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Introduction: Early and accurate diagnosis of lung cancer is crucial for improving
treatment outcomes and patient survival. This study investigates the combined
use of computed tomography (CT) radiomics and autoantibody biomarkers as a
novel approach to enhance lung cancer diagnosis.

Methods: We analyzed 258 patients from two centers, dividing into training,
internal validation, and external validation cohorts. CT scans were standardized,
and 1106 radiomic features were extracted. The recursive feature elimination
method was applied to iteratively eliminate the redundant features. Autoantibody
levels were assessed using a multiplex immunoassay targeting seven specific
biomarkers. After resampling the training dataset by using synthetic minority
over-sampling technique, the support vector machine classifier was employed to
train classification models. We developed separate predictive models for CT
radiomics and autoantibody testing and then fused the two models to
evaluate performance.

Results: The fusion model demonstrated significantly improved diagnostic
accuracy, with area under the receiver operating characteristic curve (AUC)
values of 0.90 + 0.02, 0.83 + 0.08, and 0.78 + 0.09 in three cohorts,
outperforming both the CT radiomics-only (AUC: 0.87 + 0.03, 0.76 + 0.10,
0.74 + 0.10) and autoantibody-only models (AUC: 0.67 + 0.06, 0.55 + 0.15, 0.57
+ 0.10). Decision curve analysis indicated a higher net benefit of the integrated
model across various threshold probabilities.

Conclusion: The fusion of CT radiomics and autoantibody biomarkers
significantly enhances the diagnostic performance for lung cancer. This
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integrated approach enhances early detection and reduces unnecessary
interventions, paving the way for personalized treatment strategies. Future
research should focus on clinical validation and optimization of this model to
facilitate its implementation in routine clinical practice.

lung cancer, CT radiomics, autoantibody biomarkers, early diagnosis, predictive
modeling, multimodal integration

Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, accounting for nearly 1.8 million deaths
annually (1). One of the primary reasons for its high mortality
rate is the frequent diagnosis at advanced stages when curative
treatment options are limited. Despite advancements in treatment,
the prognosis for lung cancer patients remains poor, primarily due
to the late-stage diagnosis of the disease. Early detection of lung
cancer is crucial for improving survival rates, as it allows for timely
intervention when the disease is still localized and more amenable
to treatment. However, current diagnostic methods, including
imaging techniques like low-dose computed tomography (CT)
and sputum cytology, have limitations in sensitivity and
specificity, often leading to false positives or missed early-stage
tumors (2). Consequently, there is an urgent need for more accurate
and reliable diagnostic tools that can detect lung cancer at an earlier
stage and differentiate malignant from benign lesions (3).

Recent advancements in medical imaging and molecular
diagnostics have opened new avenues for improving the accuracy of
lung cancer detection. Among these, CT radiomics—the extraction and
analysis of high-dimensional data from CT images—has gained
significant attention. Radiomics enables the quantitative assessment
of tumor characteristics, such as shape, texture, and intensity, which
can provide insights into tumor heterogeneity and biology that are not
discernible through traditional visual inspection (4-6). Studies have
shown that radiomic features can differentiate between benign and
malignant lung nodules, predict tumor aggressiveness, and even
forecast treatment response and patient outcomes (7).

Complementing the radiomic approach, autoantibody testing
represents a promising blood-based diagnostic method (8-10).
Autoantibodies are produced by the immune system in response
to tumor-associated antigens (TAAs), which are proteins expressed
by cancer cells. The presence of specific autoantibodies in the blood

Abbreviations: TAAs, tumor-associated antigens; CT, computed tomography;
ZJC, Zhejiang cancer; TZM, Taizhou municipal; SVM, support vector machine;
SMOTE, Synthetic Minority Over-sampling Technique; ACC, accuracy; SEN,
sensitivity; SPE, specificity; PPV, positive predictive value; NPV, predictive value;
OR, Odds Ratio; ROC, receiver operating characteristic; AUC, curve; DCA,
Decision Curve Analysis; SCLC, small cell lung cancer; NSCLC, non-small cell

lung cancer.
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can serve as early indicators of malignancy, potentially before the
tumor is detectable by imaging (11-14). In lung cancer, several
specific autoantibody biomarkers have been identified that are
associated with the presence of the disease. These biomarkers
provide a blood-based, minimally invasive diagnostic tool that
can complement imaging findings and offer additional
information about the underlying tumor biology.

