

SNAP software (http://www.itksnap.org/). The radiologist manually

outlined the tumor on each axial slice of the CT scan. Care was taken

to exclude surrounding structures, such as blood vessels, bronchi,

and pleura, to focus on the tumor itself. After segmenting in the axial

plane, the segmentation was cross-checked in coronal and sagittal

planes to ensure consistency and accuracy of the tumor boundary

across multiple views. To ensure reliability, a second radiologist

independently reviewed a random subset of 20 segmented tumors.
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Discrepancies between radiologists were resolved through consensus

discussion. The interobserver variability was measured using the

Dice similarity coefficient, with a value of 0.805 indicating high

agreement between the observers. All segmented tumors were

rechecked by a senior radiologist (X. W.) with an experience of 12

years. This manual segmentation process provided high-quality,

detailed delineations of the tumor, which are crucial for the

subsequent extraction of radiomic features.

Following manual segmentation of the tumors, radiomic

features were extracted from the segmented tumor regions using

Pyradiomics (https://pypi.org/project/pyradiomics/) Python

programming (21). Before feature extraction step, all the CT

images were resampled with a new image spacing of (1mm, 1mm,

1mm). Radiomics transforms CT images into high-dimensional

data by quantifying tumor characteristics such as shape, texture,

and intensity, which reflect underlying pathophysiological traits.

The feature extraction process adhered to the Imaging Biomarker

Standardization Initiative guidelines to ensure reproducibility and

comparability. A total of 1106 radiomics features were extracted to

decode the imaging phenotypes of lung tumor initially. These

extracted features were categorized into shape features, first-order

intensity (histogram-based) features, texture features (second-order

features) and higher-order features. Shape features quantify the

three-dimensional geometry of the tumor, which may provide

insights into its malignancy and invasiveness. First-order intensity

features describe the distribution of voxel intensities within the

tumor, providing an overview of the tumor’s internal composition.

Texture features capture intra-tumoral heterogeneity by assessing

the spatial distribution of intensity patterns. Higher-order features

are derived from filtered images, which apply transformations (e.g.,

wavelet, Laplacian of Gaussian) to enhance specific image patterns.

These transformations capture complex textural variations that may

be linked to tumor biology.
Radiomics model development

Before developing the radiomics model, all 1106 radiomic

features were standardized using z-score normalization to ensure

that all features had a mean of 0 and a standard deviation of 1. This

normalization step prevented features with larger ranges from

dominating the model. Due to the high dimensionality of

radiomic features, dimensionality reduction was performed using

recursive feature elimination to iteratively eliminate the least

significant features, based on the performance of a support vector

machine (SVM) classifier, until the optimal subset was identified

(22). To prevent overfitting, especially in the presence of high-

dimensional radiomic features, we used 10-fold cross-validation in

conjunction with feature selection. This approach ensures that the

selected features generalize well across different subsets of the data,

enhancing the robustness of our model.

Given the imbalance in the dataset, with a relatively small

number of benign cases compared to malignant cases, Synthetic
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Minority Over-sampling Technique (SMOTE) was applied to

address this issue (23). Class imbalance can lead to biased

predictions, where the model becomes overly inclined towards the

majority class (malignant cases), reducing its ability to accurately

detect benign cases. SMOTE generates synthetic samples of the

minority class (benign tumors) to create a more balanced dataset,

thus improving model performance. Using the imbalanced-learn

library in Python, SMOTE was applied to the training data to

synthetically increase the number of benign cases. The SMOTE

function was called with default parameters (k=5) to oversample the

benign class until it reached the same size as the malignant class,

resulting in a balanced training set.

Finally, SVM with a linear kernel was utilized as one of the

primary models to classify lung nodules as malignant or benign

based on the extracted radiomic features. The choice of a linear

kernel was motivated by the need for a simple, interpretable model

that could effectively separate the two classes in high-dimensional

feature space while avoiding overfitting.
Frontiers in Oncology 04
Autoantibody model development