While CT radiomics and autoantibody testing have each
demonstrated potential in lung cancer diagnosis, their combined
application has not been extensively explored. The fusion of
radiomic features and autoantibody biomarkers offers a multi-
dimensional approach, leveraging both the anatomical and
functional information provided by imaging and the molecular
insights from blood tests (15-18). This integrative strategy has the
potential to improve early detection, reduce false positives, and
provide a more comprehensive understanding of the disease,
ultimately leading to better patient outcomes (19, 20).

This study aims to explore the potential of integrating CT
radiomics with seven specific autoantibody biomarkers to develop a
robust predictive model for lung cancer diagnosis. We hypothesize
that this multimodal approach will outperform traditional diagnostic
methods and individual modalities, offering a significant
advancement in the early detection of lung cancer. In this study,
we discuss the principles of CT radiomics and autoantibody testing,
outline the methodology for their integration, and explore the clinical
implications and challenges of this approach. By examining the
synergistic effects of combining these modalities, we aim to
contribute to the development of a more effective diagnostic
strategy for lung cancer, ultimately improving patient outcomes.

Materials and methods
Patient cohort

We retrospectively collected 206 patients from Zhejiang cancer
(Z]JC) hospital and 52 patients from Taizhou municipal (TZM)
hospital. The patients in ZJC hospital were randomly divided into a
training cohort (N = 166) and a validation cohort 1 (N = 40) with a
ratio of 80%:20%. The patients involved in TZM hospital were used
as a validation cohort 2. Inclusion criteria are as follows: 1) patients
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with a confirmed diagnosis of lung cancer based on surgery
histopathological examination. 2) patients with benign pulmonary
conditions confirmed through surgery or biopsy histopathological
examination. 3) availability of pre-treatment CT scans and serum
samples. Exclusion criteria include: 1) incomplete imaging or
biomarker data. 2) recent surgical or therapeutic interventions
that may alter biomarker levels. This study was approved by the
institutional review board of Taizhou Municipal Hospital
(LWSL202400230) and Zhejiang Cancer Hospital (IRB-2022-625),
and it complies with the Declaration of Helsinki. Informed consent
was obtained from all participants.

This study employs a retrospective cohort design to evaluate the
effectiveness of integrating CT radiomics with autoantibody
biomarkers for lung cancer diagnosis. The study involves the
analysis of CT imaging data and corresponding serum samples
from patients diagnosed with lung cancer and those with benign
pulmonary conditions. The primary objective is to assess the
diagnostic performance of the combined approach compared to
traditional methods. Figure 1 shown the flowchart of this study.

CT imaging and radiomic feature
extraction

Imaging protocol

CT scans were performed using scanners with manufacturers
from Siemens, GE, Philips or United Imaging Healthcare at two
centers. All patients underwent contrast, high-resolution chest CT
imaging before any treatment or intervention. The imaging
parameters used were standardized across all patients to ensure
consistency in data acquisition and radiomic feature extraction. The
tube voltage was 120 kVp and tube current was in 200-300 mAs
using automated exposure control. The slice thickness was 1.0-5.0
mm. The field of view was adjusted to cover the entire thorax, from
the lung apices to the costophrenic angles. Each CT slice was
reconstructed with a matrix of 512x512 pixels.

Radiomic feature extraction

Tumor segmentation was performed manually by experienced
radiologists (X. M.) with 6 years of experience. The process involved
outlining the tumor boundaries on each CT slice where the lesion was
visible, ensuring accurate delineation of the entire tumor volume.
Manual segmentation was chosen to ensure high precision in
capturing tumor heterogeneity and shape, critical for radiomic
analysis. This segmentation procedure was carried out using ITK-
SNAP software (http://www.itksnap.org/). The radiologist manually
outlined the tumor on each axial slice of the CT scan. Care was taken
to exclude surrounding structures, such as blood vessels, bronchi,
and pleura, to focus on the tumor itself. After segmenting in the axial
plane, the segmentation was cross-checked in coronal and sagittal
planes to ensure consistency and accuracy of the tumor boundary
across multiple views. To ensure reliability, a second radiologist
independently reviewed a random subset of 20 segmented tumors.
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Discrepancies between radiologists were resolved through consensus
discussion. The interobserver variability was measured using the
Dice similarity coefficient, with a value of 0.805 indicating high
agreement between the observers. All segmented tumors were
rechecked by a senior radiologist (X. W.) with an experience of 12
years. This manual segmentation process provided high-quality,
detailed delineations of the tumor, which are crucial for the
subsequent extraction of radiomic features.

Following manual segmentation of the tumors, radiomic
features were extracted from the segmented tumor regions using
Pyradiomics (https://pypi.org/project/pyradiomics/) Python
programming (21). Before feature extraction step, all the CT
images were resampled with a new image spacing of (Imm, Imm,
Imm). Radiomics transforms CT images into high-dimensional
data by quantifying tumor characteristics such as shape, texture,
and intensity, which reflect underlying pathophysiological traits.
The feature extraction process adhered to the Imaging Biomarker
Standardization Initiative guidelines to ensure reproducibility and
comparability. A total of 1106 radiomics features were extracted to
decode the imaging phenotypes of lung tumor initially. These
extracted features were categorized into shape features, first-order
intensity (histogram-based) features, texture features (second-order
features) and higher-order features. Shape features quantify the
three-dimensional geometry of the tumor, which may provide
insights into its malignancy and invasiveness. First-order intensity
features describe the distribution of voxel intensities within the
tumor, providing an overview of the tumor’s internal composition.
Texture features capture intra-tumoral heterogeneity by assessing
the spatial distribution of intensity patterns. Higher-order features
are derived from filtered images, which apply transformations (e.g.,
wavelet, Laplacian of Gaussian) to enhance specific image patterns.
These transformations capture complex textural variations that may
be linked to tumor biology.

Radiomics model development

Before developing the radiomics model, all 1106 radiomic
features were standardized using z-score normalization to ensure
that all features had a mean of 0 and a standard deviation of 1. This
normalization step prevented features with larger ranges from
dominating the model. Due to the high dimensionality of
radiomic features, dimensionality reduction was performed using
recursive feature elimination to iteratively eliminate the least
significant features, based on the performance of a support vector
machine (SVM) classifier, until the optimal subset was identified
(22). To prevent overfitting, especially in the presence of high-
dimensional radiomic features, we used 10-fold cross-validation in
conjunction with feature selection. This approach ensures that the
selected features generalize well across different subsets of the data,
enhancing the robustness of our model.

Given the imbalance in the dataset, with a relatively small
number of benign cases compared to malignant cases, Synthetic
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FIGURE 1

Flowchart of the study design, demonstrating patient selection, CT radiomics feature extraction, autoantibody biomarker testing, model

development, and performance evaluation.

Minority Over-sampling Technique (SMOTE) was applied to
address this issue (23). Class imbalance can lead to biased
predictions, where the model becomes overly inclined towards the
majority class (malignant cases), reducing its ability to accurately
detect benign cases. SMOTE generates synthetic samples of the
minority class (benign tumors) to create a more balanced dataset,
thus improving model performance. Using the imbalanced-learn
library in Python, SMOTE was applied to the training data to
synthetically increase the number of benign cases. The SMOTE
function was called with default parameters (k=5) to oversample the
benign class until it reached the same size as the malignant class,
resulting in a balanced training set.

Finally, SVM with a linear kernel was utilized as one of the
primary models to classify lung nodules as malignant or benign
based on the extracted radiomic features. The choice of a linear
kernel was motivated by the need for a simple, interpretable model
that could effectively separate the two classes in high-dimensional
feature space while avoiding overfitting.

Frontiers in Oncology

Autoantibody model development

Autoantibody data were collected from blood samples of
patients included in this study. The concentration levels of each
of the seven autoantibodies were measured and recorded. The
selected seven autoantibodies which involve p53, PGP9.5, SOX2,
GAGE 7, GBU4-5, MAGE Al, and CAGE, are well-established lung
cancer biomarkers. p53 is a well-known tumor suppressor protein
that plays a crucial role in regulating the cell cycle and initiating
apoptosis. Mutations in the p53 gene are frequent in lung cancer,
and the presence of anti-p53 antibodies has been associated with
advanced stages of the disease and poor prognosis. PGP9.5 is a
ubiquitin carboxyl-terminal hydrolase that is expressed in various
tissues, including the nervous system and endocrine cells. In lung
cancer, particularly small cell lung cancer, autoantibodies against
PGP9.5 have been detected and may serve as a potential biomarker
for early diagnosis. SOX2 is a transcription factor essential for
maintaining pluripotency in stem cells and is involved in cellular
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differentiation. It is frequently overexpressed in lung cancer, and the
presence of anti-SOX2 antibodies has been linked to tumor
aggressiveness and patient survival. GAGE 7 is part of the GAGE
family of cancer/testis antigens. The presence of autoantibodies
against GAGE 7 in lung cancer patients has been reported and may
be useful for serological diagnosis. GBU4-5 is another cancer/testis
antigen that is aberrantly expressed in lung cancer. It is involved in
cellular growth and survival, and the detection of anti-GBU4-5
antibodies can help in identifying lung cancer patients. MAGE Al is
a member of the melanoma-associated antigen family and is a
cancer/testis antigen. It is not expressed in normal tissues except for
the testes but is frequently found in lung cancer. CAGE is a cancer/
testis antigen that is expressed in lung and esophageal cancers. It is
involved in cellular growth regulation and the presence of anti-
CAGE antibodies has been detected in lung cancer patients,
indicating its potential as a serological marker. These biomarkers
target TAAs and are often detectable in the early stages of lung
cancer, making them valuable for diagnostic purposes.