Autoantibody data were collected from blood samples of

patients included in this study. The concentration levels of each

of the seven autoantibodies were measured and recorded. The

selected seven autoantibodies which involve p53, PGP9.5, SOX2,

GAGE 7, GBU4-5, MAGE A1, and CAGE, are well-established lung

cancer biomarkers. p53 is a well-known tumor suppressor protein

that plays a crucial role in regulating the cell cycle and initiating

apoptosis. Mutations in the p53 gene are frequent in lung cancer,

and the presence of anti-p53 antibodies has been associated with

advanced stages of the disease and poor prognosis. PGP9.5 is a

ubiquitin carboxyl-terminal hydrolase that is expressed in various

tissues, including the nervous system and endocrine cells. In lung

cancer, particularly small cell lung cancer, autoantibodies against

PGP9.5 have been detected and may serve as a potential biomarker

for early diagnosis. SOX2 is a transcription factor essential for

maintaining pluripotency in stem cells and is involved in cellular
FIGURE 1

Flowchart of the study design, demonstrating patient selection, CT radiomics feature extraction, autoantibody biomarker testing, model
development, and performance evaluation.
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differentiation. It is frequently overexpressed in lung cancer, and the

presence of anti-SOX2 antibodies has been linked to tumor

aggressiveness and patient survival. GAGE 7 is part of the GAGE

family of cancer/testis antigens. The presence of autoantibodies

against GAGE 7 in lung cancer patients has been reported and may

be useful for serological diagnosis. GBU4–5 is another cancer/testis

antigen that is aberrantly expressed in lung cancer. It is involved in

cellular growth and survival, and the detection of anti-GBU4–5

antibodies can help in identifying lung cancer patients. MAGE A1 is

a member of the melanoma-associated antigen family and is a

cancer/testis antigen. It is not expressed in normal tissues except for

the testes but is frequently found in lung cancer. CAGE is a cancer/

testis antigen that is expressed in lung and esophageal cancers. It is

involved in cellular growth regulation and the presence of anti-

CAGE antibodies has been detected in lung cancer patients,

indicating its potential as a serological marker. These biomarkers

target TAAs and are often detectable in the early stages of lung

cancer, making them valuable for diagnostic purposes.

These autoantibodies were chosen based on their relevance to

lung cancer and previous evidence showing their diagnostic

performance in differentiating malignant from benign lung

conditions. Cases with missing autoantibody measurements were

imputed using the median value of the corresponding biomarker

within the dataset. Autoantibody levels were standardized using z-

score normalization to ensure that all features contributed equally

to the model training process. To avoid biases, the same SMOTE

oversampling method and SVM classifier were used to develop

autoantibody biomarker based model. The model is designed to

leverage the diagnostic potential of seven specific autoantibodies

known to be associated with lung cancer.
Fusion of radiomics and autoantibody
biomarkers

CT radiomics and autoantibody biomarkers provide distinct,

non-overlapping information about lung cancer. The autoantibody

biomarker panel provides complementary information to radiomic

features, potentially enhancing the accuracy of lung cancer

diagnosis. By fusing these two data types, the model benefits from

both anatomical and molecular information, potentially increasing

its ability to discriminate between benign and malignant lesions (24,

25). We employed a feature-level fusion strategy to integrate

radiomics features and autoantibody biomarkers for lung cancer

classification. Radiomics features extracted from CT images and the

seven autoantibody biomarkers were concatenated into a single

feature vector. Before fusion, both feature sets were normalized to

ensure that radiomics features and autoantibody levels were on the

same scale. Standardization was applied separately to each data

modality, using z-score normalization. This feature-level fusion

combines both types of information into a high-dimensional

feature space, which is then used as input for the classification

model. In this feature fusion model development process, the same

SMOTE oversampling method and SVM classifier were also applied

to avoid biases caused by different feature processing method.
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Model performance evaluation

The trained models, including the radiomics model,

autoantibody model, and the fused radiomics-autoantibody

model, were evaluated based on multiple performance metrics to

thoroughly assess their predictive capabilities in diagnosing lung

cancer. Both internal validation and external validation were

performed to ensure the robustness of the models. To ensure the

generalizability of the radiomics model, it was tested on an

independent validation dataset consisting of new patients not

included in the training process. The validation dataset helped

confirm that the model could accurately predict lung cancer in

diverse patient populations and imaging settings.

In addition to the standard performance metrics such as

accuracy (ACC), sensitivity (SEN), specificity (SPE), positive

predictive value (PPV), and negative predictive value (NPV),

Odds Ratio (OR) was calculated to assess the strength of

association between the predicted outcome and the actual

diagnosis. The area under the receiver operating characteristic

(ROC) curve (AUC) measures the model’s ability to distinguish

between malignant and benign cases. A higher AUC score indicates

better discriminatory power, with a score of 1.0 representing perfect

classification. A comprehensive measure of model performance,

capturing both sensitivity and specificity across different thresholds.