These autoantibodies were chosen based on their relevance to
lung cancer and previous evidence showing their diagnostic
performance in differentiating malignant from benign lung
conditions. Cases with missing autoantibody measurements were
imputed using the median value of the corresponding biomarker
within the dataset. Autoantibody levels were standardized using z-
score normalization to ensure that all features contributed equally
to the model training process. To avoid biases, the same SMOTE
oversampling method and SVM classifier were used to develop
autoantibody biomarker based model. The model is designed to
leverage the diagnostic potential of seven specific autoantibodies
known to be associated with lung cancer.

Fusion of radiomics and autoantibody
biomarkers

CT radiomics and autoantibody biomarkers provide distinct,
non-overlapping information about lung cancer. The autoantibody
biomarker panel provides complementary information to radiomic
features, potentially enhancing the accuracy of lung cancer
diagnosis. By fusing these two data types, the model benefits from
both anatomical and molecular information, potentially increasing
its ability to discriminate between benign and malignant lesions (24,
25). We employed a feature-level fusion strategy to integrate
radiomics features and autoantibody biomarkers for lung cancer
classification. Radiomics features extracted from CT images and the
seven autoantibody biomarkers were concatenated into a single
feature vector. Before fusion, both feature sets were normalized to
ensure that radiomics features and autoantibody levels were on the
same scale. Standardization was applied separately to each data
modality, using z-score normalization. This feature-level fusion
combines both types of information into a high-dimensional
feature space, which is then used as input for the classification
model. In this feature fusion model development process, the same
SMOTE oversampling method and SVM classifier were also applied
to avoid biases caused by different feature processing method.
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Model performance evaluation

The trained models, including the radiomics model,
autoantibody model, and the fused radiomics-autoantibody
model, were evaluated based on multiple performance metrics to
thoroughly assess their predictive capabilities in diagnosing lung
cancer. Both internal validation and external validation were
performed to ensure the robustness of the models. To ensure the
generalizability of the radiomics model, it was tested on an
independent validation dataset consisting of new patients not
included in the training process. The validation dataset helped
confirm that the model could accurately predict lung cancer in
diverse patient populations and imaging settings.

In addition to the standard performance metrics such as
accuracy (ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), and negative predictive value (NPV),
Odds Ratio (OR) was calculated to assess the strength of
association between the predicted outcome and the actual
diagnosis. The area under the receiver operating characteristic
(ROC) curve (AUC) measures the model’s ability to distinguish
between malignant and benign cases. A higher AUC score indicates
better discriminatory power, with a score of 1.0 representing perfect
classification. A comprehensive measure of model performance,
capturing both sensitivity and specificity across different thresholds.

Comparisons between diagnostic performance metrics and
traditional methods were conducted using appropriate statistical
tests, such as paired t-tests or chi-square tests. To correct for
multiple comparisons, we employed the Bonferroni method.
Confidence intervals for all performance metrics were calculated
using bootstrap resampling. The significance testing between
models was performed using DeLong’s test for AUC comparisons,
ensuring the statistical validity of our results. The statistical
significance level was set at p < 0.05, with any p-values below this
threshold indicating significant differences between models or
compared to traditional diagnostic methods. We developed and
implemented our models using Python programming software
version 3.9.0 (https://www.python.org/). The Python packages
used in our study include SimpleITK, scikit-image, numpy,
pyradiomics, scikit-learn, and scipy. Default parameters in these
packages were utilized, ensuring straightforward application and
validation in future studies. All software tools used in our study are
compatible with the data format used in the literature, ensuring the
validity of our conclusions.