Comparisons between diagnostic performance metrics and

traditional methods were conducted using appropriate statistical

tests, such as paired t-tests or chi-square tests. To correct for

multiple comparisons, we employed the Bonferroni method.

Confidence intervals for all performance metrics were calculated

using bootstrap resampling. The significance testing between

models was performed using DeLong’s test for AUC comparisons,

ensuring the statistical validity of our results. The statistical

significance level was set at p < 0.05, with any p-values below this

threshold indicating significant differences between models or

compared to traditional diagnostic methods. We developed and

implemented our models using Python programming software

version 3.9.0 (https://www.python.org/). The Python packages

used in our study include SimpleITK, scikit-image, numpy,

pyradiomics, scikit-learn, and scipy. Default parameters in these

packages were utilized, ensuring straightforward application and

validation in future studies. All software tools used in our study are

compatible with the data format used in the literature, ensuring the

validity of our conclusions.
Results

Patient demographics and clinical
characteristics

A total of 258 patients were included in the study, comprising

222 patients with confirmed lung cancer and 36 patients with

benign pulmonary conditions. The clinical and demographic

characteristics of the three cohorts are summarized in Table 1.
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The histological diagnosis and seven autoantibodies distribution in

three cohorts was illustrated in Supplementary Table 1.
CT radiomics analysis

A total of 1106 radiomic features were extracted from CT scans,

including texture, shape, intensity features, wavelet features and

LoG features. Six features such as log-sigma-1-0-mm-

3D_glcm_Contrast, log-sigma-2-0-mm-3D_firstorder_Variance,

log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis,

w a v e l e t - L H H _ fi r s t o r d e r _ M a x i m u m , w a v e l e t -

HHH_ g l r l m _G r a y L e v e l N o nUn i f o rm i t y , w a v e l e t -

LLL_firstorder_10Percentile demonstrated significant differences

between malignant and benign lesions (see Figure 2). It can be

seen that wavelet features and LoG features play a vital role in

distinguish between benign and malignant tumors.
Model performance

The ROC curves, AUC values and corresponding 95%

confidence intervals (CIs) for the CT radiomics-only model,

autoantibody-only model, and the fused radiomics-autoantibody

model in training cohort and two validation cohorts are shown in

Figures 3a-c. The fused model consistently outperformed the
TABLE 1 Summary of patient demographics and clinical characteristics
in the three cohorts.

Characteristic
Training
cohort
(N=166)

Validation
cohort 1
(N=40)

Validation
cohort 2
(N=52)

Sex

Female 82 (49.40%) 21 (52.50%) 29 (55.77%)

Male 84 (50.60%) 19 (47.50%) 23 (44.23%)

Age 58.98±10.96 58.83±11.20 63.75±12.64

Pathology

Benign 23 5 8

Malignant 143 35 44

Autoantibody

p53 2.78±9.87 2.07±3.68 3.60±25.71

PGP9.5 0.52±1.52 0.24±0.49 4.87±25.69

SOX2 3.79±7.71 6.07±17.09 3.44±13.74

GAGE 7 6.61±21.35 2.77±3.30 3.93±13.81

GBU4-5 1.84±3.82 1.95±4.52 2.73±7.05

MAGE A1 2.19±8.02 1.58±5.14 2.78±8.15

CAGE 0.74±3.31 0.98±2.44 1.34±6.02
FIGURE 2

Box plots of the top six significant radiomic features between malignant and benign pulmonary lesions.
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individual radiomics and autoantibody models across all cohorts,

achieving the highest AUC values of 0.90 ± 0.02 (95% CI: 0.86-0.94),

0.83 ± 0.08 (95% CI: 0. 69-0.96), and 0.78 ± 0.09 (95% CI: 0.62-0.91)

in three cohorts, respectively. The fusion model demonstrated

significantly higher AUC values compared to the individual
Frontiers in Oncology 07
models, with P < 0.05, indicating that the combination of CT

radiomics and autoantibody biomarkers greatly enhances

diagnostic performance.