Results

Patient demographics and clinical
characteristics

A total of 258 patients were included in the study, comprising
222 patients with confirmed lung cancer and 36 patients with
benign pulmonary conditions. The clinical and demographic
characteristics of the three cohorts are summarized in Table 1.
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TABLE 1 Summary of patient demographics and clinical characteristics The histological diagnosis and seven autoantibodies distribution in

in the three cohorts.

three cohorts was illustrated in Supplementary Table 1.

Training Validation Validation

Characteristic cohort cohort 1 cohort 2 . . .
(N=166) (N=40) (N=52) CT radiomics analysis
Sex
A total of 1106 radiomic features were extracted from CT scans,
Female 82 (4940%) 21 (52:50%) 29 (55.77%) including texture, shape, intensity features, wavelet features and
Male 84 (50.60%) 19 (47.50%) 23 (44.23%) LoG features. Six features such as log-sigma-1-0-mm-
Age 559841096 58.8341120 637541264 3D_glem_Contrast, log-sigma-2-0-mm-3D_firstorder_Variance,
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis,
Pathology wavelet-LHH firstorder_Maximum, wavelet-
Benign 23 5 8 HHH_glrlm_GrayLevelNonUniformity, wavelet-
Malignant 143 3 “ LLL_firstorder_10Percentile demonstrated significant differences
between malignant and benign lesions (see Figure 2). It can be
RuerlEey seen that wavelet features and LoG features play a vital role in
p53 2.78+9.87 2.07+3.68 3.60+25.71 distinguish between benign and malignant tumors.
PGP9.5 0.52+1.52 0.24+0.49 4.87+25.69
SOX2 3.79+7.71 6.07£17.09 3.44+13.74 Model performance
GAGE 7 6.61+21.35 277330 3.93+13.81
The ROC curves, AUC values and corresponding 95%
GBU4-5 1.84+3.82 1.95+4.52 2.73%7.05 confidence intervals (CIs) for the CT radiomics-only model,
MAGE Al 2.19+8.02 1.58+5.14 2.7848.15 autoantibody-only model, and the fused radiomics-autoantibody
model in training cohort and two validation cohorts are shown in
CAGE 0.74+3.31 0.98+2.44 1.34+6.02
Figures 3a-c. The fused model consistently outperformed the
F1=|og-s!gma-1-0—mm-3D_gIcm_Contras_t m=m Benign
F2=log-sigma-2-0-mm-3D_firstorder_Variance Mali t
6 1| F3=log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis Emm Malignan
F4=wavelet-LHH_firstorder_Maximum
F5=wavelet-HHH_glrim_GrayLevelNonUniformity
F6=wavelet-LLL _firstorder_10Percentilgy
4 ¢
: g
0 ’ :
2- $
: 0 $
0 -
-2
T T T T T T
F1 F2 F3 F4 F5 F6
FIGURE 2
Box plots of the top six significant radiomic features between malignant and benign pulmonary lesions.
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FIGURE 3
Comparisons of performance generated by three models across three cohorts. (a, ¢, €) ROC curves comparing the performance of the CT
radiomics-only model, autoantibody-only model, and fusion radiomics-autoantibody model across three cohorts. (b, d, f) Sankey diagrams showing
the predicted classification results of malignant and benign cases for the three models across the training cohort, validation cohort 1 and validation
cohort 2, illustrating the distribution of cases between the prediction categories.

individual radiomics and autoantibody models across all cohorts,
achieving the highest AUC values of 0.90 + 0.02 (95% CI: 0.86-0.94),
0.83 +0.08 (95% CI: 0. 69-0.96), and 0.78 + 0.09 (95% CI: 0.62-0.91)
in three cohorts, respectively. The fusion model demonstrated
significantly higher AUC values compared to the individual

Frontiers in Oncology

models, with P < 0.05, indicating that the combination of CT
radiomics and autoantibody biomarkers greatly enhances
diagnostic performance.

Meanwhile, the CT radiomics-only model also performed well,
but it was less effective than the fused model. The CT radiomics
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model yielded a higher AUC values of 0.87 + 0.03 (95% CI: 0.82-
0.92), 0.76 % 0.10 (95% CI: 0. 58-0.91), and 0.74 + 0.10 (95% CI:
0.57-0.88) than that of autoantibody model in three different
cohorts (P<0.05). While the radiomics model yielded reasonably
high AUC values, it was consistently outperformed by the fused
model, demonstrating the added value of integrating biomarker
information. These results provide robust evidence that combining
radiomics features with autoantibody biomarkers significantly
improves lung cancer diagnostic accuracy and reliability.

Figures 3d-f illustrates Sankey diagrams representing the flow of
predicted results from the three models (radiomics-only,
autoantibody-only, and fused radiomics-autoantibody models)
across the three cohorts (training, validation cohort 1, and
validation cohort 2). These diagrams offer a visual representation
of how patients were classified as malignant or benign by each
model and the overlaps or differences in predictions between the
models. The fused model consistently shows less flow towards
misclassifications, particularly in distinguishing benign conditions
from malignant tumors, which are critical for accurate lung cancer
diagnosis. These visualizations provide clear evidence of the benefits
of combining CT radiomics and autoantibody biomarkers, as the
fused model outperforms the individual models in all three cohorts.

Table 2 summarizes and compares the performance metrics,
including ACC, SEN, SPE, PPV, NPV value and OR, for the three
models evaluated using the training cohort and two validation
cohorts. The results in Table 2 reflect the same trends as observed
in the ROC curves. The fused radiomics-autoantibody model
consistently yielded higher ACC, SEN, SPE, PPV, and NPV
values than either the radiomics-only or autoantibody-only
models. The OR further supports the robustness of the fused
approach, indicating a stronger association with lung cancer
diagnosis. These findings underscore the efficacy of integrating
CT radiomics and autoantibody biomarkers in enhancing the
overall diagnostic performance for lung cancer, making a
compelling case for the adoption of multimodal approaches in
clinical settings for early detection and accurate diagnosis.

To further validate the clinical value of the different models, a
Decision Curve Analysis (DCA) was conducted. Figure 4 presents
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the DCA curves for three models across the three cohorts. DCA
provides a quantitative method to evaluate the clinical usefulness of
predictive models by assessing the net benefits at varying threshold
probabilities. The DCA curve for the fused model consistently lies
above the other two models across all cohorts. This indicates a
higher net benefit for clinicians at a range of threshold probabilities,
emphasizing its superior clinical applicability in lung cancer
diagnosis. The findings from the DCA highlight the practical
implications of using the fused radiomics-autoantibody model in
clinical settings. By demonstrating a higher net benefit across
various threshold probabilities, this model supports more accurate
and reliable decision-making in lung cancer diagnosis. The DCA
results reinforce the importance of multimodal approaches,
suggesting that integrating CT radiomics with autoantibody
biomarkers can significantly enhance clinical outcomes.

Discussion

This study investigated the integration of CT radiomics and
autoantibody biomarkers for enhancing the prediction and
diagnosis of lung cancer. Our results indicate that combining
these two modalities significantly improves diagnostic accuracy
compared to using either approach alone. The integrated model
achieved superior performance metrics, including increased
accuracy, sensitivity, and specificity, highlighting its potential for
more reliable early detection of lung cancer. This integration
represents a significant step forward in multimodal fusion
models, as it captures both imaging features and molecular data,
enabling a more comprehensive assessment of the disease. Previous
models, while valuable, may not fully capture the complexity of lung
cancer. By incorporating autoantibody biomarkers, our model
leverages the immune system’s ability to recognize and respond
to tumor-specific antigens, thereby enhancing diagnostic accuracy
and clinical benefit. Compared to prior models, our approach offers
a more robust and holistic assessment, particularly for early-stage
lung cancer detection. Our study has several characteristics.

TABLE 2 Comparison of model performance metrics for the CT radiomics-only, seven autoantibody-only, and fusion models across the training

cohort and two validation cohorts.

Model

CT Radiomics

Seven-autoantibody Panel

All Feature
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Dataset
Training Cohort
Validation Cohort 1
Validation Cohort 2
Training Cohort
Validation Cohort 1
Validation Cohort 2
Training Cohort
Validation Cohort 1

Validation Cohort 2

ACC
69.28 [62.05, 76.51]
72.50 [57.50, 85.00]
65.38 [50.00, 75.00]
59.04 [51.20, 66.27]
60.00 [45.00, 75.00]
44.23 [28.85, 55.77]
78.92 [72.29, 84.94]
82.50 [67.50, 92.50]

67.31 [51.92, 76.92]