Meanwhile, the CT radiomics-only model also performed well,

but it was less effective than the fused model. The CT radiomics
FIGURE 3

Comparisons of performance generated by three models across three cohorts. (a, c, e) ROC curves comparing the performance of the CT
radiomics-only model, autoantibody-only model, and fusion radiomics-autoantibody model across three cohorts. (b, d, f) Sankey diagrams showing
the predicted classification results of malignant and benign cases for the three models across the training cohort, validation cohort 1 and validation
cohort 2, illustrating the distribution of cases between the prediction categories.
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model yielded a higher AUC values of 0.87 ± 0.03 (95% CI: 0.82-

0.92), 0.76 ± 0.10 (95% CI: 0. 58-0.91), and 0.74 ± 0.10 (95% CI:

0.57-0.88) than that of autoantibody model in three different

cohorts (P<0.05). While the radiomics model yielded reasonably

high AUC values, it was consistently outperformed by the fused

model, demonstrating the added value of integrating biomarker

information. These results provide robust evidence that combining

radiomics features with autoantibody biomarkers significantly

improves lung cancer diagnostic accuracy and reliability.

Figures 3d-f illustrates Sankey diagrams representing the flow of

predicted results from the three models (radiomics-only,

autoantibody-only, and fused radiomics-autoantibody models)

across the three cohorts (training, validation cohort 1, and

validation cohort 2). These diagrams offer a visual representation

of how patients were classified as malignant or benign by each

model and the overlaps or differences in predictions between the

models. The fused model consistently shows less flow towards

misclassifications, particularly in distinguishing benign conditions

from malignant tumors, which are critical for accurate lung cancer

diagnosis. These visualizations provide clear evidence of the benefits

of combining CT radiomics and autoantibody biomarkers, as the

fused model outperforms the individual models in all three cohorts.

Table 2 summarizes and compares the performance metrics,

including ACC, SEN, SPE, PPV, NPV value and OR, for the three

models evaluated using the training cohort and two validation

cohorts. The results in Table 2 reflect the same trends as observed

in the ROC curves. The fused radiomics-autoantibody model

consistently yielded higher ACC, SEN, SPE, PPV, and NPV

values than either the radiomics-only or autoantibody-only

models. The OR further supports the robustness of the fused

approach, indicating a stronger association with lung cancer

diagnosis. These findings underscore the efficacy of integrating

CT radiomics and autoantibody biomarkers in enhancing the

overall diagnostic performance for lung cancer, making a

compelling case for the adoption of multimodal approaches in

clinical settings for early detection and accurate diagnosis.

To further validate the clinical value of the different models, a

Decision Curve Analysis (DCA) was conducted. Figure 4 presents
Frontiers in Oncology 08
the DCA curves for three models across the three cohorts. DCA

provides a quantitative method to evaluate the clinical usefulness of

predictive models by assessing the net benefits at varying threshold

probabilities. The DCA curve for the fused model consistently lies

above the other two models across all cohorts. This indicates a

higher net benefit for clinicians at a range of threshold probabilities,

emphasizing its superior clinical applicability in lung cancer

diagnosis. The findings from the DCA highlight the practical

implications of using the fused radiomics-autoantibody model in

clinical settings. By demonstrating a higher net benefit across

various threshold probabilities, this model supports more accurate

and reliable decision-making in lung cancer diagnosis. The DCA

results reinforce the importance of multimodal approaches,

suggesting that integrating CT radiomics with autoantibody

biomarkers can significantly enhance clinical outcomes.
Discussion

This study investigated the integration of CT radiomics and

autoantibody biomarkers for enhancing the prediction and

diagnosis of lung cancer. Our results indicate that combining

these two modalities significantly improves diagnostic accuracy

compared to using either approach alone. The integrated model

achieved superior performance metrics, including increased

accuracy, sensitivity, and specificity, highlighting its potential for

more reliable early detection of lung cancer. This integration

represents a significant step forward in multimodal fusion

models, as it captures both imaging features and molecular data,

enabling a more comprehensive assessment of the disease. Previous

models, while valuable, may not fully capture the complexity of lung

cancer. By incorporating autoantibody biomarkers, our model

leverages the immune system’s ability to recognize and respond

to tumor-specific antigens, thereby enhancing diagnostic accuracy

and clinical benefit. Compared to prior models, our approach offers

a more robust and holistic assessment, particularly for early-stage

lung cancer detection. Our study has several characteristics.
TABLE 2 Comparison of model performance metrics for the CT radiomics-only, seven autoantibody-only, and fusion models across the training
cohort and two validation cohorts.