SEN
67.13 [59.29, 74.64]
77.14 [60.00, 88.57]
63.64 [47.62, 76.19)]
58.74 [50.35, 66.43]
60.00 [42.86, 75.00]
36.36 [21.28, 50.00]
79.02 [71.63, 85.00]
85.71 [70.97, 94.44]

65.91 [50.00, 78.57]

08

SPE
82.61 [60.87, 95.00]
40.00 [0.00, 100.00]
75.00 [28.57, 100.00]
60.87 [39.13, 80.00]
60.00 [0.00, 100.00]
87.50 [33.33, 100.00]
78.26 [57.14, 93.10]
60.00 [0.00, 100.00]

75.00 [28.57, 100.00]

PPV
96.00 [90.22, 98.97]
90.00 [73.79, 96.97]
93.33 [72.41, 97.06]
90.32 [82.83, 95.40]
91.30 [73.68, 100.00]
94.12 [61.60, 100.00]
95.76 [90.73, 98.37]
93.72 [79.23, 100.00]

93.55 [74.26, 97.22]

NPV
28.79 [18.84, 40.62]
20.00 [0.00, 60.00]
2727 [11.11, 48.26]
19.18 [10.97, 29.58]
17.65 [4.76, 42.86]
20.00 [8.82, 36.67]
37.50 [24.00, 52.00]
37.50 [0.00, 80.00]

28.57 [11.11, 50.00]
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Training Cohort
—— Al Feature
—— Seven-autoantibody Panel
—— CT Radiomics Feature
— Treatall

Treat none

Net Benefit
Net Benefit
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Validation Cohort 1
—— All Feature
—— Seven-autoantibody Panel
—— CT Radiomics Feature
— Treatall

Treat none.

Validation Cohort 2
—— Al Feature
—— Seven-autoantibody Panel
—— CT Radiomics Feature
— Treatall

Treat none

Net Benefit

0.0 \ N
-02

Threshold Probability

FIGURE 4

Threshold Probabilty

0.0 02 04 06 08 1.0
Threshold Probability

DCA comparing the clinical utility of the CT radiomics-only model, autoantibody-only model, and fusion model in three cohorts. (a) Training cohort;

(b) Validation cohort 1; (c) Validation cohort 2.

The fusion of CT radiomic features with autoantibody
biomarkers provides a comprehensive approach to lung cancer
diagnosis. The integrated model outperformed both the CT
radiomics-only and autoantibody-only models, with significant
improvements in metrics such as accuracy, sensitivity, and
specificity. This suggests that the combination of imaging and
serum biomarkers can capture a more holistic view of tumor
characteristics and the body’s immune response, leading to
improved diagnostic outcomes. The higher sensitivity of the fused
model underscores its potential utility in early detection strategies.
Early diagnosis is crucial for improving treatment outcomes and
survival rates in lung cancer patients, and our results suggest that
this integrated approach could facilitate timely interventions (26,
27). The results from DCA reinforce the clinical relevance of our
findings. The integrated model exhibited a higher net benefit across
a range of threshold probabilities, indicating its potential utility in
guiding clinical decision-making. Current guidelines from the
National Comprehensive Cancer Network (NCCN) and European
Society for Medical Oncology (ESMO) recommend the use of CT
scans and molecular tests for lung cancer diagnosis and treatment
planning. However, these guidelines do not integrate the use of
autoantibody biomarkers, which can provide additional
information about the immune response to the tumor. Our
approach complements the existing guidelines by potentially
improving diagnostic accuracy and enabling early detection of
lung cancer. Current guidelines (NCCN, ESMO) prioritize
imaging (low-dose CT) and biopsy for lung cancer diagnosis.
However, our fusion model aligns with emerging trends
advocating non-invasive biomarkers for early detection. Unlike
guidelines that focus on single modalities, our approach integrates
radiomics and autoantibodies (e.g., GAGE7, CAGE) to improve
specificity, addressing limitations of standalone low-dose CT.

The enhanced diagnostic accuracy achieved through the
combined approach has significant clinical implications. Early
and accurate diagnosis of lung cancer can lead to timely
intervention and improved patient outcomes. The integrated
model could potentially reduce false positives and negatives, thus
minimizing unnecessary biopsies and follow-up procedures.
Furthermore, this approach may aid in risk stratification, allowing
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for personalized treatment plans based on the individual
characteristics of the patient’s disease. The fusion of CT
radiomics with autoantibody biomarkers represents a promising
advancement in lung cancer diagnostics. The combined model not
only improved diagnostic performance but also demonstrated the
complementary nature of these modalities. Radiomics provides
detailed spatial and textural information from imaging data, while
autoantibody testing offers insights into the body’s immune
response to cancer. Integrating these two sources of data allows
for a more comprehensive evaluation of the disease, capturing both
structural and molecular features. Our fusion model of CT
radiomics and autoantibody biomarkers could potentially reduce
healthcare costs by improving the accuracy of lung cancer
diagnosis. Early detection and accurate staging can lead to more
effective treatment and better patient outcomes, ultimately reducing
the overall burden on the healthcare system. The cost of performing
CT scans and autoantibody tests is relatively low compared to the
cost of advanced treatment options for late-stage lung cancer.
Therefore, our approach may be economically favorable by
enabling timely and accurate diagnosis.

CT radiomics offers a detailed analysis of tumor characteristics
through the extraction of quantitative features from imaging data by
providing a wealth of quantitative features derived from imaging
data that can capture the subtle variations in tumor texture, shape,
and intensity. Our study found that several radiomic features, such
as wavelet features and LoG features, were significantly different
between malignant and benign lesions. These features are reflective
of underlying tumor heterogeneity and texture, which are
contribute to the model’s ability to differentiate between lung
cancer and benign conditions, supporting previous findings that
radiomics can enhance tumor characterization and classification.
The improved performance of the radiomics model underscores its
utility in identifying subtle imaging characteristics that may not be
evident through conventional visual assessment alone.

Autoantibody testing serves as a valuable complementary
diagnostic approach to imaging-based diagnostics by detecting
immune responses against TAAs. Our findings show that seven
autoantibodies were present at higher levels in lung cancer patients
compared to those with benign conditions. This aligns with existing
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literature that suggests autoantibody profiles can reflect the presence
of cancer and potentially reveal disease-specific biomarkers (28). This
supports the role of autoantibodies as biomarkers for lung cancer,
offering a minimally invasive method for detecting tumor-associated
immune responses. The incorporation of these biomarkers into
diagnostic models provides additional molecular insight that can
enhance the overall diagnostic process.

Despite the promising results, our study also has several challenges
and limitations. First, variability in imaging protocols and biomarker
assays across different institutions can affect the generalizability of the
findings. Standardization of imaging and testing procedures is
essential for consistent results. Although efforts were made to
standardize imaging parameters and biomarker measurements
across centers, unavoidable inter-scanner and inter-laboratory
variability may still exist. In future studies, we aim to implement
feature harmonization techniques such as ComBat for multi-center
radiomics data and establish cross-laboratory standardization
protocols for biomarker testing. Second, the study’s retrospective
nature and sample size may limit the robustness of the findings.
Although two validation cohorts were used, the total number of
benign cases remains small, which could affect the generalizability of
our findings. The relatively small number of benign cases was mainly
due to the clinical prevalence of malignant pulmonary lesions in the
enrolled centers. This imbalance is a limitation of the study, and its
implications should be considered when interpreting the results. To
mitigate this, we employed statistical resampling strategies (including
SMOTE) to balance the training process and avoid model bias. While
we used SMOTE to mitigate this issue, we recognize that oversampling
cannot fully replicate the diversity of benign lesions. Larger,
prospective studies are needed to validate these results and assess
the model’s performance in diverse populations. Third, the integration
of multiple data types requires sophisticated algorithms and may pose
challenges in terms of computational complexity and model
interpretability. Simplified models that balance performance with
practicality are needed for clinical implementation. Future research
should focus on addressing the limitations identified in this study. As
the current study is retrospective, prospective validation is crucial for
assessing clinical utility. Prospective studies with multi-center larger
cohorts are necessary to validate the integrated model and refine its
performance. Additionally, exploring other biomarker panels and
imaging modalities could further enhance diagnostic capabilities
(29). Advances in machine learning and artificial intelligence may
also contribute to developing more efficient and interpretable models
for clinical use.

Conclusion

In conclusion, our study underscores the potential of combining
CT radiomics and autoantibody biomarkers to improve lung cancer
diagnosis. The fusion of CT radiomics and autoantibody testing
represents a significant advancement in lung cancer diagnosis. This
integrated approach can enhance early detection, minimize
unnecessary procedures, and pave the way for personalized
treatment strategies, ultimately contributing to better patient
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outcomes. Continued research and clinical validation will be
crucial for optimizing this integrative strategy and translating its
benefits into routine clinical practice.
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