Model Dataset ACC SEN SPE PPV NPV

CT Radiomics

Training Cohort 69.28 [62.05, 76.51] 67.13 [59.29, 74.64] 82.61 [60.87, 95.00] 96.00 [90.22, 98.97] 28.79 [18.84, 40.62]

Validation Cohort 1 72.50 [57.50, 85.00] 77.14 [60.00, 88.57] 40.00 [0.00, 100.00] 90.00 [73.79, 96.97] 20.00 [0.00, 60.00]

Validation Cohort 2 65.38 [50.00, 75.00] 63.64 [47.62, 76.19] 75.00 [28.57, 100.00] 93.33 [72.41, 97.06] 27.27 [11.11, 48.26]

Seven-autoantibody Panel

Training Cohort 59.04 [51.20, 66.27] 58.74 [50.35, 66.43] 60.87 [39.13, 80.00] 90.32 [82.83, 95.40] 19.18 [10.97, 29.58]

Validation Cohort 1 60.00 [45.00, 75.00] 60.00 [42.86, 75.00] 60.00 [0.00, 100.00] 91.30 [73.68, 100.00] 17.65 [4.76, 42.86]

Validation Cohort 2 44.23 [28.85, 55.77] 36.36 [21.28, 50.00] 87.50 [33.33, 100.00] 94.12 [61.60, 100.00] 20.00 [8.82, 36.67]

All Feature

Training Cohort 78.92 [72.29, 84.94] 79.02 [71.63, 85.00] 78.26 [57.14, 93.10] 95.76 [90.73, 98.37] 37.50 [24.00, 52.00]

Validation Cohort 1 82.50 [67.50, 92.50] 85.71 [70.97, 94.44] 60.00 [0.00, 100.00] 93.72 [79.23, 100.00] 37.50 [0.00, 80.00]

Validation Cohort 2 67.31 [51.92, 76.92] 65.91 [50.00, 78.57] 75.00 [28.57, 100.00] 93.55 [74.26, 97.22] 28.57 [11.11, 50.00]
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The fusion of CT radiomic features with autoantibody

biomarkers provides a comprehensive approach to lung cancer

diagnosis. The integrated model outperformed both the CT

radiomics-only and autoantibody-only models, with significant

improvements in metrics such as accuracy, sensitivity, and

specificity. This suggests that the combination of imaging and

serum biomarkers can capture a more holistic view of tumor

characteristics and the body’s immune response, leading to

improved diagnostic outcomes. The higher sensitivity of the fused

model underscores its potential utility in early detection strategies.

Early diagnosis is crucial for improving treatment outcomes and

survival rates in lung cancer patients, and our results suggest that

this integrated approach could facilitate timely interventions (26,

27). The results from DCA reinforce the clinical relevance of our

findings. The integrated model exhibited a higher net benefit across

a range of threshold probabilities, indicating its potential utility in

guiding clinical decision-making. Current guidelines from the

National Comprehensive Cancer Network (NCCN) and European

Society for Medical Oncology (ESMO) recommend the use of CT

scans and molecular tests for lung cancer diagnosis and treatment

planning. However, these guidelines do not integrate the use of

autoantibody biomarkers, which can provide additional

information about the immune response to the tumor. Our

approach complements the existing guidelines by potentially

improving diagnostic accuracy and enabling early detection of

lung cancer. Current guidelines (NCCN, ESMO) prioritize

imaging (low-dose CT) and biopsy for lung cancer diagnosis.

However, our fusion model aligns with emerging trends

advocating non-invasive biomarkers for early detection. Unlike

guidelines that focus on single modalities, our approach integrates

radiomics and autoantibodies (e.g., GAGE7, CAGE) to improve

specificity, addressing limitations of standalone low-dose CT.

The enhanced diagnostic accuracy achieved through the

combined approach has significant clinical implications. Early

and accurate diagnosis of lung cancer can lead to timely

intervention and improved patient outcomes. The integrated

model could potentially reduce false positives and negatives, thus

minimizing unnecessary biopsies and follow-up procedures.

Furthermore, this approach may aid in risk stratification, allowing
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for personalized treatment plans based on the individual

characteristics of the patient’s disease. The fusion of CT

radiomics with autoantibody biomarkers represents a promising

advancement in lung cancer diagnostics. The combined model not

only improved diagnostic performance but also demonstrated the

complementary nature of these modalities. Radiomics provides

detailed spatial and textural information from imaging data, while

autoantibody testing offers insights into the body’s immune

response to cancer. Integrating these two sources of data allows

for a more comprehensive evaluation of the disease, capturing both

structural and molecular features. Our fusion model of CT

radiomics and autoantibody biomarkers could potentially reduce

healthcare costs by improving the accuracy of lung cancer

diagnosis. Early detection and accurate staging can lead to more

effective treatment and better patient outcomes, ultimately reducing

the overall burden on the healthcare system. The cost of performing

CT scans and autoantibody tests is relatively low compared to the

cost of advanced treatment options for late-stage lung cancer.

Therefore, our approach may be economically favorable by

enabling timely and accurate diagnosis.

CT radiomics offers a detailed analysis of tumor characteristics

through the extraction of quantitative features from imaging data by

providing a wealth of quantitative features derived from imaging

data that can capture the subtle variations in tumor texture, shape,

and intensity. Our study found that several radiomic features, such

as wavelet features and LoG features, were significantly different

between malignant and benign lesions. These features are reflective

of underlying tumor heterogeneity and texture, which are

contribute to the model’s ability to differentiate between lung

cancer and benign conditions, supporting previous findings that

radiomics can enhance tumor characterization and classification.

The improved performance of the radiomics model underscores its

utility in identifying subtle imaging characteristics that may not be

evident through conventional visual assessment alone.

Autoantibody testing serves as a valuable complementary

diagnostic approach to imaging-based diagnostics by detecting

immune responses against TAAs. Our findings show that seven

autoantibodies were present at higher levels in lung cancer patients

compared to those with benign conditions. This aligns with existing
FIGURE 4

DCA comparing the clinical utility of the CT radiomics-only model, autoantibody-only model, and fusion model in three cohorts. (a) Training cohort;
(b) Validation cohort 1; (c) Validation cohort 2.
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literature that suggests autoantibody profiles can reflect the presence

of cancer and potentially reveal disease-specific biomarkers (28). This

supports the role of autoantibodies as biomarkers for lung cancer,

offering a minimally invasive method for detecting tumor-associated

immune responses. The incorporation of these biomarkers into

diagnostic models provides additional molecular insight that can

enhance the overall diagnostic process.

Despite the promising results, our study also has several challenges

and limitations. First, variability in imaging protocols and biomarker

assays across different institutions can affect the generalizability of the

findings. Standardization of imaging and testing procedures is

essential for consistent results. Although efforts were made to

standardize imaging parameters and biomarker measurements

across centers, unavoidable inter-scanner and inter-laboratory

variability may still exist. In future studies, we aim to implement

feature harmonization techniques such as ComBat for multi-center

radiomics data and establish cross-laboratory standardization

protocols for biomarker testing. Second, the study’s retrospective

nature and sample size may limit the robustness of the findings.

Although two validation cohorts were used, the total number of

benign cases remains small, which could affect the generalizability of

our findings. The relatively small number of benign cases was mainly

due to the clinical prevalence of malignant pulmonary lesions in the

enrolled centers. This imbalance is a limitation of the study, and its

implications should be considered when interpreting the results. To

mitigate this, we employed statistical resampling strategies (including

SMOTE) to balance the training process and avoid model bias. While

we used SMOTE tomitigate this issue, we recognize that oversampling

cannot fully replicate the diversity of benign lesions. Larger,

prospective studies are needed to validate these results and assess

the model’s performance in diverse populations. Third, the integration

of multiple data types requires sophisticated algorithms and may pose

challenges in terms of computational complexity and model

interpretability. Simplified models that balance performance with

practicality are needed for clinical implementation. Future research

should focus on addressing the limitations identified in this study. As

the current study is retrospective, prospective validation is crucial for

assessing clinical utility. Prospective studies with multi-center larger

cohorts are necessary to validate the integrated model and refine its

performance. Additionally, exploring other biomarker panels and

imaging modalities could further enhance diagnostic capabilities

(29). Advances in machine learning and artificial intelligence may

also contribute to developing more efficient and interpretable models

for clinical use.
Conclusion

In conclusion, our study underscores the potential of combining

CT radiomics and autoantibody biomarkers to improve lung cancer

diagnosis. The fusion of CT radiomics and autoantibody testing

represents a significant advancement in lung cancer diagnosis. This

integrated approach can enhance early detection, minimize

unnecessary procedures, and pave the way for personalized

treatment strategies, ultimately contributing to better patient
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outcomes. Continued research and clinical validation will be

crucial for optimizing this integrative strategy and translating its

benefits into routine clinical practice.
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